blob: c92cf4c048e094022819795aeffa93c40e514cb4 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_
#define ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_
#include <deque>
#include <utility>
#include <vector>
#include "arch/mips64/instruction_set_features_mips64.h"
#include "base/arena_containers.h"
#include "base/enums.h"
#include "base/macros.h"
#include "constants_mips64.h"
#include "globals.h"
#include "managed_register_mips64.h"
#include "offsets.h"
#include "utils/assembler.h"
#include "utils/jni_macro_assembler.h"
#include "utils/label.h"
namespace art {
namespace mips64 {
enum LoadConst64Path {
kLoadConst64PathZero = 0x0,
kLoadConst64PathOri = 0x1,
kLoadConst64PathDaddiu = 0x2,
kLoadConst64PathLui = 0x4,
kLoadConst64PathLuiOri = 0x8,
kLoadConst64PathOriDahi = 0x10,
kLoadConst64PathOriDati = 0x20,
kLoadConst64PathLuiDahi = 0x40,
kLoadConst64PathLuiDati = 0x80,
kLoadConst64PathDaddiuDsrlX = 0x100,
kLoadConst64PathOriDsllX = 0x200,
kLoadConst64PathDaddiuDsllX = 0x400,
kLoadConst64PathLuiOriDsllX = 0x800,
kLoadConst64PathOriDsllXOri = 0x1000,
kLoadConst64PathDaddiuDsllXOri = 0x2000,
kLoadConst64PathDaddiuDahi = 0x4000,
kLoadConst64PathDaddiuDati = 0x8000,
kLoadConst64PathDinsu1 = 0x10000,
kLoadConst64PathDinsu2 = 0x20000,
kLoadConst64PathCatchAll = 0x40000,
kLoadConst64PathAllPaths = 0x7ffff,
};
template <typename Asm>
void TemplateLoadConst32(Asm* a, GpuRegister rd, int32_t value) {
if (IsUint<16>(value)) {
// Use OR with (unsigned) immediate to encode 16b unsigned int.
a->Ori(rd, ZERO, value);
} else if (IsInt<16>(value)) {
// Use ADD with (signed) immediate to encode 16b signed int.
a->Addiu(rd, ZERO, value);
} else {
// Set 16 most significant bits of value. The "lui" instruction
// also clears the 16 least significant bits to zero.
a->Lui(rd, value >> 16);
if (value & 0xFFFF) {
// If the 16 least significant bits are non-zero, set them
// here.
a->Ori(rd, rd, value);
}
}
}
static inline int InstrCountForLoadReplicatedConst32(int64_t value) {
int32_t x = Low32Bits(value);
int32_t y = High32Bits(value);
if (x == y) {
return (IsUint<16>(x) || IsInt<16>(x) || ((x & 0xFFFF) == 0 && IsInt<16>(value >> 16))) ? 2 : 3;
}
return INT_MAX;
}
template <typename Asm, typename Rtype, typename Vtype>
void TemplateLoadConst64(Asm* a, Rtype rd, Vtype value) {
int bit31 = (value & UINT64_C(0x80000000)) != 0;
int rep32_count = InstrCountForLoadReplicatedConst32(value);
// Loads with 1 instruction.
if (IsUint<16>(value)) {
// 64-bit value can be loaded as an unsigned 16-bit number.
a->RecordLoadConst64Path(kLoadConst64PathOri);
a->Ori(rd, ZERO, value);
} else if (IsInt<16>(value)) {
// 64-bit value can be loaded as an signed 16-bit number.
a->RecordLoadConst64Path(kLoadConst64PathDaddiu);
a->Daddiu(rd, ZERO, value);
} else if ((value & 0xFFFF) == 0 && IsInt<16>(value >> 16)) {
// 64-bit value can be loaded as an signed 32-bit number which has all
// of its 16 least significant bits set to zero.
a->RecordLoadConst64Path(kLoadConst64PathLui);
a->Lui(rd, value >> 16);
} else if (IsInt<32>(value)) {
// Loads with 2 instructions.
// 64-bit value can be loaded as an signed 32-bit number which has some
// or all of its 16 least significant bits set to one.
a->RecordLoadConst64Path(kLoadConst64PathLuiOri);
a->Lui(rd, value >> 16);
a->Ori(rd, rd, value);
} else if ((value & 0xFFFF0000) == 0 && IsInt<16>(value >> 32)) {
// 64-bit value which consists of an unsigned 16-bit value in its
// least significant 32-bits, and a signed 16-bit value in its
// most significant 32-bits.
a->RecordLoadConst64Path(kLoadConst64PathOriDahi);
a->Ori(rd, ZERO, value);
a->Dahi(rd, value >> 32);
} else if ((value & UINT64_C(0xFFFFFFFF0000)) == 0) {
// 64-bit value which consists of an unsigned 16-bit value in its
// least significant 48-bits, and a signed 16-bit value in its
// most significant 16-bits.
a->RecordLoadConst64Path(kLoadConst64PathOriDati);
a->Ori(rd, ZERO, value);
a->Dati(rd, value >> 48);
} else if ((value & 0xFFFF) == 0 &&
(-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) {
// 16 LSBs (Least Significant Bits) all set to zero.
// 48 MSBs (Most Significant Bits) hold a signed 32-bit value.
a->RecordLoadConst64Path(kLoadConst64PathLuiDahi);
a->Lui(rd, value >> 16);
a->Dahi(rd, (value >> 32) + bit31);
} else if ((value & 0xFFFF) == 0 && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) {
// 16 LSBs all set to zero.
// 48 MSBs hold a signed value which can't be represented by signed
// 32-bit number, and the middle 16 bits are all zero, or all one.
a->RecordLoadConst64Path(kLoadConst64PathLuiDati);
a->Lui(rd, value >> 16);
a->Dati(rd, (value >> 48) + bit31);
} else if (IsInt<16>(static_cast<int32_t>(value)) &&
(-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) {
// 32 LSBs contain an unsigned 16-bit number.
// 32 MSBs contain a signed 16-bit number.
a->RecordLoadConst64Path(kLoadConst64PathDaddiuDahi);
a->Daddiu(rd, ZERO, value);
a->Dahi(rd, (value >> 32) + bit31);
} else if (IsInt<16>(static_cast<int32_t>(value)) &&
((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) {
// 48 LSBs contain an unsigned 16-bit number.
