blob: 2b20affe2a54c7f974d1c9520ba751ac4f74077c [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "class_linker.h"
#include <fcntl.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <deque>
#include <string>
#include <utility>
#include <vector>
#include "casts.h"
#include "class_loader.h"
#include "debugger.h"
#include "dex_cache.h"
#include "dex_file.h"
#include "heap.h"
#include "intern_table.h"
#include "leb128.h"
#include "logging.h"
#include "oat_file.h"
#include "object.h"
#include "object_utils.h"
#include "os.h"
#include "runtime.h"
#include "runtime_support.h"
#if defined(ART_USE_LLVM_COMPILER)
#include "compiler_llvm/runtime_support_llvm.h"
#endif
#include "scoped_jni_thread_state.h"
#include "ScopedLocalRef.h"
#include "space.h"
#include "stack_indirect_reference_table.h"
#include "stl_util.h"
#include "thread.h"
#include "UniquePtr.h"
#include "utils.h"
#include "well_known_classes.h"
namespace art {
static void ThrowNoClassDefFoundError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2)));
static void ThrowNoClassDefFoundError(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
Thread::Current()->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args);
va_end(args);
}
static void ThrowClassFormatError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2)));
static void ThrowClassFormatError(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
Thread::Current()->ThrowNewExceptionV("Ljava/lang/ClassFormatError;", fmt, args);
va_end(args);
}
static void ThrowLinkageError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2)));
static void ThrowLinkageError(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
Thread::Current()->ThrowNewExceptionV("Ljava/lang/LinkageError;", fmt, args);
va_end(args);
}
static void ThrowNoSuchMethodError(bool is_direct, Class* c, const StringPiece& name,
const StringPiece& signature) {
ClassHelper kh(c);
std::ostringstream msg;
msg << "no " << (is_direct ? "direct" : "virtual") << " method " << name << signature
<< " in class " << kh.GetDescriptor() << " or its superclasses";
std::string location(kh.GetLocation());
if (!location.empty()) {
msg << " (defined in " << location << ")";
}
Thread::Current()->ThrowNewException("Ljava/lang/NoSuchMethodError;", msg.str().c_str());
}
static void ThrowNoSuchFieldError(const StringPiece& scope, Class* c, const StringPiece& type,
const StringPiece& name) {
ClassHelper kh(c);
std::ostringstream msg;
msg << "no " << scope << "field " << name << " of type " << type
<< " in class " << kh.GetDescriptor() << " or its superclasses";
std::string location(kh.GetLocation());
if (!location.empty()) {
msg << " (defined in " << location << ")";
}
Thread::Current()->ThrowNewException("Ljava/lang/NoSuchFieldError;", msg.str().c_str());
}
static void ThrowNullPointerException(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2)));
static void ThrowNullPointerException(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
Thread::Current()->ThrowNewExceptionV("Ljava/lang/NullPointerException;", fmt, args);
va_end(args);
}
static void ThrowEarlierClassFailure(Class* c) {
// The class failed to initialize on a previous attempt, so we want to throw
// a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we
// failed in verification, in which case v2 5.4.1 says we need to re-throw
// the previous error.
LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c);
CHECK(c->IsErroneous()) << PrettyClass(c) << " " << c->GetStatus();
if (c->GetVerifyErrorClass() != NULL) {
// TODO: change the verifier to store an _instance_, with a useful detail message?
ClassHelper ve_ch(c->GetVerifyErrorClass());
std::string error_descriptor(ve_ch.GetDescriptor());
Thread::Current()->ThrowNewException(error_descriptor.c_str(), PrettyDescriptor(c).c_str());
} else {
ThrowNoClassDefFoundError("%s", PrettyDescriptor(c).c_str());
}
}
static void WrapExceptionInInitializer() {
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
ScopedLocalRef<jthrowable> cause(env, env->ExceptionOccurred());
CHECK(cause.get() != NULL);
env->ExceptionClear();
bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error);
env->Throw(cause.get());
// We only wrap non-Error exceptions; an Error can just be used as-is.
if (!is_error) {
self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", NULL);
}
}
static size_t Hash(const char* s) {
// This is the java.lang.String hashcode for convenience, not interoperability.
size_t hash = 0;
for (; *s != '\0'; ++s) {
hash = hash * 31 + *s;
}
return hash;
}
const char* ClassLinker::class_roots_descriptors_[] = {
"Ljava/lang/Class;",
"Ljava/lang/Object;",
"[Ljava/lang/Class;",
"[Ljava/lang/Object;",
"Ljava/lang/String;",
"Ljava/lang/ref/Reference;",
"Ljava/lang/reflect/Constructor;",
"Ljava/lang/reflect/Field;",
"Ljava/lang/reflect/Method;",
"Ljava/lang/reflect/Proxy;",
"Ljava/lang/ClassLoader;",
"Ldalvik/system/BaseDexClassLoader;",
"Ldalvik/system/PathClassLoader;",
"Ljava/lang/Throwable;",
"Ljava/lang/ClassNotFoundException;",
"Ljava/lang/StackTraceElement;",
"Z",
"B",
"C",
"D",
"F",
"I",
"J",
"S",
"V",
"[Z",
"[B",
"[C",
"[D",
"[F",
"[I",
"[J",
"[S",
"[Ljava/lang/StackTraceElement;",
};
ClassLinker* ClassLinker::CreateFromCompiler(const std::vector<const DexFile*>& boot_class_path,
InternTable* intern_table) {
CHECK_NE(boot_class_path.size(), 0U);
UniquePtr<ClassLinker> class_linker(new ClassLinker(intern_table));
class_linker->InitFromCompiler(boot_class_path);
return class_linker.release();
}
ClassLinker* ClassLinker::CreateFromImage(InternTable* intern_table) {
UniquePtr<ClassLinker> class_linker(new ClassLinker(intern_table));
class_linker->InitFromImage();
return class_linker.release();
}
ClassLinker::ClassLinker(InternTable* intern_table)
: dex_lock_("ClassLinker dex lock"),
classes_lock_("ClassLinker classes lock"),
class_roots_(NULL),
array_iftable_(NULL),
init_done_(false),
intern_table_(intern_table) {
CHECK_EQ(arraysize(class_roots_descriptors_), size_t(kClassRootsMax));
}
void ClassLinker::InitFromCompiler(const std::vector<const DexFile*>& boot_class_path) {
VLOG(startup) << "ClassLinker::Init";
CHECK(Runtime::Current()->IsCompiler());
CHECK(!init_done_);
// java_lang_Class comes first, it's needed for AllocClass
Heap* heap = Runtime::Current()->GetHeap();
SirtRef<Class> java_lang_Class(down_cast<Class*>(heap->AllocObject(NULL, sizeof(ClassClass))));
CHECK(java_lang_Class.get() != NULL);
java_lang_Class->SetClass(java_lang_Class.get());
java_lang_Class->SetClassSize(sizeof(ClassClass));
// AllocClass(Class*) can now be used
// Class[] is used for reflection support.
SirtRef<Class> class_array_class(AllocClass(java_lang_Class.get(), sizeof(Class)));
class_array_class->SetComponentType(java_lang_Class.get());
// java_lang_Object comes next so that object_array_class can be created
SirtRef<Class> java_lang_Object(AllocClass(java_lang_Class.get(), sizeof(Class)));
CHECK(java_lang_Object.get() != NULL);
// backfill Object as the super class of Class
java_lang_Class->SetSuperClass(java_lang_Object.get());
java_lang_Object->SetStatus(Class::kStatusLoaded);
// Object[] next to hold class roots
SirtRef<Class> object_array_class(AllocClass(java_lang_Class.get(), sizeof(Class)));
object_array_class->SetComponentType(java_lang_Object.get());
// Setup the char class to be used for char[]
SirtRef<Class> char_class(AllocClass(java_lang_Class.get(), sizeof(Class)));
// Setup the char[] class to be used for String
SirtRef<Class> char_array_class(AllocClass(java_lang_Class.get(), sizeof(Class)));
char_array_class->SetComponentType(char_class.get());
CharArray::SetArrayClass(char_array_class.get());
// Setup String
SirtRef<Class> java_lang_String(AllocClass(java_lang_Class.get(), sizeof(StringClass)));
String::SetClass(java_lang_String.get());
java_lang_String->SetObjectSize(sizeof(String));
java_lang_String->SetStatus(Class::kStatusResolved);
// Create storage for root classes, save away our work so far (requires
// descriptors)
class_roots_ = ObjectArray<Class>::Alloc(object_array_class.get(), kClassRootsMax);
CHECK(class_roots_ != NULL);
SetClassRoot(kJavaLangClass, java_lang_Class.get());
SetClassRoot(kJavaLangObject, java_lang_Object.get());
SetClassRoot(kClassArrayClass, class_array_class.get());
SetClassRoot(kObjectArrayClass, object_array_class.get());
SetClassRoot(kCharArrayClass, char_array_class.get());
SetClassRoot(kJavaLangString, java_lang_String.get());
// Setup the primitive type classes.
SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass("Z", Primitive::kPrimBoolean));
SetClassRoot(kPrimitiveByte, CreatePrimitiveClass("B", Primitive::kPrimByte));
SetClassRoot(kPrimitiveShort, CreatePrimitiveClass("S", Primitive::kPrimShort));
SetClassRoot(kPrimitiveInt, CreatePrimitiveClass("I", Primitive::kPrimInt));
SetClassRoot(kPrimitiveLong, CreatePrimitiveClass("J", Primitive::kPrimLong));
SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass("F", Primitive::kPrimFloat));
SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass("D", Primitive::kPrimDouble));
SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass("V", Primitive::kPrimVoid));
// Create array interface entries to populate once we can load system classes
array_iftable_ = AllocObjectArray<InterfaceEntry>(2);
// Create int array type for AllocDexCache (done in AppendToBootClassPath)
SirtRef<Class> int_array_class(AllocClass(java_lang_Class.get(), sizeof(Class)));
int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt));
IntArray::SetArrayClass(int_array_class.get());
SetClassRoot(kIntArrayClass, int_array_class.get());
// now that these are registered, we can use AllocClass() and AllocObjectArray
// setup boot_class_path_ and register class_path now that we can
// use AllocObjectArray to create DexCache instances
CHECK_NE(0U, boot_class_path.size());
for (size_t i = 0; i != boot_class_path.size(); ++i) {
const DexFile* dex_file = boot_class_path[i];
CHECK(dex_file != NULL);
AppendToBootClassPath(*dex_file);
}
// Constructor, Field, and Method are necessary so that FindClass can link members
SirtRef<Class> java_lang_reflect_Constructor(AllocClass(java_lang_Class.get(), sizeof(MethodClass)));
CHECK(java_lang_reflect_Constructor.get() != NULL);
java_lang_reflect_Constructor->SetObjectSize(sizeof(Method));
SetClassRoot(kJavaLangReflectConstructor, java_lang_reflect_Constructor.get());
java_lang_reflect_Constructor->SetStatus(Class::kStatusResolved);
SirtRef<Class> java_lang_reflect_Field(AllocClass(java_lang_Class.get(), sizeof(FieldClass)));
CHECK(java_lang_reflect_Field.get() != NULL);
java_lang_reflect_Field->SetObjectSize(sizeof(Field));
SetClassRoot(kJavaLangReflectField, java_lang_reflect_Field.get());
java_lang_reflect_Field->SetStatus(Class::kStatusResolved);
Field::SetClass(java_lang_reflect_Field.get());
SirtRef<Class> java_lang_reflect_Method(AllocClass(java_lang_Class.get(), sizeof(MethodClass)));
CHECK(java_lang_reflect_Method.get() != NULL);
java_lang_reflect_Method->SetObjectSize(sizeof(Method));
SetClassRoot(kJavaLangReflectMethod, java_lang_reflect_Method.get());
java_lang_reflect_Method->SetStatus(Class::kStatusResolved);
Method::SetClasses(java_lang_reflect_Constructor.get(), java_lang_reflect_Method.get());
// now we can use FindSystemClass
// run char class through InitializePrimitiveClass to finish init
InitializePrimitiveClass(char_class.get(), "C", Primitive::kPrimChar);
SetClassRoot(kPrimitiveChar, char_class.get()); // needs descriptor
// Object and String need to be rerun through FindSystemClass to finish init
java_lang_Object->SetStatus(Class::kStatusNotReady);
Class* Object_class = FindSystemClass("Ljava/lang/Object;");
CHECK_EQ(java_lang_Object.get(), Object_class);
CHECK_EQ(java_lang_Object->GetObjectSize(), sizeof(Object));
java_lang_String->SetStatus(Class::kStatusNotReady);
Class* String_class = FindSystemClass("Ljava/lang/String;");
CHECK_EQ(java_lang_String.get(), String_class);
CHECK_EQ(java_lang_String->GetObjectSize(), sizeof(String));
// Setup the primitive array type classes - can't be done until Object has a vtable
SetClassRoot(kBooleanArrayClass, FindSystemClass("[Z"));
BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
SetClassRoot(kByteArrayClass, FindSystemClass("[B"));
ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
Class* found_char_array_class = FindSystemClass("[C");
CHECK_EQ(char_array_class.get(), found_char_array_class);
SetClassRoot(kShortArrayClass, FindSystemClass("[S"));
ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
Class* found_int_array_class = FindSystemClass("[I");
CHECK_EQ(int_array_class.get(), found_int_array_class);
SetClassRoot(kLongArrayClass, FindSystemClass("[J"));
LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
SetClassRoot(kFloatArrayClass, FindSystemClass("[F"));
FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
SetClassRoot(kDoubleArrayClass, FindSystemClass("[D"));
DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
Class* found_class_array_class = FindSystemClass("[Ljava/lang/Class;");
CHECK_EQ(class_array_class.get(), found_class_array_class);
Class* found_object_array_class = FindSystemClass("[Ljava/lang/Object;");
CHECK_EQ(object_array_class.get(), found_object_array_class);
// Setup the single, global copies of "interfaces" and "iftable"
Class* java_lang_Cloneable = FindSystemClass("Ljava/lang/Cloneable;");
CHECK(java_lang_Cloneable != NULL);
Class* java_io_Serializable = FindSystemClass("Ljava/io/Serializable;");
CHECK(java_io_Serializable != NULL);
// We assume that Cloneable/Serializable don't have superinterfaces --
// normally we'd have to crawl up and explicitly list all of the
// supers as well.
array_iftable_->Set(0, AllocInterfaceEntry(java_lang_Cloneable));
array_iftable_->Set(1, AllocInterfaceEntry(java_io_Serializable));
// Sanity check Class[] and Object[]'s interfaces
ClassHelper kh(class_array_class.get(), this);
CHECK_EQ(java_lang_Cloneable, kh.GetDirectInterface(0));
CHECK_EQ(java_io_Serializable, kh.GetDirectInterface(1));
kh.ChangeClass(object_array_class.get());
CHECK_EQ(java_lang_Cloneable, kh.GetDirectInterface(0));
CHECK_EQ(java_io_Serializable, kh.GetDirectInterface(1));
// run Class, Constructor, Field, and Method through FindSystemClass.
// this initializes their dex_cache_ fields and register them in classes_.
