blob: 384e1291503b15b65fd267909303bed8ee302e29 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "errno.h"
#include <stdio.h>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fstream>
#include <iostream>
#include <set>
#include <string>
#include <unordered_set>
#include <vector>
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "base/dumpable.h"
#include "base/scoped_flock.h"
#include "base/stringpiece.h"
#include "base/time_utils.h"
#include "base/unix_file/fd_file.h"
#include "bytecode_utils.h"
#include "dex_file.h"
#include "jit/profile_compilation_info.h"
#include "runtime.h"
#include "utils.h"
#include "zip_archive.h"
#include "profile_assistant.h"
namespace art {
static int original_argc;
static char** original_argv;
static std::string CommandLine() {
std::vector<std::string> command;
for (int i = 0; i < original_argc; ++i) {
command.push_back(original_argv[i]);
}
return android::base::Join(command, ' ');
}
static constexpr int kInvalidFd = -1;
static bool FdIsValid(int fd) {
return fd != kInvalidFd;
}
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
android::base::StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
NO_RETURN static void Usage(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Command: %s", CommandLine().c_str());
UsageError("Usage: profman [options]...");
UsageError("");
UsageError(" --dump-only: dumps the content of the specified profile files");
UsageError(" to standard output (default) in a human readable form.");
UsageError("");
UsageError(" --dump-output-to-fd=<number>: redirects --dump-only output to a file descriptor.");
UsageError("");
UsageError(" --dump-classes-and-methods: dumps a sorted list of classes and methods that are");
UsageError(" in the specified profile file to standard output (default) in a human");
UsageError(" readable form. The output is valid input for --create-profile-from");
UsageError("");
UsageError(" --profile-file=<filename>: specify profiler output file to use for compilation.");
UsageError(" Can be specified multiple time, in which case the data from the different");
UsageError(" profiles will be aggregated.");
UsageError("");
UsageError(" --profile-file-fd=<number>: same as --profile-file but accepts a file descriptor.");
UsageError(" Cannot be used together with --profile-file.");
UsageError("");
UsageError(" --reference-profile-file=<filename>: specify a reference profile.");
UsageError(" The data in this file will be compared with the data obtained by merging");
UsageError(" all the files specified with --profile-file or --profile-file-fd.");
UsageError(" If the exit code is EXIT_COMPILE then all --profile-file will be merged into");
UsageError(" --reference-profile-file. ");
UsageError("");
UsageError(" --reference-profile-file-fd=<number>: same as --reference-profile-file but");
UsageError(" accepts a file descriptor. Cannot be used together with");
UsageError(" --reference-profile-file.");
UsageError("");
UsageError(" --generate-test-profile=<filename>: generates a random profile file for testing.");
UsageError(" --generate-test-profile-num-dex=<number>: number of dex files that should be");
UsageError(" included in the generated profile. Defaults to 20.");
UsageError(" --generate-test-profile-method-ratio=<number>: the percentage from the maximum");
UsageError(" number of methods that should be generated. Defaults to 5.");
UsageError(" --generate-test-profile-class-ratio=<number>: the percentage from the maximum");
UsageError(" number of classes that should be generated. Defaults to 5.");
UsageError(" --generate-test-profile-seed=<number>: seed for random number generator used when");
UsageError(" generating random test profiles. Defaults to using NanoTime.");
UsageError("");
UsageError(" --create-profile-from=<filename>: creates a profile from a list of classes and");
UsageError(" methods.");
UsageError("");
UsageError(" --dex-location=<string>: location string to use with corresponding");
UsageError(" apk-fd to find dex files");
UsageError("");
UsageError(" --apk-fd=<number>: file descriptor containing an open APK to");
UsageError(" search for dex files");
UsageError(" --apk-=<filename>: an APK to search for dex files");
UsageError("");
exit(EXIT_FAILURE);
}
// Note: make sure you update the Usage if you change these values.
static constexpr uint16_t kDefaultTestProfileNumDex = 20;
static constexpr uint16_t kDefaultTestProfileMethodRatio = 5;
static constexpr uint16_t kDefaultTestProfileClassRatio = 5;
// Separators used when parsing human friendly representation of profiles.