// 16 MSBs contain a signed 16-bit number.
a->RecordLoadConst64Path(kLoadConst64PathDaddiuDati);
a->Daddiu(rd, ZERO, value);
a->Dati(rd, (value >> 48) + bit31);
} else if (IsPowerOfTwo(value + UINT64_C(1))) {
// 64-bit values which have their "n" MSBs set to one, and their
// "64-n" LSBs set to zero. "n" must meet the restrictions 0 < n < 64.
int shift_cnt = 64 - CTZ(value + UINT64_C(1));
a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsrlX);
a->Daddiu(rd, ZERO, -1);
if (shift_cnt < 32) {
a->Dsrl(rd, rd, shift_cnt);
} else {
a->Dsrl32(rd, rd, shift_cnt & 31);
}
} else {
int shift_cnt = CTZ(value);
int64_t tmp = value >> shift_cnt;
a->RecordLoadConst64Path(kLoadConst64PathOriDsllX);
if (IsUint<16>(tmp)) {
// Value can be computed by loading a 16-bit unsigned value, and
// then shifting left.
a->Ori(rd, ZERO, tmp);
if (shift_cnt < 32) {
a->Dsll(rd, rd, shift_cnt);
} else {
a->Dsll32(rd, rd, shift_cnt & 31);
}
} else if (IsInt<16>(tmp)) {
// Value can be computed by loading a 16-bit signed value, and
// then shifting left.
a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllX);
a->Daddiu(rd, ZERO, tmp);
if (shift_cnt < 32) {
a->Dsll(rd, rd, shift_cnt);
} else {
a->Dsll32(rd, rd, shift_cnt & 31);
}
} else if (rep32_count < 3) {
// Value being loaded has 32 LSBs equal to the 32 MSBs, and the
// value loaded into the 32 LSBs can be loaded with a single
// MIPS instruction.
a->LoadConst32(rd, value);
a->Dinsu(rd, rd, 32, 32);
a->RecordLoadConst64Path(kLoadConst64PathDinsu1);
} else if (IsInt<32>(tmp)) {
// Loads with 3 instructions.
// Value can be computed by loading a 32-bit signed value, and
// then shifting left.
a->RecordLoadConst64Path(kLoadConst64PathLuiOriDsllX);
a->Lui(rd, tmp >> 16);
a->Ori(rd, rd, tmp);
if (shift_cnt < 32) {
a->Dsll(rd, rd, shift_cnt);
} else {
a->Dsll32(rd, rd, shift_cnt & 31);
}
} else {
shift_cnt = 16 + CTZ(value >> 16);
tmp = value >> shift_cnt;
if (IsUint<16>(tmp)) {
// Value can be computed by loading a 16-bit unsigned value,
// shifting left, and "or"ing in another 16-bit unsigned value.
a->RecordLoadConst64Path(kLoadConst64PathOriDsllXOri);
a->Ori(rd, ZERO, tmp);
if (shift_cnt < 32) {
a->Dsll(rd, rd, shift_cnt);
} else {
a->Dsll32(rd, rd, shift_cnt & 31);
}
a->Ori(rd, rd, value);
} else if (IsInt<16>(tmp)) {
// Value can be computed by loading a 16-bit signed value,
// shifting left, and "or"ing in a 16-bit unsigned value.
a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllXOri);
a->Daddiu(rd, ZERO, tmp);
if (shift_cnt < 32) {
a->Dsll(rd, rd, shift_cnt);
} else {
a->Dsll32(rd, rd, shift_cnt & 31);
}
a->Ori(rd, rd, value);
} else if (rep32_count < 4) {
// Value being loaded has 32 LSBs equal to the 32 MSBs, and the
// value in the 32 LSBs requires 2 MIPS instructions to load.
a->LoadConst32(rd, value);
a->Dinsu(rd, rd, 32, 32);
a->RecordLoadConst64Path(kLoadConst64PathDinsu2);
} else {
// Loads with 3-4 instructions.
// Catch-all case to get any other 64-bit values which aren't
// handled by special cases above.
uint64_t tmp2 = value;
a->RecordLoadConst64Path(kLoadConst64PathCatchAll);
a->LoadConst32(rd, value);
if (bit31) {
tmp2 += UINT64_C(0x100000000);
}
if (((tmp2 >> 32) & 0xFFFF) != 0) {
a->Dahi(rd, tmp2 >> 32);
}
if (tmp2 & UINT64_C(0x800000000000)) {
tmp2 += UINT64_C(0x1000000000000);
}
if ((tmp2 >> 48) != 0) {
a->Dati(rd, tmp2 >> 48);
}
}
}
}
}
static constexpr size_t kMips64HalfwordSize = 2;
static constexpr size_t kMips64WordSize = 4;
static constexpr size_t kMips64DoublewordSize = 8;
enum LoadOperandType {
kLoadSignedByte,
kLoadUnsignedByte,
kLoadSignedHalfword,
kLoadUnsignedHalfword,
kLoadWord,
kLoadUnsignedWord,
kLoadDoubleword,
kLoadQuadword
};
enum StoreOperandType {
kStoreByte,
kStoreHalfword,
kStoreWord,
kStoreDoubleword,
kStoreQuadword
};
// Used to test the values returned by ClassS/ClassD.
enum FPClassMaskType {
kSignalingNaN = 0x001,
kQuietNaN = 0x002,
kNegativeInfinity = 0x004,
kNegativeNormal = 0x008,
kNegativeSubnormal = 0x010,
kNegativeZero = 0x020,
kPositiveInfinity = 0x040,
kPositiveNormal = 0x080,
kPositiveSubnormal = 0x100,
kPositiveZero = 0x200,
};
class Mips64Label : public Label {
public:
Mips64Label() : prev_branch_id_plus_one_(0) {}
Mips64Label(Mips64Label&& src)
: Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {}
private:
uint32_t prev_branch_id_plus_one_; // To get distance from preceding branch, if any.
friend class Mips64Assembler;
DISALLOW_COPY_AND_ASSIGN(Mips64Label);
};
// Assembler literal is a value embedded in code, retrieved using a PC-relative load.
class Literal {
public:
static constexpr size_t kMaxSize = 8;
Literal(uint32_t size, const uint8_t* data)
: label_(), size_(size) {
DCHECK_LE(size, Literal::kMaxSize);
memcpy(data_, data, size);
}
template <typename T>
T GetValue() const {
DCHECK_EQ(size_, sizeof(T));
T value;
memcpy(&value, data_, sizeof(T));
return value;
}
uint32_t GetSize() const {
return size_;
}
const uint8_t* GetData() const {
return data_;
}
Mips64Label* GetLabel() {
return &label_;
}
const Mips64Label* GetLabel() const {
return &label_;
}
private:
Mips64Label label_;
const uint32_t size_;
uint8_t data_[kMaxSize];
DISALLOW_COPY_AND_ASSIGN(Literal);
};
// Jump table: table of labels emitted after the code and before the literals. Similar to literals.
