blob: 85c72811022d124e549458ab42e728347e518b99 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <fstream>
#include <iostream>
#include <map>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "android-base/logging.h"
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "arch/instruction_set_features.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/bit_utils_iterator.h"
#include "base/safe_map.h"
#include "base/stl_util.h"
#include "base/unix_file/fd_file.h"
#include "class_linker-inl.h"
#include "class_linker.h"
#include "compiled_method.h"
#include "debug/debug_info.h"
#include "debug/elf_debug_writer.h"
#include "debug/method_debug_info.h"
#include "dex/code_item_accessors-inl.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_instruction-inl.h"
#include "disassembler.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "gc/space/image_space.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "image-inl.h"
#include "imtable-inl.h"
#include "indenter.h"
#include "subtype_check.h"
#include "index_bss_mapping.h"
#include "interpreter/unstarted_runtime.h"
#include "linker/buffered_output_stream.h"
#include "linker/elf_builder.h"
#include "linker/file_output_stream.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "oat.h"
#include "oat_file-inl.h"
#include "oat_file_manager.h"
#include "os.h"
#include "scoped_thread_state_change-inl.h"
#include "stack.h"
#include "stack_map.h"
#include "string_reference.h"
#include "thread_list.h"
#include "type_lookup_table.h"
#include "vdex_file.h"
#include "verifier/method_verifier.h"
#include "verifier/verifier_deps.h"
#include "well_known_classes.h"
#include <sys/stat.h>
#include "cmdline.h"
namespace art {
using android::base::StringPrintf;
const char* image_methods_descriptions_[] = {
"kResolutionMethod",
"kImtConflictMethod",
"kImtUnimplementedMethod",
"kSaveAllCalleeSavesMethod",
"kSaveRefsOnlyMethod",
"kSaveRefsAndArgsMethod",
"kSaveEverythingMethod",
"kSaveEverythingMethodForClinit",
"kSaveEverythingMethodForSuspendCheck",
};
const char* image_roots_descriptions_[] = {
"kDexCaches",
"kClassRoots",
"kClassLoader",
};
// Map is so that we don't allocate multiple dex files for the same OatDexFile.
static std::map<const OatFile::OatDexFile*,
std::unique_ptr<const DexFile>> opened_dex_files;
const DexFile* OpenDexFile(const OatFile::OatDexFile* oat_dex_file, std::string* error_msg) {
DCHECK(oat_dex_file != nullptr);
auto it = opened_dex_files.find(oat_dex_file);
if (it != opened_dex_files.end()) {
return it->second.get();
}
const DexFile* ret = oat_dex_file->OpenDexFile(error_msg).release();
opened_dex_files.emplace(oat_dex_file, std::unique_ptr<const DexFile>(ret));
return ret;
}
template <typename ElfTypes>
class OatSymbolizer FINAL {
public:
OatSymbolizer(const OatFile* oat_file, const std::string& output_name, bool no_bits) :
oat_file_(oat_file),
builder_(nullptr),
output_name_(output_name.empty() ? "symbolized.oat" : output_name),
no_bits_(no_bits) {
}
bool Symbolize() {
const InstructionSet isa = oat_file_->GetOatHeader().GetInstructionSet();
std::unique_ptr<const InstructionSetFeatures> features = InstructionSetFeatures::FromBitmap(
isa, oat_file_->GetOatHeader().GetInstructionSetFeaturesBitmap());
std::unique_ptr<File> elf_file(OS::CreateEmptyFile(output_name_.c_str()));
if (elf_file == nullptr) {
return false;
}
std::unique_ptr<linker::BufferedOutputStream> output_stream =
std::make_unique<linker::BufferedOutputStream>(
std::make_unique<linker::FileOutputStream>(elf_file.get()));
builder_.reset(new linker::ElfBuilder<ElfTypes>(isa, features.get(), output_stream.get()));
builder_->Start();
auto* rodata = builder_->GetRoData();
auto* text = builder_->GetText();
const uint8_t* rodata_begin = oat_file_->Begin();
const size_t rodata_size = oat_file_->GetOatHeader().GetExecutableOffset();
if (!no_bits_) {
rodata->Start();
rodata->WriteFully(rodata_begin, rodata_size);
rodata->End();
}
const uint8_t* text_begin = oat_file_->Begin() + rodata_size;
const size_t text_size = oat_file_->End() - text_begin;
if (!no_bits_) {
text->Start();
text->WriteFully(text_begin, text_size);
text->End();
}
if (isa == InstructionSet::kMips || isa == InstructionSet::kMips64) {
builder_->WriteMIPSabiflagsSection();
}
builder_->PrepareDynamicSection(elf_file->GetPath(),
rodata_size,
text_size,
oat_file_->BssSize(),
oat_file_->BssMethodsOffset(),
oat_file_->BssRootsOffset(),
oat_file_->VdexSize());
builder_->WriteDynamicSection();
const OatHeader& oat_header = oat_file_->GetOatHeader();
#define DO_TRAMPOLINE(fn_name) \
if (oat_header.Get ## fn_name ## Offset() != 0) { \
debug::MethodDebugInfo info = {}; \
info.custom_name = #fn_name; \
info.isa = oat_header.GetInstructionSet(); \
info.is_code_address_text_relative = true; \
size_t code_offset = oat_header.Get ## fn_name ## Offset(); \
code_offset -= CompiledCode::CodeDelta(oat_header.GetInstructionSet()); \
info.code_address = code_offset - oat_header.GetExecutableOffset(); \
info.code_size = 0; /* The symbol lasts until the next symbol. */ \
method_debug_infos_.push_back(std::move(info)); \
}
DO_TRAMPOLINE(InterpreterToInterpreterBridge)
DO_TRAMPOLINE(InterpreterToCompiledCodeBridge)
DO_TRAMPOLINE(JniDlsymLookup);
DO_TRAMPOLINE(QuickGenericJniTrampoline);
DO_TRAMPOLINE(QuickImtConflictTrampoline);
DO_TRAMPOLINE(QuickResolutionTrampoline);
DO_TRAMPOLINE(QuickToInterpreterBridge);
#undef DO_TRAMPOLINE
Walk();
// TODO: Try to symbolize link-time thunks?
// This would require disassembling all methods to find branches outside the method code.
// TODO: Add symbols for dex bytecode in the .dex section.
debug::DebugInfo debug_info{};
debug_info.compiled_methods = ArrayRef<const debug::MethodDebugInfo>(method_debug_infos_);
debug::WriteDebugInfo(builder_.get(),
debug_info,
dwarf::DW_DEBUG_FRAME_FORMAT,
true /* write_oat_patches */);
builder_->End();
bool ret_value = builder_->Good();
builder_.reset();
output_stream.reset();
if (elf_file->FlushCloseOrErase() != 0) {
return false;
}
elf_file.reset();
return ret_value;
}
void Walk() {
std::vector<const OatFile::OatDexFile*> oat_dex_files = oat_file_->GetOatDexFiles();
for (size_t i = 0; i < oat_dex_files.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files[i];
CHECK(oat_dex_file != nullptr);
WalkOatDexFile(oat_dex_file);
}
}
void WalkOatDexFile(const OatFile::OatDexFile* oat_dex_file) {
std::string error_msg;
const DexFile* const dex_file = OpenDexFile(oat_dex_file, &error_msg);
if (dex_file == nullptr) {
return;
}
for (size_t class_def_index = 0;
class_def_index < dex_file->NumClassDefs();
class_def_index++) {
const OatFile::OatClass oat_class = oat_dex_file->GetOatClass(class_def_index);
OatClassType type = oat_class.GetType();
switch (type) {
case kOatClassAllCompiled:
case kOatClassSomeCompiled:
WalkOatClass(oat_class, *dex_file, class_def_index);
break;
case kOatClassNoneCompiled:
case kOatClassMax:
// Ignore.
break;
}
}
}
void WalkOatClass(const OatFile::OatClass& oat_class,
const DexFile& dex_file,
uint32_t class_def_index) {
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const uint8_t* class_data = dex_file.GetClassData(class_def);
if (class_data == nullptr) { // empty class such as a marker interface?
return;
}
// Note: even if this is an interface or a native class, we still have to walk it, as there
// might be a static initializer.
ClassDataItemIterator it(dex_file, class_data);
uint32_t class_method_idx = 0;
it.SkipAllFields();
for (; it.HasNextMethod(); it.Next()) {
WalkOatMethod(oat_class.GetOatMethod(class_method_idx++),
dex_file,
class_def_index,
it.GetMemberIndex(),
it.GetMethodCodeItem(),
it.GetMethodAccessFlags());
}
DCHECK(!it.HasNext());
}
void WalkOatMethod(const OatFile::OatMethod& oat_method,
const DexFile& dex_file,
uint32_t class_def_index,
uint32_t dex_method_index,
const DexFile::CodeItem* code_item,
uint32_t method_access_flags) {
if ((method_access_flags & kAccAbstract) != 0) {
// Abstract method, no code.
return;
}
const OatHeader& oat_header = oat_file_->GetOatHeader();
const OatQuickMethodHeader* method_header = oat_method.GetOatQuickMethodHeader();
if (method_header == nullptr || method_header->GetCodeSize() == 0) {
// No code.
return;
}
uint32_t entry_point = oat_method.GetCodeOffset() - oat_header.GetExecutableOffset();
// Clear Thumb2 bit.
const void* code_address = EntryPointToCodePointer(reinterpret_cast<void*>(entry_point));
debug::MethodDebugInfo info = {};
DCHECK(info.custom_name.empty());
info.dex_file = &dex_file;
info.class_def_index = class_def_index;
info.dex_method_index = dex_method_index;
info.access_flags = method_access_flags;
info.code_item = code_item;
info.isa = oat_header.GetInstructionSet();
info.deduped = !seen_offsets_.insert(oat_method.GetCodeOffset()).second;
info.is_native_debuggable = oat_header.IsNativeDebuggable();
info.is_optimized = method_header->IsOptimized();
info.is_code_address_text_relative = true;
info.code_address = reinterpret_cast<uintptr_t>(code_address);
info.code_size = method_header->GetCodeSize();
info.frame_size_in_bytes = method_header->GetFrameSizeInBytes();
info.code_info = info.is_optimized ? method_header->GetOptimizedCodeInfoPtr() : nullptr;
info.cfi = ArrayRef<uint8_t>();
method_debug_infos_.push_back(info);
}
private:
const OatFile* oat_file_;
std::unique_ptr<linker::ElfBuilder<ElfTypes>> builder_;
std::vector<debug::MethodDebugInfo> method_debug_infos_;
std::unordered_set<uint32_t> seen_offsets_;
const std::string output_name_;
bool no_bits_;
};
class OatDumperOptions {
public:
OatDumperOptions(bool dump_vmap,
bool dump_code_info_stack_maps,
bool disassemble_code,
bool absolute_addresses,
const char* class_filter,
const char* method_filter,
bool list_classes,
bool list_methods,
bool dump_header_only,
const char* export_dex_location,
const char* app_image,
const char* app_oat,
uint32_t addr2instr)
: dump_vmap_(dump_vmap),
dump_code_info_stack_maps_(dump_code_info_stack_maps),
disassemble_code_(disassemble_code),
absolute_addresses_(absolute_addresses),
class_filter_(class_filter),
method_filter_(method_filter),
list_classes_(list_classes),
list_methods_(list_methods),
dump_header_only_(dump_header_only),
export_dex_location_(export_dex_location),
app_image_(app_image),
app_oat_(app_oat),
addr2instr_(addr2instr),
class_loader_(nullptr) {}
const bool dump_vmap_;
const bool dump_code_info_stack_maps_;
const bool disassemble_code_;
const bool absolute_addresses_;
const char* const class_filter_;
const char* const method_filter_;
const bool list_classes_;
const bool list_methods_;
const bool dump_header_only_;
const char* const export_dex_location_;
const char* const app_image_;
const char* const app_oat_;
uint32_t addr2instr_;
Handle<mirror::ClassLoader>* class_loader_;
};
class OatDumper {
public:
OatDumper(const OatFile& oat_file, const OatDumperOptions& options)
: oat_file_(oat_file),
oat_dex_files_(oat_file.GetOatDexFiles()),
options_(options),
resolved_addr2instr_(0),
instruction_set_(oat_file_.GetOatHeader().GetInstructionSet()),
disassembler_(Disassembler::Create(instruction_set_,
new DisassemblerOptions(
options_.absolute_addresses_,
oat_file.Begin(),
oat_file.End(),
true /* can_read_literals_ */,
Is64BitInstructionSet(instruction_set_)
? &Thread::DumpThreadOffset<PointerSize::k64>
: &Thread::DumpThreadOffset<PointerSize::k32>))) {
CHECK(options_.class_loader_ != nullptr);
CHECK(options_.class_filter_ != nullptr);
CHECK(options_.method_filter_ != nullptr);
AddAllOffsets();
}
~OatDumper() {
delete disassembler_;
}
InstructionSet GetInstructionSet() {
return instruction_set_;
}
typedef std::vector<std::unique_ptr<const DexFile>> DexFileUniqV;
bool Dump(std::ostream& os) {
bool success = true;
const OatHeader& oat_header = oat_file_.GetOatHeader();
os << "MAGIC:\n";
os << oat_header.GetMagic() << "\n\n";
os << "LOCATION:\n";
os << oat_file_.GetLocation() << "\n\n";
os << "CHECKSUM:\n";
os << StringPrintf("0x%08x\n\n", oat_header.GetChecksum());
os << "INSTRUCTION SET:\n";
os << oat_header.GetInstructionSet() << "\n\n";
{
std::unique_ptr<const InstructionSetFeatures> features(
InstructionSetFeatures::FromBitmap(oat_header.GetInstructionSet(),
oat_header.GetInstructionSetFeaturesBitmap()));
os << "INSTRUCTION SET FEATURES:\n";
os << features->GetFeatureString() << "\n\n";
}
os << "DEX FILE COUNT:\n";
os << oat_header.GetDexFileCount() << "\n\n";
#define DUMP_OAT_HEADER_OFFSET(label, offset) \
os << label " OFFSET:\n"; \
os << StringPrintf("0x%08x", oat_header.offset()); \
if (oat_header.offset() != 0 && options_.absolute_addresses_) { \
os << StringPrintf(" (%p)", oat_file_.Begin() + oat_header.offset()); \
} \
os << StringPrintf("\n\n");
DUMP_OAT_HEADER_OFFSET("EXECUTABLE", GetExecutableOffset);
DUMP_OAT_HEADER_OFFSET("INTERPRETER TO INTERPRETER BRIDGE",
GetInterpreterToInterpreterBridgeOffset);
DUMP_OAT_HEADER_OFFSET("INTERPRETER TO COMPILED CODE BRIDGE",
GetInterpreterToCompiledCodeBridgeOffset);
DUMP_OAT_HEADER_OFFSET("JNI DLSYM LOOKUP",
GetJniDlsymLookupOffset);
DUMP_OAT_HEADER_OFFSET("QUICK GENERIC JNI TRAMPOLINE",
GetQuickGenericJniTrampolineOffset);
DUMP_OAT_HEADER_OFFSET("QUICK IMT CONFLICT TRAMPOLINE",
GetQuickImtConflictTrampolineOffset);
DUMP_OAT_HEADER_OFFSET("QUICK RESOLUTION TRAMPOLINE",
GetQuickResolutionTrampolineOffset);
DUMP_OAT_HEADER_OFFSET("QUICK TO INTERPRETER BRIDGE",
GetQuickToInterpreterBridgeOffset);
#undef DUMP_OAT_HEADER_OFFSET
os << "IMAGE PATCH DELTA:\n";
os << StringPrintf("%d (0x%08x)\n\n",
oat_header.GetImagePatchDelta(),
oat_header.GetImagePatchDelta());
os << "IMAGE FILE LOCATION OAT CHECKSUM:\n";
os << StringPrintf("0x%08x\n\n", oat_header.GetImageFileLocationOatChecksum());
os << "IMAGE FILE LOCATION OAT BEGIN:\n";
os << StringPrintf("0x%08x\n\n", oat_header.GetImageFileLocationOatDataBegin());
// Print the key-value store.
{
os << "KEY VALUE STORE:\n";
size_t index = 0;
const char* key;
const char* value;
while (oat_header.GetStoreKeyValuePairByIndex(index, &key, &value)) {
os << key << " = " << value << "\n";
index++;
}
os << "\n";
}
if (options_.absolute_addresses_) {
os << "BEGIN:\n";
os << reinterpret_cast<const void*>(oat_file_.Begin()) << "\n\n";
os << "END:\n";
os << reinterpret_cast<const void*>(oat_file_.End()) << "\n\n";
}
os << "SIZE:\n";
os << oat_file_.Size() << "\n\n";
os << std::flush;
// If set, adjust relative address to be searched
if (options_.addr2instr_ != 0) {
resolved_addr2instr_ = options_.addr2instr_ + oat_header.GetExecutableOffset();
os << "SEARCH ADDRESS (executable offset + input):\n";
os << StringPrintf("0x%08x\n\n", resolved_addr2instr_);
}
// Dumping the dex file overview is compact enough to do even if header only.
DexFileData cumulative;
for (size_t i = 0; i < oat_dex_files_.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i];
CHECK(oat_dex_file != nullptr);
std::string error_msg;
const DexFile* const dex_file = OpenDexFile(oat_dex_file, &error_msg);
if (dex_file == nullptr) {
os << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation() << "': "
<< error_msg;
continue;
}
DexFileData data(*dex_file);
os << "Dex file data for " << dex_file->GetLocation() << "\n";
data.Dump(os);
os << "\n";
const DexLayoutSections* const layout_sections = oat_dex_file->GetDexLayoutSections();
if (layout_sections != nullptr) {
os << "Layout data\n";
os << *layout_sections;
os << "\n";
}
cumulative.Add(data);
// Dump .bss entries.