Class* Class_class = FindSystemClass("Ljava/lang/Class;");
CHECK_EQ(java_lang_Class.get(), Class_class);
java_lang_reflect_Constructor->SetStatus(Class::kStatusNotReady);
Class* Constructor_class = FindSystemClass("Ljava/lang/reflect/Constructor;");
CHECK_EQ(java_lang_reflect_Constructor.get(), Constructor_class);
java_lang_reflect_Field->SetStatus(Class::kStatusNotReady);
Class* Field_class = FindSystemClass("Ljava/lang/reflect/Field;");
CHECK_EQ(java_lang_reflect_Field.get(), Field_class);
java_lang_reflect_Method->SetStatus(Class::kStatusNotReady);
Class* Method_class = FindSystemClass("Ljava/lang/reflect/Method;");
CHECK_EQ(java_lang_reflect_Method.get(), Method_class);
// End of special init trickery, subsequent classes may be loaded via FindSystemClass
// Create java.lang.reflect.Proxy root
Class* java_lang_reflect_Proxy = FindSystemClass("Ljava/lang/reflect/Proxy;");
SetClassRoot(kJavaLangReflectProxy, java_lang_reflect_Proxy);
// java.lang.ref classes need to be specially flagged, but otherwise are normal classes
Class* java_lang_ref_Reference = FindSystemClass("Ljava/lang/ref/Reference;");
SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference);
Class* java_lang_ref_FinalizerReference = FindSystemClass("Ljava/lang/ref/FinalizerReference;");
java_lang_ref_FinalizerReference->SetAccessFlags(
java_lang_ref_FinalizerReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsFinalizerReference);
Class* java_lang_ref_PhantomReference = FindSystemClass("Ljava/lang/ref/PhantomReference;");
java_lang_ref_PhantomReference->SetAccessFlags(
java_lang_ref_PhantomReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsPhantomReference);
Class* java_lang_ref_SoftReference = FindSystemClass("Ljava/lang/ref/SoftReference;");
java_lang_ref_SoftReference->SetAccessFlags(
java_lang_ref_SoftReference->GetAccessFlags() | kAccClassIsReference);
Class* java_lang_ref_WeakReference = FindSystemClass("Ljava/lang/ref/WeakReference;");
java_lang_ref_WeakReference->SetAccessFlags(
java_lang_ref_WeakReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsWeakReference);
// Setup the ClassLoaders, verifying the object_size_
Class* java_lang_ClassLoader = FindSystemClass("Ljava/lang/ClassLoader;");
CHECK_EQ(java_lang_ClassLoader->GetObjectSize(), sizeof(ClassLoader));
SetClassRoot(kJavaLangClassLoader, java_lang_ClassLoader);
Class* dalvik_system_BaseDexClassLoader = FindSystemClass("Ldalvik/system/BaseDexClassLoader;");
CHECK_EQ(dalvik_system_BaseDexClassLoader->GetObjectSize(), sizeof(BaseDexClassLoader));
SetClassRoot(kDalvikSystemBaseDexClassLoader, dalvik_system_BaseDexClassLoader);
Class* dalvik_system_PathClassLoader = FindSystemClass("Ldalvik/system/PathClassLoader;");
CHECK_EQ(dalvik_system_PathClassLoader->GetObjectSize(), sizeof(PathClassLoader));
SetClassRoot(kDalvikSystemPathClassLoader, dalvik_system_PathClassLoader);
PathClassLoader::SetClass(dalvik_system_PathClassLoader);
// Set up java.lang.Throwable, java.lang.ClassNotFoundException, and
// java.lang.StackTraceElement as a convenience
SetClassRoot(kJavaLangThrowable, FindSystemClass("Ljava/lang/Throwable;"));
Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
SetClassRoot(kJavaLangClassNotFoundException, FindSystemClass("Ljava/lang/ClassNotFoundException;"));
SetClassRoot(kJavaLangStackTraceElement, FindSystemClass("Ljava/lang/StackTraceElement;"));
SetClassRoot(kJavaLangStackTraceElementArrayClass, FindSystemClass("[Ljava/lang/StackTraceElement;"));
StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
FinishInit();
VLOG(startup) << "ClassLinker::InitFromCompiler exiting";
}
void ClassLinker::FinishInit() {
VLOG(startup) << "ClassLinker::FinishInit entering";
// Let the heap know some key offsets into java.lang.ref instances
// Note: we hard code the field indexes here rather than using FindInstanceField
// as the types of the field can't be resolved prior to the runtime being
// fully initialized
Class* java_lang_ref_Reference = GetClassRoot(kJavaLangRefReference);
Class* java_lang_ref_ReferenceQueue = FindSystemClass("Ljava/lang/ref/ReferenceQueue;");
Class* java_lang_ref_FinalizerReference = FindSystemClass("Ljava/lang/ref/FinalizerReference;");
const DexFile& java_lang_dex = FindDexFile(java_lang_ref_Reference->GetDexCache());
Field* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
FieldHelper fh(pendingNext, this);
CHECK_STREQ(fh.GetName(), "pendingNext");
CHECK_EQ(java_lang_dex.GetFieldId(pendingNext->GetDexFieldIndex()).type_idx_,
java_lang_ref_Reference->GetDexTypeIndex());
Field* queue = java_lang_ref_Reference->GetInstanceField(1);
fh.ChangeField(queue);
CHECK_STREQ(fh.GetName(), "queue");
CHECK_EQ(java_lang_dex.GetFieldId(queue->GetDexFieldIndex()).type_idx_,
java_lang_ref_ReferenceQueue->GetDexTypeIndex());
Field* queueNext = java_lang_ref_Reference->GetInstanceField(2);
fh.ChangeField(queueNext);
CHECK_STREQ(fh.GetName(), "queueNext");
CHECK_EQ(java_lang_dex.GetFieldId(queueNext->GetDexFieldIndex()).type_idx_,
java_lang_ref_Reference->GetDexTypeIndex());
Field* referent = java_lang_ref_Reference->GetInstanceField(3);
fh.ChangeField(referent);
CHECK_STREQ(fh.GetName(), "referent");
CHECK_EQ(java_lang_dex.GetFieldId(referent->GetDexFieldIndex()).type_idx_,
GetClassRoot(kJavaLangObject)->GetDexTypeIndex());
Field* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
fh.ChangeField(zombie);
CHECK_STREQ(fh.GetName(), "zombie");
CHECK_EQ(java_lang_dex.GetFieldId(zombie->GetDexFieldIndex()).type_idx_,
GetClassRoot(kJavaLangObject)->GetDexTypeIndex());
Heap* heap = Runtime::Current()->GetHeap();
heap->SetReferenceOffsets(referent->GetOffset(),
queue->GetOffset(),
queueNext->GetOffset(),
pendingNext->GetOffset(),
zombie->GetOffset());
// ensure all class_roots_ are initialized
for (size_t i = 0; i < kClassRootsMax; i++) {
ClassRoot class_root = static_cast<ClassRoot>(i);
Class* klass = GetClassRoot(class_root);
CHECK(klass != NULL);
DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != NULL);
// note SetClassRoot does additional validation.
// if possible add new checks there to catch errors early
}
CHECK(array_iftable_ != NULL);
// disable the slow paths in FindClass and CreatePrimitiveClass now
// that Object, Class, and Object[] are setup
init_done_ = true;
VLOG(startup) << "ClassLinker::FinishInit exiting";
}
void ClassLinker::RunRootClinits() {
Thread* self = Thread::Current();
for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) {
Class* c = GetClassRoot(ClassRoot(i));
if (!c->IsArrayClass() && !c->IsPrimitive()) {
EnsureInitialized(GetClassRoot(ClassRoot(i)), true, true);
CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException());
}
}
}
bool ClassLinker::GenerateOatFile(const std::string& dex_filename,
int oat_fd,
const std::string& oat_cache_filename) {
std::string dex2oat_string(GetAndroidRoot());
dex2oat_string += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
const char* dex2oat = dex2oat_string.c_str();
const char* class_path = Runtime::Current()->GetClassPathString().c_str();
Heap* heap = Runtime::Current()->GetHeap();
std::string boot_image_option_string("--boot-image=");
boot_image_option_string += heap->GetImageSpace()->GetImageFilename();
const char* boot_image_option = boot_image_option_string.c_str();
std::string dex_file_option_string("--dex-file=");
dex_file_option_string += dex_filename;
const char* dex_file_option = dex_file_option_string.c_str();
std::string oat_fd_option_string("--oat-fd=");
StringAppendF(&oat_fd_option_string, "%d", oat_fd);
const char* oat_fd_option = oat_fd_option_string.c_str();
std::string oat_location_option_string("--oat-location=");
oat_location_option_string += oat_cache_filename;
const char* oat_location_option = oat_location_option_string.c_str();
// fork and exec dex2oat
pid_t pid = fork();
if (pid == 0) {
// no allocation allowed between fork and exec
// change process groups, so we don't get reaped by ProcessManager
setpgid(0, 0);
VLOG(class_linker) << dex2oat
<< " --runtime-arg -Xms64m"
<< " --runtime-arg -Xmx64m"
<< " --runtime-arg -classpath"
<< " --runtime-arg " << class_path
<< " " << boot_image_option
<< " " << dex_file_option
<< " " << oat_fd_option
<< " " << oat_location_option;
execl(dex2oat, dex2oat,
"--runtime-arg", "-Xms64m",
"--runtime-arg", "-Xmx64m",
"--runtime-arg", "-classpath",
"--runtime-arg", class_path,
boot_image_option,
dex_file_option,
oat_fd_option,
oat_location_option,
NULL);
PLOG(FATAL) << "execl(" << dex2oat << ") failed";
return false;
} else {
// wait for dex2oat to finish
int status;
pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
if (got_pid != pid) {
PLOG(ERROR) << "waitpid failed: wanted " << pid << ", got " << got_pid;
return false;
}
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
LOG(ERROR) << dex2oat << " failed with dex-file=" << dex_filename;
return false;
}
}
return true;
}
void ClassLinker::RegisterOatFile(const OatFile& oat_file) {
MutexLock mu(dex_lock_);
RegisterOatFileLocked(oat_file);
}
void ClassLinker::RegisterOatFileLocked(const OatFile& oat_file) {
dex_lock_.AssertHeld();
oat_files_.push_back(&oat_file);
}
OatFile* ClassLinker::OpenOat(const ImageSpace* space) {
MutexLock mu(dex_lock_);
const Runtime* runtime = Runtime::Current();
const ImageHeader& image_header = space->GetImageHeader();
// Grab location but don't use Object::AsString as we haven't yet initialized the roots to
// check the down cast
String* oat_location = down_cast<String*>(image_header.GetImageRoot(ImageHeader::kOatLocation));
std::string oat_filename;
oat_filename += runtime->GetHostPrefix();
oat_filename += oat_location->ToModifiedUtf8();
OatFile* oat_file = OatFile::Open(oat_filename, oat_filename,
image_header.GetOatBegin(),
OatFile::kRelocNone);
VLOG(startup) << "ClassLinker::OpenOat entering oat_filename=" << oat_filename;
if (oat_file == NULL) {
LOG(ERROR) << "Failed to open oat file " << oat_filename << " referenced from image.";
return NULL;
}
uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
uint32_t image_oat_checksum = image_header.GetOatChecksum();
if (oat_checksum != image_oat_checksum) {
LOG(ERROR) << "Failed to match oat file checksum " << std::hex << oat_checksum
<< " to expected oat checksum " << std::hex << oat_checksum
<< " in image";
return NULL;
}
RegisterOatFileLocked(*oat_file);
VLOG(startup) << "ClassLinker::OpenOat exiting";
return oat_file;
}
const OatFile* ClassLinker::FindOpenedOatFileForDexFile(const DexFile& dex_file) {
return FindOpenedOatFileFromDexLocation(dex_file.GetLocation());
}
const OatFile* ClassLinker::FindOpenedOatFileFromDexLocation(const std::string& dex_location) {
MutexLock mu(dex_lock_);
for (size_t i = 0; i < oat_files_.size(); i++) {
const OatFile* oat_file = oat_files_[i];
DCHECK(oat_file != NULL);
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location, false);
if (oat_dex_file != NULL) {
return oat_file;
}
}
return NULL;
}
static const DexFile* FindDexFileInOatLocation(const std::string& dex_location,
uint32_t dex_location_checksum,
const std::string& oat_location) {
UniquePtr<OatFile> oat_file(
OatFile::Open(oat_location, oat_location, NULL, OatFile::kRelocAll));
if (oat_file.get() == NULL) {
return NULL;
}
Runtime* runtime = Runtime::Current();
const ImageHeader& image_header = runtime->GetHeap()->GetImageSpace()->GetImageHeader();
if (oat_file->GetOatHeader().GetImageFileLocationChecksum() != image_header.GetOatChecksum()) {
return NULL;
}
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location);
if (oat_dex_file == NULL) {
return NULL;
}
if (oat_dex_file->GetDexFileLocationChecksum() != dex_location_checksum) {
return NULL;
}
runtime->GetClassLinker()->RegisterOatFile(*oat_file.release());
return oat_dex_file->OpenDexFile();
}
const DexFile* ClassLinker::FindOrCreateOatFileForDexLocation(const std::string& dex_location,
const std::string& oat_location) {
uint32_t dex_location_checksum;
if (!DexFile::GetChecksum(dex_location, dex_location_checksum)) {
LOG(ERROR) << "Failed to compute checksum '" << dex_location << "'";
return NULL;
}
// Check if we already have an up-to-date output file
const DexFile* dex_file = FindDexFileInOatLocation(dex_location,
dex_location_checksum,
oat_location);
if (dex_file != NULL) {
return dex_file;
}
// Generate the output oat file for the dex file
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
UniquePtr<File> file(OS::OpenFile(oat_location.c_str(), true));
if (file.get() == NULL) {
LOG(ERROR) << "Failed to create oat file: " << oat_location;
return NULL;
}
if (!class_linker->GenerateOatFile(dex_location, file->Fd(), oat_location)) {
LOG(ERROR) << "Failed to generate oat file: " << oat_location;
return NULL;
}
// Open the oat from file descriptor we passed to GenerateOatFile
if (lseek(file->Fd(), 0, SEEK_SET) != 0) {
LOG(ERROR) << "Failed to seek to start of generated oat file: " << oat_location;
return NULL;
}
const OatFile* oat_file =
OatFile::Open(*file.get(), oat_location, NULL, OatFile::kRelocAll);
if (oat_file == NULL) {
LOG(ERROR) << "Failed to open generated oat file: " << oat_location;
return NULL;
}
class_linker->RegisterOatFile(*oat_file);
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location);
if (oat_dex_file == NULL) {
LOG(ERROR) << "Failed to find dex file in generated oat file: " << oat_location;
return NULL;
}
return oat_dex_file->OpenDexFile();
}
bool ClassLinker::VerifyOatFileChecksums(const OatFile* oat_file,
const std::string& dex_location,
uint32_t dex_location_checksum) {
Runtime* runtime = Runtime::Current();
const ImageHeader& image_header = runtime->GetHeap()->GetImageSpace()->GetImageHeader();
uint32_t image_checksum = image_header.GetOatChecksum();
bool image_check = (oat_file->GetOatHeader().GetImageFileLocationChecksum() == image_checksum);
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location);
if (oat_dex_file == NULL) {
LOG(ERROR) << ".oat file " << oat_file->GetLocation()
<< " does not contain contents for " << dex_location;
std::vector<const OatFile::OatDexFile*> oat_dex_files = oat_file->GetOatDexFiles();
for (size_t i = 0; i < oat_dex_files.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files[i];
LOG(ERROR) << ".oat file " << oat_file->GetLocation()
<< " contains contents for " << oat_dex_file->GetDexFileLocation();
}
return false;
}
bool dex_check = (dex_location_checksum == oat_dex_file->GetDexFileLocationChecksum());
if (image_check && dex_check) {
return true;
}
if (!image_check) {
std::string image_file(image_header.GetImageRoot(
ImageHeader::kOatLocation)->AsString()->ToModifiedUtf8());
LOG(WARNING) << ".oat file " << oat_file->GetLocation()
<< " checksum ( " << std::hex << oat_dex_file->GetDexFileLocationChecksum()
<< ") mismatch with " << image_file
<< " (" << std::hex << image_checksum << ")";
}
if (!dex_check) {
LOG(WARNING) << ".oat file " << oat_file->GetLocation()
<< " checksum ( " << std::hex << oat_dex_file->GetDexFileLocationChecksum()
<< ") mismatch with " << dex_location
<< " (" << std::hex << dex_location_checksum << ")";
}
return false;
}
const DexFile* ClassLinker::VerifyAndOpenDexFileFromOatFile(const OatFile* oat_file,
const std::string& dex_location,
uint32_t dex_location_checksum) {
bool verified = VerifyOatFileChecksums(oat_file, dex_location, dex_location_checksum);
if (!verified) {
return NULL;
}
RegisterOatFileLocked(*oat_file);
return oat_file->GetOatDexFile(dex_location)->OpenDexFile();
}
const DexFile* ClassLinker::FindDexFileInOatFileFromDexLocation(const std::string& dex_location) {
MutexLock mu(dex_lock_);
const OatFile* open_oat_file = FindOpenedOatFileFromDexLocation(dex_location);
if (open_oat_file != NULL) {
return open_oat_file->GetOatDexFile(dex_location)->OpenDexFile();
}
// Look for an existing file next to dex. for example, for
// /foo/bar/baz.jar, look for /foo/bar/baz.jar.oat.
std::string oat_filename(OatFile::DexFilenameToOatFilename(dex_location));
const OatFile* oat_file = FindOatFileFromOatLocation(oat_filename);
if (oat_file != NULL) {
uint32_t dex_location_checksum;
if (!DexFile::GetChecksum(dex_location, dex_location_checksum)) {
// If no classes.dex found in dex_location, it has been stripped, assume oat is up-to-date.
// This is the common case in user builds for jar's and apk's in the /system directory.