class JumpTable {
public:
explicit JumpTable(std::vector<Mips64Label*>&& labels)
: label_(), labels_(std::move(labels)) {
}
size_t GetSize() const {
return labels_.size() * sizeof(uint32_t);
}
const std::vector<Mips64Label*>& GetData() const {
return labels_;
}
Mips64Label* GetLabel() {
return &label_;
}
const Mips64Label* GetLabel() const {
return &label_;
}
private:
Mips64Label label_;
std::vector<Mips64Label*> labels_;
DISALLOW_COPY_AND_ASSIGN(JumpTable);
};
// Slowpath entered when Thread::Current()->_exception is non-null.
class Mips64ExceptionSlowPath {
public:
explicit Mips64ExceptionSlowPath(Mips64ManagedRegister scratch, size_t stack_adjust)
: scratch_(scratch), stack_adjust_(stack_adjust) {}
Mips64ExceptionSlowPath(Mips64ExceptionSlowPath&& src)
: scratch_(src.scratch_),
stack_adjust_(src.stack_adjust_),
exception_entry_(std::move(src.exception_entry_)) {}
private:
Mips64Label* Entry() { return &exception_entry_; }
const Mips64ManagedRegister scratch_;
const size_t stack_adjust_;
Mips64Label exception_entry_;
friend class Mips64Assembler;
DISALLOW_COPY_AND_ASSIGN(Mips64ExceptionSlowPath);
};
class Mips64Assembler FINAL : public Assembler, public JNIMacroAssembler<PointerSize::k64> {
public:
using JNIBase = JNIMacroAssembler<PointerSize::k64>;
explicit Mips64Assembler(ArenaAllocator* arena,
const Mips64InstructionSetFeatures* instruction_set_features = nullptr)
: Assembler(arena),
overwriting_(false),
overwrite_location_(0),
literals_(arena->Adapter(kArenaAllocAssembler)),
long_literals_(arena->Adapter(kArenaAllocAssembler)),
jump_tables_(arena->Adapter(kArenaAllocAssembler)),
last_position_adjustment_(0),
last_old_position_(0),
last_branch_id_(0),
has_msa_(instruction_set_features != nullptr ? instruction_set_features->HasMsa() : false) {
cfi().DelayEmittingAdvancePCs();
}
virtual ~Mips64Assembler() {
for (auto& branch : branches_) {
CHECK(branch.IsResolved());
}
}
size_t CodeSize() const OVERRIDE { return Assembler::CodeSize(); }
DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); }
// Emit Machine Instructions.
void Addu(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Addiu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Daddu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
void Daddiu(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
void Subu(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Dsubu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
void MulR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void MuhR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void DivR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void ModR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void DivuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void ModuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Dmul(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
void Dmuh(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
void Ddiv(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
void Dmod(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
void Ddivu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
void Dmodu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64
void And(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Andi(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Or(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Ori(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Xor(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Xori(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Nor(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Bitswap(GpuRegister rd, GpuRegister rt);
void Dbitswap(GpuRegister rd, GpuRegister rt); // MIPS64
void Seb(GpuRegister rd, GpuRegister rt);
void Seh(GpuRegister rd, GpuRegister rt);
void Dsbh(GpuRegister rd, GpuRegister rt); // MIPS64
void Dshd(GpuRegister rd, GpuRegister rt); // MIPS64
void Dext(GpuRegister rs, GpuRegister rt, int pos, int size); // MIPS64
void Dinsu(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64
void Lsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne);
void Dlsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne); // MIPS64
void Wsbh(GpuRegister rd, GpuRegister rt);
void Sc(GpuRegister rt, GpuRegister base, int16_t imm9 = 0);
void Scd(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); // MIPS64
void Ll(GpuRegister rt, GpuRegister base, int16_t imm9 = 0);
void Lld(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); // MIPS64
void Sll(GpuRegister rd, GpuRegister rt, int shamt);
void Srl(GpuRegister rd, GpuRegister rt, int shamt);
void Rotr(GpuRegister rd, GpuRegister rt, int shamt);
void Sra(GpuRegister rd, GpuRegister rt, int shamt);
void Sllv(GpuRegister rd, GpuRegister rt, GpuRegister rs);
void Srlv(GpuRegister rd, GpuRegister rt, GpuRegister rs);
void Rotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs);
void Srav(GpuRegister rd, GpuRegister rt, GpuRegister rs);
void Dsll(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
void Dsrl(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
void Drotr(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
void Dsra(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
void Dsll32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
void Dsrl32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
void Drotr32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
void Dsra32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64
void Dsllv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64
void Dsrlv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64
void Drotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64
void Dsrav(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64
void Lb(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Lh(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Lw(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Ld(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
void Lbu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Lhu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Lwu(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
void Lwpc(GpuRegister rs, uint32_t imm19);
void Lwupc(GpuRegister rs, uint32_t imm19); // MIPS64
void Ldpc(GpuRegister rs, uint32_t imm18); // MIPS64
void Lui(GpuRegister rt, uint16_t imm16);
void Aui(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Daui(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
void Dahi(GpuRegister rs, uint16_t imm16); // MIPS64
void Dati(GpuRegister rs, uint16_t imm16); // MIPS64
void Sync(uint32_t stype);
void Sb(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Sh(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Sw(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Sd(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64
void Slt(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Sltu(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Slti(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Sltiu(GpuRegister rt, GpuRegister rs, uint16_t imm16);
void Seleqz(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Selnez(GpuRegister rd, GpuRegister rs, GpuRegister rt);
void Clz(GpuRegister rd, GpuRegister rs);
void Clo(GpuRegister rd, GpuRegister rs);
void Dclz(GpuRegister rd, GpuRegister rs); // MIPS64
void Dclo(GpuRegister rd, GpuRegister rs); // MIPS64
void Jalr(GpuRegister rd, GpuRegister rs);
void Jalr(GpuRegister rs);
void Jr(GpuRegister rs);
void Auipc(GpuRegister rs, uint16_t imm16);
void Addiupc(GpuRegister rs, uint32_t imm19);