DumpBssEntries(
os,
"ArtMethod",
oat_dex_file->GetMethodBssMapping(),
dex_file->NumMethodIds(),
static_cast<size_t>(GetInstructionSetPointerSize(instruction_set_)),
[=](uint32_t index) { return dex_file->PrettyMethod(index); });
DumpBssEntries(
os,
"Class",
oat_dex_file->GetTypeBssMapping(),
dex_file->NumTypeIds(),
sizeof(GcRoot<mirror::Class>),
[=](uint32_t index) { return dex_file->PrettyType(dex::TypeIndex(index)); });
DumpBssEntries(
os,
"String",
oat_dex_file->GetStringBssMapping(),
dex_file->NumStringIds(),
sizeof(GcRoot<mirror::Class>),
[=](uint32_t index) { return dex_file->StringDataByIdx(dex::StringIndex(index)); });
}
os << "Cumulative dex file data\n";
cumulative.Dump(os);
os << "\n";
if (!options_.dump_header_only_) {
VariableIndentationOutputStream vios(&os);
VdexFile::Header vdex_header = oat_file_.GetVdexFile()->GetHeader();
if (vdex_header.IsValid()) {
std::string error_msg;
std::vector<const DexFile*> dex_files;
for (size_t i = 0; i < oat_dex_files_.size(); i++) {
const DexFile* dex_file = OpenDexFile(oat_dex_files_[i], &error_msg);
if (dex_file == nullptr) {
os << "Error opening dex file: " << error_msg << std::endl;
return false;
}
dex_files.push_back(dex_file);
}
verifier::VerifierDeps deps(dex_files, oat_file_.GetVdexFile()->GetVerifierDepsData());
deps.Dump(&vios);
} else {
os << "UNRECOGNIZED vdex file, magic "
<< vdex_header.GetMagic()
<< ", version "
<< vdex_header.GetVersion()
<< "\n";
}
for (size_t i = 0; i < oat_dex_files_.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i];
CHECK(oat_dex_file != nullptr);
if (!DumpOatDexFile(os, *oat_dex_file)) {
success = false;
}
}
}
if (options_.export_dex_location_) {
std::string error_msg;
std::string vdex_filename = GetVdexFilename(oat_file_.GetLocation());
if (!OS::FileExists(vdex_filename.c_str())) {
os << "File " << vdex_filename.c_str() << " does not exist\n";
return false;
}
DexFileUniqV vdex_dex_files;
std::unique_ptr<const VdexFile> vdex_file = OpenVdexUnquicken(vdex_filename,
&vdex_dex_files,
&error_msg);
if (vdex_file.get() == nullptr) {
os << "Failed to open vdex file: " << error_msg << "\n";
return false;
}
if (oat_dex_files_.size() != vdex_dex_files.size()) {
os << "Dex files number in Vdex file does not match Dex files number in Oat file: "
<< vdex_dex_files.size() << " vs " << oat_dex_files_.size() << '\n';
return false;
}
size_t i = 0;
for (const auto& vdex_dex_file : vdex_dex_files) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i];
CHECK(oat_dex_file != nullptr);
CHECK(vdex_dex_file != nullptr);
if (!ExportDexFile(os, *oat_dex_file, vdex_dex_file.get())) {
success = false;
}
i++;
}
}
{
os << "OAT FILE STATS:\n";
VariableIndentationOutputStream vios(&os);
stats_.Dump(vios);
}
os << std::flush;
return success;
}
size_t ComputeSize(const void* oat_data) {
if (reinterpret_cast<const uint8_t*>(oat_data) < oat_file_.Begin() ||
reinterpret_cast<const uint8_t*>(oat_data) > oat_file_.End()) {
return 0; // Address not in oat file
}
uintptr_t begin_offset = reinterpret_cast<uintptr_t>(oat_data) -
reinterpret_cast<uintptr_t>(oat_file_.Begin());
auto it = offsets_.upper_bound(begin_offset);
CHECK(it != offsets_.end());
uintptr_t end_offset = *it;
return end_offset - begin_offset;
}
InstructionSet GetOatInstructionSet() {
return oat_file_.GetOatHeader().GetInstructionSet();
}
const void* GetQuickOatCode(ArtMethod* m) REQUIRES_SHARED(Locks::mutator_lock_) {
for (size_t i = 0; i < oat_dex_files_.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i];
CHECK(oat_dex_file != nullptr);
std::string error_msg;
const DexFile* const dex_file = OpenDexFile(oat_dex_file, &error_msg);
if (dex_file == nullptr) {
LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation()
<< "': " << error_msg;
} else {
const char* descriptor = m->GetDeclaringClassDescriptor();
const DexFile::ClassDef* class_def =
OatDexFile::FindClassDef(*dex_file, descriptor, ComputeModifiedUtf8Hash(descriptor));
if (class_def != nullptr) {
uint16_t class_def_index = dex_file->GetIndexForClassDef(*class_def);
const OatFile::OatClass oat_class = oat_dex_file->GetOatClass(class_def_index);
size_t method_index = m->GetMethodIndex();
return oat_class.GetOatMethod(method_index).GetQuickCode();
}
}
}
return nullptr;
}
// Returns nullptr and updates error_msg if the Vdex file cannot be opened, otherwise all Dex
// files are fully unquickened and stored in dex_files
std::unique_ptr<const VdexFile> OpenVdexUnquicken(const std::string& vdex_filename,
/* out */ DexFileUniqV* dex_files,
/* out */ std::string* error_msg) {
std::unique_ptr<const File> file(OS::OpenFileForReading(vdex_filename.c_str()));
if (file == nullptr) {
*error_msg = "Could not open file " + vdex_filename + " for reading.";
return nullptr;
}
int64_t vdex_length = file->GetLength();
if (vdex_length == -1) {
*error_msg = "Could not read the length of file " + vdex_filename;
return nullptr;
}
std::unique_ptr<MemMap> mmap(MemMap::MapFile(
file->GetLength(),
PROT_READ | PROT_WRITE,
MAP_PRIVATE,
file->Fd(),
/* start offset */ 0,
/* low_4gb */ false,
vdex_filename.c_str(),
error_msg));
if (mmap == nullptr) {
*error_msg = "Failed to mmap file " + vdex_filename + ": " + *error_msg;
return nullptr;
}
std::unique_ptr<VdexFile> vdex_file(new VdexFile(mmap.release()));
if (!vdex_file->IsValid()) {
*error_msg = "Vdex file is not valid";
return nullptr;
}
DexFileUniqV tmp_dex_files;
if (!vdex_file->OpenAllDexFiles(&tmp_dex_files, error_msg)) {
*error_msg = "Failed to open Dex files from Vdex: " + *error_msg;
return nullptr;
}
vdex_file->Unquicken(MakeNonOwningPointerVector(tmp_dex_files),
/* decompile_return_instruction */ true);
*dex_files = std::move(tmp_dex_files);
return vdex_file;
}
struct Stats {
enum ByteKind {
kByteKindCode,
kByteKindQuickMethodHeader,
kByteKindCodeInfoLocationCatalog,
kByteKindCodeInfoDexRegisterMap,
kByteKindCodeInfoEncoding,
kByteKindCodeInfoInvokeInfo,
kByteKindCodeInfoStackMasks,
kByteKindCodeInfoRegisterMasks,
kByteKindStackMapNativePc,
kByteKindStackMapDexPc,
kByteKindStackMapDexRegisterMap,
kByteKindStackMapInlineInfoIndex,
kByteKindStackMapRegisterMaskIndex,
kByteKindStackMapStackMaskIndex,
kByteKindInlineInfoMethodIndexIdx,
kByteKindInlineInfoDexPc,
kByteKindInlineInfoExtraData,
kByteKindInlineInfoDexRegisterMap,
kByteKindInlineInfoIsLast,
kByteKindCount,
// Special ranges for std::accumulate convenience.
kByteKindStackMapFirst = kByteKindStackMapNativePc,
kByteKindStackMapLast = kByteKindStackMapStackMaskIndex,
kByteKindInlineInfoFirst = kByteKindInlineInfoMethodIndexIdx,
kByteKindInlineInfoLast = kByteKindInlineInfoIsLast,
};
int64_t bits[kByteKindCount] = {};
// Since code has deduplication, seen tracks already seen pointers to avoid double counting
// deduplicated code and tables.
std::unordered_set<const void*> seen;
// Returns true if it was newly added.
bool AddBitsIfUnique(ByteKind kind, int64_t count, const void* address) {
if (seen.insert(address).second == true) {
// True means the address was not already in the set.
AddBits(kind, count);
return true;
}
return false;
}
void AddBits(ByteKind kind, int64_t count) {
bits[kind] += count;
}
void Dump(VariableIndentationOutputStream& os) {
const int64_t sum = std::accumulate(bits, bits + kByteKindCount, 0u);
os.Stream() << "Dumping cumulative use of " << sum / kBitsPerByte << " accounted bytes\n";
if (sum > 0) {
Dump(os, "Code ", bits[kByteKindCode], sum);
Dump(os, "QuickMethodHeader ", bits[kByteKindQuickMethodHeader], sum);
Dump(os, "CodeInfoEncoding ", bits[kByteKindCodeInfoEncoding], sum);
Dump(os, "CodeInfoLocationCatalog ", bits[kByteKindCodeInfoLocationCatalog], sum);
Dump(os, "CodeInfoDexRegisterMap ", bits[kByteKindCodeInfoDexRegisterMap], sum);
Dump(os, "CodeInfoStackMasks ", bits[kByteKindCodeInfoStackMasks], sum);
Dump(os, "CodeInfoRegisterMasks ", bits[kByteKindCodeInfoRegisterMasks], sum);
Dump(os, "CodeInfoInvokeInfo ", bits[kByteKindCodeInfoInvokeInfo], sum);
// Stack map section.
const int64_t stack_map_bits = std::accumulate(bits + kByteKindStackMapFirst,
bits + kByteKindStackMapLast + 1,
0u);
Dump(os, "CodeInfoStackMap ", stack_map_bits, sum);
{
ScopedIndentation indent1(&os);
Dump(os,
"StackMapNativePc ",
bits[kByteKindStackMapNativePc],
stack_map_bits,
"stack map");
Dump(os,
"StackMapDexPcEncoding ",
bits[kByteKindStackMapDexPc],
stack_map_bits,
"stack map");
Dump(os,
"StackMapDexRegisterMap ",
bits[kByteKindStackMapDexRegisterMap],
stack_map_bits,
"stack map");
Dump(os,
"StackMapInlineInfoIndex ",
bits[kByteKindStackMapInlineInfoIndex],
stack_map_bits,
"stack map");
Dump(os,
"StackMapRegisterMaskIndex ",
bits[kByteKindStackMapRegisterMaskIndex],
stack_map_bits,
"stack map");
Dump(os,
"StackMapStackMaskIndex ",
bits[kByteKindStackMapStackMaskIndex],
stack_map_bits,
"stack map");
}
// Inline info section.
const int64_t inline_info_bits = std::accumulate(bits + kByteKindInlineInfoFirst,
bits + kByteKindInlineInfoLast + 1,
0u);
Dump(os, "CodeInfoInlineInfo ", inline_info_bits, sum);
{
ScopedIndentation indent1(&os);
Dump(os,
"InlineInfoMethodIndexIdx ",
bits[kByteKindInlineInfoMethodIndexIdx],
inline_info_bits,
"inline info");
Dump(os,
"InlineInfoDexPc ",
bits[kByteKindStackMapDexPc],
inline_info_bits,
"inline info");
Dump(os,
"InlineInfoExtraData ",
bits[kByteKindInlineInfoExtraData],
inline_info_bits,
"inline info");
Dump(os,
"InlineInfoDexRegisterMap ",
bits[kByteKindInlineInfoDexRegisterMap],
inline_info_bits,
"inline info");
Dump(os,
"InlineInfoIsLast ",
bits[kByteKindInlineInfoIsLast],
inline_info_bits,
"inline info");
}
}
os.Stream() << "\n" << std::flush;
}
private:
void Dump(VariableIndentationOutputStream& os,
const char* name,
int64_t size,
int64_t total,
const char* sum_of = "total") {
const double percent = (static_cast<double>(size) / static_cast<double>(total)) * 100;
os.Stream() << StringPrintf("%s = %8" PRId64 " (%2.0f%% of %s)\n",
name,
size / kBitsPerByte,
percent,
sum_of);
}
};
private:
void AddAllOffsets() {
// We don't know the length of the code for each method, but we need to know where to stop
// when disassembling. What we do know is that a region of code will be followed by some other
// region, so if we keep a sorted sequence of the start of each region, we can infer the length
// of a piece of code by using upper_bound to find the start of the next region.
for (size_t i = 0; i < oat_dex_files_.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i];
CHECK(oat_dex_file != nullptr);
std::string error_msg;
const DexFile* const dex_file = OpenDexFile(oat_dex_file, &error_msg);
if (dex_file == nullptr) {
LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation()
<< "': " << error_msg;
continue;
}
offsets_.insert(reinterpret_cast<uintptr_t>(&dex_file->GetHeader()));
for (size_t class_def_index = 0;
class_def_index < dex_file->NumClassDefs();
class_def_index++) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
const OatFile::OatClass oat_class = oat_dex_file->GetOatClass(class_def_index);
const uint8_t* class_data = dex_file->GetClassData(class_def);
if (class_data != nullptr) {
ClassDataItemIterator it(*dex_file, class_data);
it.SkipAllFields();
uint32_t class_method_index = 0;
while (it.HasNextMethod()) {
AddOffsets(oat_class.GetOatMethod(class_method_index++));
it.Next();
}
}
}
}
// If the last thing in the file is code for a method, there won't be an offset for the "next"
// thing. Instead of having a special case in the upper_bound code, let's just add an entry
// for the end of the file.
offsets_.insert(oat_file_.Size());
}
static uint32_t AlignCodeOffset(uint32_t maybe_thumb_offset) {
return maybe_thumb_offset & ~0x1; // TODO: Make this Thumb2 specific.
}
void AddOffsets(const OatFile::OatMethod& oat_method) {
uint32_t code_offset = oat_method.GetCodeOffset();
if (oat_file_.GetOatHeader().GetInstructionSet() == InstructionSet::kThumb2) {
code_offset &= ~0x1;
}
offsets_.insert(code_offset);
offsets_.insert(oat_method.GetVmapTableOffset());
}
// Dex file data, may be for multiple different dex files.
class DexFileData {
public:
DexFileData() {}
explicit DexFileData(const DexFile& dex_file)
: num_string_ids_(dex_file.NumStringIds()),
num_method_ids_(dex_file.NumMethodIds()),
num_field_ids_(dex_file.NumFieldIds()),
num_type_ids_(dex_file.NumTypeIds()),
num_class_defs_(dex_file.NumClassDefs()) {
for (size_t class_def_index = 0; class_def_index < num_class_defs_; ++class_def_index) {
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
WalkClass(dex_file, class_def);
}
}
void Add(const DexFileData& other) {
AddAll(unique_string_ids_from_code_, other.unique_string_ids_from_code_);
num_string_ids_from_code_ += other.num_string_ids_from_code_;
AddAll(dex_code_item_ptrs_, other.dex_code_item_ptrs_);
dex_code_bytes_ += other.dex_code_bytes_;
num_string_ids_ += other.num_string_ids_;
num_method_ids_ += other.num_method_ids_;
num_field_ids_ += other.num_field_ids_;
num_type_ids_ += other.num_type_ids_;
num_class_defs_ += other.num_class_defs_;
}
void Dump(std::ostream& os) {
os << "Num string ids: " << num_string_ids_ << "\n";
os << "Num method ids: " << num_method_ids_ << "\n";
os << "Num field ids: " << num_field_ids_ << "\n";
os << "Num type ids: " << num_type_ids_ << "\n";
os << "Num class defs: " << num_class_defs_ << "\n";
os << "Unique strings loaded from dex code: " << unique_string_ids_from_code_.size() << "\n";
os << "Total strings loaded from dex code: " << num_string_ids_from_code_ << "\n";
os << "Number of unique dex code items: " << dex_code_item_ptrs_.size() << "\n";
os << "Total number of dex code bytes: " << dex_code_bytes_ << "\n";
}
private:
// All of the elements from one container to another.
template <typename Dest, typename Src>
static void AddAll(Dest& dest, const Src& src) {
dest.insert(src.begin(), src.end());
}
void WalkClass(const DexFile& dex_file, const DexFile::ClassDef& class_def) {
const uint8_t* class_data = dex_file.GetClassData(class_def);
if (class_data == nullptr) { // empty class such as a marker interface?
return;
}
ClassDataItemIterator it(dex_file, class_data);
it.SkipAllFields();
while (it.HasNextMethod()) {
WalkCodeItem(dex_file, it.GetMethodCodeItem());
it.Next();
}
DCHECK(!it.HasNext());
}
void WalkCodeItem(const DexFile& dex_file, const DexFile::CodeItem* code_item) {
if (code_item == nullptr) {
return;
}
CodeItemInstructionAccessor instructions(dex_file, code_item);
// If we inserted a new dex code item pointer, add to total code bytes.