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location);
CHECK(oat_dex_file != NULL) << oat_filename << " " << dex_location;
RegisterOatFileLocked(*oat_file);
return oat_dex_file->OpenDexFile();
}
const DexFile* dex_file = VerifyAndOpenDexFileFromOatFile(oat_file,
dex_location,
dex_location_checksum);
if (dex_file != NULL) {
return dex_file;
}
}
// Look for an existing file in the art-cache, validating the result if found
// not found in /foo/bar/baz.oat? try /data/art-cache/foo@bar@baz.oat
std::string cache_location(GetArtCacheFilenameOrDie(oat_filename));
oat_file = FindOatFileFromOatLocation(cache_location);
if (oat_file != NULL) {
uint32_t dex_location_checksum;
if (!DexFile::GetChecksum(dex_location, dex_location_checksum)) {
LOG(WARNING) << "Failed to compute checksum: " << dex_location;
return NULL;
}
const DexFile* dex_file = VerifyAndOpenDexFileFromOatFile(oat_file,
dex_location,
dex_location_checksum);
if (dex_file != NULL) {
return dex_file;
}
if (TEMP_FAILURE_RETRY(unlink(oat_file->GetLocation().c_str())) != 0) {
PLOG(FATAL) << "Failed to remove obsolete .oat file " << oat_file->GetLocation();
}
}
LOG(INFO) << "Failed to open oat file from " << oat_filename << " or " << cache_location << ".";
// Try to generate oat file if it wasn't found or was obsolete.
std::string oat_cache_filename(GetArtCacheFilenameOrDie(oat_filename));
return FindOrCreateOatFileForDexLocation(dex_location, oat_cache_filename);
}
const OatFile* ClassLinker::FindOpenedOatFileFromOatLocation(const std::string& oat_location) {
MutexLock mu(dex_lock_);
for (size_t i = 0; i < oat_files_.size(); i++) {
const OatFile* oat_file = oat_files_[i];
DCHECK(oat_file != NULL);
if (oat_file->GetLocation() == oat_location) {
return oat_file;
}
}
return NULL;
}
const OatFile* ClassLinker::FindOatFileFromOatLocation(const std::string& oat_location) {
MutexLock mu(dex_lock_);
const OatFile* oat_file = FindOpenedOatFileFromOatLocation(oat_location);
if (oat_file != NULL) {
return oat_file;
}
oat_file = OatFile::Open(oat_location, oat_location, NULL,
OatFile::kRelocAll);
if (oat_file == NULL) {
return NULL;
}
CHECK(oat_file != NULL) << oat_location;
return oat_file;
}
void ClassLinker::InitFromImage() {
VLOG(startup) << "ClassLinker::InitFromImage entering";
CHECK(!init_done_);
Heap* heap = Runtime::Current()->GetHeap();
ImageSpace* space = heap->GetImageSpace();
OatFile* oat_file = OpenOat(space);
CHECK(oat_file != NULL) << "Failed to open oat file for image";
CHECK_EQ(oat_file->GetOatHeader().GetImageFileLocationChecksum(), 0U);
CHECK(oat_file->GetOatHeader().GetImageFileLocation().empty());
Object* dex_caches_object = space->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches);
ObjectArray<DexCache>* dex_caches = dex_caches_object->AsObjectArray<DexCache>();
// Special case of setting up the String class early so that we can test arbitrary objects
// as being Strings or not
Class* java_lang_String = space->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots)
->AsObjectArray<Class>()->Get(kJavaLangString);
String::SetClass(java_lang_String);
CHECK_EQ(oat_file->GetOatHeader().GetDexFileCount(),
static_cast<uint32_t>(dex_caches->GetLength()));
for (int i = 0; i < dex_caches->GetLength(); i++) {
SirtRef<DexCache> dex_cache(dex_caches->Get(i));
const std::string& dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8());
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_file_location);
const DexFile* dex_file = oat_dex_file->OpenDexFile();
if (dex_file == NULL) {
LOG(FATAL) << "Failed to open dex file " << dex_file_location
<< " from within oat file " << oat_file->GetLocation();
}
CHECK_EQ(dex_file->GetLocationChecksum(), oat_dex_file->GetDexFileLocationChecksum());
AppendToBootClassPath(*dex_file, dex_cache);
}
HeapBitmap* heap_bitmap = heap->GetLiveBits();
DCHECK(heap_bitmap != NULL);
// reinit clases_ table
heap_bitmap->Walk(InitFromImageCallback, this);
// reinit class_roots_
Object* class_roots_object =
heap->GetImageSpace()->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots);
class_roots_ = class_roots_object->AsObjectArray<Class>();
// reinit array_iftable_ from any array class instance, they should be ==
array_iftable_ = GetClassRoot(kObjectArrayClass)->GetIfTable();
DCHECK(array_iftable_ == GetClassRoot(kBooleanArrayClass)->GetIfTable());
// String class root was set above
Field::SetClass(GetClassRoot(kJavaLangReflectField));
Method::SetClasses(GetClassRoot(kJavaLangReflectConstructor), GetClassRoot(kJavaLangReflectMethod));
BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
CharArray::SetArrayClass(GetClassRoot(kCharArrayClass));
DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
IntArray::SetArrayClass(GetClassRoot(kIntArrayClass));
LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
PathClassLoader::SetClass(GetClassRoot(kDalvikSystemPathClassLoader));
Throwable::SetClass(GetClassRoot(kJavaLangThrowable));
StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
FinishInit();
VLOG(startup) << "ClassLinker::InitFromImage exiting";
}
void ClassLinker::InitFromImageCallback(Object* obj, void* arg) {
DCHECK(obj != NULL);
DCHECK(arg != NULL);
ClassLinker* class_linker = reinterpret_cast<ClassLinker*>(arg);
if (obj->GetClass()->IsStringClass()) {
class_linker->intern_table_->RegisterStrong(obj->AsString());
return;
}
if (obj->IsClass()) {
// restore class to ClassLinker::classes_ table
Class* klass = obj->AsClass();
ClassHelper kh(klass, class_linker);
Class* existing = class_linker->InsertClass(kh.GetDescriptor(), klass, true);
DCHECK(existing == NULL) << kh.GetDescriptor();
return;
}
}
// Keep in sync with InitCallback. Anything we visit, we need to
// reinit references to when reinitializing a ClassLinker from a
// mapped image.
void ClassLinker::VisitRoots(Heap::RootVisitor* visitor, void* arg) const {
visitor(class_roots_, arg);
{
MutexLock mu(dex_lock_);
for (size_t i = 0; i < dex_caches_.size(); i++) {
visitor(dex_caches_[i], arg);
}
}
{
MutexLock mu(classes_lock_);
typedef Table::const_iterator It; // TODO: C++0x auto
for (It it = classes_.begin(), end = classes_.end(); it != end; ++it) {
visitor(it->second, arg);
}
// We deliberately ignore the class roots in the image since we
// handle image roots by using the MS/CMS rescanning of dirty cards.
}
visitor(array_iftable_, arg);
}
void ClassLinker::VisitClasses(ClassVisitor* visitor, void* arg) const {
MutexLock mu(classes_lock_);
typedef Table::const_iterator It; // TODO: C++0x auto
for (It it = classes_.begin(), end = classes_.end(); it != end; ++it) {
if (!visitor(it->second, arg)) {
return;
}
}
for (It it = image_classes_.begin(), end = image_classes_.end(); it != end; ++it) {
if (!visitor(it->second, arg)) {
return;
}
}
}
ClassLinker::~ClassLinker() {
String::ResetClass();
Field::ResetClass();
Method::ResetClasses();
BooleanArray::ResetArrayClass();
ByteArray::ResetArrayClass();
CharArray::ResetArrayClass();
DoubleArray::ResetArrayClass();
FloatArray::ResetArrayClass();
IntArray::ResetArrayClass();
LongArray::ResetArrayClass();
ShortArray::ResetArrayClass();
PathClassLoader::ResetClass();
Throwable::ResetClass();
StackTraceElement::ResetClass();
STLDeleteElements(&boot_class_path_);
STLDeleteElements(&oat_files_);
}
DexCache* ClassLinker::AllocDexCache(const DexFile& dex_file) {
SirtRef<DexCache> dex_cache(down_cast<DexCache*>(AllocObjectArray<Object>(DexCache::LengthAsArray())));
if (dex_cache.get() == NULL) {
return NULL;
}
SirtRef<String> location(intern_table_->InternStrong(dex_file.GetLocation().c_str()));
if (location.get() == NULL) {
return NULL;
}
SirtRef<ObjectArray<String> > strings(AllocObjectArray<String>(dex_file.NumStringIds()));
if (strings.get() == NULL) {
return NULL;
}
SirtRef<ObjectArray<Class> > types(AllocClassArray(dex_file.NumTypeIds()));
if (types.get() == NULL) {
return NULL;
}
SirtRef<ObjectArray<Method> > methods(AllocObjectArray<Method>(dex_file.NumMethodIds()));
if (methods.get() == NULL) {
return NULL;
}
SirtRef<ObjectArray<Field> > fields(AllocObjectArray<Field>(dex_file.NumFieldIds()));
if (fields.get() == NULL) {
return NULL;
}
SirtRef<ObjectArray<StaticStorageBase> > initialized_static_storage(AllocObjectArray<StaticStorageBase>(dex_file.NumTypeIds()));
if (initialized_static_storage.get() == NULL) {
return NULL;
}
dex_cache->Init(location.get(),
strings.get(),
types.get(),
methods.get(),
fields.get(),
initialized_static_storage.get());
return dex_cache.get();
}
InterfaceEntry* ClassLinker::AllocInterfaceEntry(Class* interface) {
DCHECK(interface->IsInterface());
SirtRef<ObjectArray<Object> > array(AllocObjectArray<Object>(InterfaceEntry::LengthAsArray()));
SirtRef<InterfaceEntry> interface_entry(down_cast<InterfaceEntry*>(array.get()));
interface_entry->SetInterface(interface);
return interface_entry.get();
}
Class* ClassLinker::AllocClass(Class* java_lang_Class, size_t class_size) {
DCHECK_GE(class_size, sizeof(Class));
Heap* heap = Runtime::Current()->GetHeap();
SirtRef<Class> klass(heap->AllocObject(java_lang_Class, class_size)->AsClass());
klass->SetPrimitiveType(Primitive::kPrimNot); // default to not being primitive
klass->SetClassSize(class_size);
return klass.get();
}
Class* ClassLinker::AllocClass(size_t class_size) {
return AllocClass(GetClassRoot(kJavaLangClass), class_size);
}
Field* ClassLinker::AllocField() {
return down_cast<Field*>(GetClassRoot(kJavaLangReflectField)->AllocObject());
}
Method* ClassLinker::AllocMethod() {
return down_cast<Method*>(GetClassRoot(kJavaLangReflectMethod)->AllocObject());
}
ObjectArray<StackTraceElement>* ClassLinker::AllocStackTraceElementArray(size_t length) {
return ObjectArray<StackTraceElement>::Alloc(
GetClassRoot(kJavaLangStackTraceElementArrayClass),
length);
}
static Class* EnsureResolved(Class* klass) {
DCHECK(klass != NULL);
// Wait for the class if it has not already been linked.
Thread* self = Thread::Current();
if (!klass->IsResolved() && !klass->IsErroneous()) {
ObjectLock lock(klass);
// Check for circular dependencies between classes.
if (!klass->IsResolved() && klass->GetClinitThreadId() == self->GetTid()) {
self->ThrowNewException("Ljava/lang/ClassCircularityError;",
PrettyDescriptor(klass).c_str());
klass->SetStatus(Class::kStatusError);
return NULL;
}
// Wait for the pending initialization to complete.
while (!klass->IsResolved() && !klass->IsErroneous()) {
lock.Wait();
}
}
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass);
return NULL;
}
// Return the loaded class. No exceptions should be pending.
CHECK(klass->IsResolved()) << PrettyClass(klass);
CHECK(!self->IsExceptionPending())
<< PrettyClass(klass) << " " << PrettyTypeOf(self->GetException());
return klass;
}
Class* ClassLinker::FindSystemClass(const char* descriptor) {
return FindClass(descriptor, NULL);
}
Class* ClassLinker::FindClass(const char* descriptor, ClassLoader* class_loader) {
DCHECK_NE(*descriptor, '\0') << "descriptor is empty string";
Thread* self = Thread::Current();
DCHECK(self != NULL);
CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException());
if (descriptor[1] == '\0') {
// only the descriptors of primitive types should be 1 character long, also avoid class lookup
// for primitive classes that aren't backed by dex files.
return FindPrimitiveClass(descriptor[0]);
}
// Find the class in the loaded classes table.
Class* klass = LookupClass(descriptor, class_loader);
if (klass != NULL) {
return EnsureResolved(klass);
}
// Class is not yet loaded.
if (descriptor[0] == '[') {
return CreateArrayClass(descriptor, class_loader);
} else if (class_loader == NULL) {
DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, boot_class_path_);
if (pair.second != NULL) {
return DefineClass(descriptor, NULL, *pair.first, *pair.second);
}
} else if (Runtime::Current()->UseCompileTimeClassPath()) {
// first try the boot class path
Class* system_class = FindSystemClass(descriptor);
if (system_class != NULL) {
return system_class;
}
CHECK(self->IsExceptionPending());
self->ClearException();
// next try the compile time class path
const std::vector<const DexFile*>& class_path
= Runtime::Current()->GetCompileTimeClassPath(class_loader);
DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, class_path);
if (pair.second != NULL) {
return DefineClass(descriptor, class_loader, *pair.first, *pair.second);
}
} else {
ScopedJniThreadState ts(self->GetJniEnv());
ScopedLocalRef<jobject> class_loader_object(ts.Env(),
ts.AddLocalReference<jobject>(class_loader));
std::string class_name_string(DescriptorToDot(descriptor));
ScopedLocalRef<jobject> result(ts.Env(), NULL);
{
ScopedThreadStateChange tsc(self, kNative);
ScopedLocalRef<jobject> class_name_object(ts.Env(),
ts.Env()->NewStringUTF(class_name_string.c_str()));
if (class_name_object.get() == NULL) {
return NULL;
}
CHECK(class_loader_object.get() != NULL);
result.reset(ts.Env()->CallObjectMethod(class_loader_object.get(),
WellKnownClasses::java_lang_ClassLoader_loadClass,
class_name_object.get()));
}
if (ts.Env()->ExceptionCheck()) {
// If the ClassLoader threw, pass that exception up.
return NULL;
} else if (result.get() == NULL) {
// broken loader - throw NPE to be compatible with Dalvik
ThrowNullPointerException("ClassLoader.loadClass returned null for %s",
class_name_string.c_str());
return NULL;
} else {
// success, return Class*
return ts.Decode<Class*>(result.get());
}
}
ThrowNoClassDefFoundError("Class %s not found", PrintableString(descriptor).c_str());
return NULL;
}
Class* ClassLinker::DefineClass(const StringPiece& descriptor,
ClassLoader* class_loader,
const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def) {
SirtRef<Class> klass(NULL);
// Load the class from the dex file.
if (!init_done_) {
// finish up init of hand crafted class_roots_
if (descriptor == "Ljava/lang/Object;") {
klass.reset(GetClassRoot(kJavaLangObject));
} else if (descriptor == "Ljava/lang/Class;") {
klass.reset(GetClassRoot(kJavaLangClass));
} else if (descriptor == "Ljava/lang/String;") {
klass.reset(GetClassRoot(kJavaLangString));
} else if (descriptor == "Ljava/lang/reflect/Constructor;") {
klass.reset(GetClassRoot(kJavaLangReflectConstructor));
} else if (descriptor == "Ljava/lang/reflect/Field;") {
klass.reset(GetClassRoot(kJavaLangReflectField));
} else if (descriptor == "Ljava/lang/reflect/Method;") {
klass.reset(GetClassRoot(kJavaLangReflectMethod));
} else {
klass.reset(AllocClass(SizeOfClass(dex_file, dex_class_def)));
}
} else {
klass.reset(AllocClass(SizeOfClass(dex_file, dex_class_def)));
}
klass->SetDexCache(FindDexCache(dex_file));
LoadClass(dex_file, dex_class_def, klass, class_loader);
// Check for a pending exception during load
Thread* self = Thread::Current();
if (self->IsExceptionPending()) {
klass->SetStatus(Class::kStatusError);
return NULL;
}
ObjectLock lock(klass.get());
klass->SetClinitThreadId(self->GetTid());
// Add the newly loaded class to the loaded classes table.
SirtRef<Class> existing(InsertClass(descriptor, klass.get(), false));
if (existing.get() != NULL) {
// We failed to insert because we raced with another thread.
return EnsureResolved(existing.get());
}
// Finish loading (if necessary) by finding parents
CHECK(!klass->IsLoaded());
if (!LoadSuperAndInterfaces(klass, dex_file)) {
// Loading failed.
klass->SetStatus(Class::kStatusError);
lock.NotifyAll();
return NULL;
}
CHECK(klass->IsLoaded());
// Link the class (if necessary)
CHECK(!klass->IsResolved());
if (!LinkClass(klass, NULL)) {
// Linking failed.
klass->SetStatus(Class::kStatusError);
lock.NotifyAll();
return NULL;
}
CHECK(klass->IsResolved());
/*
* We send CLASS_PREPARE events to the debugger from here. The
* definition of "preparation" is creating the static fields for a
* class and initializing them to the standard default values, but not
* executing any code (that comes later, during "initialization").