void Bc(uint32_t imm26);
void Balc(uint32_t imm26);
void Jic(GpuRegister rt, uint16_t imm16);
void Jialc(GpuRegister rt, uint16_t imm16);
void Bltc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
void Bltzc(GpuRegister rt, uint16_t imm16);
void Bgtzc(GpuRegister rt, uint16_t imm16);
void Bgec(GpuRegister rs, GpuRegister rt, uint16_t imm16);
void Bgezc(GpuRegister rt, uint16_t imm16);
void Blezc(GpuRegister rt, uint16_t imm16);
void Bltuc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
void Bgeuc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
void Beqc(GpuRegister rs, GpuRegister rt, uint16_t imm16);
void Bnec(GpuRegister rs, GpuRegister rt, uint16_t imm16);
void Beqzc(GpuRegister rs, uint32_t imm21);
void Bnezc(GpuRegister rs, uint32_t imm21);
void Bc1eqz(FpuRegister ft, uint16_t imm16);
void Bc1nez(FpuRegister ft, uint16_t imm16);
void AddS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void SubS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void MulS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void DivS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void AddD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void SubD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void MulD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void DivD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void SqrtS(FpuRegister fd, FpuRegister fs);
void SqrtD(FpuRegister fd, FpuRegister fs);
void AbsS(FpuRegister fd, FpuRegister fs);
void AbsD(FpuRegister fd, FpuRegister fs);
void MovS(FpuRegister fd, FpuRegister fs);
void MovD(FpuRegister fd, FpuRegister fs);
void NegS(FpuRegister fd, FpuRegister fs);
void NegD(FpuRegister fd, FpuRegister fs);
void RoundLS(FpuRegister fd, FpuRegister fs);
void RoundLD(FpuRegister fd, FpuRegister fs);
void RoundWS(FpuRegister fd, FpuRegister fs);
void RoundWD(FpuRegister fd, FpuRegister fs);
void TruncLS(FpuRegister fd, FpuRegister fs);
void TruncLD(FpuRegister fd, FpuRegister fs);
void TruncWS(FpuRegister fd, FpuRegister fs);
void TruncWD(FpuRegister fd, FpuRegister fs);
void CeilLS(FpuRegister fd, FpuRegister fs);
void CeilLD(FpuRegister fd, FpuRegister fs);
void CeilWS(FpuRegister fd, FpuRegister fs);
void CeilWD(FpuRegister fd, FpuRegister fs);
void FloorLS(FpuRegister fd, FpuRegister fs);
void FloorLD(FpuRegister fd, FpuRegister fs);
void FloorWS(FpuRegister fd, FpuRegister fs);
void FloorWD(FpuRegister fd, FpuRegister fs);
void SelS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void SelD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void RintS(FpuRegister fd, FpuRegister fs);
void RintD(FpuRegister fd, FpuRegister fs);
void ClassS(FpuRegister fd, FpuRegister fs);
void ClassD(FpuRegister fd, FpuRegister fs);
void MinS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void MinD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void MaxS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void MaxD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUnS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpEqS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUeqS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpLtS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUltS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpLeS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUleS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpOrS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUneS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpNeS(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUnD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpEqD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUeqD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpLtD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUltD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpLeD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUleD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpOrD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpUneD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void CmpNeD(FpuRegister fd, FpuRegister fs, FpuRegister ft);
void Cvtsw(FpuRegister fd, FpuRegister fs);
void Cvtdw(FpuRegister fd, FpuRegister fs);
void Cvtsd(FpuRegister fd, FpuRegister fs);
void Cvtds(FpuRegister fd, FpuRegister fs);
void Cvtsl(FpuRegister fd, FpuRegister fs);
void Cvtdl(FpuRegister fd, FpuRegister fs);
void Mfc1(GpuRegister rt, FpuRegister fs);
void Mfhc1(GpuRegister rt, FpuRegister fs);
void Mtc1(GpuRegister rt, FpuRegister fs);
void Mthc1(GpuRegister rt, FpuRegister fs);
void Dmfc1(GpuRegister rt, FpuRegister fs); // MIPS64
void Dmtc1(GpuRegister rt, FpuRegister fs); // MIPS64
void Lwc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
void Ldc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
void Swc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
void Sdc1(FpuRegister ft, GpuRegister rs, uint16_t imm16);
void Break();
void Nop();
void Move(GpuRegister rd, GpuRegister rs);
void Clear(GpuRegister rd);
void Not(GpuRegister rd, GpuRegister rs);
// MSA instructions.
void AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void Ffint_sW(VectorRegister wd, VectorRegister ws);
void Ffint_sD(VectorRegister wd, VectorRegister ws);
void Ftint_sW(VectorRegister wd, VectorRegister ws);
void Ftint_sD(VectorRegister wd, VectorRegister ws);
void SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
// Immediate shift instructions, where shamtN denotes shift amount (must be between 0 and 2^N-1).
void SlliB(VectorRegister wd, VectorRegister ws, int shamt3);
void SlliH(VectorRegister wd, VectorRegister ws, int shamt4);
void SlliW(VectorRegister wd, VectorRegister ws, int shamt5);
void SlliD(VectorRegister wd, VectorRegister ws, int shamt6);
void SraiB(VectorRegister wd, VectorRegister ws, int shamt3);
void SraiH(VectorRegister wd, VectorRegister ws, int shamt4);
void SraiW(VectorRegister wd, VectorRegister ws, int shamt5);
void SraiD(VectorRegister wd, VectorRegister ws, int shamt6);
void SrliB(VectorRegister wd, VectorRegister ws, int shamt3);
void SrliH(VectorRegister wd, VectorRegister ws, int shamt4);
void SrliW(VectorRegister wd, VectorRegister ws, int shamt5);
void SrliD(VectorRegister wd, VectorRegister ws, int shamt6);
void MoveV(VectorRegister wd, VectorRegister ws);
void SplatiB(VectorRegister wd, VectorRegister ws, int n4);
void SplatiH(VectorRegister wd, VectorRegister ws, int n3);
void SplatiW(VectorRegister wd, VectorRegister ws, int n2);
void SplatiD(VectorRegister wd, VectorRegister ws, int n1);
void FillB(VectorRegister wd, GpuRegister rs);
void FillH(VectorRegister wd, GpuRegister rs);
void FillW(VectorRegister wd, GpuRegister rs);
void FillD(VectorRegister wd, GpuRegister rs);
void LdiB(VectorRegister wd, int imm8);
void LdiH(VectorRegister wd, int imm10);
void LdiW(VectorRegister wd, int imm10);
void LdiD(VectorRegister wd, int imm10);
void LdB(VectorRegister wd, GpuRegister rs, int offset);
void LdH(VectorRegister wd, GpuRegister rs, int offset);
void LdW(VectorRegister wd, GpuRegister rs, int offset);
void LdD(VectorRegister wd, GpuRegister rs, int offset);
void StB(VectorRegister wd, GpuRegister rs, int offset);
void StH(VectorRegister wd, GpuRegister rs, int offset);
void StW(VectorRegister wd, GpuRegister rs, int offset);
void StD(VectorRegister wd, GpuRegister rs, int offset);
void IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
void IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
// Higher level composite instructions.