const uint16_t* code_ptr = instructions.Insns();
if (dex_code_item_ptrs_.insert(code_ptr).second) {
dex_code_bytes_ += instructions.InsnsSizeInCodeUnits() * sizeof(code_ptr[0]);
}
for (const DexInstructionPcPair& inst : instructions) {
switch (inst->Opcode()) {
case Instruction::CONST_STRING: {
const dex::StringIndex string_index(inst->VRegB_21c());
unique_string_ids_from_code_.insert(StringReference(&dex_file, string_index));
++num_string_ids_from_code_;
break;
}
case Instruction::CONST_STRING_JUMBO: {
const dex::StringIndex string_index(inst->VRegB_31c());
unique_string_ids_from_code_.insert(StringReference(&dex_file, string_index));
++num_string_ids_from_code_;
break;
}
default:
break;
}
}
}
// Unique string ids loaded from dex code.
std::set<StringReference> unique_string_ids_from_code_;
// Total string ids loaded from dex code.
size_t num_string_ids_from_code_ = 0;
// Unique code pointers.
std::set<const void*> dex_code_item_ptrs_;
// Total "unique" dex code bytes.
size_t dex_code_bytes_ = 0;
// Other dex ids.
size_t num_string_ids_ = 0;
size_t num_method_ids_ = 0;
size_t num_field_ids_ = 0;
size_t num_type_ids_ = 0;
size_t num_class_defs_ = 0;
};
bool DumpOatDexFile(std::ostream& os, const OatFile::OatDexFile& oat_dex_file) {
bool success = true;
bool stop_analysis = false;
os << "OatDexFile:\n";
os << StringPrintf("location: %s\n", oat_dex_file.GetDexFileLocation().c_str());
os << StringPrintf("checksum: 0x%08x\n", oat_dex_file.GetDexFileLocationChecksum());
const uint8_t* const oat_file_begin = oat_dex_file.GetOatFile()->Begin();
if (oat_dex_file.GetOatFile()->ContainsDexCode()) {
const uint8_t* const vdex_file_begin = oat_dex_file.GetOatFile()->DexBegin();
// Print data range of the dex file embedded inside the corresponding vdex file.
const uint8_t* const dex_file_pointer = oat_dex_file.GetDexFilePointer();
uint32_t dex_offset = dchecked_integral_cast<uint32_t>(dex_file_pointer - vdex_file_begin);
os << StringPrintf(
"dex-file: 0x%08x..0x%08x\n",
dex_offset,
dchecked_integral_cast<uint32_t>(dex_offset + oat_dex_file.FileSize() - 1));
} else {
os << StringPrintf("dex-file not in VDEX file\n");
}
// Create the dex file early. A lot of print-out things depend on it.
std::string error_msg;
const DexFile* const dex_file = OpenDexFile(&oat_dex_file, &error_msg);
if (dex_file == nullptr) {
os << "NOT FOUND: " << error_msg << "\n\n";
os << std::flush;
return false;
}
// Print lookup table, if it exists.
if (oat_dex_file.GetLookupTableData() != nullptr) {
uint32_t table_offset = dchecked_integral_cast<uint32_t>(
oat_dex_file.GetLookupTableData() - oat_file_begin);
uint32_t table_size = TypeLookupTable::RawDataLength(dex_file->NumClassDefs());
os << StringPrintf("type-table: 0x%08x..0x%08x\n",
table_offset,
table_offset + table_size - 1);
}
VariableIndentationOutputStream vios(&os);
ScopedIndentation indent1(&vios);
for (size_t class_def_index = 0;
class_def_index < dex_file->NumClassDefs();
class_def_index++) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
const char* descriptor = dex_file->GetClassDescriptor(class_def);
// TODO: Support regex
if (DescriptorToDot(descriptor).find(options_.class_filter_) == std::string::npos) {
continue;
}
uint32_t oat_class_offset = oat_dex_file.GetOatClassOffset(class_def_index);
const OatFile::OatClass oat_class = oat_dex_file.GetOatClass(class_def_index);
os << StringPrintf("%zd: %s (offset=0x%08x) (type_idx=%d)",
class_def_index, descriptor, oat_class_offset, class_def.class_idx_.index_)
<< " (" << oat_class.GetStatus() << ")"
<< " (" << oat_class.GetType() << ")\n";
// TODO: include bitmap here if type is kOatClassSomeCompiled?
if (options_.list_classes_) {
continue;
}
if (!DumpOatClass(&vios, oat_class, *dex_file, class_def, &stop_analysis)) {
success = false;
}
if (stop_analysis) {
os << std::flush;
return success;
}
}
os << "\n";
os << std::flush;
return success;
}
// Backwards compatible Dex file export. If dex_file is nullptr (valid Vdex file not present) the
// Dex resource is extracted from the oat_dex_file and its checksum is repaired since it's not
// unquickened. Otherwise the dex_file has been fully unquickened and is expected to verify the
// original checksum.
bool ExportDexFile(std::ostream& os,
const OatFile::OatDexFile& oat_dex_file,
const DexFile* dex_file) {
std::string error_msg;
std::string dex_file_location = oat_dex_file.GetDexFileLocation();
size_t fsize = oat_dex_file.FileSize();
// Some quick checks just in case
if (fsize == 0 || fsize < sizeof(DexFile::Header)) {
os << "Invalid dex file\n";
return false;
}
if (dex_file == nullptr) {
// Exported bytecode is quickened (dex-to-dex transformations present)
dex_file = OpenDexFile(&oat_dex_file, &error_msg);
if (dex_file == nullptr) {
os << "Failed to open dex file '" << dex_file_location << "': " << error_msg;
return false;
}
// Recompute checksum
reinterpret_cast<DexFile::Header*>(const_cast<uint8_t*>(dex_file->Begin()))->checksum_ =
dex_file->CalculateChecksum();
} else {
// Vdex unquicken output should match original input bytecode
uint32_t orig_checksum =
reinterpret_cast<DexFile::Header*>(const_cast<uint8_t*>(dex_file->Begin()))->checksum_;
CHECK_EQ(orig_checksum, dex_file->CalculateChecksum());
if (orig_checksum != dex_file->CalculateChecksum()) {
os << "Unexpected checksum from unquicken dex file '" << dex_file_location << "'\n";
return false;
}
}
// Verify output directory exists
if (!OS::DirectoryExists(options_.export_dex_location_)) {
// TODO: Extend OS::DirectoryExists if symlink support is required
os << options_.export_dex_location_ << " output directory not found or symlink\n";
return false;
}
// Beautify path names
if (dex_file_location.size() > PATH_MAX || dex_file_location.size() <= 0) {
return false;
}
std::string dex_orig_name;
size_t dex_orig_pos = dex_file_location.rfind('/');
if (dex_orig_pos == std::string::npos)
dex_orig_name = dex_file_location;
else
dex_orig_name = dex_file_location.substr(dex_orig_pos + 1);
// A more elegant approach to efficiently name user installed apps is welcome
if (dex_orig_name.size() == 8 &&
dex_orig_name.compare("base.apk") == 0 &&
dex_orig_pos != std::string::npos) {
dex_file_location.erase(dex_orig_pos, strlen("base.apk") + 1);
size_t apk_orig_pos = dex_file_location.rfind('/');
if (apk_orig_pos != std::string::npos) {
dex_orig_name = dex_file_location.substr(++apk_orig_pos);
}
}
std::string out_dex_path(options_.export_dex_location_);
if (out_dex_path.back() != '/') {
out_dex_path.append("/");
}
out_dex_path.append(dex_orig_name);
out_dex_path.append("_export.dex");
if (out_dex_path.length() > PATH_MAX) {
return false;
}
std::unique_ptr<File> file(OS::CreateEmptyFile(out_dex_path.c_str()));
if (file.get() == nullptr) {
os << "Failed to open output dex file " << out_dex_path;
return false;
}
bool success = false;
success = file->WriteFully(dex_file->Begin(), fsize);
// }
if (!success) {
os << "Failed to write dex file";
file->Erase();
return false;
}
if (file->FlushCloseOrErase() != 0) {
os << "Flush and close failed";
return false;
}
os << StringPrintf("Dex file exported at %s (%zd bytes)\n", out_dex_path.c_str(), fsize);
os << std::flush;
return true;
}
bool DumpOatClass(VariableIndentationOutputStream* vios,
const OatFile::OatClass& oat_class, const DexFile& dex_file,
const DexFile::ClassDef& class_def, bool* stop_analysis) {
bool success = true;
bool addr_found = false;
const uint8_t* class_data = dex_file.GetClassData(class_def);
if (class_data == nullptr) { // empty class such as a marker interface?
vios->Stream() << std::flush;
return success;
}
ClassDataItemIterator it(dex_file, class_data);
it.SkipAllFields();
uint32_t class_method_index = 0;
while (it.HasNextMethod()) {
if (!DumpOatMethod(vios, class_def, class_method_index, oat_class, dex_file,
it.GetMemberIndex(), it.GetMethodCodeItem(),
it.GetRawMemberAccessFlags(), &addr_found)) {
success = false;
}
if (addr_found) {
*stop_analysis = true;
return success;
}
class_method_index++;
it.Next();
}
DCHECK(!it.HasNext());
vios->Stream() << std::flush;
return success;
}
static constexpr uint32_t kPrologueBytes = 16;
// When this was picked, the largest arm method was 55,256 bytes and arm64 was 50,412 bytes.
static constexpr uint32_t kMaxCodeSize = 100 * 1000;
bool DumpOatMethod(VariableIndentationOutputStream* vios,
const DexFile::ClassDef& class_def,
uint32_t class_method_index,
const OatFile::OatClass& oat_class,
const DexFile& dex_file,
uint32_t dex_method_idx,
const DexFile::CodeItem* code_item,
uint32_t method_access_flags,
bool* addr_found) {
bool success = true;
CodeItemDataAccessor code_item_accessor(dex_file, code_item);
// TODO: Support regex
std::string method_name = dex_file.GetMethodName(dex_file.GetMethodId(dex_method_idx));
if (method_name.find(options_.method_filter_) == std::string::npos) {
return success;
}
std::string pretty_method = dex_file.PrettyMethod(dex_method_idx, true);
vios->Stream() << StringPrintf("%d: %s (dex_method_idx=%d)\n",
class_method_index, pretty_method.c_str(),
dex_method_idx);
if (options_.list_methods_) {
return success;
}
uint32_t oat_method_offsets_offset = oat_class.GetOatMethodOffsetsOffset(class_method_index);
const OatMethodOffsets* oat_method_offsets = oat_class.GetOatMethodOffsets(class_method_index);
const OatFile::OatMethod oat_method = oat_class.GetOatMethod(class_method_index);
uint32_t code_offset = oat_method.GetCodeOffset();
uint32_t code_size = oat_method.GetQuickCodeSize();
if (resolved_addr2instr_ != 0) {
if (resolved_addr2instr_ > code_offset + code_size) {
return success;
} else {
*addr_found = true; // stop analyzing file at next iteration
}
}
// Everything below is indented at least once.
ScopedIndentation indent1(vios);
{
vios->Stream() << "DEX CODE:\n";
ScopedIndentation indent2(vios);
if (code_item_accessor.HasCodeItem()) {
for (const DexInstructionPcPair& inst : code_item_accessor) {
vios->Stream() << StringPrintf("0x%04x: ", inst.DexPc()) << inst->DumpHexLE(5)
<< StringPrintf("\t| %s\n", inst->DumpString(&dex_file).c_str());
}
}
}
std::unique_ptr<StackHandleScope<1>> hs;
std::unique_ptr<verifier::MethodVerifier> verifier;
if (Runtime::Current() != nullptr) {
// We need to have the handle scope stay live until after the verifier since the verifier has
// a handle to the dex cache from hs.
hs.reset(new StackHandleScope<1>(Thread::Current()));
vios->Stream() << "VERIFIER TYPE ANALYSIS:\n";
ScopedIndentation indent2(vios);
verifier.reset(DumpVerifier(vios, hs.get(),
dex_method_idx, &dex_file, class_def, code_item,
method_access_flags));
}
{
vios->Stream() << "OatMethodOffsets ";
if (options_.absolute_addresses_) {
vios->Stream() << StringPrintf("%p ", oat_method_offsets);
}
vios->Stream() << StringPrintf("(offset=0x%08x)\n", oat_method_offsets_offset);
if (oat_method_offsets_offset > oat_file_.Size()) {
vios->Stream() << StringPrintf(
"WARNING: oat method offsets offset 0x%08x is past end of file 0x%08zx.\n",
oat_method_offsets_offset, oat_file_.Size());
// If we can't read OatMethodOffsets, the rest of the data is dangerous to read.
vios->Stream() << std::flush;
return false;
}
ScopedIndentation indent2(vios);
vios->Stream() << StringPrintf("code_offset: 0x%08x ", code_offset);
uint32_t aligned_code_begin = AlignCodeOffset(oat_method.GetCodeOffset());
if (aligned_code_begin > oat_file_.Size()) {
vios->Stream() << StringPrintf("WARNING: "
"code offset 0x%08x is past end of file 0x%08zx.\n",
aligned_code_begin, oat_file_.Size());
success = false;
}
vios->Stream() << "\n";
}
{
vios->Stream() << "OatQuickMethodHeader ";
uint32_t method_header_offset = oat_method.GetOatQuickMethodHeaderOffset();
const OatQuickMethodHeader* method_header = oat_method.GetOatQuickMethodHeader();
stats_.AddBitsIfUnique(Stats::kByteKindQuickMethodHeader,
sizeof(*method_header) * kBitsPerByte,
method_header);
if (options_.absolute_addresses_) {
vios->Stream() << StringPrintf("%p ", method_header);
}
vios->Stream() << StringPrintf("(offset=0x%08x)\n", method_header_offset);
if (method_header_offset > oat_file_.Size()) {
vios->Stream() << StringPrintf(
"WARNING: oat quick method header offset 0x%08x is past end of file 0x%08zx.\n",
method_header_offset, oat_file_.Size());
// If we can't read the OatQuickMethodHeader, the rest of the data is dangerous to read.
vios->Stream() << std::flush;
return false;
}
ScopedIndentation indent2(vios);
vios->Stream() << "vmap_table: ";
if (options_.absolute_addresses_) {
vios->Stream() << StringPrintf("%p ", oat_method.GetVmapTable());
}
uint32_t vmap_table_offset = method_header ==
nullptr ? 0 : method_header->GetVmapTableOffset();
vios->Stream() << StringPrintf("(offset=0x%08x)\n", vmap_table_offset);
size_t vmap_table_offset_limit =
IsMethodGeneratedByDexToDexCompiler(oat_method, code_item_accessor)
? oat_file_.GetVdexFile()->Size()
: method_header->GetCode() - oat_file_.Begin();
if (vmap_table_offset >= vmap_table_offset_limit) {
vios->Stream() << StringPrintf("WARNING: "
"vmap table offset 0x%08x is past end of file 0x%08zx. "
"vmap table offset was loaded from offset 0x%08x.\n",
vmap_table_offset,
vmap_table_offset_limit,
oat_method.GetVmapTableOffsetOffset());
success = false;
} else if (options_.dump_vmap_) {
DumpVmapData(vios, oat_method, code_item_accessor);
}
}
{
vios->Stream() << "QuickMethodFrameInfo\n";
ScopedIndentation indent2(vios);
vios->Stream()
<< StringPrintf("frame_size_in_bytes: %zd\n", oat_method.GetFrameSizeInBytes());
vios->Stream() << StringPrintf("core_spill_mask: 0x%08x ", oat_method.GetCoreSpillMask());
DumpSpillMask(vios->Stream(), oat_method.GetCoreSpillMask(), false);
vios->Stream() << "\n";
vios->Stream() << StringPrintf("fp_spill_mask: 0x%08x ", oat_method.GetFpSpillMask());
DumpSpillMask(vios->Stream(), oat_method.GetFpSpillMask(), true);
vios->Stream() << "\n";
}
{
// Based on spill masks from QuickMethodFrameInfo so placed
// after it is dumped, but useful for understanding quick
// code, so dumped here.