static const std::string kMethodSep = "->";
static const std::string kMissingTypesMarker = "missing_types";
static const std::string kClassAllMethods = "*";
static constexpr char kProfileParsingInlineChacheSep = '+';
static constexpr char kProfileParsingTypeSep = ',';
static constexpr char kProfileParsingFirstCharInSignature = '(';
// TODO(calin): This class has grown too much from its initial design. Split the functionality
// into smaller, more contained pieces.
class ProfMan FINAL {
public:
ProfMan() :
reference_profile_file_fd_(kInvalidFd),
dump_only_(false),
dump_classes_and_methods_(false),
dump_output_to_fd_(kInvalidFd),
test_profile_num_dex_(kDefaultTestProfileNumDex),
test_profile_method_ratio_(kDefaultTestProfileMethodRatio),
test_profile_class_ratio_(kDefaultTestProfileClassRatio),
test_profile_seed_(NanoTime()),
start_ns_(NanoTime()) {}
~ProfMan() {
LogCompletionTime();
}
void ParseArgs(int argc, char **argv) {
original_argc = argc;
original_argv = argv;
InitLogging(argv, Runtime::Aborter);
// Skip over the command name.
argv++;
argc--;
if (argc == 0) {
Usage("No arguments specified");
}
for (int i = 0; i < argc; ++i) {
const StringPiece option(argv[i]);
const bool log_options = false;
if (log_options) {
LOG(INFO) << "profman: option[" << i << "]=" << argv[i];
}
if (option == "--dump-only") {
dump_only_ = true;
} else if (option == "--dump-classes-and-methods") {
dump_classes_and_methods_ = true;
} else if (option.starts_with("--create-profile-from=")) {
create_profile_from_file_ = option.substr(strlen("--create-profile-from=")).ToString();
} else if (option.starts_with("--dump-output-to-fd=")) {
ParseUintOption(option, "--dump-output-to-fd", &dump_output_to_fd_, Usage);
} else if (option.starts_with("--profile-file=")) {
profile_files_.push_back(option.substr(strlen("--profile-file=")).ToString());
} else if (option.starts_with("--profile-file-fd=")) {
ParseFdForCollection(option, "--profile-file-fd", &profile_files_fd_);
} else if (option.starts_with("--reference-profile-file=")) {
reference_profile_file_ = option.substr(strlen("--reference-profile-file=")).ToString();
} else if (option.starts_with("--reference-profile-file-fd=")) {
ParseUintOption(option, "--reference-profile-file-fd", &reference_profile_file_fd_, Usage);
} else if (option.starts_with("--dex-location=")) {
dex_locations_.push_back(option.substr(strlen("--dex-location=")).ToString());
} else if (option.starts_with("--apk-fd=")) {
ParseFdForCollection(option, "--apk-fd", &apks_fd_);
} else if (option.starts_with("--apk=")) {
apk_files_.push_back(option.substr(strlen("--apk=")).ToString());
} else if (option.starts_with("--generate-test-profile=")) {
test_profile_ = option.substr(strlen("--generate-test-profile=")).ToString();
} else if (option.starts_with("--generate-test-profile-num-dex=")) {
ParseUintOption(option,
"--generate-test-profile-num-dex",
&test_profile_num_dex_,
Usage);
} else if (option.starts_with("--generate-test-profile-method-ratio")) {
ParseUintOption(option,
"--generate-test-profile-method-ratio",
&test_profile_method_ratio_,
Usage);
} else if (option.starts_with("--generate-test-profile-class-ratio")) {
ParseUintOption(option,
"--generate-test-profile-class-ratio",
&test_profile_class_ratio_,
Usage);
} else if (option.starts_with("--generate-test-profile-seed=")) {
ParseUintOption(option, "--generate-test-profile-seed", &test_profile_seed_, Usage);
} else {
Usage("Unknown argument '%s'", option.data());
}
}
// Validate global consistency between file/fd options.