*
* We did the static preparation in LinkClass.
*
* The class has been prepared and resolved but possibly not yet verified
* at this point.
*/
Dbg::PostClassPrepare(klass.get());
return klass.get();
}
// Precomputes size that will be needed for Class, matching LinkStaticFields
size_t ClassLinker::SizeOfClass(const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def) {
const byte* class_data = dex_file.GetClassData(dex_class_def);
size_t num_ref = 0;
size_t num_32 = 0;
size_t num_64 = 0;
if (class_data != NULL) {
for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) {
const DexFile::FieldId& field_id = dex_file.GetFieldId(it.GetMemberIndex());
const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id);
char c = descriptor[0];
if (c == 'L' || c == '[') {
num_ref++;
} else if (c == 'J' || c == 'D') {
num_64++;
} else {
num_32++;
}
}
}
// start with generic class data
size_t size = sizeof(Class);
// follow with reference fields which must be contiguous at start
size += (num_ref * sizeof(uint32_t));
// if there are 64-bit fields to add, make sure they are aligned
if (num_64 != 0 && size != RoundUp(size, 8)) { // for 64-bit alignment
if (num_32 != 0) {
// use an available 32-bit field for padding
num_32--;
}
size += sizeof(uint32_t); // either way, we are adding a word
DCHECK_EQ(size, RoundUp(size, 8));
}
// tack on any 64-bit fields now that alignment is assured
size += (num_64 * sizeof(uint64_t));
// tack on any remaining 32-bit fields
size += (num_32 * sizeof(uint32_t));
return size;
}
const OatFile::OatClass* ClassLinker::GetOatClass(const DexFile& dex_file, const char* descriptor) {
DCHECK(descriptor != NULL);
const OatFile* oat_file = FindOpenedOatFileForDexFile(dex_file);
CHECK(oat_file != NULL) << dex_file.GetLocation() << " " << descriptor;
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_file.GetLocation());
CHECK(oat_dex_file != NULL) << dex_file.GetLocation() << " " << descriptor;
uint32_t class_def_index;
bool found = dex_file.FindClassDefIndex(descriptor, class_def_index);
CHECK(found) << dex_file.GetLocation() << " " << descriptor;
const OatFile::OatClass* oat_class = oat_dex_file->GetOatClass(class_def_index);
CHECK(oat_class != NULL) << dex_file.GetLocation() << " " << descriptor;
return oat_class;
}
const OatFile::OatMethod ClassLinker::GetOatMethodFor(const Method* method) {
// Although we overwrite the trampoline of non-static methods, we may get here via the resolution
// method for direct methods (or virtual methods made direct).
Class* declaring_class = method->GetDeclaringClass();
size_t oat_method_index;
if (method->IsStatic() || method->IsDirect()) {
// Simple case where the oat method index was stashed at load time.
oat_method_index = method->GetMethodIndex();
} else {
// We're invoking a virtual method directly (thanks to sharpening), compute the oat_method_index
// by search for its position in the declared virtual methods.
oat_method_index = declaring_class->NumDirectMethods();
size_t end = declaring_class->NumVirtualMethods();
bool found = false;
for (size_t i = 0; i < end; i++) {
if (declaring_class->GetVirtualMethod(i) == method) {
found = true;
break;
}
oat_method_index++;
}
CHECK(found) << "Didn't find oat method index for virtual method: " << PrettyMethod(method);
}
ClassHelper kh(declaring_class);
UniquePtr<const OatFile::OatClass> oat_class(GetOatClass(kh.GetDexFile(), kh.GetDescriptor()));
CHECK(oat_class.get() != NULL);
return oat_class->GetOatMethod(oat_method_index);
}
// Special case to get oat code without overwriting a trampoline.
const void* ClassLinker::GetOatCodeFor(const Method* method) {
CHECK(Runtime::Current()->IsCompiler() || method->GetDeclaringClass()->IsInitializing());
return GetOatMethodFor(method).GetCode();
}
void ClassLinker::FixupStaticTrampolines(Class* klass) {
ClassHelper kh(klass);
const DexFile::ClassDef* dex_class_def = kh.GetClassDef();
CHECK(dex_class_def != NULL);
const DexFile& dex_file = kh.GetDexFile();
const byte* class_data = dex_file.GetClassData(*dex_class_def);
if (class_data == NULL) {
return; // no fields or methods - for example a marker interface
}
if (!Runtime::Current()->IsStarted() || Runtime::Current()->UseCompileTimeClassPath()) {
// OAT file unavailable
return;
}
UniquePtr<const OatFile::OatClass> oat_class(GetOatClass(dex_file, kh.GetDescriptor()));
CHECK(oat_class.get() != NULL);
ClassDataItemIterator it(dex_file, class_data);
// Skip fields
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
size_t method_index = 0;
// Link the code of methods skipped by LinkCode
const void* trampoline = Runtime::Current()->GetResolutionStubArray(Runtime::kStaticMethod)->GetData();
for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) {
Method* method = klass->GetDirectMethod(i);
if (Runtime::Current()->IsMethodTracingActive()) {
Trace* tracer = Runtime::Current()->GetTracer();
if (tracer->GetSavedCodeFromMap(method) == trampoline) {
const void* code = oat_class->GetOatMethod(method_index).GetCode();
tracer->ResetSavedCode(method);
method->SetCode(code);
tracer->SaveAndUpdateCode(method);
}
} else if (method->GetCode() == trampoline) {
const void* code = oat_class->GetOatMethod(method_index).GetCode();
CHECK(code != NULL);
method->SetCode(code);
}
method_index++;
}
}
static void LinkCode(SirtRef<Method>& method, const OatFile::OatClass* oat_class, uint32_t method_index) {
// Every kind of method should at least get an invoke stub from the oat_method.
// non-abstract methods also get their code pointers.
const OatFile::OatMethod oat_method = oat_class->GetOatMethod(method_index);
oat_method.LinkMethodPointers(method.get());
Runtime* runtime = Runtime::Current();
if (method->IsAbstract()) {
method->SetCode(runtime->GetAbstractMethodErrorStubArray()->GetData());
return;
}
if (method->IsStatic() && !method->IsConstructor()) {
// For static methods excluding the class initializer, install the trampoline
method->SetCode(runtime->GetResolutionStubArray(Runtime::kStaticMethod)->GetData());
}
if (method->IsNative()) {
// unregistering restores the dlsym lookup stub
method->UnregisterNative(Thread::Current());
}
if (Runtime::Current()->IsMethodTracingActive()) {
Trace* tracer = Runtime::Current()->GetTracer();
tracer->SaveAndUpdateCode(method.get());
}
}
void ClassLinker::LoadClass(const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def,
SirtRef<Class>& klass,
ClassLoader* class_loader) {
CHECK(klass.get() != NULL);
CHECK(klass->GetDexCache() != NULL);
CHECK_EQ(Class::kStatusNotReady, klass->GetStatus());
const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
CHECK(descriptor != NULL);
klass->SetClass(GetClassRoot(kJavaLangClass));
uint32_t access_flags = dex_class_def.access_flags_;
// Make sure that none of our runtime-only flags are set.
CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U);
klass->SetAccessFlags(access_flags);
klass->SetClassLoader(class_loader);
DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
klass->SetStatus(Class::kStatusIdx);
klass->SetDexTypeIndex(dex_class_def.class_idx_);
// Load fields fields.
const byte* class_data = dex_file.GetClassData(dex_class_def);
if (class_data == NULL) {
return; // no fields or methods - for example a marker interface
}
ClassDataItemIterator it(dex_file, class_data);
if (it.NumStaticFields() != 0) {
klass->SetSFields(AllocObjectArray<Field>(it.NumStaticFields()));
}
if (it.NumInstanceFields() != 0) {
klass->SetIFields(AllocObjectArray<Field>(it.NumInstanceFields()));
}
for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) {
SirtRef<Field> sfield(AllocField());
klass->SetStaticField(i, sfield.get());
LoadField(dex_file, it, klass, sfield);
}
for (size_t i = 0; it.HasNextInstanceField(); i++, it.Next()) {
SirtRef<Field> ifield(AllocField());
klass->SetInstanceField(i, ifield.get());
LoadField(dex_file, it, klass, ifield);
}
UniquePtr<const OatFile::OatClass> oat_class;
if (Runtime::Current()->IsStarted() && !Runtime::Current()->UseCompileTimeClassPath()) {
oat_class.reset(GetOatClass(dex_file, descriptor));
}
// Load methods.
if (it.NumDirectMethods() != 0) {
// TODO: append direct methods to class object
klass->SetDirectMethods(AllocObjectArray<Method>(it.NumDirectMethods()));
}
if (it.NumVirtualMethods() != 0) {
// TODO: append direct methods to class object
klass->SetVirtualMethods(AllocObjectArray<Method>(it.NumVirtualMethods()));
}
size_t class_def_method_index = 0;
for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) {
SirtRef<Method> method(AllocMethod());
klass->SetDirectMethod(i, method.get());
LoadMethod(dex_file, it, klass, method);
if (oat_class.get() != NULL) {
LinkCode(method, oat_class.get(), class_def_method_index);
}
method->SetMethodIndex(class_def_method_index);
class_def_method_index++;
}
for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) {
SirtRef<Method> method(AllocMethod());
klass->SetVirtualMethod(i, method.get());
LoadMethod(dex_file, it, klass, method);
DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i);
if (oat_class.get() != NULL) {
LinkCode(method, oat_class.get(), class_def_method_index);
}
class_def_method_index++;
}
DCHECK(!it.HasNext());
}
void ClassLinker::LoadField(const DexFile& /*dex_file*/, const ClassDataItemIterator& it,
SirtRef<Class>& klass, SirtRef<Field>& dst) {
uint32_t field_idx = it.GetMemberIndex();
dst->SetDexFieldIndex(field_idx);
dst->SetDeclaringClass(klass.get());
dst->SetAccessFlags(it.GetMemberAccessFlags());
}
void ClassLinker::LoadMethod(const DexFile& dex_file, const ClassDataItemIterator& it,
SirtRef<Class>& klass, SirtRef<Method>& dst) {
uint32_t dex_method_idx = it.GetMemberIndex();
dst->SetDexMethodIndex(dex_method_idx);
const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
dst->SetDeclaringClass(klass.get());
StringPiece method_name(dex_file.GetMethodName(method_id));
if (method_name == "<init>") {
dst->SetClass(GetClassRoot(kJavaLangReflectConstructor));
}
if (method_name == "finalize") {
// Create the prototype for a signature of "()V"
const DexFile::StringId* void_string_id = dex_file.FindStringId("V");
if (void_string_id != NULL) {
const DexFile::TypeId* void_type_id =
dex_file.FindTypeId(dex_file.GetIndexForStringId(*void_string_id));
if (void_type_id != NULL) {
std::vector<uint16_t> no_args;
const DexFile::ProtoId* finalizer_proto =
dex_file.FindProtoId(dex_file.GetIndexForTypeId(*void_type_id), no_args);
if (finalizer_proto != NULL) {
// We have the prototype in the dex file
if (klass->GetClassLoader() != NULL) { // All non-boot finalizer methods are flagged
klass->SetFinalizable();
} else {
StringPiece klass_descriptor(dex_file.StringByTypeIdx(klass->GetDexTypeIndex()));
// The Enum class declares a "final" finalize() method to prevent subclasses from
// introducing a finalizer. We don't want to set the finalizable flag for Enum or its
// subclasses, so we exclude it here.
// We also want to avoid setting the flag on Object, where we know that finalize() is
// empty.
if (klass_descriptor != "Ljava/lang/Object;" &&
klass_descriptor != "Ljava/lang/Enum;") {
klass->SetFinalizable();
}
}
}
}
}
}
dst->SetCodeItemOffset(it.GetMethodCodeItemOffset());
dst->SetAccessFlags(it.GetMemberAccessFlags());
dst->SetDexCacheStrings(klass->GetDexCache()->GetStrings());
dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods());
dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes());
dst->SetDexCacheInitializedStaticStorage(klass->GetDexCache()->GetInitializedStaticStorage());
}
void ClassLinker::AppendToBootClassPath(const DexFile& dex_file) {
SirtRef<DexCache> dex_cache(AllocDexCache(dex_file));
AppendToBootClassPath(dex_file, dex_cache);
}
void ClassLinker::AppendToBootClassPath(const DexFile& dex_file, SirtRef<DexCache>& dex_cache) {
CHECK(dex_cache.get() != NULL) << dex_file.GetLocation();
boot_class_path_.push_back(&dex_file);
RegisterDexFile(dex_file, dex_cache);
}
bool ClassLinker::IsDexFileRegisteredLocked(const DexFile& dex_file) const {
dex_lock_.AssertHeld();
for (size_t i = 0; i != dex_files_.size(); ++i) {
if (dex_files_[i] == &dex_file) {
return true;
}
}
return false;
}
bool ClassLinker::IsDexFileRegistered(const DexFile& dex_file) const {
MutexLock mu(dex_lock_);
return IsDexFileRegisteredLocked(dex_file);
}
void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file, SirtRef<DexCache>& dex_cache) {
dex_lock_.AssertHeld();
CHECK(dex_cache.get() != NULL) << dex_file.GetLocation();
CHECK(dex_cache->GetLocation()->Equals(dex_file.GetLocation()));
dex_files_.push_back(&dex_file);
dex_caches_.push_back(dex_cache.get());
}
void ClassLinker::RegisterDexFile(const DexFile& dex_file) {
{
MutexLock mu(dex_lock_);
if (IsDexFileRegisteredLocked(dex_file)) {
return;
}
}
// Don't alloc while holding the lock, since allocation may need to
// suspend all threads and another thread may need the dex_lock_ to
// get to a suspend point.
SirtRef<DexCache> dex_cache(AllocDexCache(dex_file));
{
MutexLock mu(dex_lock_);
if (IsDexFileRegisteredLocked(dex_file)) {
return;
}
RegisterDexFileLocked(dex_file, dex_cache);
}
}
void ClassLinker::RegisterDexFile(const DexFile& dex_file, SirtRef<DexCache>& dex_cache) {
MutexLock mu(dex_lock_);
RegisterDexFileLocked(dex_file, dex_cache);
}
const DexFile& ClassLinker::FindDexFile(const DexCache* dex_cache) const {
CHECK(dex_cache != NULL);
MutexLock mu(dex_lock_);
for (size_t i = 0; i != dex_caches_.size(); ++i) {
if (dex_caches_[i] == dex_cache) {
return *dex_files_[i];
}
}
LOG(FATAL) << "Failed to find DexFile for DexCache " << dex_cache->GetLocation()->ToModifiedUtf8();
return *dex_files_[-1];
}
DexCache* ClassLinker::FindDexCache(const DexFile& dex_file) const {
MutexLock mu(dex_lock_);
for (size_t i = 0; i != dex_files_.size(); ++i) {
if (dex_files_[i] == &dex_file) {
return dex_caches_[i];
}
}
LOG(FATAL) << "Failed to find DexCache for DexFile " << dex_file.GetLocation();
return NULL;
}
void ClassLinker::FixupDexCaches(Method* resolution_method) const {
MutexLock mu(dex_lock_);
for (size_t i = 0; i != dex_caches_.size(); ++i) {
dex_caches_[i]->Fixup(resolution_method);
}
}
Class* ClassLinker::InitializePrimitiveClass(Class* primitive_class,
const char* descriptor,
Primitive::Type type) {
// TODO: deduce one argument from the other
CHECK(primitive_class != NULL);
primitive_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract);
primitive_class->SetPrimitiveType(type);
primitive_class->SetStatus(Class::kStatusInitialized);
Class* existing = InsertClass(descriptor, primitive_class, false);
CHECK(existing == NULL) << "InitPrimitiveClass(" << descriptor << ") failed";
return primitive_class;
}
// Create an array class (i.e. the class object for the array, not the
// array itself). "descriptor" looks like "[C" or "[[[[B" or
// "[Ljava/lang/String;".
//
// If "descriptor" refers to an array of primitives, look up the
// primitive type's internally-generated class object.
//
// "class_loader" is the class loader of the class that's referring to
// us. It's used to ensure that we're looking for the element type in
// the right context. It does NOT become the class loader for the
// array class; that always comes from the base element class.
//
// Returns NULL with an exception raised on failure.
Class* ClassLinker::CreateArrayClass(const std::string& descriptor, ClassLoader* class_loader) {
CHECK_EQ('[', descriptor[0]);
// Identify the underlying component type
Class* component_type = FindClass(descriptor.substr(1).c_str(), class_loader);
if (component_type == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return NULL;
}
// See if the component type is already loaded. Array classes are
// always associated with the class loader of their underlying
// element type -- an array of Strings goes with the loader for
// java/lang/String -- so we need to look for it there. (The
// caller should have checked for the existence of the class
// before calling here, but they did so with *their* class loader,
// not the component type's loader.)