int InstrCountForLoadReplicatedConst32(int64_t);
void LoadConst32(GpuRegister rd, int32_t value);
void LoadConst64(GpuRegister rd, int64_t value); // MIPS64
// This function is only used for testing purposes.
void RecordLoadConst64Path(int value);
void Addiu32(GpuRegister rt, GpuRegister rs, int32_t value);
void Daddiu64(GpuRegister rt, GpuRegister rs, int64_t value, GpuRegister rtmp = AT); // MIPS64
//
// Heap poisoning.
//
// Poison a heap reference contained in `src` and store it in `dst`.
void PoisonHeapReference(GpuRegister dst, GpuRegister src) {
// dst = -src.
// Negate the 32-bit ref.
Dsubu(dst, ZERO, src);
// And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64.
Dext(dst, dst, 0, 32);
}
// Poison a heap reference contained in `reg`.
void PoisonHeapReference(GpuRegister reg) {
// reg = -reg.
PoisonHeapReference(reg, reg);
}
// Unpoison a heap reference contained in `reg`.
void UnpoisonHeapReference(GpuRegister reg) {
// reg = -reg.
// Negate the 32-bit ref.
Dsubu(reg, ZERO, reg);
// And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64.
Dext(reg, reg, 0, 32);
}
// Poison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybePoisonHeapReference(GpuRegister reg) {
if (kPoisonHeapReferences) {
PoisonHeapReference(reg);
}
}
// Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
void MaybeUnpoisonHeapReference(GpuRegister reg) {
if (kPoisonHeapReferences) {
UnpoisonHeapReference(reg);
}
}
void Bind(Label* label) OVERRIDE {
Bind(down_cast<Mips64Label*>(label));
}
void Jump(Label* label ATTRIBUTE_UNUSED) OVERRIDE {
UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS64";
}
void Bind(Mips64Label* label);
// Don't warn about a different virtual Bind/Jump in the base class.
using JNIBase::Bind;
using JNIBase::Jump;
// Create a new label that can be used with Jump/Bind calls.
std::unique_ptr<JNIMacroLabel> CreateLabel() OVERRIDE {
LOG(FATAL) << "Not implemented on MIPS64";
UNREACHABLE();
}
// Emit an unconditional jump to the label.
void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
LOG(FATAL) << "Not implemented on MIPS64";
UNREACHABLE();
}
// Emit a conditional jump to the label by applying a unary condition test to the register.
void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED,
JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED,
ManagedRegister test ATTRIBUTE_UNUSED) OVERRIDE {
LOG(FATAL) << "Not implemented on MIPS64";
UNREACHABLE();
}
// Code at this offset will serve as the target for the Jump call.
void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
LOG(FATAL) << "Not implemented on MIPS64";
UNREACHABLE();
}
// Create a new literal with a given value.
// NOTE: Force the template parameter to be explicitly specified.
template <typename T>
Literal* NewLiteral(typename Identity<T>::type value) {
static_assert(std::is_integral<T>::value, "T must be an integral type.");
return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value));
}
// Load label address using PC-relative loads. To be used with data labels in the literal /
// jump table area only and not with regular code labels.
void LoadLabelAddress(GpuRegister dest_reg, Mips64Label* label);
// Create a new literal with the given data.
Literal* NewLiteral(size_t size, const uint8_t* data);
// Load literal using PC-relative loads.
void LoadLiteral(GpuRegister dest_reg, LoadOperandType load_type, Literal* literal);
// Create a jump table for the given labels that will be emitted when finalizing.
// When the table is emitted, offsets will be relative to the location of the table.
// The table location is determined by the location of its label (the label precedes
// the table data) and should be loaded using LoadLabelAddress().
JumpTable* CreateJumpTable(std::vector<Mips64Label*>&& labels);
void Bc(Mips64Label* label);
void Balc(Mips64Label* label);
void Bltc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
void Bltzc(GpuRegister rt, Mips64Label* label);
void Bgtzc(GpuRegister rt, Mips64Label* label);
void Bgec(GpuRegister rs, GpuRegister rt, Mips64Label* label);
void Bgezc(GpuRegister rt, Mips64Label* label);
void Blezc(GpuRegister rt, Mips64Label* label);
void Bltuc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
void Bgeuc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
void Beqc(GpuRegister rs, GpuRegister rt, Mips64Label* label);
void Bnec(GpuRegister rs, GpuRegister rt, Mips64Label* label);
void Beqzc(GpuRegister rs, Mips64Label* label);
void Bnezc(GpuRegister rs, Mips64Label* label);
void Bc1eqz(FpuRegister ft, Mips64Label* label);
void Bc1nez(FpuRegister ft, Mips64Label* label);
void EmitLoad(ManagedRegister m_dst, GpuRegister src_register, int32_t src_offset, size_t size);
void AdjustBaseAndOffset(GpuRegister& base, int32_t& offset, bool is_doubleword);
// If element_size_shift is negative at entry, its value will be calculated based on the offset.
void AdjustBaseOffsetAndElementSizeShift(GpuRegister& base,
int32_t& offset,
int& element_size_shift);
private:
// This will be used as an argument for loads/stores
// when there is no need for implicit null checks.
struct NoImplicitNullChecker {
void operator()() const {}
};
public:
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void StoreConstToOffset(StoreOperandType type,
int64_t value,
GpuRegister base,
int32_t offset,
GpuRegister temp,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
// We permit `base` and `temp` to coincide (however, we check that neither is AT),
// in which case the `base` register may be overwritten in the process.
CHECK_NE(temp, AT); // Must not use AT as temp, so as not to overwrite the adjusted base.
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
GpuRegister reg;
// If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp`
// to load and hold the value but we can use AT instead as AT hasn't been used yet.