ScopedIndentation indent2(vios);
DumpVregLocations(vios->Stream(), oat_method, code_item_accessor);
}
{
vios->Stream() << "CODE: ";
uint32_t code_size_offset = oat_method.GetQuickCodeSizeOffset();
if (code_size_offset > oat_file_.Size()) {
ScopedIndentation indent2(vios);
vios->Stream() << StringPrintf("WARNING: "
"code size offset 0x%08x is past end of file 0x%08zx.",
code_size_offset, oat_file_.Size());
success = false;
} else {
const void* code = oat_method.GetQuickCode();
uint32_t aligned_code_begin = AlignCodeOffset(code_offset);
uint64_t aligned_code_end = aligned_code_begin + code_size;
stats_.AddBitsIfUnique(Stats::kByteKindCode, code_size * kBitsPerByte, code);
if (options_.absolute_addresses_) {
vios->Stream() << StringPrintf("%p ", code);
}
vios->Stream() << StringPrintf("(code_offset=0x%08x size_offset=0x%08x size=%u)%s\n",
code_offset,
code_size_offset,
code_size,
code != nullptr ? "..." : "");
ScopedIndentation indent2(vios);
if (aligned_code_begin > oat_file_.Size()) {
vios->Stream() << StringPrintf("WARNING: "
"start of code at 0x%08x is past end of file 0x%08zx.",
aligned_code_begin, oat_file_.Size());
success = false;
} else if (aligned_code_end > oat_file_.Size()) {
vios->Stream() << StringPrintf(
"WARNING: "
"end of code at 0x%08" PRIx64 " is past end of file 0x%08zx. "
"code size is 0x%08x loaded from offset 0x%08x.\n",
aligned_code_end, oat_file_.Size(),
code_size, code_size_offset);
success = false;
if (options_.disassemble_code_) {
if (code_size_offset + kPrologueBytes <= oat_file_.Size()) {
DumpCode(vios, oat_method, code_item_accessor, true, kPrologueBytes);
}
}
} else if (code_size > kMaxCodeSize) {
vios->Stream() << StringPrintf(
"WARNING: "
"code size %d is bigger than max expected threshold of %d. "
"code size is 0x%08x loaded from offset 0x%08x.\n",
code_size, kMaxCodeSize,
code_size, code_size_offset);
success = false;
if (options_.disassemble_code_) {
if (code_size_offset + kPrologueBytes <= oat_file_.Size()) {
DumpCode(vios, oat_method, code_item_accessor, true, kPrologueBytes);
}
}
} else if (options_.disassemble_code_) {
DumpCode(vios, oat_method, code_item_accessor, !success, 0);
}
}
}
vios->Stream() << std::flush;
return success;
}
void DumpSpillMask(std::ostream& os, uint32_t spill_mask, bool is_float) {
if (spill_mask == 0) {
return;
}
os << "(";
for (size_t i = 0; i < 32; i++) {
if ((spill_mask & (1 << i)) != 0) {
if (is_float) {
os << "fr" << i;
} else {
os << "r" << i;
}
spill_mask ^= 1 << i; // clear bit
if (spill_mask != 0) {
os << ", ";
} else {
break;
}
}
}
os << ")";
}
// Display data stored at the the vmap offset of an oat method.
void DumpVmapData(VariableIndentationOutputStream* vios,
const OatFile::OatMethod& oat_method,
const CodeItemDataAccessor& code_item_accessor) {
if (IsMethodGeneratedByOptimizingCompiler(oat_method, code_item_accessor)) {
// The optimizing compiler outputs its CodeInfo data in the vmap table.
const void* raw_code_info = oat_method.GetVmapTable();
if (raw_code_info != nullptr) {
CodeInfo code_info(raw_code_info);
DCHECK(code_item_accessor.HasCodeItem());
ScopedIndentation indent1(vios);
MethodInfo method_info = oat_method.GetOatQuickMethodHeader()->GetOptimizedMethodInfo();
DumpCodeInfo(vios, code_info, oat_method, code_item_accessor, method_info);
}
} else if (IsMethodGeneratedByDexToDexCompiler(oat_method, code_item_accessor)) {
// We don't encode the size in the table, so just emit that we have quickened
// information.
ScopedIndentation indent(vios);
vios->Stream() << "quickened data\n";
} else {
// Otherwise, there is nothing to display.
}
}
// Display a CodeInfo object emitted by the optimizing compiler.
void DumpCodeInfo(VariableIndentationOutputStream* vios,
const CodeInfo& code_info,
const OatFile::OatMethod& oat_method,
const CodeItemDataAccessor& code_item_accessor,
const MethodInfo& method_info) {
code_info.Dump(vios,
oat_method.GetCodeOffset(),
code_item_accessor.RegistersSize(),
options_.dump_code_info_stack_maps_,
instruction_set_,
method_info);
}
static int GetOutVROffset(uint16_t out_num, InstructionSet isa) {
// According to stack model, the first out is above the Method referernce.
return static_cast<size_t>(InstructionSetPointerSize(isa)) + out_num * sizeof(uint32_t);
}
static uint32_t GetVRegOffsetFromQuickCode(const CodeItemDataAccessor& code_item_accessor,
uint32_t core_spills,
uint32_t fp_spills,
size_t frame_size,
int reg,
InstructionSet isa) {
PointerSize pointer_size = InstructionSetPointerSize(isa);
if (kIsDebugBuild) {
auto* runtime = Runtime::Current();
if (runtime != nullptr) {
CHECK_EQ(runtime->GetClassLinker()->GetImagePointerSize(), pointer_size);
}
}
DCHECK_ALIGNED(frame_size, kStackAlignment);
DCHECK_NE(reg, -1);
int spill_size = POPCOUNT(core_spills) * GetBytesPerGprSpillLocation(isa)
+ POPCOUNT(fp_spills) * GetBytesPerFprSpillLocation(isa)
+ sizeof(uint32_t); // Filler.
int num_regs = code_item_accessor.RegistersSize() - code_item_accessor.InsSize();
int temp_threshold = code_item_accessor.RegistersSize();
const int max_num_special_temps = 1;
if (reg == temp_threshold) {
// The current method pointer corresponds to special location on stack.
return 0;
} else if (reg >= temp_threshold + max_num_special_temps) {
/*
* Special temporaries may have custom locations and the logic above deals with that.
* However, non-special temporaries are placed relative to the outs.
*/
int temps_start = code_item_accessor.OutsSize() * sizeof(uint32_t)
+ static_cast<size_t>(pointer_size) /* art method */;
int relative_offset = (reg - (temp_threshold + max_num_special_temps)) * sizeof(uint32_t);
return temps_start + relative_offset;
} else if (reg < num_regs) {
int locals_start = frame_size - spill_size - num_regs * sizeof(uint32_t);
return locals_start + (reg * sizeof(uint32_t));
} else {
// Handle ins.
return frame_size + ((reg - num_regs) * sizeof(uint32_t))
+ static_cast<size_t>(pointer_size) /* art method */;
}
}
void DumpVregLocations(std::ostream& os, const OatFile::OatMethod& oat_method,
const CodeItemDataAccessor& code_item_accessor) {
if (code_item_accessor.HasCodeItem()) {
size_t num_locals_ins = code_item_accessor.RegistersSize();
size_t num_ins = code_item_accessor.InsSize();
size_t num_locals = num_locals_ins - num_ins;
size_t num_outs = code_item_accessor.OutsSize();
os << "vr_stack_locations:";
for (size_t reg = 0; reg <= num_locals_ins; reg++) {
// For readability, delimit the different kinds of VRs.
if (reg == num_locals_ins) {
os << "\n\tmethod*:";
} else if (reg == num_locals && num_ins > 0) {
os << "\n\tins:";
} else if (reg == 0 && num_locals > 0) {
os << "\n\tlocals:";
}
uint32_t offset = GetVRegOffsetFromQuickCode(code_item_accessor,
oat_method.GetCoreSpillMask(),
oat_method.GetFpSpillMask(),
oat_method.GetFrameSizeInBytes(),
reg,
GetInstructionSet());
os << " v" << reg << "[sp + #" << offset << "]";
}
for (size_t out_reg = 0; out_reg < num_outs; out_reg++) {
if (out_reg == 0) {
os << "\n\touts:";
}
uint32_t offset = GetOutVROffset(out_reg, GetInstructionSet());
os << " v" << out_reg << "[sp + #" << offset << "]";
}
os << "\n";
}
}
// Has `oat_method` -- corresponding to the Dex `code_item` -- been compiled by
// the optimizing compiler?
static bool IsMethodGeneratedByOptimizingCompiler(
const OatFile::OatMethod& oat_method,
const CodeItemDataAccessor& code_item_accessor) {
// If the native GC map is null and the Dex `code_item` is not
// null, then this method has been compiled with the optimizing
// compiler.
return oat_method.GetQuickCode() != nullptr &&
oat_method.GetVmapTable() != nullptr &&
code_item_accessor.HasCodeItem();
}
// Has `oat_method` -- corresponding to the Dex `code_item` -- been compiled by
// the dextodex compiler?
static bool IsMethodGeneratedByDexToDexCompiler(
const OatFile::OatMethod& oat_method,
const CodeItemDataAccessor& code_item_accessor) {
// If the quick code is null, the Dex `code_item` is not
// null, and the vmap table is not null, then this method has been compiled
// with the dextodex compiler.
return oat_method.GetQuickCode() == nullptr &&
oat_method.GetVmapTable() != nullptr &&
code_item_accessor.HasCodeItem();
}
verifier::MethodVerifier* DumpVerifier(VariableIndentationOutputStream* vios,
StackHandleScope<1>* hs,
uint32_t dex_method_idx,
const DexFile* dex_file,
const DexFile::ClassDef& class_def,
const DexFile::CodeItem* code_item,
uint32_t method_access_flags) {
if ((method_access_flags & kAccNative) == 0) {
ScopedObjectAccess soa(Thread::Current());
Runtime* const runtime = Runtime::Current();
DCHECK(options_.class_loader_ != nullptr);
Handle<mirror::DexCache> dex_cache = hs->NewHandle(
runtime->GetClassLinker()->RegisterDexFile(*dex_file, options_.class_loader_->Get()));
CHECK(dex_cache != nullptr);
return verifier::MethodVerifier::VerifyMethodAndDump(
soa.Self(), vios, dex_method_idx, dex_file, dex_cache, *options_.class_loader_,
class_def, code_item, nullptr, method_access_flags);
}
return nullptr;
}
// The StackMapsHelper provides the stack maps in the native PC order.
// For identical native PCs, the order from the CodeInfo is preserved.
class StackMapsHelper {
public:
explicit StackMapsHelper(const uint8_t* raw_code_info, InstructionSet instruction_set)
: code_info_(raw_code_info),
encoding_(code_info_.ExtractEncoding()),
number_of_stack_maps_(code_info_.GetNumberOfStackMaps(encoding_)),
indexes_(),
offset_(static_cast<uint32_t>(-1)),
stack_map_index_(0u),
instruction_set_(instruction_set) {
if (number_of_stack_maps_ != 0u) {
// Check if native PCs are ordered.
bool ordered = true;
StackMap last = code_info_.GetStackMapAt(0u, encoding_);
for (size_t i = 1; i != number_of_stack_maps_; ++i) {
StackMap current = code_info_.GetStackMapAt(i, encoding_);
if (last.GetNativePcOffset(encoding_.stack_map.encoding, instruction_set) >
current.GetNativePcOffset(encoding_.stack_map.encoding, instruction_set)) {
ordered = false;
break;
}
last = current;
}
if (!ordered) {
// Create indirection indexes for access in native PC order. We do not optimize
// for the fact that there can currently be only two separately ordered ranges,
// namely normal stack maps and catch-point stack maps.
indexes_.resize(number_of_stack_maps_);
std::iota(indexes_.begin(), indexes_.end(), 0u);
std::sort(indexes_.begin(),
indexes_.end(),
[this](size_t lhs, size_t rhs) {
StackMap left = code_info_.GetStackMapAt(lhs, encoding_);
uint32_t left_pc = left.GetNativePcOffset(encoding_.stack_map.encoding,
instruction_set_);
StackMap right = code_info_.GetStackMapAt(rhs, encoding_);
uint32_t right_pc = right.GetNativePcOffset(encoding_.stack_map.encoding,
instruction_set_);
// If the PCs are the same, compare indexes to preserve the original order.
return (left_pc < right_pc) || (left_pc == right_pc && lhs < rhs);
});
}
offset_ = GetStackMapAt(0).GetNativePcOffset(encoding_.stack_map.encoding,
instruction_set_);
}
}
const CodeInfo& GetCodeInfo() const {
return code_info_;
}
const CodeInfoEncoding& GetEncoding() const {
return encoding_;
}
uint32_t GetOffset() const {
return offset_;
}
StackMap GetStackMap() const {
return GetStackMapAt(stack_map_index_);
}
void Next() {
++stack_map_index_;
offset_ = (stack_map_index_ == number_of_stack_maps_)
? static_cast<uint32_t>(-1)
: GetStackMapAt(stack_map_index_).GetNativePcOffset(encoding_.stack_map.encoding,
instruction_set_);
}
private:
StackMap GetStackMapAt(size_t i) const {
if (!indexes_.empty()) {
i = indexes_[i];
}
DCHECK_LT(i, number_of_stack_maps_);
return code_info_.GetStackMapAt(i, encoding_);
}
const CodeInfo code_info_;
const CodeInfoEncoding encoding_;
const size_t number_of_stack_maps_;
dchecked_vector<size_t> indexes_; // Used if stack map native PCs are not ordered.
uint32_t offset_;
size_t stack_map_index_;
const InstructionSet instruction_set_;
};
void DumpCode(VariableIndentationOutputStream* vios,
const OatFile::OatMethod& oat_method,
const CodeItemDataAccessor& code_item_accessor,
bool bad_input, size_t code_size) {
const void* quick_code = oat_method.GetQuickCode();
if (code_size == 0) {
code_size = oat_method.GetQuickCodeSize();
}
if (code_size == 0 || quick_code == nullptr) {
vios->Stream() << "NO CODE!\n";
return;
} else if (!bad_input && IsMethodGeneratedByOptimizingCompiler(oat_method,
code_item_accessor)) {
// The optimizing compiler outputs its CodeInfo data in the vmap table.
StackMapsHelper helper(oat_method.GetVmapTable(), instruction_set_);
MethodInfo method_info(oat_method.GetOatQuickMethodHeader()->GetOptimizedMethodInfo());
{
CodeInfoEncoding encoding(helper.GetEncoding());
StackMapEncoding stack_map_encoding(encoding.stack_map.encoding);
const size_t num_stack_maps = encoding.stack_map.num_entries;
if (stats_.AddBitsIfUnique(Stats::kByteKindCodeInfoEncoding,
encoding.HeaderSize() * kBitsPerByte,
oat_method.GetVmapTable())) {
// Stack maps
stats_.AddBits(
Stats::kByteKindStackMapNativePc,
stack_map_encoding.GetNativePcEncoding().BitSize() * num_stack_maps);
stats_.AddBits(
Stats::kByteKindStackMapDexPc,
stack_map_encoding.GetDexPcEncoding().BitSize() * num_stack_maps);
stats_.AddBits(
Stats::kByteKindStackMapDexRegisterMap,
stack_map_encoding.GetDexRegisterMapEncoding().BitSize() * num_stack_maps);
stats_.AddBits(
Stats::kByteKindStackMapInlineInfoIndex,
stack_map_encoding.GetInlineInfoEncoding().BitSize() * num_stack_maps);
stats_.AddBits(
Stats::kByteKindStackMapRegisterMaskIndex,
stack_map_encoding.GetRegisterMaskIndexEncoding().BitSize() * num_stack_maps);
stats_.AddBits(
Stats::kByteKindStackMapStackMaskIndex,
stack_map_encoding.GetStackMaskIndexEncoding().BitSize() * num_stack_maps);
// Stack masks
stats_.AddBits(
Stats::kByteKindCodeInfoStackMasks,
encoding.stack_mask.encoding.BitSize() * encoding.stack_mask.num_entries);
// Register masks
stats_.AddBits(
Stats::kByteKindCodeInfoRegisterMasks,
encoding.register_mask.encoding.BitSize() * encoding.register_mask.num_entries);
// Invoke infos
if (encoding.invoke_info.num_entries > 0u) {
stats_.AddBits(
Stats::kByteKindCodeInfoInvokeInfo,
encoding.invoke_info.encoding.BitSize() * encoding.invoke_info.num_entries);
}
// Location catalog
const size_t location_catalog_bytes =
helper.GetCodeInfo().GetDexRegisterLocationCatalogSize(encoding);
stats_.AddBits(Stats::kByteKindCodeInfoLocationCatalog,
kBitsPerByte * location_catalog_bytes);
// Dex register bytes.
const size_t dex_register_bytes =
helper.GetCodeInfo().GetDexRegisterMapsSize(encoding,
code_item_accessor.RegistersSize());
stats_.AddBits(
Stats::kByteKindCodeInfoDexRegisterMap,
kBitsPerByte * dex_register_bytes);
// Inline infos.
const size_t num_inline_infos = encoding.inline_info.num_entries;
if (num_inline_infos > 0u) {
stats_.AddBits(
Stats::kByteKindInlineInfoMethodIndexIdx,
encoding.inline_info.encoding.GetMethodIndexIdxEncoding().BitSize() *
num_inline_infos);
stats_.AddBits(
Stats::kByteKindInlineInfoDexPc,
encoding.inline_info.encoding.GetDexPcEncoding().BitSize() * num_inline_infos);
stats_.AddBits(
Stats::kByteKindInlineInfoExtraData,
encoding.inline_info.encoding.GetExtraDataEncoding().BitSize() * num_inline_infos);
stats_.AddBits(
Stats::kByteKindInlineInfoDexRegisterMap,
encoding.inline_info.encoding.GetDexRegisterMapEncoding().BitSize() *
num_inline_infos);
stats_.AddBits(Stats::kByteKindInlineInfoIsLast, num_inline_infos);
}
}
}
const uint8_t* quick_native_pc = reinterpret_cast<const uint8_t*>(quick_code);
size_t offset = 0;
while (offset < code_size) {
offset += disassembler_->Dump(vios->Stream(), quick_native_pc + offset);
if (offset == helper.GetOffset()) {
ScopedIndentation indent1(vios);
StackMap stack_map = helper.GetStackMap();
DCHECK(stack_map.IsValid());
stack_map.Dump(vios,
helper.GetCodeInfo(),
helper.GetEncoding(),
method_info,
oat_method.GetCodeOffset(),
code_item_accessor.RegistersSize(),
instruction_set_);
do {
helper.Next();
// There may be multiple stack maps at a given PC. We display only the first one.