//
// If we find it, the caller adds "loader" to the class' initiating
// loader list, which should prevent us from going through this again.
//
// This call is unnecessary if "loader" and "component_type->GetClassLoader()"
// are the same, because our caller (FindClass) just did the
// lookup. (Even if we get this wrong we still have correct behavior,
// because we effectively do this lookup again when we add the new
// class to the hash table --- necessary because of possible races with
// other threads.)
if (class_loader != component_type->GetClassLoader()) {
Class* new_class = LookupClass(descriptor.c_str(), component_type->GetClassLoader());
if (new_class != NULL) {
return new_class;
}
}
// Fill out the fields in the Class.
//
// It is possible to execute some methods against arrays, because
// all arrays are subclasses of java_lang_Object_, so we need to set
// up a vtable. We can just point at the one in java_lang_Object_.
//
// Array classes are simple enough that we don't need to do a full
// link step.
SirtRef<Class> new_class(NULL);
if (!init_done_) {
// Classes that were hand created, ie not by FindSystemClass
if (descriptor == "[Ljava/lang/Class;") {
new_class.reset(GetClassRoot(kClassArrayClass));
} else if (descriptor == "[Ljava/lang/Object;") {
new_class.reset(GetClassRoot(kObjectArrayClass));
} else if (descriptor == "[C") {
new_class.reset(GetClassRoot(kCharArrayClass));
} else if (descriptor == "[I") {
new_class.reset(GetClassRoot(kIntArrayClass));
}
}
if (new_class.get() == NULL) {
new_class.reset(AllocClass(sizeof(Class)));
if (new_class.get() == NULL) {
return NULL;
}
new_class->SetComponentType(component_type);
}
DCHECK(new_class->GetComponentType() != NULL);
Class* java_lang_Object = GetClassRoot(kJavaLangObject);
new_class->SetSuperClass(java_lang_Object);
new_class->SetVTable(java_lang_Object->GetVTable());
new_class->SetPrimitiveType(Primitive::kPrimNot);
new_class->SetClassLoader(component_type->GetClassLoader());
new_class->SetStatus(Class::kStatusInitialized);
// don't need to set new_class->SetObjectSize(..)
// because Object::SizeOf delegates to Array::SizeOf
// All arrays have java/lang/Cloneable and java/io/Serializable as
// interfaces. We need to set that up here, so that stuff like
// "instanceof" works right.
//
// Note: The GC could run during the call to FindSystemClass,
// so we need to make sure the class object is GC-valid while we're in
// there. Do this by clearing the interface list so the GC will just
// think that the entries are null.
// Use the single, global copies of "interfaces" and "iftable"
// (remember not to free them for arrays).
CHECK(array_iftable_ != NULL);
new_class->SetIfTable(array_iftable_);
// Inherit access flags from the component type. Arrays can't be
// used as a superclass or interface, so we want to add "final"
// and remove "interface".
//
// Don't inherit any non-standard flags (e.g., kAccFinal)
// from component_type. We assume that the array class does not
// override finalize().
new_class->SetAccessFlags(((new_class->GetComponentType()->GetAccessFlags() &
~kAccInterface) | kAccFinal) & kAccJavaFlagsMask);
Class* existing = InsertClass(descriptor, new_class.get(), false);
if (existing == NULL) {
return new_class.get();
}
// Another thread must have loaded the class after we
// started but before we finished. Abandon what we've
// done.
//
// (Yes, this happens.)
return existing;
}
Class* ClassLinker::FindPrimitiveClass(char type) {
switch (Primitive::GetType(type)) {
case Primitive::kPrimByte:
return GetClassRoot(kPrimitiveByte);
case Primitive::kPrimChar:
return GetClassRoot(kPrimitiveChar);
case Primitive::kPrimDouble:
return GetClassRoot(kPrimitiveDouble);
case Primitive::kPrimFloat:
return GetClassRoot(kPrimitiveFloat);
case Primitive::kPrimInt:
return GetClassRoot(kPrimitiveInt);
case Primitive::kPrimLong:
return GetClassRoot(kPrimitiveLong);
case Primitive::kPrimShort:
return GetClassRoot(kPrimitiveShort);
case Primitive::kPrimBoolean:
return GetClassRoot(kPrimitiveBoolean);
case Primitive::kPrimVoid:
return GetClassRoot(kPrimitiveVoid);
case Primitive::kPrimNot:
break;
}
std::string printable_type(PrintableChar(type));
ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str());
return NULL;
}
Class* ClassLinker::InsertClass(const StringPiece& descriptor, Class* klass, bool image_class) {
if (VLOG_IS_ON(class_linker)) {
DexCache* dex_cache = klass->GetDexCache();
std::string source;
if (dex_cache != NULL) {
source += " from ";
source += dex_cache->GetLocation()->ToModifiedUtf8();
}
LOG(INFO) << "Loaded class " << descriptor << source;
}
size_t hash = StringPieceHash()(descriptor);
MutexLock mu(classes_lock_);
Table& classes = image_class ? image_classes_ : classes_;
Class* existing = LookupClassLocked(descriptor.data(), klass->GetClassLoader(), hash, classes);
#ifndef NDEBUG
// Check we don't have the class in the other table in error
Table& other_classes = image_class ? classes_ : image_classes_;
CHECK(LookupClassLocked(descriptor.data(), klass->GetClassLoader(), hash, other_classes) == NULL);
#endif
if (existing != NULL) {
return existing;
}
classes.insert(std::make_pair(hash, klass));
return NULL;
}
bool ClassLinker::RemoveClass(const char* descriptor, const ClassLoader* class_loader) {
size_t hash = Hash(descriptor);
MutexLock mu(classes_lock_);
typedef Table::iterator It; // TODO: C++0x auto
// TODO: determine if its better to search classes_ or image_classes_ first
ClassHelper kh;
for (It it = classes_.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) {
Class* klass = it->second;
kh.ChangeClass(klass);
if (strcmp(kh.GetDescriptor(), descriptor) == 0 && klass->GetClassLoader() == class_loader) {
classes_.erase(it);
return true;
}
}
for (It it = image_classes_.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) {
Class* klass = it->second;
kh.ChangeClass(klass);
if (strcmp(kh.GetDescriptor(), descriptor) == 0 && klass->GetClassLoader() == class_loader) {
image_classes_.erase(it);
return true;
}
}
return false;
}
Class* ClassLinker::LookupClass(const char* descriptor, const ClassLoader* class_loader) {
size_t hash = Hash(descriptor);
MutexLock mu(classes_lock_);
// TODO: determine if its better to search classes_ or image_classes_ first
Class* klass = LookupClassLocked(descriptor, class_loader, hash, classes_);
if (klass != NULL) {
return klass;
}
return LookupClassLocked(descriptor, class_loader, hash, image_classes_);
}
Class* ClassLinker::LookupClassLocked(const char* descriptor, const ClassLoader* class_loader,
size_t hash, const Table& classes) {
ClassHelper kh(NULL, this);
typedef Table::const_iterator It; // TODO: C++0x auto
for (It it = classes.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) {
Class* klass = it->second;
kh.ChangeClass(klass);
if (strcmp(descriptor, kh.GetDescriptor()) == 0 && klass->GetClassLoader() == class_loader) {
#ifndef NDEBUG
for (++it; it != end && it->first == hash; ++it) {
Class* klass2 = it->second;
kh.ChangeClass(klass2);
CHECK(!(strcmp(descriptor, kh.GetDescriptor()) == 0 && klass2->GetClassLoader() == class_loader))
<< PrettyClass(klass) << " " << klass << " " << klass->GetClassLoader() << " "
<< PrettyClass(klass2) << " " << klass2 << " " << klass2->GetClassLoader();
}
#endif
return klass;
}
}
return NULL;
}
void ClassLinker::LookupClasses(const char* descriptor, std::vector<Class*>& classes) {
classes.clear();
size_t hash = Hash(descriptor);
MutexLock mu(classes_lock_);
typedef Table::const_iterator It; // TODO: C++0x auto
// TODO: determine if its better to search classes_ or image_classes_ first
ClassHelper kh(NULL, this);
for (It it = classes_.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) {
Class* klass = it->second;
kh.ChangeClass(klass);
if (strcmp(descriptor, kh.GetDescriptor()) == 0) {
classes.push_back(klass);
}
}
for (It it = image_classes_.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) {
Class* klass = it->second;
kh.ChangeClass(klass);
if (strcmp(descriptor, kh.GetDescriptor()) == 0) {
classes.push_back(klass);
}
}
}
#if !defined(NDEBUG) && !defined(ART_USE_LLVM_COMPILER)
static void CheckMethodsHaveGcMaps(Class* klass) {
if (!Runtime::Current()->IsStarted()) {
return;
}
for (size_t i = 0; i < klass->NumDirectMethods(); i++) {
Method* method = klass->GetDirectMethod(i);
if (!method->IsNative() && !method->IsAbstract()) {
CHECK(method->GetGcMap() != NULL) << PrettyMethod(method);
}
}
for (size_t i = 0; i < klass->NumVirtualMethods(); i++) {
Method* method = klass->GetVirtualMethod(i);
if (!method->IsNative() && !method->IsAbstract()) {
CHECK(method->GetGcMap() != NULL) << PrettyMethod(method);
}
}
}
#else
static void CheckMethodsHaveGcMaps(Class*) {
}
#endif
void ClassLinker::VerifyClass(Class* klass) {
// TODO: assert that the monitor on the Class is held
ObjectLock lock(klass);
if (klass->IsVerified()) {
return;
}
// The class might already be erroneous if we attempted to verify a subclass
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass);
return;
}
CHECK(klass->GetStatus() == Class::kStatusResolved ||
klass->GetStatus() == Class::kStatusRetryVerificationAtRuntime) << PrettyClass(klass);
klass->SetStatus(Class::kStatusVerifying);
// Verify super class
Class* super = klass->GetSuperClass();
std::string error_msg;
if (super != NULL) {
// Acquire lock to prevent races on verifying the super class
ObjectLock lock(super);
if (!super->IsVerified() && !super->IsErroneous()) {
Runtime::Current()->GetClassLinker()->VerifyClass(super);
}
if (!super->IsCompileTimeVerified()) {
error_msg = "Rejecting class ";
error_msg += PrettyDescriptor(klass);
error_msg += " that attempts to sub-class erroneous class ";
error_msg += PrettyDescriptor(super);
LOG(ERROR) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8();
Thread* self = Thread::Current();
SirtRef<Throwable> cause(self->GetException());
if (cause.get() != NULL) {
self->ClearException();
}
self->ThrowNewException("Ljava/lang/VerifyError;", error_msg.c_str());
if (cause.get() != NULL) {
self->GetException()->SetCause(cause.get());
}
CHECK_EQ(klass->GetStatus(), Class::kStatusVerifying) << PrettyDescriptor(klass);
klass->SetStatus(Class::kStatusError);
return;
}
}
// Try to use verification information from the oat file, otherwise do runtime verification.
const DexFile& dex_file = FindDexFile(klass->GetDexCache());
Class::Status oat_file_class_status(Class::kStatusNotReady);
bool preverified = VerifyClassUsingOatFile(dex_file, klass, oat_file_class_status);
verifier::MethodVerifier::FailureKind verifier_failure = verifier::MethodVerifier::kNoFailure;
if (!preverified) {
verifier_failure = verifier::MethodVerifier::VerifyClass(klass, error_msg);
}
if (preverified || verifier_failure != verifier::MethodVerifier::kHardFailure) {
if (!preverified && oat_file_class_status == Class::kStatusError) {
LOG(FATAL) << "Verification failed hard on class " << PrettyDescriptor(klass)
<< " at compile time, but succeeded at runtime! The verifier must be broken.";
}
DCHECK(!Thread::Current()->IsExceptionPending());
CHECK(verifier_failure == verifier::MethodVerifier::kNoFailure ||
Runtime::Current()->IsCompiler());
// Make sure all classes referenced by catch blocks are resolved
ResolveClassExceptionHandlerTypes(dex_file, klass);
klass->SetStatus(verifier_failure == verifier::MethodVerifier::kNoFailure ?
Class::kStatusVerified : Class::kStatusRetryVerificationAtRuntime);
// Sanity check that a verified class has GC maps on all methods
CheckMethodsHaveGcMaps(klass);
} else {
LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(klass)
<< " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8()
<< " because: " << error_msg;
Thread* self = Thread::Current();
CHECK(!self->IsExceptionPending());
self->ThrowNewException("Ljava/lang/VerifyError;", error_msg.c_str());
CHECK_EQ(klass->GetStatus(), Class::kStatusVerifying) << PrettyDescriptor(klass);
klass->SetStatus(Class::kStatusError);
}
}
bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file, Class* klass,
Class::Status& oat_file_class_status) {
if (!Runtime::Current()->IsStarted()) {
return false;
}
if (Runtime::Current()->UseCompileTimeClassPath()) {
return false;
}
const OatFile* oat_file = FindOpenedOatFileForDexFile(dex_file);
CHECK(oat_file != NULL) << dex_file.GetLocation() << " " << PrettyClass(klass);
const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_file.GetLocation());
CHECK(oat_dex_file != NULL) << dex_file.GetLocation() << " " << PrettyClass(klass);
const char* descriptor = ClassHelper(klass).GetDescriptor();
uint32_t class_def_index;
bool found = dex_file.FindClassDefIndex(descriptor, class_def_index);
CHECK(found) << dex_file.GetLocation() << " " << PrettyClass(klass) << " " << descriptor;
UniquePtr<const OatFile::OatClass> oat_class(oat_dex_file->GetOatClass(class_def_index));
CHECK(oat_class.get() != NULL)
<< dex_file.GetLocation() << " " << PrettyClass(klass) << " " << descriptor;
oat_file_class_status = oat_class->GetStatus();
if (oat_file_class_status == Class::kStatusVerified || oat_file_class_status == Class::kStatusInitialized) {
return true;
}
if (oat_file_class_status == Class::kStatusRetryVerificationAtRuntime) {
// Compile time verification failed with a soft error. Compile time verification can fail
// because we have incomplete type information. Consider the following:
// class ... {
// Foo x;
// .... () {
// if (...) {
// v1 gets assigned a type of resolved class Foo
// } else {
// v1 gets assigned a type of unresolved class Bar
// }
// iput x = v1
// } }
// when we merge v1 following the if-the-else it results in Conflict
// (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be
// allowing an unsafe assignment to the field x in the iput (javac may have compiled this as
// it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk
// at compile time).
return false;
}
if (oat_file_class_status == Class::kStatusError) {
// Compile time verification failed with a hard error. This is caused by invalid instructions
// in the class. These errors are unrecoverable.
return false;
}
if (oat_file_class_status == Class::kStatusNotReady) {
// Status is uninitialized if we couldn't determine the status at compile time, for example,
// not loading the class.
// TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy
// isn't a problem and this case shouldn't occur
return false;
}
LOG(FATAL) << "Unexpected class status: " << oat_file_class_status
<< " " << dex_file.GetLocation() << " " << PrettyClass(klass) << " " << descriptor;
return false;
}
void ClassLinker::ResolveClassExceptionHandlerTypes(const DexFile& dex_file, Class* klass) {
for (size_t i = 0; i < klass->NumDirectMethods(); i++) {
ResolveMethodExceptionHandlerTypes(dex_file, klass->GetDirectMethod(i));
}
for (size_t i = 0; i < klass->NumVirtualMethods(); i++) {
ResolveMethodExceptionHandlerTypes(dex_file, klass->GetVirtualMethod(i));
}
}
void ClassLinker::ResolveMethodExceptionHandlerTypes(const DexFile& dex_file, Method* method) {
// similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod.
const DexFile::CodeItem* code_item = dex_file.GetCodeItem(method->GetCodeItemOffset());
if (code_item == NULL) {
return; // native or abstract method
}
if (code_item->tries_size_ == 0) {
return; // nothing to process
}
const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0);
uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
ClassLinker* linker = Runtime::Current()->GetClassLinker();
for (uint32_t idx = 0; idx < handlers_size; idx++) {
CatchHandlerIterator iterator(handlers_ptr);
for (; iterator.HasNext(); iterator.Next()) {
// Ensure exception types are resolved so that they don't need resolution to be delivered,
// unresolved exception types will be ignored by exception delivery
if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
Class* exception_type = linker->ResolveType(iterator.GetHandlerTypeIndex(), method);
if (exception_type == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
Thread::Current()->ClearException();
}
}
}
handlers_ptr = iterator.EndDataPointer();
}
}
static void CheckProxyConstructor(Method* constructor);
static void CheckProxyMethod(Method* method, SirtRef<Method>& prototype);
Class* ClassLinker::CreateProxyClass(String* name, ObjectArray<Class>* interfaces,
ClassLoader* loader, ObjectArray<Method>* methods,
ObjectArray<ObjectArray<Class> >* throws) {
SirtRef<Class> klass(AllocClass(GetClassRoot(kJavaLangClass), sizeof(SynthesizedProxyClass)));
CHECK(klass.get() != NULL);
DCHECK(klass->GetClass() != NULL);
klass->SetObjectSize(sizeof(Proxy));
klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal);
klass->SetClassLoader(loader);
DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot);
klass->SetName(name);
Class* proxy_class = GetClassRoot(kJavaLangReflectProxy);
klass->SetDexCache(proxy_class->GetDexCache());
klass->SetStatus(Class::kStatusIdx);
klass->SetDexTypeIndex(DexFile::kDexNoIndex16);
// Instance fields are inherited, but we add a couple of static fields...
klass->SetSFields(AllocObjectArray<Field>(2));
// 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by
// our proxy, so Class.getInterfaces doesn't return the flattened set.