// Otherwise, `temp` can be used for the value. And if `temp` is the same as the
// original `base` (that is, `base` prior to the adjustment), the original `base`
// register will be overwritten.
if (base == temp) {
temp = AT;
}
if (type == kStoreDoubleword && IsAligned<kMips64DoublewordSize>(offset)) {
if (value == 0) {
reg = ZERO;
} else {
reg = temp;
LoadConst64(reg, value);
}
Sd(reg, base, offset);
null_checker();
} else {
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
if (low == 0) {
reg = ZERO;
} else {
reg = temp;
LoadConst32(reg, low);
}
switch (type) {
case kStoreByte:
Sb(reg, base, offset);
break;
case kStoreHalfword:
Sh(reg, base, offset);
break;
case kStoreWord:
Sw(reg, base, offset);
break;
case kStoreDoubleword:
// not aligned to kMips64DoublewordSize
CHECK_ALIGNED(offset, kMips64WordSize);
Sw(reg, base, offset);
null_checker();
if (high == 0) {
reg = ZERO;
} else {
reg = temp;
if (high != low) {
LoadConst32(reg, high);
}
}
Sw(reg, base, offset + kMips64WordSize);
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
if (type != kStoreDoubleword) {
null_checker();
}
}
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void LoadFromOffset(LoadOperandType type,
GpuRegister reg,
GpuRegister base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
switch (type) {
case kLoadSignedByte:
Lb(reg, base, offset);
break;
case kLoadUnsignedByte:
Lbu(reg, base, offset);
break;
case kLoadSignedHalfword:
Lh(reg, base, offset);
break;
case kLoadUnsignedHalfword:
Lhu(reg, base, offset);
break;
case kLoadWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Lw(reg, base, offset);
break;
case kLoadUnsignedWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Lwu(reg, base, offset);
break;
case kLoadDoubleword:
if (!IsAligned<kMips64DoublewordSize>(offset)) {
CHECK_ALIGNED(offset, kMips64WordSize);
Lwu(reg, base, offset);
null_checker();
Lwu(TMP2, base, offset + kMips64WordSize);
Dinsu(reg, TMP2, 32, 32);
} else {
Ld(reg, base, offset);
null_checker();
}
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
if (type != kLoadDoubleword) {
null_checker();
}
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void LoadFpuFromOffset(LoadOperandType type,
FpuRegister reg,
GpuRegister base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
int element_size_shift = -1;
if (type != kLoadQuadword) {
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
} else {
AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift);
}
switch (type) {
case kLoadWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Lwc1(reg, base, offset);
null_checker();
break;
case kLoadDoubleword:
if (!IsAligned<kMips64DoublewordSize>(offset)) {
CHECK_ALIGNED(offset, kMips64WordSize);
Lwc1(reg, base, offset);
null_checker();
Lw(TMP2, base, offset + kMips64WordSize);
Mthc1(TMP2, reg);
} else {
Ldc1(reg, base, offset);
null_checker();
}
break;
case kLoadQuadword:
switch (element_size_shift) {
case TIMES_1: LdB(static_cast<VectorRegister>(reg), base, offset); break;
case TIMES_2: LdH(static_cast<VectorRegister>(reg), base, offset); break;
case TIMES_4: LdW(static_cast<VectorRegister>(reg), base, offset); break;
case TIMES_8: LdD(static_cast<VectorRegister>(reg), base, offset); break;
default:
LOG(FATAL) << "UNREACHABLE";
}
null_checker();
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void StoreToOffset(StoreOperandType type,
GpuRegister reg,
GpuRegister base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
// Must not use AT as `reg`, so as not to overwrite the value being stored
// with the adjusted `base`.
CHECK_NE(reg, AT);
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
switch (type) {
case kStoreByte:
Sb(reg, base, offset);
break;
case kStoreHalfword:
Sh(reg, base, offset);
break;
case kStoreWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Sw(reg, base, offset);
break;
case kStoreDoubleword:
if (!IsAligned<kMips64DoublewordSize>(offset)) {
CHECK_ALIGNED(offset, kMips64WordSize);
Sw(reg, base, offset);
null_checker();
Dsrl32(TMP2, reg, 0);
Sw(TMP2, base, offset + kMips64WordSize);
} else {
Sd(reg, base, offset);
null_checker();
}
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
if (type != kStoreDoubleword) {
null_checker();
}
}
template <typename ImplicitNullChecker = NoImplicitNullChecker>
void StoreFpuToOffset(StoreOperandType type,
FpuRegister reg,
GpuRegister base,
int32_t offset,
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
int element_size_shift = -1;
if (type != kStoreQuadword) {
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
} else {
AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift);
}
switch (type) {
case kStoreWord:
CHECK_ALIGNED(offset, kMips64WordSize);
Swc1(reg, base, offset);
null_checker();
break;
case kStoreDoubleword:
if (!IsAligned<kMips64DoublewordSize>(offset)) {
CHECK_ALIGNED(offset, kMips64WordSize);
Mfhc1(TMP2, reg);
Swc1(reg, base, offset);
null_checker();
Sw(TMP2, base, offset + kMips64WordSize);
} else {
Sdc1(reg, base, offset);
null_checker();
}
break;
case kStoreQuadword:
switch (element_size_shift) {
case TIMES_1: StB(static_cast<VectorRegister>(reg), base, offset); break;
case TIMES_2: StH(static_cast<VectorRegister>(reg), base, offset); break;
case TIMES_4: StW(static_cast<VectorRegister>(reg), base, offset); break;
case TIMES_8: StD(static_cast<VectorRegister>(reg), base, offset); break;
default:
LOG(FATAL) << "UNREACHABLE";
}
null_checker();
break;
default:
LOG(FATAL) << "UNREACHABLE";
}
}
void LoadFromOffset(LoadOperandType type, GpuRegister reg, GpuRegister base, int32_t offset);
void LoadFpuFromOffset(LoadOperandType type, FpuRegister reg, GpuRegister base, int32_t offset);
void StoreToOffset(StoreOperandType type, GpuRegister reg, GpuRegister base, int32_t offset);
void StoreFpuToOffset(StoreOperandType type, FpuRegister reg, GpuRegister base, int32_t offset);
// Emit data (e.g. encoded instruction or immediate) to the instruction stream.
void Emit(uint32_t value);
//
// Overridden common assembler high-level functionality.