} while (offset == helper.GetOffset());
}
DCHECK_LT(offset, helper.GetOffset());
}
} else {
const uint8_t* quick_native_pc = reinterpret_cast<const uint8_t*>(quick_code);
size_t offset = 0;
while (offset < code_size) {
offset += disassembler_->Dump(vios->Stream(), quick_native_pc + offset);
}
}
}
template <typename NameGetter>
void DumpBssEntries(std::ostream& os,
const char* slot_type,
const IndexBssMapping* mapping,
uint32_t number_of_indexes,
size_t slot_size,
NameGetter name) {
os << ".bss mapping for " << slot_type << ": ";
if (mapping == nullptr) {
os << "empty.\n";
return;
}
size_t index_bits = IndexBssMappingEntry::IndexBits(number_of_indexes);
size_t num_valid_indexes = 0u;
for (const IndexBssMappingEntry& entry : *mapping) {
num_valid_indexes += 1u + POPCOUNT(entry.GetMask(index_bits));
}
os << mapping->size() << " entries for " << num_valid_indexes << " valid indexes.\n";
os << std::hex;
for (const IndexBssMappingEntry& entry : *mapping) {
uint32_t index = entry.GetIndex(index_bits);
uint32_t mask = entry.GetMask(index_bits);
size_t bss_offset = entry.bss_offset - POPCOUNT(mask) * slot_size;
for (uint32_t n : LowToHighBits(mask)) {
size_t current_index = index - (32u - index_bits) + n;
os << " 0x" << bss_offset << ": " << slot_type << ": " << name(current_index) << "\n";
bss_offset += slot_size;
}
DCHECK_EQ(bss_offset, entry.bss_offset);
os << " 0x" << bss_offset << ": " << slot_type << ": " << name(index) << "\n";
}
os << std::dec;
}
const OatFile& oat_file_;
const std::vector<const OatFile::OatDexFile*> oat_dex_files_;
const OatDumperOptions& options_;
uint32_t resolved_addr2instr_;
const InstructionSet instruction_set_;
std::set<uintptr_t> offsets_;
Disassembler* disassembler_;
Stats stats_;
};
class ImageDumper {
public:
ImageDumper(std::ostream* os,
gc::space::ImageSpace& image_space,
const ImageHeader& image_header,
OatDumperOptions* oat_dumper_options)
: os_(os),
vios_(os),
indent1_(&vios_),
image_space_(image_space),
image_header_(image_header),
oat_dumper_options_(oat_dumper_options) {}
bool Dump() REQUIRES_SHARED(Locks::mutator_lock_) {
std::ostream& os = *os_;
std::ostream& indent_os = vios_.Stream();
os << "MAGIC: " << image_header_.GetMagic() << "\n\n";
os << "IMAGE LOCATION: " << image_space_.GetImageLocation() << "\n\n";
os << "IMAGE BEGIN: " << reinterpret_cast<void*>(image_header_.GetImageBegin()) << "\n\n";
os << "IMAGE SIZE: " << image_header_.GetImageSize() << "\n\n";
for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
auto section = static_cast<ImageHeader::ImageSections>(i);
os << "IMAGE SECTION " << section << ": " << image_header_.GetImageSection(section) << "\n\n";
}
os << "OAT CHECKSUM: " << StringPrintf("0x%08x\n\n", image_header_.GetOatChecksum());
os << "OAT FILE BEGIN:" << reinterpret_cast<void*>(image_header_.GetOatFileBegin()) << "\n\n";
os << "OAT DATA BEGIN:" << reinterpret_cast<void*>(image_header_.GetOatDataBegin()) << "\n\n";
os << "OAT DATA END:" << reinterpret_cast<void*>(image_header_.GetOatDataEnd()) << "\n\n";
os << "OAT FILE END:" << reinterpret_cast<void*>(image_header_.GetOatFileEnd()) << "\n\n";
os << "PATCH DELTA:" << image_header_.GetPatchDelta() << "\n\n";
os << "COMPILE PIC: " << (image_header_.CompilePic() ? "yes" : "no") << "\n\n";
{
os << "ROOTS: " << reinterpret_cast<void*>(image_header_.GetImageRoots()) << "\n";
static_assert(arraysize(image_roots_descriptions_) ==
static_cast<size_t>(ImageHeader::kImageRootsMax), "sizes must match");
DCHECK_LE(image_header_.GetImageRoots()->GetLength(), ImageHeader::kImageRootsMax);
for (int32_t i = 0, size = image_header_.GetImageRoots()->GetLength(); i != size; ++i) {
ImageHeader::ImageRoot image_root = static_cast<ImageHeader::ImageRoot>(i);
const char* image_root_description = image_roots_descriptions_[i];
mirror::Object* image_root_object = image_header_.GetImageRoot(image_root);
indent_os << StringPrintf("%s: %p\n", image_root_description, image_root_object);
if (image_root_object != nullptr && image_root_object->IsObjectArray()) {
mirror::ObjectArray<mirror::Object>* image_root_object_array
= image_root_object->AsObjectArray<mirror::Object>();
ScopedIndentation indent2(&vios_);
for (int j = 0; j < image_root_object_array->GetLength(); j++) {
mirror::Object* value = image_root_object_array->Get(j);
size_t run = 0;
for (int32_t k = j + 1; k < image_root_object_array->GetLength(); k++) {
if (value == image_root_object_array->Get(k)) {
run++;
} else {
break;
}
}
if (run == 0) {
indent_os << StringPrintf("%d: ", j);
} else {
indent_os << StringPrintf("%d to %zd: ", j, j + run);
j = j + run;
}
if (value != nullptr) {
PrettyObjectValue(indent_os, value->GetClass(), value);
} else {
indent_os << j << ": null\n";
}
}
}
}
}
{
os << "METHOD ROOTS\n";
static_assert(arraysize(image_methods_descriptions_) ==
static_cast<size_t>(ImageHeader::kImageMethodsCount), "sizes must match");
for (int i = 0; i < ImageHeader::kImageMethodsCount; i++) {
auto image_root = static_cast<ImageHeader::ImageMethod>(i);
const char* description = image_methods_descriptions_[i];
auto* image_method = image_header_.GetImageMethod(image_root);
indent_os << StringPrintf("%s: %p\n", description, image_method);
}
}
os << "\n";
Runtime* const runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
std::string image_filename = image_space_.GetImageFilename();
std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(image_filename);
os << "OAT LOCATION: " << oat_location;
os << "\n";
std::string error_msg;
const OatFile* oat_file = image_space_.GetOatFile();
if (oat_file == nullptr) {
oat_file = runtime->GetOatFileManager().FindOpenedOatFileFromOatLocation(oat_location);
}
if (oat_file == nullptr) {
oat_file = OatFile::Open(oat_location,
oat_location,
nullptr,
nullptr,
false,
/*low_4gb*/false,
nullptr,
&error_msg);
}
if (oat_file == nullptr) {
os << "OAT FILE NOT FOUND: " << error_msg << "\n";
return EXIT_FAILURE;
}
os << "\n";
stats_.oat_file_bytes = oat_file->Size();
oat_dumper_.reset(new OatDumper(*oat_file, *oat_dumper_options_));
for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
CHECK(oat_dex_file != nullptr);
stats_.oat_dex_file_sizes.push_back(std::make_pair(oat_dex_file->GetDexFileLocation(),
oat_dex_file->FileSize()));
}
os << "OBJECTS:\n" << std::flush;
// Loop through the image space and dump its objects.
gc::Heap* heap = runtime->GetHeap();
Thread* self = Thread::Current();
{
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->FlushAllocStack();
}
// Since FlushAllocStack() above resets the (active) allocation
// stack. Need to revoke the thread-local allocation stacks that
// point into it.
ScopedThreadSuspension sts(self, kNative);
ScopedSuspendAll ssa(__FUNCTION__);
heap->RevokeAllThreadLocalAllocationStacks(self);
}
{
// Mark dex caches.
dex_caches_.clear();
{
ReaderMutexLock mu(self, *Locks::dex_lock_);
for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
ObjPtr<mirror::DexCache> dex_cache =
ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
if (dex_cache != nullptr) {
dex_caches_.insert(dex_cache.Ptr());
}
}
}
auto dump_visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
DumpObject(obj);
};
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
// Dump the normal objects before ArtMethods.
image_space_.GetLiveBitmap()->Walk(dump_visitor);
indent_os << "\n";
// TODO: Dump fields.
// Dump methods after.
DumpArtMethodVisitor visitor(this);
image_header_.VisitPackedArtMethods(&visitor,
image_space_.Begin(),
image_header_.GetPointerSize());
// Dump the large objects separately.
heap->GetLargeObjectsSpace()->GetLiveBitmap()->Walk(dump_visitor);
indent_os << "\n";
}
os << "STATS:\n" << std::flush;
std::unique_ptr<File> file(OS::OpenFileForReading(image_filename.c_str()));
size_t data_size = image_header_.GetDataSize(); // stored size in file.
if (file == nullptr) {
LOG(WARNING) << "Failed to find image in " << image_filename;
} else {
stats_.file_bytes = file->GetLength();
// If the image is compressed, adjust to decompressed size.
size_t uncompressed_size = image_header_.GetImageSize() - sizeof(ImageHeader);
if (image_header_.GetStorageMode() == ImageHeader::kStorageModeUncompressed) {
DCHECK_EQ(uncompressed_size, data_size) << "Sizes should match for uncompressed image";
}
stats_.file_bytes += uncompressed_size - data_size;
}
size_t header_bytes = sizeof(ImageHeader);
const auto& object_section = image_header_.GetObjectsSection();
const auto& field_section = image_header_.GetFieldsSection();
const auto& method_section = image_header_.GetMethodsSection();
const auto& dex_cache_arrays_section = image_header_.GetDexCacheArraysSection();
const auto& intern_section = image_header_.GetInternedStringsSection();
const auto& class_table_section = image_header_.GetClassTableSection();
const auto& bitmap_section = image_header_.GetImageBitmapSection();
stats_.header_bytes = header_bytes;
// Objects are kObjectAlignment-aligned.
// CHECK_EQ(RoundUp(header_bytes, kObjectAlignment), object_section.Offset());
if (object_section.Offset() > header_bytes) {
stats_.alignment_bytes += object_section.Offset() - header_bytes;
}
// Field section is 4-byte aligned.
constexpr size_t kFieldSectionAlignment = 4U;
uint32_t end_objects = object_section.Offset() + object_section.Size();
CHECK_EQ(RoundUp(end_objects, kFieldSectionAlignment), field_section.Offset());
stats_.alignment_bytes += field_section.Offset() - end_objects;
// Method section is 4/8 byte aligned depending on target. Just check for 4-byte alignment.
uint32_t end_fields = field_section.Offset() + field_section.Size();
CHECK_ALIGNED(method_section.Offset(), 4);
stats_.alignment_bytes += method_section.Offset() - end_fields;
// Dex cache arrays section is aligned depending on the target. Just check for 4-byte alignment.
uint32_t end_methods = method_section.Offset() + method_section.Size();
CHECK_ALIGNED(dex_cache_arrays_section.Offset(), 4);
stats_.alignment_bytes += dex_cache_arrays_section.Offset() - end_methods;
// Intern table is 8-byte aligned.
uint32_t end_caches = dex_cache_arrays_section.Offset() + dex_cache_arrays_section.Size();
CHECK_ALIGNED(intern_section.Offset(), sizeof(uint64_t));
stats_.alignment_bytes += intern_section.Offset() - end_caches;
// Add space between intern table and class table.
uint32_t end_intern = intern_section.Offset() + intern_section.Size();
stats_.alignment_bytes += class_table_section.Offset() - end_intern;
// Add space between end of image data and bitmap. Expect the bitmap to be page-aligned.
const size_t bitmap_offset = sizeof(ImageHeader) + data_size;
CHECK_ALIGNED(bitmap_section.Offset(), kPageSize);
stats_.alignment_bytes += RoundUp(bitmap_offset, kPageSize) - bitmap_offset;
stats_.bitmap_bytes += bitmap_section.Size();
stats_.art_field_bytes += field_section.Size();
stats_.art_method_bytes += method_section.Size();
stats_.dex_cache_arrays_bytes += dex_cache_arrays_section.Size();
stats_.interned_strings_bytes += intern_section.Size();
stats_.class_table_bytes += class_table_section.Size();
stats_.Dump(os, indent_os);
os << "\n";
os << std::flush;
return oat_dumper_->Dump(os);
}
private:
class DumpArtMethodVisitor : public ArtMethodVisitor {
public:
explicit DumpArtMethodVisitor(ImageDumper* image_dumper) : image_dumper_(image_dumper) {}
virtual void Visit(ArtMethod* method) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
std::ostream& indent_os = image_dumper_->vios_.Stream();
indent_os << method << " " << " ArtMethod: " << ArtMethod::PrettyMethod(method) << "\n";
image_dumper_->DumpMethod(method, indent_os);
indent_os << "\n";
}
private:
ImageDumper* const image_dumper_;
};
static void PrettyObjectValue(std::ostream& os,
ObjPtr<mirror::Class> type,
ObjPtr<mirror::Object> value)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(type != nullptr);
if (value == nullptr) {
os << StringPrintf("null %s\n", type->PrettyDescriptor().c_str());
} else if (type->IsStringClass()) {
mirror::String* string = value->AsString();
os << StringPrintf("%p String: %s\n", string,
PrintableString(string->ToModifiedUtf8().c_str()).c_str());
} else if (type->IsClassClass()) {
mirror::Class* klass = value->AsClass();
os << StringPrintf("%p Class: %s\n", klass, mirror::Class::PrettyDescriptor(klass).c_str());
} else {
os << StringPrintf("%p %s\n", value.Ptr(), type->PrettyDescriptor().c_str());
}
}
static void PrintField(std::ostream& os, ArtField* field, ObjPtr<mirror::Object> obj)
REQUIRES_SHARED(Locks::mutator_lock_) {
os << StringPrintf("%s: ", field->GetName());
switch (field->GetTypeAsPrimitiveType()) {
case Primitive::kPrimLong:
os << StringPrintf("%" PRId64 " (0x%" PRIx64 ")\n", field->Get64(obj), field->Get64(obj));
break;
case Primitive::kPrimDouble:
os << StringPrintf("%f (%a)\n", field->GetDouble(obj), field->GetDouble(obj));
break;
case Primitive::kPrimFloat:
os << StringPrintf("%f (%a)\n", field->GetFloat(obj), field->GetFloat(obj));
break;
case Primitive::kPrimInt:
os << StringPrintf("%d (0x%x)\n", field->Get32(obj), field->Get32(obj));
break;
case Primitive::kPrimChar:
os << StringPrintf("%u (0x%x)\n", field->GetChar(obj), field->GetChar(obj));
break;
case Primitive::kPrimShort:
os << StringPrintf("%d (0x%x)\n", field->GetShort(obj), field->GetShort(obj));
break;
case Primitive::kPrimBoolean:
os << StringPrintf("%s (0x%x)\n", field->GetBoolean(obj) ? "true" : "false",
field->GetBoolean(obj));
break;
case Primitive::kPrimByte:
os << StringPrintf("%d (0x%x)\n", field->GetByte(obj), field->GetByte(obj));
break;
case Primitive::kPrimNot: {
// Get the value, don't compute the type unless it is non-null as we don't want
// to cause class loading.
ObjPtr<mirror::Object> value = field->GetObj(obj);
if (value == nullptr) {
os << StringPrintf("null %s\n", PrettyDescriptor(field->GetTypeDescriptor()).c_str());
} else {
// Grab the field type without causing resolution.