SirtRef<Field> interfaces_sfield(AllocField());
klass->SetStaticField(0, interfaces_sfield.get());
interfaces_sfield->SetDexFieldIndex(0);
interfaces_sfield->SetDeclaringClass(klass.get());
interfaces_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
// 2. Create a static field 'throws' that holds exceptions thrown by our methods.
SirtRef<Field> throws_sfield(AllocField());
klass->SetStaticField(1, throws_sfield.get());
throws_sfield->SetDexFieldIndex(1);
throws_sfield->SetDeclaringClass(klass.get());
throws_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal);
// Proxies have 1 direct method, the constructor
klass->SetDirectMethods(AllocObjectArray<Method>(1));
klass->SetDirectMethod(0, CreateProxyConstructor(klass, proxy_class));
// Create virtual method using specified prototypes
size_t num_virtual_methods = methods->GetLength();
klass->SetVirtualMethods(AllocObjectArray<Method>(num_virtual_methods));
for (size_t i = 0; i < num_virtual_methods; ++i) {
SirtRef<Method> prototype(methods->Get(i));
klass->SetVirtualMethod(i, CreateProxyMethod(klass, prototype));
}
klass->SetSuperClass(proxy_class); // The super class is java.lang.reflect.Proxy
klass->SetStatus(Class::kStatusLoaded); // Class is now effectively in the loaded state
DCHECK(!Thread::Current()->IsExceptionPending());
// Link the fields and virtual methods, creating vtable and iftables
if (!LinkClass(klass, interfaces)) {
klass->SetStatus(Class::kStatusError);
return NULL;
}
interfaces_sfield->SetObject(NULL, interfaces);
throws_sfield->SetObject(NULL, throws);
klass->SetStatus(Class::kStatusInitialized);
// sanity checks
if (kIsDebugBuild) {
CHECK(klass->GetIFields() == NULL);
CheckProxyConstructor(klass->GetDirectMethod(0));
for (size_t i = 0; i < num_virtual_methods; ++i) {
SirtRef<Method> prototype(methods->Get(i));
CheckProxyMethod(klass->GetVirtualMethod(i), prototype);
}
std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces",
name->ToModifiedUtf8().c_str()));
CHECK_EQ(PrettyField(klass->GetStaticField(0)), interfaces_field_name);
std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws",
name->ToModifiedUtf8().c_str()));
CHECK_EQ(PrettyField(klass->GetStaticField(1)), throws_field_name);
SynthesizedProxyClass* synth_proxy_class = down_cast<SynthesizedProxyClass*>(klass.get());
CHECK_EQ(synth_proxy_class->GetInterfaces(), interfaces);
CHECK_EQ(synth_proxy_class->GetThrows(), throws);
}
return klass.get();
}
std::string ClassLinker::GetDescriptorForProxy(const Class* proxy_class) {
DCHECK(proxy_class->IsProxyClass());
String* name = proxy_class->GetName();
DCHECK(name != NULL);
return DotToDescriptor(name->ToModifiedUtf8().c_str());
}
Method* ClassLinker::FindMethodForProxy(const Class* proxy_class, const Method* proxy_method) {
DCHECK(proxy_class->IsProxyClass());
DCHECK(proxy_method->IsProxyMethod());
// Locate the dex cache of the original interface/Object
DexCache* dex_cache = NULL;
{
ObjectArray<Class>* resolved_types = proxy_method->GetDexCacheResolvedTypes();
MutexLock mu(dex_lock_);
for (size_t i = 0; i != dex_caches_.size(); ++i) {
if (dex_caches_[i]->GetResolvedTypes() == resolved_types) {
dex_cache = dex_caches_[i];
break;
}
}
}
CHECK(dex_cache != NULL);
uint32_t method_idx = proxy_method->GetDexMethodIndex();
Method* resolved_method = dex_cache->GetResolvedMethod(method_idx);
CHECK(resolved_method != NULL);
return resolved_method;
}
Method* ClassLinker::CreateProxyConstructor(SirtRef<Class>& klass, Class* proxy_class) {
// Create constructor for Proxy that must initialize h
ObjectArray<Method>* proxy_direct_methods = proxy_class->GetDirectMethods();
CHECK_EQ(proxy_direct_methods->GetLength(), 15);
Method* proxy_constructor = proxy_direct_methods->Get(2);
// Clone the existing constructor of Proxy (our constructor would just invoke it so steal its
// code_ too)
Method* constructor = down_cast<Method*>(proxy_constructor->Clone());
// Make this constructor public and fix the class to be our Proxy version
constructor->SetAccessFlags((constructor->GetAccessFlags() & ~kAccProtected) | kAccPublic);
constructor->SetDeclaringClass(klass.get());
return constructor;
}
static void CheckProxyConstructor(Method* constructor) {
CHECK(constructor->IsConstructor());
MethodHelper mh(constructor);
CHECK_STREQ(mh.GetName(), "<init>");
CHECK_EQ(mh.GetSignature(), std::string("(Ljava/lang/reflect/InvocationHandler;)V"));
DCHECK(constructor->IsPublic());
}
Method* ClassLinker::CreateProxyMethod(SirtRef<Class>& klass, SirtRef<Method>& prototype) {
// Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden
// prototype method
prototype->GetDeclaringClass()->GetDexCache()->SetResolvedMethod(prototype->GetDexMethodIndex(),
prototype.get());
// We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize
// as necessary
Method* method = down_cast<Method*>(prototype->Clone());
// Set class to be the concrete proxy class and clear the abstract flag, modify exceptions to
// the intersection of throw exceptions as defined in Proxy
method->SetDeclaringClass(klass.get());
method->SetAccessFlags((method->GetAccessFlags() & ~kAccAbstract) | kAccFinal);
// At runtime the method looks like a reference and argument saving method, clone the code
// related parameters from this method.
Method* refs_and_args = Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
method->SetCoreSpillMask(refs_and_args->GetCoreSpillMask());
method->SetFpSpillMask(refs_and_args->GetFpSpillMask());
method->SetFrameSizeInBytes(refs_and_args->GetFrameSizeInBytes());
#if !defined(ART_USE_LLVM_COMPILER)
method->SetCode(reinterpret_cast<void*>(art_proxy_invoke_handler));
#else
OatFile::OatMethod oat_method = GetOatMethodFor(prototype.get());
method->SetCode(oat_method.GetProxyStub());
#endif
return method;
}
static void CheckProxyMethod(Method* method, SirtRef<Method>& prototype) {
// Basic sanity
CHECK(!prototype->IsFinal());
CHECK(method->IsFinal());
CHECK(!method->IsAbstract());
// The proxy method doesn't have its own dex cache or dex file and so it steals those of its
// interface prototype. The exception to this are Constructors and the Class of the Proxy itself.
CHECK_EQ(prototype->GetDexCacheStrings(), method->GetDexCacheStrings());
CHECK_EQ(prototype->GetDexCacheResolvedMethods(), method->GetDexCacheResolvedMethods());
CHECK_EQ(prototype->GetDexCacheResolvedTypes(), method->GetDexCacheResolvedTypes());
CHECK_EQ(prototype->GetDexCacheInitializedStaticStorage(),
method->GetDexCacheInitializedStaticStorage());
CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex());
MethodHelper mh(method);
MethodHelper mh2(prototype.get());
CHECK_STREQ(mh.GetName(), mh2.GetName());
CHECK_STREQ(mh.GetShorty(), mh2.GetShorty());
// More complex sanity - via dex cache
CHECK_EQ(mh.GetReturnType(), mh2.GetReturnType());
}
bool ClassLinker::InitializeClass(Class* klass, bool can_run_clinit, bool can_init_statics) {
CHECK(klass->IsResolved() || klass->IsErroneous())
<< PrettyClass(klass) << " is " << klass->GetStatus();
Thread* self = Thread::Current();
Method* clinit = NULL;
{
// see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol
ObjectLock lock(klass);
if (klass->GetStatus() == Class::kStatusInitialized) {
return true;
}
if (klass->IsErroneous()) {
ThrowEarlierClassFailure(klass);
return false;
}
if (klass->GetStatus() == Class::kStatusResolved ||
klass->GetStatus() == Class::kStatusRetryVerificationAtRuntime) {
VerifyClass(klass);
if (klass->GetStatus() != Class::kStatusVerified) {
if (klass->GetStatus() == Class::kStatusError) {
CHECK(self->IsExceptionPending());
}
return false;
}
}
clinit = klass->FindDeclaredDirectMethod("<clinit>", "()V");
if (clinit != NULL && !can_run_clinit) {
// if the class has a <clinit> but we can't run it during compilation,
// don't bother going to kStatusInitializing. We return false so that
// sub-classes don't believe this class is initialized.
// Opportunistically link non-static methods, TODO: don't initialize and dirty pages
// in second pass.
return false;
}
// If the class is kStatusInitializing, either this thread is
// initializing higher up the stack or another thread has beat us
// to initializing and we need to wait. Either way, this
// invocation of InitializeClass will not be responsible for
// running <clinit> and will return.
if (klass->GetStatus() == Class::kStatusInitializing) {
// We caught somebody else in the act; was it us?
if (klass->GetClinitThreadId() == self->GetTid()) {
// Yes. That's fine. Return so we can continue initializing.
return true;
}
// No. That's fine. Wait for another thread to finish initializing.
return WaitForInitializeClass(klass, self, lock);
}
if (!ValidateSuperClassDescriptors(klass)) {
klass->SetStatus(Class::kStatusError);
return false;
}
DCHECK_EQ(klass->GetStatus(), Class::kStatusVerified) << PrettyClass(klass);
klass->SetClinitThreadId(self->GetTid());
klass->SetStatus(Class::kStatusInitializing);
}
uint64_t t0 = NanoTime();
if (!InitializeSuperClass(klass, can_run_clinit, can_init_statics)) {
// Super class initialization failed, this can be because we can't run
// super-class class initializers in which case we'll be verified.
// Otherwise this class is erroneous.
if (!can_run_clinit) {
CHECK(klass->IsVerified());
} else {
CHECK(klass->IsErroneous());
}
return false;
}
bool has_static_field_initializers = InitializeStaticFields(klass);
if (clinit != NULL) {
clinit->Invoke(self, NULL, NULL, NULL);
}
FixupStaticTrampolines(klass);
uint64_t t1 = NanoTime();
bool success = true;
{
ObjectLock lock(klass);
if (self->IsExceptionPending()) {
WrapExceptionInInitializer();
klass->SetStatus(Class::kStatusError);
success = false;
} else {
RuntimeStats* global_stats = Runtime::Current()->GetStats();
RuntimeStats* thread_stats = self->GetStats();
++global_stats->class_init_count;
++thread_stats->class_init_count;
global_stats->class_init_time_ns += (t1 - t0);
thread_stats->class_init_time_ns += (t1 - t0);
// Set the class as initialized except if we can't initialize static fields and static field
// initialization is necessary.
if (!can_init_statics && has_static_field_initializers) {
klass->SetStatus(Class::kStatusVerified); // Don't leave class in initializing state.
success = false;
} else {
klass->SetStatus(Class::kStatusInitialized);
}
if (VLOG_IS_ON(class_linker)) {
ClassHelper kh(klass);
LOG(INFO) << "Initialized class " << kh.GetDescriptor() << " from " << kh.GetLocation();
}
}
lock.NotifyAll();
}
return success;
}
bool ClassLinker::WaitForInitializeClass(Class* klass, Thread* self, ObjectLock& lock) {
while (true) {
CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException());
lock.Wait();
// When we wake up, repeat the test for init-in-progress. If
// there's an exception pending (only possible if
// "interruptShouldThrow" was set), bail out.
if (self->IsExceptionPending()) {
WrapExceptionInInitializer();
klass->SetStatus(Class::kStatusError);
return false;
}
// Spurious wakeup? Go back to waiting.
if (klass->GetStatus() == Class::kStatusInitializing) {
continue;
}
if (klass->IsErroneous()) {
// The caller wants an exception, but it was thrown in a
// different thread. Synthesize one here.
ThrowNoClassDefFoundError("<clinit> failed for class %s; see exception in other thread",
PrettyDescriptor(klass).c_str());
return false;
}
if (klass->IsInitialized()) {
return true;
}
LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass) << " is " << klass->GetStatus();
}
LOG(FATAL) << "Not Reached" << PrettyClass(klass);
}
bool ClassLinker::ValidateSuperClassDescriptors(const Class* klass) {
if (klass->IsInterface()) {
return true;
}
// begin with the methods local to the superclass
if (klass->HasSuperClass() &&
klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
const Class* super = klass->GetSuperClass();
for (int i = super->GetVTable()->GetLength() - 1; i >= 0; --i) {
const Method* method = klass->GetVTable()->Get(i);
if (method != super->GetVTable()->Get(i) &&
!IsSameMethodSignatureInDifferentClassContexts(method, super, klass)) {
ThrowLinkageError("Class %s method %s resolves differently in superclass %s",
PrettyDescriptor(klass).c_str(), PrettyMethod(method).c_str(),
PrettyDescriptor(super).c_str());
return false;
}
}
}
for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
InterfaceEntry* interface_entry = klass->GetIfTable()->Get(i);
Class* interface = interface_entry->GetInterface();
if (klass->GetClassLoader() != interface->GetClassLoader()) {
for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) {
const Method* method = interface_entry->GetMethodArray()->Get(j);
if (!IsSameMethodSignatureInDifferentClassContexts(method, interface,
method->GetDeclaringClass())) {
ThrowLinkageError("Class %s method %s resolves differently in interface %s",
PrettyDescriptor(method->GetDeclaringClass()).c_str(),
PrettyMethod(method).c_str(),
PrettyDescriptor(interface).c_str());
return false;
}
}
}
}
return true;
}
// Returns true if classes referenced by the signature of the method are the
// same classes in klass1 as they are in klass2.
bool ClassLinker::IsSameMethodSignatureInDifferentClassContexts(const Method* method,
const Class* klass1,
const Class* klass2) {
if (klass1 == klass2) {
return true;
}
const DexFile& dex_file = FindDexFile(method->GetDeclaringClass()->GetDexCache());
const DexFile::ProtoId& proto_id =
dex_file.GetMethodPrototype(dex_file.GetMethodId(method->GetDexMethodIndex()));
for (DexFileParameterIterator it(dex_file, proto_id); it.HasNext(); it.Next()) {
const char* descriptor = it.GetDescriptor();
if (descriptor == NULL) {
break;
}
if (descriptor[0] == 'L' || descriptor[0] == '[') {
// Found a non-primitive type.
if (!IsSameDescriptorInDifferentClassContexts(descriptor, klass1, klass2)) {
return false;
}
}
}
// Check the return type
const char* descriptor = dex_file.GetReturnTypeDescriptor(proto_id);
if (descriptor[0] == 'L' || descriptor[0] == '[') {
if (!IsSameDescriptorInDifferentClassContexts(descriptor, klass1, klass2)) {
return false;
}
}
return true;
}
// Returns true if the descriptor resolves to the same class in the context of klass1 and klass2.
bool ClassLinker::IsSameDescriptorInDifferentClassContexts(const char* descriptor,
const Class* klass1,
const Class* klass2) {
CHECK(descriptor != NULL);
CHECK(klass1 != NULL);
CHECK(klass2 != NULL);
if (klass1 == klass2) {
return true;
}
Class* found1 = FindClass(descriptor, klass1->GetClassLoader());
if (found1 == NULL) {
Thread::Current()->ClearException();
}
Class* found2 = FindClass(descriptor, klass2->GetClassLoader());
if (found2 == NULL) {
Thread::Current()->ClearException();
}
return found1 == found2;
}
bool ClassLinker::InitializeSuperClass(Class* klass, bool can_run_clinit, bool can_init_fields) {
CHECK(klass != NULL);
if (!klass->IsInterface() && klass->HasSuperClass()) {
Class* super_class = klass->GetSuperClass();
if (super_class->GetStatus() != Class::kStatusInitialized) {
CHECK(!super_class->IsInterface());
Thread* self = Thread::Current();
klass->MonitorEnter(self);
bool super_initialized = InitializeClass(super_class, can_run_clinit, can_init_fields);
klass->MonitorExit(self);
// TODO: check for a pending exception
if (!super_initialized) {
if (!can_run_clinit) {
// Don't set status to error when we can't run <clinit>.