//
// Emit code that will create an activation on the stack.
void BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> callee_save_regs,
const ManagedRegisterEntrySpills& entry_spills) OVERRIDE;
// Emit code that will remove an activation from the stack.
void RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs) OVERRIDE;
void IncreaseFrameSize(size_t adjust) OVERRIDE;
void DecreaseFrameSize(size_t adjust) OVERRIDE;
// Store routines.
void Store(FrameOffset offs, ManagedRegister msrc, size_t size) OVERRIDE;
void StoreRef(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) OVERRIDE;
void StoreStackOffsetToThread(ThreadOffset64 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) OVERRIDE;
void StoreStackPointerToThread(ThreadOffset64 thr_offs) OVERRIDE;
void StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off,
ManagedRegister mscratch) OVERRIDE;
// Load routines.
void Load(ManagedRegister mdest, FrameOffset src, size_t size) OVERRIDE;
void LoadFromThread(ManagedRegister mdest, ThreadOffset64 src, size_t size) OVERRIDE;
void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE;
void LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
bool unpoison_reference) OVERRIDE;
void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) OVERRIDE;
void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset64 offs) OVERRIDE;
// Copying routines.
void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) OVERRIDE;
void CopyRawPtrFromThread(FrameOffset fr_offs,
ThreadOffset64 thr_offs,
ManagedRegister mscratch) OVERRIDE;
void CopyRawPtrToThread(ThreadOffset64 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) OVERRIDE;
void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) OVERRIDE;
void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) OVERRIDE;
void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch,
size_t size) OVERRIDE;
void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
ManagedRegister mscratch, size_t size) OVERRIDE;
void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister mscratch,
size_t size) OVERRIDE;
void Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset,
ManagedRegister mscratch, size_t size) OVERRIDE;
void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
ManagedRegister mscratch, size_t size) OVERRIDE;
void MemoryBarrier(ManagedRegister) OVERRIDE;
// Sign extension.
void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE;
// Zero extension.
void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE;
// Exploit fast access in managed code to Thread::Current().
void GetCurrentThread(ManagedRegister tr) OVERRIDE;
void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) OVERRIDE;
// Set up out_reg to hold a Object** into the handle scope, or to be null if the
// value is null and null_allowed. in_reg holds a possibly stale reference
// that can be used to avoid loading the handle scope entry to see if the value is
// null.
void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset,
ManagedRegister in_reg, bool null_allowed) OVERRIDE;
// Set up out_off to hold a Object** into the handle scope, or to be null if the
// value is null and null_allowed.
void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset, ManagedRegister
mscratch, bool null_allowed) OVERRIDE;
// src holds a handle scope entry (Object**) load this into dst.
void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) OVERRIDE;
// Heap::VerifyObject on src. In some cases (such as a reference to this) we
// know that src may not be null.
void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE;
void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE;
// Call to address held at [base+offset].
void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) OVERRIDE;
void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) OVERRIDE;
void CallFromThread(ThreadOffset64 offset, ManagedRegister mscratch) OVERRIDE;
// Generate code to check if Thread::Current()->exception_ is non-null
// and branch to a ExceptionSlowPath if it is.
void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) OVERRIDE;
// Emit slow paths queued during assembly and promote short branches to long if needed.
void FinalizeCode() OVERRIDE;
// Emit branches and finalize all instructions.
void FinalizeInstructions(const MemoryRegion& region);
// Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS64,
// must be used instead of Mips64Label::GetPosition()).
uint32_t GetLabelLocation(const Mips64Label* label) const;
// Get the final position of a label after local fixup based on the old position
// recorded before FinalizeCode().
uint32_t GetAdjustedPosition(uint32_t old_position);
// Note that PC-relative literal loads are handled as pseudo branches because they need very
// similar relocation and may similarly expand in size to accomodate for larger offsets relative
// to PC.
enum BranchCondition {
kCondLT,
kCondGE,
kCondLE,
kCondGT,
kCondLTZ,
kCondGEZ,
kCondLEZ,
kCondGTZ,
kCondEQ,
kCondNE,
kCondEQZ,
kCondNEZ,
kCondLTU,
kCondGEU,
kCondF, // Floating-point predicate false.
kCondT, // Floating-point predicate true.
kUncond,
};
friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs);
private:
class Branch {
public:
enum Type {
// Short branches.
kUncondBranch,
kCondBranch,
kCall,
// Near label.
kLabel,
// Near literals.
kLiteral,
kLiteralUnsigned,
kLiteralLong,
// Long branches.
kLongUncondBranch,
kLongCondBranch,
kLongCall,
// Far label.
kFarLabel,
// Far literals.
kFarLiteral,
kFarLiteralUnsigned,
kFarLiteralLong,
};
// Bit sizes of offsets defined as enums to minimize chance of typos.
enum OffsetBits {
kOffset16 = 16,
kOffset18 = 18,
kOffset21 = 21,
kOffset23 = 23,
kOffset28 = 28,
kOffset32 = 32,
};
static constexpr uint32_t kUnresolved = 0xffffffff; // Unresolved target_
static constexpr int32_t kMaxBranchLength = 32;
static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t);
struct BranchInfo {
// Branch length as a number of 4-byte-long instructions.
uint32_t length;
// Ordinal number (0-based) of the first (or the only) instruction that contains the branch's
// PC-relative offset (or its most significant 16-bit half, which goes first).
uint32_t instr_offset;
// Different MIPS instructions with PC-relative offsets apply said offsets to slightly
// different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte
// instructions) from the instruction containing the offset.
uint32_t pc_org;
// How large (in bits) a PC-relative offset can be for a given type of branch (kCondBranch is
// an exception: use kOffset23 for beqzc/bnezc).
OffsetBits offset_size;
// Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift
// count.
int offset_shift;
};
static const BranchInfo branch_info_[/* Type */];
// Unconditional branch or call.
Branch(uint32_t location, uint32_t target, bool is_call);
// Conditional branch.
Branch(uint32_t location,
uint32_t target,
BranchCondition condition,
GpuRegister lhs_reg,
GpuRegister rhs_reg);
// Label address (in literal area) or literal.
Branch(uint32_t location, GpuRegister dest_reg, Type label_or_literal_type);
// Some conditional branches with lhs = rhs are effectively NOPs, while some
// others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs.