ObjPtr<mirror::Class> field_type = field->LookupResolvedType();
if (field_type != nullptr) {
PrettyObjectValue(os, field_type, value);
} else {
os << StringPrintf("%p %s\n",
value.Ptr(),
PrettyDescriptor(field->GetTypeDescriptor()).c_str());
}
}
break;
}
default:
os << "unexpected field type: " << field->GetTypeDescriptor() << "\n";
break;
}
}
static void DumpFields(std::ostream& os, mirror::Object* obj, mirror::Class* klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Class* super = klass->GetSuperClass();
if (super != nullptr) {
DumpFields(os, obj, super);
}
for (ArtField& field : klass->GetIFields()) {
PrintField(os, &field, obj);
}
}
bool InDumpSpace(const mirror::Object* object) {
return image_space_.Contains(object);
}
const void* GetQuickOatCodeBegin(ArtMethod* m) REQUIRES_SHARED(Locks::mutator_lock_) {
const void* quick_code = m->GetEntryPointFromQuickCompiledCodePtrSize(
image_header_.GetPointerSize());
if (Runtime::Current()->GetClassLinker()->IsQuickResolutionStub(quick_code)) {
quick_code = oat_dumper_->GetQuickOatCode(m);
}
if (oat_dumper_->GetInstructionSet() == InstructionSet::kThumb2) {
quick_code = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(quick_code) & ~0x1);
}
return quick_code;
}
uint32_t GetQuickOatCodeSize(ArtMethod* m)
REQUIRES_SHARED(Locks::mutator_lock_) {
const uint32_t* oat_code_begin = reinterpret_cast<const uint32_t*>(GetQuickOatCodeBegin(m));
if (oat_code_begin == nullptr) {
return 0;
}
return oat_code_begin[-1];
}
const void* GetQuickOatCodeEnd(ArtMethod* m)
REQUIRES_SHARED(Locks::mutator_lock_) {
const uint8_t* oat_code_begin = reinterpret_cast<const uint8_t*>(GetQuickOatCodeBegin(m));
if (oat_code_begin == nullptr) {
return nullptr;
}
return oat_code_begin + GetQuickOatCodeSize(m);
}
void DumpObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(obj != nullptr);
if (!InDumpSpace(obj)) {
return;
}
size_t object_bytes = obj->SizeOf();
size_t alignment_bytes = RoundUp(object_bytes, kObjectAlignment) - object_bytes;
stats_.object_bytes += object_bytes;
stats_.alignment_bytes += alignment_bytes;
std::ostream& os = vios_.Stream();
mirror::Class* obj_class = obj->GetClass();
if (obj_class->IsArrayClass()) {
os << StringPrintf("%p: %s length:%d\n", obj, obj_class->PrettyDescriptor().c_str(),
obj->AsArray()->GetLength());
} else if (obj->IsClass()) {
mirror::Class* klass = obj->AsClass();
os << StringPrintf("%p: java.lang.Class \"%s\" (", obj,
mirror::Class::PrettyDescriptor(klass).c_str())
<< klass->GetStatus() << ")\n";
} else if (obj_class->IsStringClass()) {
os << StringPrintf("%p: java.lang.String %s\n", obj,
PrintableString(obj->AsString()->ToModifiedUtf8().c_str()).c_str());
} else {
os << StringPrintf("%p: %s\n", obj, obj_class->PrettyDescriptor().c_str());
}
ScopedIndentation indent1(&vios_);
DumpFields(os, obj, obj_class);
const PointerSize image_pointer_size = image_header_.GetPointerSize();
if (obj->IsObjectArray()) {
auto* obj_array = obj->AsObjectArray<mirror::Object>();
for (int32_t i = 0, length = obj_array->GetLength(); i < length; i++) {
mirror::Object* value = obj_array->Get(i);
size_t run = 0;
for (int32_t j = i + 1; j < length; j++) {
if (value == obj_array->Get(j)) {
run++;
} else {
break;
}
}
if (run == 0) {
os << StringPrintf("%d: ", i);
} else {
os << StringPrintf("%d to %zd: ", i, i + run);
i = i + run;
}
mirror::Class* value_class =
(value == nullptr) ? obj_class->GetComponentType() : value->GetClass();
PrettyObjectValue(os, value_class, value);
}
} else if (obj->IsClass()) {
ObjPtr<mirror::Class> klass = obj->AsClass();
if (kBitstringSubtypeCheckEnabled) {
os << "SUBTYPE_CHECK_BITS: ";
SubtypeCheck<ObjPtr<mirror::Class>>::Dump(klass, os);
os << "\n";
}
if (klass->NumStaticFields() != 0) {
os << "STATICS:\n";
ScopedIndentation indent2(&vios_);
for (ArtField& field : klass->GetSFields()) {
PrintField(os, &field, field.GetDeclaringClass());
}
}
} else {
auto it = dex_caches_.find(obj);
if (it != dex_caches_.end()) {
auto* dex_cache = down_cast<mirror::DexCache*>(obj);
const auto& field_section = image_header_.GetFieldsSection();
const auto& method_section = image_header_.GetMethodsSection();
size_t num_methods = dex_cache->NumResolvedMethods();
if (num_methods != 0u) {
os << "Methods (size=" << num_methods << "):\n";
ScopedIndentation indent2(&vios_);
mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
for (size_t i = 0, length = dex_cache->NumResolvedMethods(); i < length; ++i) {
ArtMethod* elem = mirror::DexCache::GetNativePairPtrSize(
resolved_methods, i, image_pointer_size).object;
size_t run = 0;
for (size_t j = i + 1;
j != length &&
elem == mirror::DexCache::GetNativePairPtrSize(
resolved_methods, j, image_pointer_size).object;
++j) {
++run;
}
if (run == 0) {
os << StringPrintf("%zd: ", i);
} else {
os << StringPrintf("%zd to %zd: ", i, i + run);
i = i + run;
}
std::string msg;
if (elem == nullptr) {
msg = "null";
} else if (method_section.Contains(
reinterpret_cast<uint8_t*>(elem) - image_space_.Begin())) {
msg = reinterpret_cast<ArtMethod*>(elem)->PrettyMethod();
} else {
msg = "<not in method section>";
}
os << StringPrintf("%p %s\n", elem, msg.c_str());
}
}
size_t num_fields = dex_cache->NumResolvedFields();
if (num_fields != 0u) {
os << "Fields (size=" << num_fields << "):\n";
ScopedIndentation indent2(&vios_);
auto* resolved_fields = dex_cache->GetResolvedFields();
for (size_t i = 0, length = dex_cache->NumResolvedFields(); i < length; ++i) {
ArtField* elem = mirror::DexCache::GetNativePairPtrSize(
resolved_fields, i, image_pointer_size).object;
size_t run = 0;
for (size_t j = i + 1;
j != length &&
elem == mirror::DexCache::GetNativePairPtrSize(
resolved_fields, j, image_pointer_size).object;
++j) {
++run;
}
if (run == 0) {
os << StringPrintf("%zd: ", i);
} else {
os << StringPrintf("%zd to %zd: ", i, i + run);
i = i + run;
}
std::string msg;
if (elem == nullptr) {
msg = "null";
} else if (field_section.Contains(
reinterpret_cast<uint8_t*>(elem) - image_space_.Begin())) {
msg = reinterpret_cast<ArtField*>(elem)->PrettyField();
} else {
msg = "<not in field section>";
}
os << StringPrintf("%p %s\n", elem, msg.c_str());
}
}
size_t num_types = dex_cache->NumResolvedTypes();
if (num_types != 0u) {
os << "Types (size=" << num_types << "):\n";
ScopedIndentation indent2(&vios_);
auto* resolved_types = dex_cache->GetResolvedTypes();
for (size_t i = 0; i < num_types; ++i) {
auto pair = resolved_types[i].load(std::memory_order_relaxed);
size_t run = 0;
for (size_t j = i + 1; j != num_types; ++j) {
auto other_pair = resolved_types[j].load(std::memory_order_relaxed);
if (pair.index != other_pair.index ||
pair.object.Read() != other_pair.object.Read()) {
break;
}
++run;
}
if (run == 0) {
os << StringPrintf("%zd: ", i);
} else {
os << StringPrintf("%zd to %zd: ", i, i + run);
i = i + run;
}
std::string msg;
auto* elem = pair.object.Read();
if (elem == nullptr) {
msg = "null";
} else {
msg = elem->PrettyClass();
}
os << StringPrintf("%p %u %s\n", elem, pair.index, msg.c_str());
}
}
}
}
std::string temp;
stats_.Update(obj_class->GetDescriptor(&temp), object_bytes);
}
void DumpMethod(ArtMethod* method, std::ostream& indent_os)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(method != nullptr);
const void* quick_oat_code_begin = GetQuickOatCodeBegin(method);
const void* quick_oat_code_end = GetQuickOatCodeEnd(method);
const PointerSize pointer_size = image_header_.GetPointerSize();
OatQuickMethodHeader* method_header = reinterpret_cast<OatQuickMethodHeader*>(
reinterpret_cast<uintptr_t>(quick_oat_code_begin) - sizeof(OatQuickMethodHeader));
if (method->IsNative()) {
bool first_occurrence;
uint32_t quick_oat_code_size = GetQuickOatCodeSize(method);
ComputeOatSize(quick_oat_code_begin, &first_occurrence);
if (first_occurrence) {
stats_.native_to_managed_code_bytes += quick_oat_code_size;
}
if (quick_oat_code_begin != method->GetEntryPointFromQuickCompiledCodePtrSize(
image_header_.GetPointerSize())) {
indent_os << StringPrintf("OAT CODE: %p\n", quick_oat_code_begin);
}
} else if (method->IsAbstract() || method->IsClassInitializer()) {
// Don't print information for these.
} else if (method->IsRuntimeMethod()) {
ImtConflictTable* table = method->GetImtConflictTable(image_header_.GetPointerSize());
if (table != nullptr) {
indent_os << "IMT conflict table " << table << " method: ";
for (size_t i = 0, count = table->NumEntries(pointer_size); i < count; ++i) {
indent_os << ArtMethod::PrettyMethod(table->GetImplementationMethod(i, pointer_size))
<< " ";
}
}
} else {
CodeItemDataAccessor code_item_accessor(method->DexInstructionData());
size_t dex_instruction_bytes = code_item_accessor.InsnsSizeInCodeUnits() * 2;
stats_.dex_instruction_bytes += dex_instruction_bytes;
bool first_occurrence;
size_t vmap_table_bytes = 0u;
if (!method_header->IsOptimized()) {
// Method compiled with the optimizing compiler have no vmap table.
vmap_table_bytes = ComputeOatSize(method_header->GetVmapTable(), &first_occurrence);
if (first_occurrence) {
stats_.vmap_table_bytes += vmap_table_bytes;
}
}
uint32_t quick_oat_code_size = GetQuickOatCodeSize(method);
ComputeOatSize(quick_oat_code_begin, &first_occurrence);
if (first_occurrence) {
stats_.managed_code_bytes += quick_oat_code_size;
if (method->IsConstructor()) {
if (method->IsStatic()) {
stats_.class_initializer_code_bytes += quick_oat_code_size;
} else if (dex_instruction_bytes > kLargeConstructorDexBytes) {
stats_.large_initializer_code_bytes += quick_oat_code_size;
}
} else if (dex_instruction_bytes > kLargeMethodDexBytes) {
stats_.large_method_code_bytes += quick_oat_code_size;
}
}
stats_.managed_code_bytes_ignoring_deduplication += quick_oat_code_size;
uint32_t method_access_flags = method->GetAccessFlags();
indent_os << StringPrintf("OAT CODE: %p-%p\n", quick_oat_code_begin, quick_oat_code_end);
indent_os << StringPrintf("SIZE: Dex Instructions=%zd StackMaps=%zd AccessFlags=0x%x\n",
dex_instruction_bytes,
vmap_table_bytes,
method_access_flags);
size_t total_size = dex_instruction_bytes +
vmap_table_bytes + quick_oat_code_size + ArtMethod::Size(image_header_.GetPointerSize());
double expansion =
static_cast<double>(quick_oat_code_size) / static_cast<double>(dex_instruction_bytes);
stats_.ComputeOutliers(total_size, expansion, method);
}
}
std::set<const void*> already_seen_;
// Compute the size of the given data within the oat file and whether this is the first time
// this data has been requested
size_t ComputeOatSize(const void* oat_data, bool* first_occurrence) {
if (already_seen_.count(oat_data) == 0) {
*first_occurrence = true;
already_seen_.insert(oat_data);
} else {
*first_occurrence = false;
}
return oat_dumper_->ComputeSize(oat_data);
}
public:
struct Stats {
size_t oat_file_bytes;
size_t file_bytes;
size_t header_bytes;
size_t object_bytes;
size_t art_field_bytes;
size_t art_method_bytes;
size_t dex_cache_arrays_bytes;
size_t interned_strings_bytes;
size_t class_table_bytes;
size_t bitmap_bytes;
size_t alignment_bytes;
size_t managed_code_bytes;
size_t managed_code_bytes_ignoring_deduplication;
size_t native_to_managed_code_bytes;
size_t class_initializer_code_bytes;
size_t large_initializer_code_bytes;
size_t large_method_code_bytes;
size_t vmap_table_bytes;
size_t dex_instruction_bytes;
std::vector<ArtMethod*> method_outlier;
std::vector<size_t> method_outlier_size;
std::vector<double> method_outlier_expansion;
std::vector<std::pair<std::string, size_t>> oat_dex_file_sizes;
Stats()
: oat_file_bytes(0),
file_bytes(0),
header_bytes(0),
object_bytes(0),
art_field_bytes(0),
art_method_bytes(0),
dex_cache_arrays_bytes(0),
interned_strings_bytes(0),
class_table_bytes(0),
bitmap_bytes(0),
alignment_bytes(0),
managed_code_bytes(0),
managed_code_bytes_ignoring_deduplication(0),
native_to_managed_code_bytes(0),
class_initializer_code_bytes(0),
large_initializer_code_bytes(0),
large_method_code_bytes(0),
vmap_table_bytes(0),
dex_instruction_bytes(0) {}
struct SizeAndCount {
SizeAndCount(size_t bytes_in, size_t count_in) : bytes(bytes_in), count(count_in) {}
size_t bytes;
size_t count;
};
typedef SafeMap<std::string, SizeAndCount> SizeAndCountTable;
SizeAndCountTable sizes_and_counts;
void Update(const char* descriptor, size_t object_bytes_in) {
SizeAndCountTable::iterator it = sizes_and_counts.find(descriptor);
if (it != sizes_and_counts.end()) {
it->second.bytes += object_bytes_in;
it->second.count += 1;
} else {
sizes_and_counts.Put(descriptor, SizeAndCount(object_bytes_in, 1));
}
}
double PercentOfOatBytes(size_t size) {
return (static_cast<double>(size) / static_cast<double>(oat_file_bytes)) * 100;
}
double PercentOfFileBytes(size_t size) {
return (static_cast<double>(size) / static_cast<double>(file_bytes)) * 100;
}
double PercentOfObjectBytes(size_t size) {
return (static_cast<double>(size) / static_cast<double>(object_bytes)) * 100;
}
void ComputeOutliers(size_t total_size, double expansion, ArtMethod* method) {
method_outlier_size.push_back(total_size);
method_outlier_expansion.push_back(expansion);
method_outlier.push_back(method);
}
void DumpOutliers(std::ostream& os)
REQUIRES_SHARED(Locks::mutator_lock_) {
size_t sum_of_sizes = 0;
size_t sum_of_sizes_squared = 0;
size_t sum_of_expansion = 0;
size_t sum_of_expansion_squared = 0;
size_t n = method_outlier_size.size();
if (n <= 1) {
return;
}
for (size_t i = 0; i < n; i++) {
size_t cur_size = method_outlier_size[i];
sum_of_sizes += cur_size;
sum_of_sizes_squared += cur_size * cur_size;
double cur_expansion = method_outlier_expansion[i];
sum_of_expansion += cur_expansion;
sum_of_expansion_squared += cur_expansion * cur_expansion;
}
size_t size_mean = sum_of_sizes / n;
size_t size_variance = (sum_of_sizes_squared - sum_of_sizes * size_mean) / (n - 1);
double expansion_mean = sum_of_expansion / n;
double expansion_variance =
(sum_of_expansion_squared - sum_of_expansion * expansion_mean) / (n - 1);
// Dump methods whose size is a certain number of standard deviations from the mean
size_t dumped_values = 0;
size_t skipped_values = 0;
for (size_t i = 100; i > 0; i--) { // i is the current number of standard deviations
size_t cur_size_variance = i * i * size_variance;
bool first = true;
for (size_t j = 0; j < n; j++) {
size_t cur_size = method_outlier_size[j];
if (cur_size > size_mean) {
size_t cur_var = cur_size - size_mean;
cur_var = cur_var * cur_var;
if (cur_var > cur_size_variance) {
if (dumped_values > 20) {
if (i == 1) {
skipped_values++;
} else {
i = 2; // jump to counting for 1 standard deviation
break;
}
} else {
if (first) {
os << "\nBig methods (size > " << i << " standard deviations the norm):\n";
first = false;
}
os << ArtMethod::PrettyMethod(method_outlier[j]) << " requires storage of "
<< PrettySize(cur_size) << "\n";
method_outlier_size[j] = 0; // don't consider this method again
dumped_values++;
}
}
}
}
}
if (skipped_values > 0) {
os << "... skipped " << skipped_values
<< " methods with size > 1 standard deviation from the norm\n";
}
os << std::flush;
// Dump methods whose expansion is a certain number of standard deviations from the mean
dumped_values = 0;
skipped_values = 0;
for (size_t i = 10; i > 0; i--) { // i is the current number of standard deviations
double cur_expansion_variance = i * i * expansion_variance;
bool first = true;
for (size_t j = 0; j < n; j++) {
double cur_expansion = method_outlier_expansion[j];
if (cur_expansion > expansion_mean) {
size_t cur_var = cur_expansion - expansion_mean;
cur_var = cur_var * cur_var;
if (cur_var > cur_expansion_variance) {
if (dumped_values > 20) {
if (i == 1) {
skipped_values++;
} else {
i = 2; // jump to counting for 1 standard deviation
break;
}
} else {
if (first) {
os << "\nLarge expansion methods (size > " << i
<< " standard deviations the norm):\n";
first = false;
}
os << ArtMethod::PrettyMethod(method_outlier[j]) << " expanded code by "
<< cur_expansion << "\n";
method_outlier_expansion[j] = 0.0; // don't consider this method again
dumped_values++;
}
}
}
}
}
if (skipped_values > 0) {
os << "... skipped " << skipped_values
<< " methods with expansion > 1 standard deviation from the norm\n";
}
os << "\n" << std::flush;
}
void Dump(std::ostream& os, std::ostream& indent_os)
REQUIRES_SHARED(Locks::mutator_lock_) {
{
os << "art_file_bytes = " << PrettySize(file_bytes) << "\n\n"
<< "art_file_bytes = header_bytes + object_bytes + alignment_bytes\n";
indent_os << StringPrintf("header_bytes = %8zd (%2.0f%% of art file bytes)\n"
"object_bytes = %8zd (%2.0f%% of art file bytes)\n"
"art_field_bytes = %8zd (%2.0f%% of art file bytes)\n"
"art_method_bytes = %8zd (%2.0f%% of art file bytes)\n"
"dex_cache_arrays_bytes = %8zd (%2.0f%% of art file bytes)\n"
"interned_string_bytes = %8zd (%2.0f%% of art file bytes)\n"
"class_table_bytes = %8zd (%2.0f%% of art file bytes)\n"
"bitmap_bytes = %8zd (%2.0f%% of art file bytes)\n"
"alignment_bytes = %8zd (%2.0f%% of art file bytes)\n\n",
header_bytes, PercentOfFileBytes(header_bytes),
object_bytes, PercentOfFileBytes(object_bytes),
art_field_bytes, PercentOfFileBytes(art_field_bytes),
art_method_bytes, PercentOfFileBytes(art_method_bytes),
dex_cache_arrays_bytes,
PercentOfFileBytes(dex_cache_arrays_bytes),
interned_strings_bytes,
PercentOfFileBytes(interned_strings_bytes),
class_table_bytes, PercentOfFileBytes(class_table_bytes),
bitmap_bytes, PercentOfFileBytes(bitmap_bytes),
alignment_bytes, PercentOfFileBytes(alignment_bytes))
<< std::flush;
CHECK_EQ(file_bytes,
header_bytes + object_bytes + art_field_bytes + art_method_bytes +
dex_cache_arrays_bytes + interned_strings_bytes + class_table_bytes +
bitmap_bytes + alignment_bytes);
}
os << "object_bytes breakdown:\n";
size_t object_bytes_total = 0;
for (const auto& sizes_and_count : sizes_and_counts) {
const std::string& descriptor(sizes_and_count.first);
double average = static_cast<double>(sizes_and_count.second.bytes) /
static_cast<double>(sizes_and_count.second.count);
double percent = PercentOfObjectBytes(sizes_and_count.second.bytes);
os << StringPrintf("%32s %8zd bytes %6zd instances "
"(%4.0f bytes/instance) %2.0f%% of object_bytes\n",
descriptor.c_str(), sizes_and_count.second.bytes,
sizes_and_count.second.count, average, percent);
object_bytes_total += sizes_and_count.second.bytes;
}
os << "\n" << std::flush;
CHECK_EQ(object_bytes, object_bytes_total);
os << StringPrintf("oat_file_bytes = %8zd\n"
"managed_code_bytes = %8zd (%2.0f%% of oat file bytes)\n"
"native_to_managed_code_bytes = %8zd (%2.0f%% of oat file bytes)\n\n"
"class_initializer_code_bytes = %8zd (%2.0f%% of oat file bytes)\n"
"large_initializer_code_bytes = %8zd (%2.0f%% of oat file bytes)\n"
"large_method_code_bytes = %8zd (%2.0f%% of oat file bytes)\n\n",
oat_file_bytes,
managed_code_bytes,
PercentOfOatBytes(managed_code_bytes),
native_to_managed_code_bytes,
PercentOfOatBytes(native_to_managed_code_bytes),
class_initializer_code_bytes,
PercentOfOatBytes(class_initializer_code_bytes),
large_initializer_code_bytes,
PercentOfOatBytes(large_initializer_code_bytes),
large_method_code_bytes,
PercentOfOatBytes(large_method_code_bytes))
<< "DexFile sizes:\n";
for (const std::pair<std::string, size_t>& oat_dex_file_size : oat_dex_file_sizes) {
os << StringPrintf("%s = %zd (%2.0f%% of oat file bytes)\n",
oat_dex_file_size.first.c_str(), oat_dex_file_size.second,
PercentOfOatBytes(oat_dex_file_size.second));
}
os << "\n" << StringPrintf("vmap_table_bytes = %7zd (%2.0f%% of oat file bytes)\n\n",
vmap_table_bytes, PercentOfOatBytes(vmap_table_bytes))
<< std::flush;
os << StringPrintf("dex_instruction_bytes = %zd\n", dex_instruction_bytes)
<< StringPrintf("managed_code_bytes expansion = %.2f (ignoring deduplication %.2f)\n\n",
static_cast<double>(managed_code_bytes) /
static_cast<double>(dex_instruction_bytes),
static_cast<double>(managed_code_bytes_ignoring_deduplication) /
static_cast<double>(dex_instruction_bytes))
<< std::flush;
DumpOutliers(os);
}
} stats_;
private:
enum {
// Number of bytes for a constructor to be considered large. Based on the 1000 basic block
// threshold, we assume 2 bytes per instruction and 2 instructions per block.