CHECK_EQ(klass->GetStatus(), Class::kStatusInitializing) << PrettyClass(klass);
klass->SetStatus(Class::kStatusVerified);
return false;
}
klass->SetStatus(Class::kStatusError);
klass->NotifyAll();
return false;
}
}
}
return true;
}
bool ClassLinker::EnsureInitialized(Class* c, bool can_run_clinit, bool can_init_fields) {
CHECK(c != NULL);
if (c->IsInitialized()) {
return true;
}
Thread* self = Thread::Current();
ScopedThreadStateChange tsc(self, kRunnable);
bool success = InitializeClass(c, can_run_clinit, can_init_fields);
if (!success) {
CHECK(self->IsExceptionPending() || !can_run_clinit) << PrettyClass(c);
}
return success;
}
void ClassLinker::ConstructFieldMap(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def,
Class* c, SafeMap<uint32_t, Field*>& field_map) {
ClassLoader* cl = c->GetClassLoader();
const byte* class_data = dex_file.GetClassData(dex_class_def);
ClassDataItemIterator it(dex_file, class_data);
for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) {
field_map.Put(i, ResolveField(dex_file, it.GetMemberIndex(), c->GetDexCache(), cl, true));
}
}
bool ClassLinker::InitializeStaticFields(Class* klass) {
size_t num_static_fields = klass->NumStaticFields();
if (num_static_fields == 0) {
return false;
}
DexCache* dex_cache = klass->GetDexCache();
// TODO: this seems like the wrong check. do we really want !IsPrimitive && !IsArray?
if (dex_cache == NULL) {
return false;
}
ClassHelper kh(klass);
const DexFile::ClassDef* dex_class_def = kh.GetClassDef();
CHECK(dex_class_def != NULL);
const DexFile& dex_file = kh.GetDexFile();
EncodedStaticFieldValueIterator it(dex_file, dex_cache, this, *dex_class_def);
if (it.HasNext()) {
// We reordered the fields, so we need to be able to map the field indexes to the right fields.
SafeMap<uint32_t, Field*> field_map;
ConstructFieldMap(dex_file, *dex_class_def, klass, field_map);
for (size_t i = 0; it.HasNext(); i++, it.Next()) {
it.ReadValueToField(field_map.Get(i));
}
return true;
}
return false;
}
bool ClassLinker::LinkClass(SirtRef<Class>& klass, ObjectArray<Class>* interfaces) {
CHECK_EQ(Class::kStatusLoaded, klass->GetStatus());
if (!LinkSuperClass(klass)) {
return false;
}
if (!LinkMethods(klass, interfaces)) {
return false;
}
if (!LinkInstanceFields(klass)) {
return false;
}
if (!LinkStaticFields(klass)) {
return false;
}
CreateReferenceInstanceOffsets(klass);
CreateReferenceStaticOffsets(klass);
CHECK_EQ(Class::kStatusLoaded, klass->GetStatus());
klass->SetStatus(Class::kStatusResolved);
return true;
}
bool ClassLinker::LoadSuperAndInterfaces(SirtRef<Class>& klass, const DexFile& dex_file) {
CHECK_EQ(Class::kStatusIdx, klass->GetStatus());
StringPiece descriptor(dex_file.StringByTypeIdx(klass->GetDexTypeIndex()));
const DexFile::ClassDef* class_def = dex_file.FindClassDef(descriptor);
CHECK(class_def != NULL);
uint16_t super_class_idx = class_def->superclass_idx_;
if (super_class_idx != DexFile::kDexNoIndex16) {
Class* super_class = ResolveType(dex_file, super_class_idx, klass.get());
if (super_class == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return false;
}
// Verify
if (!klass->CanAccess(super_class)) {
Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;",
"Class %s extended by class %s is inaccessible",
PrettyDescriptor(super_class).c_str(),
PrettyDescriptor(klass.get()).c_str());
return false;
}
klass->SetSuperClass(super_class);
}
const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(*class_def);
if (interfaces != NULL) {
for (size_t i = 0; i < interfaces->Size(); i++) {
uint16_t idx = interfaces->GetTypeItem(i).type_idx_;
Class* interface = ResolveType(dex_file, idx, klass.get());
if (interface == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return false;
}
// Verify
if (!klass->CanAccess(interface)) {
// TODO: the RI seemed to ignore this in my testing.
Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;",
"Interface %s implemented by class %s is inaccessible",
PrettyDescriptor(interface).c_str(),
PrettyDescriptor(klass.get()).c_str());
return false;
}
}
}
// Mark the class as loaded.
klass->SetStatus(Class::kStatusLoaded);
return true;
}
bool ClassLinker::LinkSuperClass(SirtRef<Class>& klass) {
CHECK(!klass->IsPrimitive());
Class* super = klass->GetSuperClass();
if (klass.get() == GetClassRoot(kJavaLangObject)) {
if (super != NULL) {
Thread::Current()->ThrowNewExceptionF("Ljava/lang/ClassFormatError;",
"java.lang.Object must not have a superclass");
return false;
}
return true;
}
if (super == NULL) {
ThrowLinkageError("No superclass defined for class %s", PrettyDescriptor(klass.get()).c_str());
return false;
}
// Verify
if (super->IsFinal() || super->IsInterface()) {
Thread* self = Thread::Current();
self->ThrowNewExceptionF("Ljava/lang/IncompatibleClassChangeError;",
"Superclass %s of %s is %s",
PrettyDescriptor(super).c_str(),
PrettyDescriptor(klass.get()).c_str(),
super->IsFinal() ? "declared final" : "an interface");
return false;
}
if (!klass->CanAccess(super)) {
Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;",
"Superclass %s is inaccessible by %s",
PrettyDescriptor(super).c_str(),
PrettyDescriptor(klass.get()).c_str());
return false;
}
// Inherit kAccClassIsFinalizable from the superclass in case this class doesn't override finalize.
if (super->IsFinalizable()) {
klass->SetFinalizable();
}
// Inherit reference flags (if any) from the superclass.
int reference_flags = (super->GetAccessFlags() & kAccReferenceFlagsMask);
if (reference_flags != 0) {
klass->SetAccessFlags(klass->GetAccessFlags() | reference_flags);
}
// Disallow custom direct subclasses of java.lang.ref.Reference.
if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) {
ThrowLinkageError("Class %s attempts to subclass java.lang.ref.Reference, which is not allowed",
PrettyDescriptor(klass.get()).c_str());
return false;
}
#ifndef NDEBUG
// Ensure super classes are fully resolved prior to resolving fields..
while (super != NULL) {
CHECK(super->IsResolved());
super = super->GetSuperClass();
}
#endif
return true;
}
// Populate the class vtable and itable. Compute return type indices.
bool ClassLinker::LinkMethods(SirtRef<Class>& klass, ObjectArray<Class>* interfaces) {
if (klass->IsInterface()) {
// No vtable.
size_t count = klass->NumVirtualMethods();
if (!IsUint(16, count)) {
ThrowClassFormatError("Too many methods on interface: %zd", count);
return false;
}
for (size_t i = 0; i < count; ++i) {
klass->GetVirtualMethodDuringLinking(i)->SetMethodIndex(i);
}
// Link interface method tables
return LinkInterfaceMethods(klass, interfaces);
} else {
// Link virtual and interface method tables
return LinkVirtualMethods(klass) && LinkInterfaceMethods(klass, interfaces);
}
return true;
}
bool ClassLinker::LinkVirtualMethods(SirtRef<Class>& klass) {
if (klass->HasSuperClass()) {
uint32_t max_count = klass->NumVirtualMethods() + klass->GetSuperClass()->GetVTable()->GetLength();
size_t actual_count = klass->GetSuperClass()->GetVTable()->GetLength();
CHECK_LE(actual_count, max_count);
// TODO: do not assign to the vtable field until it is fully constructed.
SirtRef<ObjectArray<Method> > vtable(klass->GetSuperClass()->GetVTable()->CopyOf(max_count));
// See if any of our virtual methods override the superclass.
MethodHelper local_mh(NULL, this);
MethodHelper super_mh(NULL, this);
for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) {
Method* local_method = klass->GetVirtualMethodDuringLinking(i);
local_mh.ChangeMethod(local_method);
size_t j = 0;
for (; j < actual_count; ++j) {
Method* super_method = vtable->Get(j);
super_mh.ChangeMethod(super_method);
if (local_mh.HasSameNameAndSignature(&super_mh) &&
klass->CanAccessMember(super_method->GetDeclaringClass(), super_method->GetAccessFlags())) {
// Verify
if (super_method->IsFinal()) {
MethodHelper mh(local_method);
ThrowLinkageError("Method %s.%s overrides final method in class %s",
PrettyDescriptor(klass.get()).c_str(),
mh.GetName(), mh.GetDeclaringClassDescriptor());
return false;
}
vtable->Set(j, local_method);
local_method->SetMethodIndex(j);
break;
}
}
if (j == actual_count) {
// Not overriding, append.
vtable->Set(actual_count, local_method);
local_method->SetMethodIndex(actual_count);
actual_count += 1;
}
}
if (!IsUint(16, actual_count)) {
ThrowClassFormatError("Too many methods defined on class: %zd", actual_count);
return false;
}
// Shrink vtable if possible
CHECK_LE(actual_count, max_count);
if (actual_count < max_count) {
vtable.reset(vtable->CopyOf(actual_count));
}
klass->SetVTable(vtable.get());
} else {
CHECK(klass.get() == GetClassRoot(kJavaLangObject));
uint32_t num_virtual_methods = klass->NumVirtualMethods();
if (!IsUint(16, num_virtual_methods)) {
ThrowClassFormatError("Too many methods: %d", num_virtual_methods);
return false;
}
SirtRef<ObjectArray<Method> > vtable(AllocObjectArray<Method>(num_virtual_methods));
for (size_t i = 0; i < num_virtual_methods; ++i) {
Method* virtual_method = klass->GetVirtualMethodDuringLinking(i);
vtable->Set(i, virtual_method);
virtual_method->SetMethodIndex(i & 0xFFFF);
}
klass->SetVTable(vtable.get());
}
return true;
}
bool ClassLinker::LinkInterfaceMethods(SirtRef<Class>& klass, ObjectArray<Class>* interfaces) {
size_t super_ifcount;
if (klass->HasSuperClass()) {
super_ifcount = klass->GetSuperClass()->GetIfTableCount();
} else {
super_ifcount = 0;
}
size_t ifcount = super_ifcount;
ClassHelper kh(klass.get(), this);
uint32_t num_interfaces = interfaces == NULL ? kh.NumDirectInterfaces() : interfaces->GetLength();
ifcount += num_interfaces;
for (size_t i = 0; i < num_interfaces; i++) {
Class* interface = interfaces == NULL ? kh.GetDirectInterface(i) : interfaces->Get(i);
ifcount += interface->GetIfTableCount();
}
if (ifcount == 0) {
// TODO: enable these asserts with klass status validation
// DCHECK_EQ(klass->GetIfTableCount(), 0);
// DCHECK(klass->GetIfTable() == NULL);
return true;
}
SirtRef<ObjectArray<InterfaceEntry> > iftable(AllocObjectArray<InterfaceEntry>(ifcount));
if (super_ifcount != 0) {
ObjectArray<InterfaceEntry>* super_iftable = klass->GetSuperClass()->GetIfTable();
for (size_t i = 0; i < super_ifcount; i++) {
Class* super_interface = super_iftable->Get(i)->GetInterface();
iftable->Set(i, AllocInterfaceEntry(super_interface));
}
}
// Flatten the interface inheritance hierarchy.
size_t idx = super_ifcount;
for (size_t i = 0; i < num_interfaces; i++) {
Class* interface = interfaces == NULL ? kh.GetDirectInterface(i) : interfaces->Get(i);
DCHECK(interface != NULL);
if (!interface->IsInterface()) {
ClassHelper ih(interface);
Thread* self = Thread::Current();
self->ThrowNewExceptionF("Ljava/lang/IncompatibleClassChangeError;",
"Class %s implements non-interface class %s",
PrettyDescriptor(klass.get()).c_str(),
PrettyDescriptor(ih.GetDescriptor()).c_str());
return false;
}
// Check if interface is already in iftable
bool duplicate = false;
for (size_t j = 0; j < idx; j++) {
Class* existing_interface = iftable->Get(j)->GetInterface();
if (existing_interface == interface) {
duplicate = true;
break;
}
}
if (!duplicate) {
// Add this non-duplicate interface.
iftable->Set(idx++, AllocInterfaceEntry(interface));
// Add this interface's non-duplicate super-interfaces.
for (int32_t j = 0; j < interface->GetIfTableCount(); j++) {
Class* super_interface = interface->GetIfTable()->Get(j)->GetInterface();
bool super_duplicate = false;
for (size_t k = 0; k < idx; k++) {
Class* existing_interface = iftable->Get(k)->GetInterface();
if (existing_interface == super_interface) {
super_duplicate = true;
break;
}
}
if (!super_duplicate) {
iftable->Set(idx++, AllocInterfaceEntry(super_interface));
}
}
}
}
// Shrink iftable in case duplicates were found
if (idx < ifcount) {
iftable.reset(iftable->CopyOf(idx));
ifcount = idx;
} else {
CHECK_EQ(idx, ifcount);
}
klass->SetIfTable(iftable.get());
// If we're an interface, we don't need the vtable pointers, so we're done.
if (klass->IsInterface() /*|| super_ifcount == ifcount*/) {
return true;
}
std::vector<Method*> miranda_list;
MethodHelper vtable_mh(NULL, this);
MethodHelper interface_mh(NULL, this);
for (size_t i = 0; i < ifcount; ++i) {
InterfaceEntry* interface_entry = iftable->Get(i);
Class* interface = interface_entry->GetInterface();
ObjectArray<Method>* method_array = AllocObjectArray<Method>(interface->NumVirtualMethods());
interface_entry->SetMethodArray(method_array);
ObjectArray<Method>* vtable = klass->GetVTableDuringLinking();
for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) {
Method* interface_method = interface->GetVirtualMethod(j);
interface_mh.ChangeMethod(interface_method);
int32_t k;
// For each method listed in the interface's method list, find the
// matching method in our class's method list. We want to favor the
// subclass over the superclass, which just requires walking
// back from the end of the vtable. (This only matters if the
// superclass defines a private method and this class redefines
// it -- otherwise it would use the same vtable slot. In .dex files
// those don't end up in the virtual method table, so it shouldn't
// matter which direction we go. We walk it backward anyway.)
for (k = vtable->GetLength() - 1; k >= 0; --k) {
Method* vtable_method = vtable->Get(k);
vtable_mh.ChangeMethod(vtable_method);
if (interface_mh.HasSameNameAndSignature(&vtable_mh)) {
if (!vtable_method->IsPublic()) {
Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;",
"Implementation not public: %s", PrettyMethod(vtable_method).c_str());
return false;
}
method_array->Set(j, vtable_method);
break;
}
}
if (k < 0) {
SirtRef<Method> miranda_method(NULL);
for (size_t mir = 0; mir < miranda_list.size(); mir++) {
Method* mir_method = miranda_list[mir];
vtable_mh.ChangeMethod(mir_method);
if (interface_mh.HasSameNameAndSignature(&vtable_mh)) {
miranda_method.reset(miranda_list[mir]);
break;
}
}
if (miranda_method.get() == NULL) {
// point the interface table at a phantom slot
miranda_method.reset(AllocMethod());
memcpy(miranda_method.get(), interface_method, sizeof(Method));
miranda_list.push_back(miranda_method.get());
}
method_array->Set(j, miranda_method.get());
}
}
}
if (!miranda_list.empty()) {
int old_method_count = klass->NumVirtualMethods();
int new_method_count = old_method_count + miranda_list.size();
klass->SetVirtualMethods((old_method_count == 0)
? AllocObjectArray<Method>(new_method_count)
: klass->GetVirtualMethods()->CopyOf(new_method_count));
SirtRef<ObjectArray<Method> > vtable(klass->GetVTableDuringLinking());
CHECK(vtable.get() != NULL);
int old_vtable_count = vtable->GetLength();
int new_vtable_count = old_vtable_count + miranda_list.size();
vtable.reset(vtable->CopyOf(new_vtable_count));
for (size_t i = 0; i < miranda_list.size(); ++i) {
Method* method = miranda_list[i];
// Leave the declaring class alone as type indices are relative to it
method->SetAccessFlags(method->GetAccessFlags() | kAccMiranda);
method->SetMethodIndex(0xFFFF & (old_vtable_count + i));
klass->SetVirtualMethod(old_method_count + i, method);
vtable->Set(old_vtable_count + i, method);
}
// TODO: do not assign to the vtable field until it is fully constructed.