// So, we need a way to identify such branches in order to emit no instructions for them
// or change them to unconditional.
static bool IsNop(BranchCondition condition, GpuRegister lhs, GpuRegister rhs);
static bool IsUncond(BranchCondition condition, GpuRegister lhs, GpuRegister rhs);
static BranchCondition OppositeCondition(BranchCondition cond);
Type GetType() const;
BranchCondition GetCondition() const;
GpuRegister GetLeftRegister() const;
GpuRegister GetRightRegister() const;
uint32_t GetTarget() const;
uint32_t GetLocation() const;
uint32_t GetOldLocation() const;
uint32_t GetLength() const;
uint32_t GetOldLength() const;
uint32_t GetSize() const;
uint32_t GetOldSize() const;
uint32_t GetEndLocation() const;
uint32_t GetOldEndLocation() const;
bool IsLong() const;
bool IsResolved() const;
// Returns the bit size of the signed offset that the branch instruction can handle.
OffsetBits GetOffsetSize() const;
// Calculates the distance between two byte locations in the assembler buffer and
// returns the number of bits needed to represent the distance as a signed integer.
//
// Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc),
// and 26 (bc) bits, which are additionally shifted left 2 positions at run time.
//
// Composite branches (made of several instructions) with longer reach have 32-bit
// offsets encoded as 2 16-bit "halves" in two instructions (high half goes first).
// The composite branches cover the range of PC + ~+/-2GB. The range is not end-to-end,
// however. Consider the following implementation of a long unconditional branch, for
// example:
//
// auipc at, offset_31_16 // at = pc + sign_extend(offset_31_16) << 16
// jic at, offset_15_0 // pc = at + sign_extend(offset_15_0)
//
// Both of the above instructions take 16-bit signed offsets as immediate operands.
// When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000
// due to sign extension. This must be compensated for by incrementing offset_31_16
// by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is
// 0x7FFF, adding 1 will overflow the positive offset into the negative range.
// Therefore, the long branch range is something like from PC - 0x80000000 to
// PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side.
//
// The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special
// case with the addiu instruction and a 16 bit offset.
static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target);
// Resolve a branch when the target is known.
void Resolve(uint32_t target);
// Relocate a branch by a given delta if needed due to expansion of this or another
// branch at a given location by this delta (just changes location_ and target_).
void Relocate(uint32_t expand_location, uint32_t delta);
// If the branch is short, changes its type to long.
void PromoteToLong();
// If necessary, updates the type by promoting a short branch to a long branch
// based on the branch location and target. Returns the amount (in bytes) by
// which the branch size has increased.
// max_short_distance caps the maximum distance between location_ and target_
// that is allowed for short branches. This is for debugging/testing purposes.
// max_short_distance = 0 forces all short branches to become long.
// Use the implicit default argument when not debugging/testing.
uint32_t PromoteIfNeeded(uint32_t max_short_distance = std::numeric_limits<uint32_t>::max());
// Returns the location of the instruction(s) containing the offset.
uint32_t GetOffsetLocation() const;
// Calculates and returns the offset ready for encoding in the branch instruction(s).
uint32_t GetOffset() const;
private:
// Completes branch construction by determining and recording its type.
void InitializeType(Type initial_type);
// Helper for the above.
void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type);
uint32_t old_location_; // Offset into assembler buffer in bytes.
uint32_t location_; // Offset into assembler buffer in bytes.
uint32_t target_; // Offset into assembler buffer in bytes.
GpuRegister lhs_reg_; // Left-hand side register in conditional branches or
// destination register in literals.
GpuRegister rhs_reg_; // Right-hand side register in conditional branches.
BranchCondition condition_; // Condition for conditional branches.
Type type_; // Current type of the branch.
Type old_type_; // Initial type of the branch.
};
friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs);
friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs);
void EmitR(int opcode, GpuRegister rs, GpuRegister rt, GpuRegister rd, int shamt, int funct);
void EmitRsd(int opcode, GpuRegister rs, GpuRegister rd, int shamt, int funct);
void EmitRtd(int opcode, GpuRegister rt, GpuRegister rd, int shamt, int funct);
void EmitI(int opcode, GpuRegister rs, GpuRegister rt, uint16_t imm);
void EmitI21(int opcode, GpuRegister rs, uint32_t imm21);
void EmitI26(int opcode, uint32_t imm26);
void EmitFR(int opcode, int fmt, FpuRegister ft, FpuRegister fs, FpuRegister fd, int funct);
void EmitFI(int opcode, int fmt, FpuRegister rt, uint16_t imm);
void EmitBcondc(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint32_t imm16_21);
void EmitMsa3R(int operation,
int df,
VectorRegister wt,
VectorRegister ws,
VectorRegister wd,
int minor_opcode);
void EmitMsaBIT(int operation, int df_m, VectorRegister ws, VectorRegister wd, int minor_opcode);
void EmitMsaELM(int operation, int df_n, VectorRegister ws, VectorRegister wd, int minor_opcode);
void EmitMsaMI10(int s10, GpuRegister rs, VectorRegister wd, int minor_opcode, int df);
void EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode);
void EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode);
void EmitMsa2RF(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode);
void Buncond(Mips64Label* label);
void Bcond(Mips64Label* label,
BranchCondition condition,
GpuRegister lhs,
GpuRegister rhs = ZERO);
void Call(Mips64Label* label);
void FinalizeLabeledBranch(Mips64Label* label);
Branch* GetBranch(uint32_t branch_id);
const Branch* GetBranch(uint32_t branch_id) const;
void EmitLiterals();
void ReserveJumpTableSpace();
void EmitJumpTables();
void PromoteBranches();
void EmitBranch(Branch* branch);
void EmitBranches();
void PatchCFI();
// Emits exception block.
void EmitExceptionPoll(Mips64ExceptionSlowPath* exception);
bool HasMsa() const {
return has_msa_;
}
// List of exception blocks to generate at the end of the code cache.
std::vector<Mips64ExceptionSlowPath> exception_blocks_;
std::vector<Branch> branches_;
// Whether appending instructions at the end of the buffer or overwriting the existing ones.
bool overwriting_;
// The current overwrite location.
uint32_t overwrite_location_;
// Use std::deque<> for literal labels to allow insertions at the end
// without invalidating pointers and references to existing elements.
ArenaDeque<Literal> literals_;
ArenaDeque<Literal> long_literals_; // 64-bit literals separated for alignment reasons.
// Jump table list.
ArenaDeque<JumpTable> jump_tables_;
// Data for AdjustedPosition(), see the description there.
uint32_t last_position_adjustment_;
uint32_t last_old_position_;
uint32_t last_branch_id_;
const bool has_msa_;
DISALLOW_COPY_AND_ASSIGN(Mips64Assembler);
};
} // namespace mips64
} // namespace art
#endif // ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_