kLargeConstructorDexBytes = 4000,
// Number of bytes for a method to be considered large. Based on the 4000 basic block
// threshold, we assume 2 bytes per instruction and 2 instructions per block.
kLargeMethodDexBytes = 16000
};
// For performance, use the *os_ directly for anything that doesn't need indentation
// and prepare an indentation stream with default indentation 1.
std::ostream* os_;
VariableIndentationOutputStream vios_;
ScopedIndentation indent1_;
gc::space::ImageSpace& image_space_;
const ImageHeader& image_header_;
std::unique_ptr<OatDumper> oat_dumper_;
OatDumperOptions* oat_dumper_options_;
std::set<mirror::Object*> dex_caches_;
DISALLOW_COPY_AND_ASSIGN(ImageDumper);
};
static int DumpImage(gc::space::ImageSpace* image_space,
OatDumperOptions* options,
std::ostream* os) REQUIRES_SHARED(Locks::mutator_lock_) {
const ImageHeader& image_header = image_space->GetImageHeader();
if (!image_header.IsValid()) {
LOG(ERROR) << "Invalid image header " << image_space->GetImageLocation();
return EXIT_FAILURE;
}
ImageDumper image_dumper(os, *image_space, image_header, options);
if (!image_dumper.Dump()) {
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
static int DumpImages(Runtime* runtime, OatDumperOptions* options, std::ostream* os) {
// Dumping the image, no explicit class loader.
ScopedNullHandle<mirror::ClassLoader> null_class_loader;
options->class_loader_ = &null_class_loader;
ScopedObjectAccess soa(Thread::Current());
if (options->app_image_ != nullptr) {
if (options->app_oat_ == nullptr) {
LOG(ERROR) << "Can not dump app image without app oat file";
return EXIT_FAILURE;
}
// We can't know if the app image is 32 bits yet, but it contains pointers into the oat file.
// We need to map the oat file in the low 4gb or else the fixup wont be able to fit oat file
// pointers into 32 bit pointer sized ArtMethods.
std::string error_msg;
std::unique_ptr<OatFile> oat_file(OatFile::Open(options->app_oat_,
options->app_oat_,
nullptr,
nullptr,
false,
/*low_4gb*/true,
nullptr,
&error_msg));
if (oat_file == nullptr) {
LOG(ERROR) << "Failed to open oat file " << options->app_oat_ << " with error " << error_msg;
return EXIT_FAILURE;
}
std::unique_ptr<gc::space::ImageSpace> space(
gc::space::ImageSpace::CreateFromAppImage(options->app_image_, oat_file.get(), &error_msg));
if (space == nullptr) {
LOG(ERROR) << "Failed to open app image " << options->app_image_ << " with error "
<< error_msg;
}
// Open dex files for the image.
std::vector<std::unique_ptr<const DexFile>> dex_files;
if (!runtime->GetClassLinker()->OpenImageDexFiles(space.get(), &dex_files, &error_msg)) {
LOG(ERROR) << "Failed to open app image dex files " << options->app_image_ << " with error "
<< error_msg;
}
// Dump the actual image.
int result = DumpImage(space.get(), options, os);
if (result != EXIT_SUCCESS) {
return result;
}
// Fall through to dump the boot images.
}
gc::Heap* heap = runtime->GetHeap();
CHECK(heap->HasBootImageSpace()) << "No image spaces";
for (gc::space::ImageSpace* image_space : heap->GetBootImageSpaces()) {
int result = DumpImage(image_space, options, os);
if (result != EXIT_SUCCESS) {
return result;
}
}
return EXIT_SUCCESS;
}
static jobject InstallOatFile(Runtime* runtime,
std::unique_ptr<OatFile> oat_file,
std::vector<const DexFile*>* class_path)
REQUIRES_SHARED(Locks::mutator_lock_) {
Thread* self = Thread::Current();
CHECK(self != nullptr);
// Need well-known-classes.
WellKnownClasses::Init(self->GetJniEnv());
// Open dex files.
OatFile* oat_file_ptr = oat_file.get();
ClassLinker* class_linker = runtime->GetClassLinker();
runtime->GetOatFileManager().RegisterOatFile(std::move(oat_file));
for (const OatFile::OatDexFile* odf : oat_file_ptr->GetOatDexFiles()) {
std::string error_msg;
const DexFile* const dex_file = OpenDexFile(odf, &error_msg);
CHECK(dex_file != nullptr) << error_msg;
class_path->push_back(dex_file);
}
// Need a class loader. Fake that we're a compiler.
// Note: this will run initializers through the unstarted runtime, so make sure it's
// initialized.
interpreter::UnstartedRuntime::Initialize();
jobject class_loader = class_linker->CreatePathClassLoader(self, *class_path);
// Need to register dex files to get a working dex cache.
for (const DexFile* dex_file : *class_path) {
ObjPtr<mirror::DexCache> dex_cache = class_linker->RegisterDexFile(
*dex_file, self->DecodeJObject(class_loader)->AsClassLoader());
CHECK(dex_cache != nullptr);
}
return class_loader;
}
static int DumpOatWithRuntime(Runtime* runtime,
std::unique_ptr<OatFile> oat_file,
OatDumperOptions* options,
std::ostream* os) {
CHECK(runtime != nullptr && oat_file != nullptr && options != nullptr);
ScopedObjectAccess soa(Thread::Current());
OatFile* oat_file_ptr = oat_file.get();
std::vector<const DexFile*> class_path;
jobject class_loader = InstallOatFile(runtime, std::move(oat_file), &class_path);
// Use the class loader while dumping.
StackHandleScope<1> scope(soa.Self());
Handle<mirror::ClassLoader> loader_handle = scope.NewHandle(
soa.Decode<mirror::ClassLoader>(class_loader));
options->class_loader_ = &loader_handle;
OatDumper oat_dumper(*oat_file_ptr, *options);
bool success = oat_dumper.Dump(*os);
return (success) ? EXIT_SUCCESS : EXIT_FAILURE;
}
static int DumpOatWithoutRuntime(OatFile* oat_file, OatDumperOptions* options, std::ostream* os) {
CHECK(oat_file != nullptr && options != nullptr);
// No image = no class loader.
ScopedNullHandle<mirror::ClassLoader> null_class_loader;
options->class_loader_ = &null_class_loader;
OatDumper oat_dumper(*oat_file, *options);
bool success = oat_dumper.Dump(*os);
return (success) ? EXIT_SUCCESS : EXIT_FAILURE;
}
static int DumpOat(Runtime* runtime,
const char* oat_filename,
const char* dex_filename,
OatDumperOptions* options,
std::ostream* os) {
if (dex_filename == nullptr) {
LOG(WARNING) << "No dex filename provided, "
<< "oatdump might fail if the oat file does not contain the dex code.";
}
std::string error_msg;
std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename,
oat_filename,
nullptr,
nullptr,
false,
/*low_4gb*/false,
dex_filename,
&error_msg));
if (oat_file == nullptr) {
LOG(ERROR) << "Failed to open oat file from '" << oat_filename << "': " << error_msg;
return EXIT_FAILURE;
}
if (runtime != nullptr) {
return DumpOatWithRuntime(runtime, std::move(oat_file), options, os);
} else {
return DumpOatWithoutRuntime(oat_file.get(), options, os);
}
}
static int SymbolizeOat(const char* oat_filename,
const char* dex_filename,
std::string& output_name,
bool no_bits) {
std::string error_msg;
std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename,
oat_filename,
nullptr,
nullptr,
false,
/*low_4gb*/false,
dex_filename,
&error_msg));
if (oat_file == nullptr) {
LOG(ERROR) << "Failed to open oat file from '" << oat_filename << "': " << error_msg;
return EXIT_FAILURE;
}
bool result;
// Try to produce an ELF file of the same type. This is finicky, as we have used 32-bit ELF
// files for 64-bit code in the past.
if (Is64BitInstructionSet(oat_file->GetOatHeader().GetInstructionSet())) {
OatSymbolizer<ElfTypes64> oat_symbolizer(oat_file.get(), output_name, no_bits);
result = oat_symbolizer.Symbolize();
} else {
OatSymbolizer<ElfTypes32> oat_symbolizer(oat_file.get(), output_name, no_bits);
result = oat_symbolizer.Symbolize();
}
if (!result) {
LOG(ERROR) << "Failed to symbolize";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
class IMTDumper {
public:
static bool Dump(Runtime* runtime,
const std::string& imt_file,
bool dump_imt_stats,
const char* oat_filename,
const char* dex_filename) {
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
StackHandleScope<1> scope(self);
MutableHandle<mirror::ClassLoader> class_loader = scope.NewHandle<mirror::ClassLoader>(nullptr);
std::vector<const DexFile*> class_path;
if (oat_filename != nullptr) {
std::string error_msg;
std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename,
oat_filename,
nullptr,
nullptr,
false,
/*low_4gb*/false,
dex_filename,
&error_msg));
if (oat_file == nullptr) {
LOG(ERROR) << "Failed to open oat file from '" << oat_filename << "': " << error_msg;
return false;
}
class_loader.Assign(soa.Decode<mirror::ClassLoader>(
InstallOatFile(runtime, std::move(oat_file), &class_path)));
} else {
class_loader.Assign(nullptr); // Boot classloader. Just here for explicit documentation.
class_path = runtime->GetClassLinker()->GetBootClassPath();
}
if (!imt_file.empty()) {
return DumpImt(runtime, imt_file, class_loader);
}
if (dump_imt_stats) {
return DumpImtStats(runtime, class_path, class_loader);
}
LOG(FATAL) << "Should not reach here";
UNREACHABLE();
}
private:
static bool DumpImt(Runtime* runtime,
const std::string& imt_file,
Handle<mirror::ClassLoader> h_class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
std::vector<std::string> lines = ReadCommentedInputFromFile(imt_file);
std::unordered_set<std::string> prepared;
for (const std::string& line : lines) {
// A line should be either a class descriptor, in which case we will dump the complete IMT,
// or a class descriptor and an interface method, in which case we will lookup the method,
// determine its IMT slot, and check the class' IMT.
size_t first_space = line.find(' ');
if (first_space == std::string::npos) {
DumpIMTForClass(runtime, line, h_class_loader, &prepared);
} else {
DumpIMTForMethod(runtime,
line.substr(0, first_space),
line.substr(first_space + 1, std::string::npos),
h_class_loader,
&prepared);
}
std::cerr << std::endl;
}
return true;
}
static bool DumpImtStats(Runtime* runtime,
const std::vector<const DexFile*>& dex_files,
Handle<mirror::ClassLoader> h_class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
size_t without_imt = 0;
size_t with_imt = 0;
std::map<size_t, size_t> histogram;
ClassLinker* class_linker = runtime->GetClassLinker();
const PointerSize pointer_size = class_linker->GetImagePointerSize();
std::unordered_set<std::string> prepared;
Thread* self = Thread::Current();
StackHandleScope<1> scope(self);
MutableHandle<mirror::Class> h_klass(scope.NewHandle<mirror::Class>(nullptr));
for (const DexFile* dex_file : dex_files) {
for (uint32_t class_def_index = 0;
class_def_index != dex_file->NumClassDefs();
++class_def_index) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
const char* descriptor = dex_file->GetClassDescriptor(class_def);
h_klass.Assign(class_linker->FindClass(self, descriptor, h_class_loader));
if (h_klass == nullptr) {
std::cerr << "Warning: could not load " << descriptor << std::endl;
continue;
}
if (HasNoIMT(runtime, h_klass, pointer_size, &prepared)) {
without_imt++;
continue;
}
ImTable* im_table = PrepareAndGetImTable(runtime, h_klass, pointer_size, &prepared);
if (im_table == nullptr) {
// Should not happen, but accept.
without_imt++;
continue;
}
with_imt++;
for (size_t imt_index = 0; imt_index != ImTable::kSize; ++imt_index) {
ArtMethod* ptr = im_table->Get(imt_index, pointer_size);
if (ptr->IsRuntimeMethod()) {
if (ptr->IsImtUnimplementedMethod()) {
histogram[0]++;
} else {
ImtConflictTable* current_table = ptr->GetImtConflictTable(pointer_size);
histogram[current_table->NumEntries(pointer_size)]++;
}
} else {
histogram[1]++;
}
}
}
}
std::cerr << "IMT stats:"
<< std::endl << std::endl;
std::cerr << " " << with_imt << " classes with IMT."
<< std::endl << std::endl;
std::cerr << " " << without_imt << " classes without IMT (or copy from Object)."