klass->SetVTable(vtable.get());
}
ObjectArray<Method>* vtable = klass->GetVTableDuringLinking();
for (int i = 0; i < vtable->GetLength(); ++i) {
CHECK(vtable->Get(i) != NULL);
}
// klass->DumpClass(std::cerr, Class::kDumpClassFullDetail);
return true;
}
bool ClassLinker::LinkInstanceFields(SirtRef<Class>& klass) {
CHECK(klass.get() != NULL);
return LinkFields(klass, false);
}
bool ClassLinker::LinkStaticFields(SirtRef<Class>& klass) {
CHECK(klass.get() != NULL);
size_t allocated_class_size = klass->GetClassSize();
bool success = LinkFields(klass, true);
CHECK_EQ(allocated_class_size, klass->GetClassSize());
return success;
}
struct LinkFieldsComparator {
explicit LinkFieldsComparator(FieldHelper* fh) : fh_(fh) {}
bool operator()(const Field* field1, const Field* field2) {
// First come reference fields, then 64-bit, and finally 32-bit
fh_->ChangeField(field1);
Primitive::Type type1 = fh_->GetTypeAsPrimitiveType();
fh_->ChangeField(field2);
Primitive::Type type2 = fh_->GetTypeAsPrimitiveType();
bool isPrimitive1 = type1 != Primitive::kPrimNot;
bool isPrimitive2 = type2 != Primitive::kPrimNot;
bool is64bit1 = isPrimitive1 && (type1 == Primitive::kPrimLong || type1 == Primitive::kPrimDouble);
bool is64bit2 = isPrimitive2 && (type2 == Primitive::kPrimLong || type2 == Primitive::kPrimDouble);
int order1 = (!isPrimitive1 ? 0 : (is64bit1 ? 1 : 2));
int order2 = (!isPrimitive2 ? 0 : (is64bit2 ? 1 : 2));
if (order1 != order2) {
return order1 < order2;
}
// same basic group? then sort by string.
fh_->ChangeField(field1);
StringPiece name1(fh_->GetName());
fh_->ChangeField(field2);
StringPiece name2(fh_->GetName());
return name1 < name2;
}
FieldHelper* fh_;
};
bool ClassLinker::LinkFields(SirtRef<Class>& klass, bool is_static) {
size_t num_fields =
is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
ObjectArray<Field>* fields =
is_static ? klass->GetSFields() : klass->GetIFields();
// Initialize size and field_offset
size_t size;
MemberOffset field_offset(0);
if (is_static) {
size = klass->GetClassSize();
field_offset = Class::FieldsOffset();
} else {
Class* super_class = klass->GetSuperClass();
if (super_class != NULL) {
CHECK(super_class->IsResolved());
field_offset = MemberOffset(super_class->GetObjectSize());
}
size = field_offset.Uint32Value();
}
CHECK_EQ(num_fields == 0, fields == NULL);
// we want a relatively stable order so that adding new fields
// minimizes disruption of C++ version such as Class and Method.
std::deque<Field*> grouped_and_sorted_fields;
for (size_t i = 0; i < num_fields; i++) {
grouped_and_sorted_fields.push_back(fields->Get(i));
}
FieldHelper fh(NULL, this);
std::sort(grouped_and_sorted_fields.begin(),
grouped_and_sorted_fields.end(),
LinkFieldsComparator(&fh));
// References should be at the front.
size_t current_field = 0;
size_t num_reference_fields = 0;
for (; current_field < num_fields; current_field++) {
Field* field = grouped_and_sorted_fields.front();
fh.ChangeField(field);
Primitive::Type type = fh.GetTypeAsPrimitiveType();
bool isPrimitive = type != Primitive::kPrimNot;
if (isPrimitive) {
break; // past last reference, move on to the next phase
}
grouped_and_sorted_fields.pop_front();
num_reference_fields++;
fields->Set(current_field, field);
field->SetOffset(field_offset);
field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(uint32_t));
}
// Now we want to pack all of the double-wide fields together. If
// we're not aligned, though, we want to shuffle one 32-bit field
// into place. If we can't find one, we'll have to pad it.
if (current_field != num_fields && !IsAligned<8>(field_offset.Uint32Value())) {
for (size_t i = 0; i < grouped_and_sorted_fields.size(); i++) {
Field* field = grouped_and_sorted_fields[i];
fh.ChangeField(field);
Primitive::Type type = fh.GetTypeAsPrimitiveType();
CHECK(type != Primitive::kPrimNot); // should only be working on primitive types
if (type == Primitive::kPrimLong || type == Primitive::kPrimDouble) {
continue;
}
fields->Set(current_field++, field);
field->SetOffset(field_offset);
// drop the consumed field
grouped_and_sorted_fields.erase(grouped_and_sorted_fields.begin() + i);
break;
}
// whether we found a 32-bit field for padding or not, we advance
field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(uint32_t));
}
// Alignment is good, shuffle any double-wide fields forward, and
// finish assigning field offsets to all fields.
DCHECK(current_field == num_fields || IsAligned<8>(field_offset.Uint32Value()));
while (!grouped_and_sorted_fields.empty()) {
Field* field = grouped_and_sorted_fields.front();
grouped_and_sorted_fields.pop_front();
fh.ChangeField(field);
Primitive::Type type = fh.GetTypeAsPrimitiveType();
CHECK(type != Primitive::kPrimNot); // should only be working on primitive types
fields->Set(current_field, field);
field->SetOffset(field_offset);
field_offset = MemberOffset(field_offset.Uint32Value() +
((type == Primitive::kPrimLong || type == Primitive::kPrimDouble)
? sizeof(uint64_t)
: sizeof(uint32_t)));
current_field++;
}
// We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it.
std::string descriptor(ClassHelper(klass.get(), this).GetDescriptor());
if (!is_static && descriptor == "Ljava/lang/ref/Reference;") {
// We know there are no non-reference fields in the Reference classes, and we know
// that 'referent' is alphabetically last, so this is easy...
CHECK_EQ(num_reference_fields, num_fields);
fh.ChangeField(fields->Get(num_fields - 1));
CHECK_STREQ(fh.GetName(), "referent");
--num_reference_fields;
}
#ifndef NDEBUG
// Make sure that all reference fields appear before
// non-reference fields, and all double-wide fields are aligned.
bool seen_non_ref = false;
for (size_t i = 0; i < num_fields; i++) {
Field* field = fields->Get(i);
if (false) { // enable to debug field layout
LOG(INFO) << "LinkFields: " << (is_static ? "static" : "instance")
<< " class=" << PrettyClass(klass.get())
<< " field=" << PrettyField(field)
<< " offset=" << field->GetField32(MemberOffset(Field::OffsetOffset()), false);
}
fh.ChangeField(field);
Primitive::Type type = fh.GetTypeAsPrimitiveType();
bool is_primitive = type != Primitive::kPrimNot;
if (descriptor == "Ljava/lang/ref/Reference;" && StringPiece(fh.GetName()) == "referent") {
is_primitive = true; // We lied above, so we have to expect a lie here.
}
if (is_primitive) {
if (!seen_non_ref) {
seen_non_ref = true;
DCHECK_EQ(num_reference_fields, i);
}
} else {
DCHECK(!seen_non_ref);
}
}
if (!seen_non_ref) {
DCHECK_EQ(num_fields, num_reference_fields);
}
#endif
size = field_offset.Uint32Value();
// Update klass
if (is_static) {
klass->SetNumReferenceStaticFields(num_reference_fields);
klass->SetClassSize(size);
} else {
klass->SetNumReferenceInstanceFields(num_reference_fields);
if (!klass->IsVariableSize()) {
klass->SetObjectSize(size);
}
}
return true;
}
// Set the bitmap of reference offsets, refOffsets, from the ifields
// list.
void ClassLinker::CreateReferenceInstanceOffsets(SirtRef<Class>& klass) {
uint32_t reference_offsets = 0;
Class* super_class = klass->GetSuperClass();
if (super_class != NULL) {
reference_offsets = super_class->GetReferenceInstanceOffsets();
// If our superclass overflowed, we don't stand a chance.
if (reference_offsets == CLASS_WALK_SUPER) {
klass->SetReferenceInstanceOffsets(reference_offsets);
return;
}
}
CreateReferenceOffsets(klass, false, reference_offsets);
}
void ClassLinker::CreateReferenceStaticOffsets(SirtRef<Class>& klass) {
CreateReferenceOffsets(klass, true, 0);
}
void ClassLinker::CreateReferenceOffsets(SirtRef<Class>& klass, bool is_static,
uint32_t reference_offsets) {
size_t num_reference_fields =
is_static ? klass->NumReferenceStaticFieldsDuringLinking()
: klass->NumReferenceInstanceFieldsDuringLinking();
const ObjectArray<Field>* fields =
is_static ? klass->GetSFields() : klass->GetIFields();
// All of the fields that contain object references are guaranteed
// to be at the beginning of the fields list.
for (size_t i = 0; i < num_reference_fields; ++i) {
// Note that byte_offset is the offset from the beginning of
// object, not the offset into instance data
const Field* field = fields->Get(i);
MemberOffset byte_offset = field->GetOffsetDuringLinking();
CHECK_EQ(byte_offset.Uint32Value() & (CLASS_OFFSET_ALIGNMENT - 1), 0U);
if (CLASS_CAN_ENCODE_OFFSET(byte_offset.Uint32Value())) {
uint32_t new_bit = CLASS_BIT_FROM_OFFSET(byte_offset.Uint32Value());
CHECK_NE(new_bit, 0U);
reference_offsets |= new_bit;
} else {
reference_offsets = CLASS_WALK_SUPER;
break;
}
}
// Update fields in klass
if (is_static) {
klass->SetReferenceStaticOffsets(reference_offsets);
} else {
klass->SetReferenceInstanceOffsets(reference_offsets);
}
}
String* ClassLinker::ResolveString(const DexFile& dex_file,
uint32_t string_idx, DexCache* dex_cache) {
DCHECK(dex_cache != NULL);
String* resolved = dex_cache->GetResolvedString(string_idx);
if (resolved != NULL) {
return resolved;
}
const DexFile::StringId& string_id = dex_file.GetStringId(string_idx);
int32_t utf16_length = dex_file.GetStringLength(string_id);
const char* utf8_data = dex_file.GetStringData(string_id);
String* string = intern_table_->InternStrong(utf16_length, utf8_data);
dex_cache->SetResolvedString(string_idx, string);
return string;
}
Class* ClassLinker::ResolveType(const DexFile& dex_file,
uint16_t type_idx,
DexCache* dex_cache,
ClassLoader* class_loader) {
DCHECK(dex_cache != NULL);
Class* resolved = dex_cache->GetResolvedType(type_idx);
if (resolved == NULL) {
const char* descriptor = dex_file.StringByTypeIdx(type_idx);
resolved = FindClass(descriptor, class_loader);
if (resolved != NULL) {
// TODO: we used to throw here if resolved's class loader was not the
// boot class loader. This was to permit different classes with the
// same name to be loaded simultaneously by different loaders
dex_cache->SetResolvedType(type_idx, resolved);
} else {
CHECK(Thread::Current()->IsExceptionPending())
<< "Expected pending exception for failed resolution of: " << descriptor;
// Convert a ClassNotFoundException to a NoClassDefFoundError
if (Thread::Current()->GetException()->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) {
Thread::Current()->ClearException();
ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor);
}
}
}
return resolved;
}
Method* ClassLinker::ResolveMethod(const DexFile& dex_file,
uint32_t method_idx,
DexCache* dex_cache,
ClassLoader* class_loader,
bool is_direct) {
DCHECK(dex_cache != NULL);
Method* resolved = dex_cache->GetResolvedMethod(method_idx);
if (resolved != NULL) {
return resolved;
}
const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
if (klass == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return NULL;
}
if (is_direct) {
resolved = klass->FindDirectMethod(dex_cache, method_idx);
} else if (klass->IsInterface()) {
resolved = klass->FindInterfaceMethod(dex_cache, method_idx);
} else {
resolved = klass->FindVirtualMethod(dex_cache, method_idx);
}
if (resolved == NULL) {
const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
std::string signature(dex_file.CreateMethodSignature(method_id.proto_idx_, NULL));
if (is_direct) {
resolved = klass->FindDirectMethod(name, signature);
} else if (klass->IsInterface()) {
resolved = klass->FindInterfaceMethod(name, signature);
} else {
resolved = klass->FindVirtualMethod(name, signature);
// If a virtual method isn't found, search the direct methods. This can
// happen when trying to access private methods directly, and allows the
// proper exception to be thrown in the caller.
if (resolved == NULL) {
resolved = klass->FindDirectMethod(name, signature);
}
}
if (resolved == NULL) {
ThrowNoSuchMethodError(is_direct, klass, name, signature);
return NULL;
}
}
dex_cache->SetResolvedMethod(method_idx, resolved);
return resolved;
}
Field* ClassLinker::ResolveField(const DexFile& dex_file,
uint32_t field_idx,
DexCache* dex_cache,
ClassLoader* class_loader,
bool is_static) {
DCHECK(dex_cache != NULL);
Field* resolved = dex_cache->GetResolvedField(field_idx);
if (resolved != NULL) {
return resolved;
}
const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
Class* klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader);
if (klass == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return NULL;
}
if (is_static) {
resolved = klass->FindStaticField(dex_cache, field_idx);
} else {
resolved = klass->FindInstanceField(dex_cache, field_idx);
}
if (resolved == NULL) {
const char* name = dex_file.GetFieldName(field_id);
const char* type = dex_file.GetFieldTypeDescriptor(field_id);
if (is_static) {
resolved = klass->FindStaticField(name, type);
} else {
resolved = klass->FindInstanceField(name, type);
}
if (resolved == NULL) {
ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass, type, name);
return NULL;
}
}
dex_cache->SetResolvedField(field_idx, resolved);
return resolved;
}
Field* ClassLinker::ResolveFieldJLS(const DexFile& dex_file,
uint32_t field_idx,
DexCache* dex_cache,
ClassLoader* class_loader) {
DCHECK(dex_cache != NULL);
Field* resolved = dex_cache->GetResolvedField(field_idx);
if (resolved != NULL) {
return resolved;
}
const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
Class* klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader);
if (klass == NULL) {
DCHECK(Thread::Current()->IsExceptionPending());
return NULL;
}
const char* name = dex_file.GetFieldName(field_id);
const char* type = dex_file.GetFieldTypeDescriptor(field_id);
resolved = klass->FindField(name, type);
if (resolved != NULL) {
dex_cache->SetResolvedField(field_idx, resolved);
} else {
ThrowNoSuchFieldError("", klass, type, name);
}
return resolved;
}
const char* ClassLinker::MethodShorty(uint32_t method_idx, Method* referrer, uint32_t* length) {
Class* declaring_class = referrer->GetDeclaringClass();
DexCache* dex_cache = declaring_class->GetDexCache();
const DexFile& dex_file = FindDexFile(dex_cache);
const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
return dex_file.GetMethodShorty(method_id, length);
}
void ClassLinker::DumpAllClasses(int flags) const {
// TODO: at the time this was written, it wasn't safe to call PrettyField with the ClassLinker
// lock held, because it might need to resolve a field's type, which would try to take the lock.
std::vector<Class*> all_classes;
{
MutexLock mu(classes_lock_);
typedef Table::const_iterator It; // TODO: C++0x auto
for (It it = classes_.begin(), end = classes_.end(); it != end; ++it) {
all_classes.push_back(it->second);
}
for (It it = image_classes_.begin(), end = image_classes_.end(); it != end; ++it) {
all_classes.push_back(it->second);
}
}
for (size_t i = 0; i < all_classes.size(); ++i) {
all_classes[i]->DumpClass(std::cerr, flags);
}
}
void ClassLinker::DumpForSigQuit(std::ostream& os) const {
MutexLock mu(classes_lock_);
os << "Loaded classes: " << image_classes_.size() << " image classes; "
<< classes_.size() << " allocated classes\n";
}
size_t ClassLinker::NumLoadedClasses() const {
MutexLock mu(classes_lock_);
return classes_.size() + image_classes_.size();
}
pid_t ClassLinker::GetClassesLockOwner() {
return classes_lock_.GetOwner();
}
pid_t ClassLinker::GetDexLockOwner() {
return dex_lock_.GetOwner();
}
void ClassLinker::SetClassRoot(ClassRoot class_root, Class* klass) {
DCHECK(!init_done_);
DCHECK(klass != NULL);
DCHECK(klass->GetClassLoader() == NULL);
DCHECK(class_roots_ != NULL);
DCHECK(class_roots_->Get(class_root) == NULL);
class_roots_->Set(class_root, klass);
}
void ClassLinker::RelocateExecutable() {
MutexLock mu(dex_lock_);
for (size_t i = 0; i < oat_files_.size(); ++i) {
const_cast<OatFile*>(oat_files_[i])->RelocateExecutable();
}
}
} // namespace art