<< std::endl << std::endl;
double sum_one = 0;
size_t count_one = 0;
std::cerr << " " << "IMT histogram" << std::endl;
for (auto& bucket : histogram) {
std::cerr << " " << bucket.first << " " << bucket.second << std::endl;
if (bucket.first > 0) {
sum_one += bucket.second * bucket.first;
count_one += bucket.second;
}
}
double count_zero = count_one + histogram[0];
std::cerr << " Stats:" << std::endl;
std::cerr << " Average depth (including empty): " << (sum_one / count_zero) << std::endl;
std::cerr << " Average depth (excluding empty): " << (sum_one / count_one) << std::endl;
return true;
}
// Return whether the given class has no IMT (or the one shared with java.lang.Object).
static bool HasNoIMT(Runtime* runtime,
Handle<mirror::Class> klass,
const PointerSize pointer_size,
std::unordered_set<std::string>* prepared)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (klass->IsObjectClass() || !klass->ShouldHaveImt()) {
return true;
}
if (klass->GetImt(pointer_size) == nullptr) {
PrepareClass(runtime, klass, prepared);
}
mirror::Class* object_class = mirror::Class::GetJavaLangClass()->GetSuperClass();
DCHECK(object_class->IsObjectClass());
bool result = klass->GetImt(pointer_size) == object_class->GetImt(pointer_size);
if (klass->GetIfTable()->Count() == 0) {
DCHECK(result);
}
return result;
}
static void PrintTable(ImtConflictTable* table, PointerSize pointer_size)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (table == nullptr) {
std::cerr << " <No IMT?>" << std::endl;
return;
}
size_t table_index = 0;
for (;;) {
ArtMethod* ptr = table->GetInterfaceMethod(table_index, pointer_size);
if (ptr == nullptr) {
return;
}
table_index++;
std::cerr << " " << ptr->PrettyMethod(true) << std::endl;
}
}
static ImTable* PrepareAndGetImTable(Runtime* runtime,
Thread* self,
Handle<mirror::ClassLoader> h_loader,
const std::string& class_name,
const PointerSize pointer_size,
mirror::Class** klass_out,
std::unordered_set<std::string>* prepared)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (class_name.empty()) {
return nullptr;
}
std::string descriptor;
if (class_name[0] == 'L') {
descriptor = class_name;
} else {
descriptor = DotToDescriptor(class_name.c_str());
}
mirror::Class* klass = runtime->GetClassLinker()->FindClass(self, descriptor.c_str(), h_loader);
if (klass == nullptr) {
self->ClearException();
std::cerr << "Did not find " << class_name << std::endl;
*klass_out = nullptr;
return nullptr;
}
StackHandleScope<1> scope(Thread::Current());
Handle<mirror::Class> h_klass = scope.NewHandle<mirror::Class>(klass);
ImTable* ret = PrepareAndGetImTable(runtime, h_klass, pointer_size, prepared);
*klass_out = h_klass.Get();
return ret;
}
static ImTable* PrepareAndGetImTable(Runtime* runtime,
Handle<mirror::Class> h_klass,
const PointerSize pointer_size,
std::unordered_set<std::string>* prepared)
REQUIRES_SHARED(Locks::mutator_lock_) {
PrepareClass(runtime, h_klass, prepared);
return h_klass->GetImt(pointer_size);
}
static void DumpIMTForClass(Runtime* runtime,
const std::string& class_name,
Handle<mirror::ClassLoader> h_loader,
std::unordered_set<std::string>* prepared)
REQUIRES_SHARED(Locks::mutator_lock_) {
const PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
mirror::Class* klass;
ImTable* imt = PrepareAndGetImTable(runtime,
Thread::Current(),
h_loader,
class_name,
pointer_size,
&klass,
prepared);
if (imt == nullptr) {
return;
}
std::cerr << class_name << std::endl << " IMT:" << std::endl;
for (size_t index = 0; index < ImTable::kSize; ++index) {
std::cerr << " " << index << ":" << std::endl;
ArtMethod* ptr = imt->Get(index, pointer_size);
if (ptr->IsRuntimeMethod()) {
if (ptr->IsImtUnimplementedMethod()) {
std::cerr << " <empty>" << std::endl;
} else {
ImtConflictTable* current_table = ptr->GetImtConflictTable(pointer_size);
PrintTable(current_table, pointer_size);
}
} else {
std::cerr << " " << ptr->PrettyMethod(true) << std::endl;
}
}
std::cerr << " Interfaces:" << std::endl;
// Run through iftable, find methods that slot here, see if they fit.
mirror::IfTable* if_table = klass->GetIfTable();
for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
mirror::Class* iface = if_table->GetInterface(i);
std::string iface_name;
std::cerr << " " << iface->GetDescriptor(&iface_name) << std::endl;
for (ArtMethod& iface_method : iface->GetVirtualMethods(pointer_size)) {
uint32_t class_hash, name_hash, signature_hash;
ImTable::GetImtHashComponents(&iface_method, &class_hash, &name_hash, &signature_hash);
uint32_t imt_slot = ImTable::GetImtIndex(&iface_method);
std::cerr << " " << iface_method.PrettyMethod(true)
<< " slot=" << imt_slot
<< std::hex
<< " class_hash=0x" << class_hash
<< " name_hash=0x" << name_hash
<< " signature_hash=0x" << signature_hash
<< std::dec
<< std::endl;
}
}
}
static void DumpIMTForMethod(Runtime* runtime,
const std::string& class_name,
const std::string& method,
Handle<mirror::ClassLoader> h_loader,
std::unordered_set<std::string>* prepared)
REQUIRES_SHARED(Locks::mutator_lock_) {
const PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
mirror::Class* klass;
ImTable* imt = PrepareAndGetImTable(runtime,
Thread::Current(),
h_loader,
class_name,
pointer_size,
&klass,
prepared);
if (imt == nullptr) {
return;
}
std::cerr << class_name << " <" << method << ">" << std::endl;
for (size_t index = 0; index < ImTable::kSize; ++index) {
ArtMethod* ptr = imt->Get(index, pointer_size);
if (ptr->IsRuntimeMethod()) {
if (ptr->IsImtUnimplementedMethod()) {
continue;
}
ImtConflictTable* current_table = ptr->GetImtConflictTable(pointer_size);
if (current_table == nullptr) {
continue;
}
size_t table_index = 0;
for (;;) {
ArtMethod* ptr2 = current_table->GetInterfaceMethod(table_index, pointer_size);
if (ptr2 == nullptr) {
break;
}
table_index++;
std::string p_name = ptr2->PrettyMethod(true);
if (android::base::StartsWith(p_name, method.c_str())) {
std::cerr << " Slot "
<< index
<< " ("
<< current_table->NumEntries(pointer_size)
<< ")"
<< std::endl;
PrintTable(current_table, pointer_size);
return;
}
}
} else {
std::string p_name = ptr->PrettyMethod(true);
if (android::base::StartsWith(p_name, method.c_str())) {
std::cerr << " Slot " << index << " (1)" << std::endl;
std::cerr << " " << p_name << std::endl;
} else {
// Run through iftable, find methods that slot here, see if they fit.
mirror::IfTable* if_table = klass->GetIfTable();
for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
mirror::Class* iface = if_table->GetInterface(i);
size_t num_methods = iface->NumDeclaredVirtualMethods();
if (num_methods > 0) {
for (ArtMethod& iface_method : iface->GetMethods(pointer_size)) {
if (ImTable::GetImtIndex(&iface_method) == index) {
std::string i_name = iface_method.PrettyMethod(true);
if (android::base::StartsWith(i_name, method.c_str())) {
std::cerr << " Slot " << index << " (1)" << std::endl;
std::cerr << " " << p_name << " (" << i_name << ")" << std::endl;
}
}
}
}
}
}
}
}
}
// Read lines from the given stream, dropping comments and empty lines
static std::vector<std::string> ReadCommentedInputStream(std::istream& in_stream) {
std::vector<std::string> output;
while (in_stream.good()) {
std::string dot;
std::getline(in_stream, dot);
if (android::base::StartsWith(dot, "#") || dot.empty()) {
continue;
}
output.push_back(dot);
}
return output;
}
// Read lines from the given file, dropping comments and empty lines.
static std::vector<std::string> ReadCommentedInputFromFile(const std::string& input_filename) {
std::unique_ptr<std::ifstream> input_file(new std::ifstream(input_filename, std::ifstream::in));
if (input_file.get() == nullptr) {
LOG(ERROR) << "Failed to open input file " << input_filename;
return std::vector<std::string>();
}
std::vector<std::string> result = ReadCommentedInputStream(*input_file);
input_file->close();
return result;
}
// Prepare a class, i.e., ensure it has a filled IMT. Will do so recursively for superclasses,
// and note in the given set that the work was done.
static void PrepareClass(Runtime* runtime,
Handle<mirror::Class> h_klass,
std::unordered_set<std::string>* done)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!h_klass->ShouldHaveImt()) {
return;
}
std::string name;
name = h_klass->GetDescriptor(&name);
if (done->find(name) != done->end()) {
return;
}
done->insert(name);
if (h_klass->HasSuperClass()) {
StackHandleScope<1> h(Thread::Current());
PrepareClass(runtime, h.NewHandle<mirror::Class>(h_klass->GetSuperClass()), done);
}
if (!h_klass->IsTemp()) {
runtime->GetClassLinker()->FillIMTAndConflictTables(h_klass.Get());
}
}
};
struct OatdumpArgs : public CmdlineArgs {
protected:
using Base = CmdlineArgs;
virtual ParseStatus ParseCustom(const StringPiece& option,
std::string* error_msg) OVERRIDE {
{
ParseStatus base_parse = Base::ParseCustom(option, error_msg);
if (base_parse != kParseUnknownArgument) {
return base_parse;
}
}
if (option.starts_with("--oat-file=")) {
oat_filename_ = option.substr(strlen("--oat-file=")).data();
} else if (option.starts_with("--dex-file=")) {
dex_filename_ = option.substr(strlen("--dex-file=")).data();
} else if (option.starts_with("--image=")) {
image_location_ = option.substr(strlen("--image=")).data();
} else if (option == "--no-dump:vmap") {
dump_vmap_ = false;
} else if (option =="--dump:code_info_stack_maps") {
dump_code_info_stack_maps_ = true;
} else if (option == "--no-disassemble") {
disassemble_code_ = false;
} else if (option =="--header-only") {
dump_header_only_ = true;
} else if (option.starts_with("--symbolize=")) {
oat_filename_ = option.substr(strlen("--symbolize=")).data();
symbolize_ = true;
} else if (option.starts_with("--only-keep-debug")) {
only_keep_debug_ = true;
} else if (option.starts_with("--class-filter=")) {
class_filter_ = option.substr(strlen("--class-filter=")).data();
} else if (option.starts_with("--method-filter=")) {
method_filter_ = option.substr(strlen("--method-filter=")).data();
} else if (option.starts_with("--list-classes")) {
list_classes_ = true;
} else if (option.starts_with("--list-methods")) {
list_methods_ = true;
} else if (option.starts_with("--export-dex-to=")) {
export_dex_location_ = option.substr(strlen("--export-dex-to=")).data();
} else if (option.starts_with("--addr2instr=")) {
if (!ParseUint(option.substr(strlen("--addr2instr=")).data(), &addr2instr_)) {
*error_msg = "Address conversion failed";
return kParseError;
}
} else if (option.starts_with("--app-image=")) {
app_image_ = option.substr(strlen("--app-image=")).data();
} else if (option.starts_with("--app-oat=")) {
app_oat_ = option.substr(strlen("--app-oat=")).data();
} else if (option.starts_with("--dump-imt=")) {
imt_dump_ = option.substr(strlen("--dump-imt=")).data();
} else if (option == "--dump-imt-stats") {
imt_stat_dump_ = true;
} else {
return kParseUnknownArgument;
}
return kParseOk;
}
virtual ParseStatus ParseChecks(std::string* error_msg) OVERRIDE {
// Infer boot image location from the image location if possible.
if (boot_image_location_ == nullptr) {
boot_image_location_ = image_location_;
}
// Perform the parent checks.
ParseStatus parent_checks = Base::ParseChecks(error_msg);
if (parent_checks != kParseOk) {
return parent_checks;
}
// Perform our own checks.
if (image_location_ == nullptr && oat_filename_ == nullptr) {
*error_msg = "Either --image or --oat-file must be specified";
return kParseError;
} else if (image_location_ != nullptr && oat_filename_ != nullptr) {
*error_msg = "Either --image or --oat-file must be specified but not both";
return kParseError;
}
return kParseOk;
}
virtual std::string GetUsage() const {
std::string usage;
usage +=
"Usage: oatdump [options] ...\n"
" Example: oatdump --image=$ANDROID_PRODUCT_OUT/system/framework/boot.art\n"
" Example: adb shell oatdump --image=/system/framework/boot.art\n"
"\n"
// Either oat-file or image is required.
" --oat-file=<file.oat>: specifies an input oat filename.\n"
" Example: --oat-file=/system/framework/boot.oat\n"
"\n"
" --image=<file.art>: specifies an input image location.\n"
" Example: --image=/system/framework/boot.art\n"
"\n"
" --app-image=<file.art>: specifies an input app image. Must also have a specified\n"
" boot image (with --image) and app oat file (with --app-oat).\n"
" Example: --app-image=app.art\n"
"\n"
" --app-oat=<file.odex>: specifies an input app oat.\n"
" Example: --app-oat=app.odex\n"
"\n";
usage += Base::GetUsage();
usage += // Optional.
" --no-dump:vmap may be used to disable vmap dumping.\n"
" Example: --no-dump:vmap\n"
"\n"
" --dump:code_info_stack_maps enables dumping of stack maps in CodeInfo sections.\n"
" Example: --dump:code_info_stack_maps\n"
"\n"
" --no-disassemble may be used to disable disassembly.\n"
" Example: --no-disassemble\n"
"\n"
" --header-only may be used to print only the oat header.\n"
" Example: --header-only\n"
"\n"
" --list-classes may be used to list target file classes (can be used with filters).\n"
" Example: --list-classes\n"
" Example: --list-classes --class-filter=com.example.foo\n"
"\n"
" --list-methods may be used to list target file methods (can be used with filters).\n"
" Example: --list-methods\n"
" Example: --list-methods --class-filter=com.example --method-filter=foo\n"
"\n"
" --symbolize=<file.oat>: output a copy of file.oat with elf symbols included.\n"
" Example: --symbolize=/system/framework/boot.oat\n"
"\n"
" --only-keep-debug<file.oat>: Modifies the behaviour of --symbolize so that\n"
" .rodata and .text sections are omitted in the output file to save space.\n"
" Example: --symbolize=/system/framework/boot.oat --only-keep-debug\n"
"\n"
" --class-filter=<class name>: only dumps classes that contain the filter.\n"
" Example: --class-filter=com.example.foo\n"
"\n"
" --method-filter=<method name>: only dumps methods that contain the filter.\n"
" Example: --method-filter=foo\n"
"\n"
" --export-dex-to=<directory>: may be used to export oat embedded dex files.\n"
" Example: --export-dex-to=/data/local/tmp\n"
"\n"
" --addr2instr=<address>: output matching method disassembled code from relative\n"
" address (e.g. PC from crash dump)\n"
" Example: --addr2instr=0x00001a3b\n"
"\n"
" --dump-imt=<file.txt>: output IMT collisions (if any) for the given receiver\n"
" types and interface methods in the given file. The file\n"
" is read line-wise, where each line should either be a class\n"
" name or descriptor, or a class name/descriptor and a prefix\n"
" of a complete method name (separated by a whitespace).\n"
" Example: --dump-imt=imt.txt\n"
"\n"
" --dump-imt-stats: output IMT statistics for the given boot image\n"
" Example: --dump-imt-stats"
"\n";
return usage;
}
public:
const char* oat_filename_ = nullptr;
const char* dex_filename_ = nullptr;
const char* class_filter_ = "";
const char* method_filter_ = "";
const char* image_location_ = nullptr;
std::string elf_filename_prefix_;
std::string imt_dump_;
bool dump_vmap_ = true;
bool dump_code_info_stack_maps_ = false;
bool disassemble_code_ = true;
bool symbolize_ = false;
bool only_keep_debug_ = false;
bool list_classes_ = false;
bool list_methods_ = false;
bool dump_header_only_ = false;
bool imt_stat_dump_ = false;
uint32_t addr2instr_ = 0;
const char* export_dex_location_ = nullptr;
const char* app_image_ = nullptr;
const char* app_oat_ = nullptr;
};
struct OatdumpMain : public CmdlineMain<OatdumpArgs> {
virtual bool NeedsRuntime() OVERRIDE {
CHECK(args_ != nullptr);
// If we are only doing the oat file, disable absolute_addresses. Keep them for image dumping.
bool absolute_addresses = (args_->oat_filename_ == nullptr);
oat_dumper_options_.reset(new OatDumperOptions(
args_->dump_vmap_,
args_->dump_code_info_stack_maps_,
args_->disassemble_code_,
absolute_addresses,
args_->class_filter_,
args_->method_filter_,
args_->list_classes_,
args_->list_methods_,
args_->dump_header_only_,
args_->export_dex_location_,
args_->app_image_,
args_->app_oat_,
args_->addr2instr_));
return (args_->boot_image_location_ != nullptr ||
args_->image_location_ != nullptr ||
!args_->imt_dump_.empty()) &&
!args_->symbolize_;
}
virtual bool ExecuteWithoutRuntime() OVERRIDE {
CHECK(args_ != nullptr);
CHECK(args_->oat_filename_ != nullptr);
MemMap::Init();
if (args_->symbolize_) {
// ELF has special kind of section called SHT_NOBITS which allows us to create
// sections which exist but their data is omitted from the ELF file to save space.
// This is what "strip --only-keep-debug" does when it creates separate ELF file
// with only debug data. We use it in similar way to exclude .rodata and .text.
bool no_bits = args_->only_keep_debug_;
return SymbolizeOat(args_->oat_filename_, args_->dex_filename_, args_->output_name_, no_bits)
== EXIT_SUCCESS;
} else {
return DumpOat(nullptr,
args_->oat_filename_,
args_->dex_filename_,
oat_dumper_options_.get(),
args_->os_) == EXIT_SUCCESS;
}
}
virtual bool ExecuteWithRuntime(Runtime* runtime) {
CHECK(args_ != nullptr);
if (!args_->imt_dump_.empty() || args_->imt_stat_dump_) {
return IMTDumper::Dump(runtime,
args_->imt_dump_,
args_->imt_stat_dump_,
args_->oat_filename_,
args_->dex_filename_);
}
if (args_->oat_filename_ != nullptr) {
return DumpOat(runtime,
args_->oat_filename_,
args_->dex_filename_,
oat_dumper_options_.get(),
args_->os_) == EXIT_SUCCESS;
}
return DumpImages(runtime, oat_dumper_options_.get(), args_->os_) == EXIT_SUCCESS;
}
std::unique_ptr<OatDumperOptions> oat_dumper_options_;
};
} // namespace art
int main(int argc, char** argv) {
// Output all logging to stderr.
android::base::SetLogger(android::base::StderrLogger);
art::OatdumpMain main;
return main.Main(argc, argv);
}