if (!profile_files_.empty() && !profile_files_fd_.empty()) {
Usage("Profile files should not be specified with both --profile-file-fd and --profile-file");
}
if (!reference_profile_file_.empty() && FdIsValid(reference_profile_file_fd_)) {
Usage("Reference profile should not be specified with both "
"--reference-profile-file-fd and --reference-profile-file");
}
if (!apk_files_.empty() && !apks_fd_.empty()) {
Usage("APK files should not be specified with both --apk-fd and --apk");
}
}
ProfileAssistant::ProcessingResult ProcessProfiles() {
// Validate that at least one profile file was passed, as well as a reference profile.
if (profile_files_.empty() && profile_files_fd_.empty()) {
Usage("No profile files specified.");
}
if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("No reference profile file specified.");
}
if ((!profile_files_.empty() && FdIsValid(reference_profile_file_fd_)) ||
(!profile_files_fd_.empty() && !FdIsValid(reference_profile_file_fd_))) {
Usage("Options --profile-file-fd and --reference-profile-file-fd "
"should only be used together");
}
ProfileAssistant::ProcessingResult result;
if (profile_files_.empty()) {
// The file doesn't need to be flushed here (ProcessProfiles will do it)
// so don't check the usage.
File file(reference_profile_file_fd_, false);
result = ProfileAssistant::ProcessProfiles(profile_files_fd_, reference_profile_file_fd_);
CloseAllFds(profile_files_fd_, "profile_files_fd_");
} else {
result = ProfileAssistant::ProcessProfiles(profile_files_, reference_profile_file_);
}
return result;
}
void OpenApkFilesFromLocations(std::vector<std::unique_ptr<const DexFile>>* dex_files) {
bool use_apk_fd_list = !apks_fd_.empty();
if (use_apk_fd_list) {
// Get the APKs from the collection of FDs.
CHECK_EQ(dex_locations_.size(), apks_fd_.size());
} else if (!apk_files_.empty()) {
// Get the APKs from the collection of filenames.
CHECK_EQ(dex_locations_.size(), apk_files_.size());
} else {
// No APKs were specified.
CHECK(dex_locations_.empty());
return;
}
static constexpr bool kVerifyChecksum = true;
for (size_t i = 0; i < dex_locations_.size(); ++i) {
std::string error_msg;
std::vector<std::unique_ptr<const DexFile>> dex_files_for_location;
if (use_apk_fd_list) {
if (DexFile::OpenZip(apks_fd_[i],
dex_locations_[i],
kVerifyChecksum,
&error_msg,
&dex_files_for_location)) {
} else {
LOG(WARNING) << "OpenZip failed for '" << dex_locations_[i] << "' " << error_msg;
continue;
}
} else {
if (DexFile::Open(apk_files_[i].c_str(),
dex_locations_[i],
kVerifyChecksum,
&error_msg,
&dex_files_for_location)) {
} else {
LOG(WARNING) << "Open failed for '" << dex_locations_[i] << "' " << error_msg;
continue;
}
}
for (std::unique_ptr<const DexFile>& dex_file : dex_files_for_location) {
dex_files->emplace_back(std::move(dex_file));
}
}
}
int DumpOneProfile(const std::string& banner,
const std::string& filename,
int fd,
const std::vector<std::unique_ptr<const DexFile>>* dex_files,
std::string* dump) {
if (!filename.empty()) {
fd = open(filename.c_str(), O_RDWR);
if (fd < 0) {
LOG(ERROR) << "Cannot open " << filename << strerror(errno);
return -1;
}
}
ProfileCompilationInfo info;
if (!info.Load(fd)) {
LOG(ERROR) << "Cannot load profile info from fd=" << fd << "\n";
return -1;
}
std::string this_dump = banner + "\n" + info.DumpInfo(dex_files) + "\n";
*dump += this_dump;
if (close(fd) < 0) {
PLOG(WARNING) << "Failed to close descriptor";
}
return 0;
}
int DumpProfileInfo() {
// Validate that at least one profile file or reference was specified.
if (profile_files_.empty() && profile_files_fd_.empty() &&
reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("No profile files or reference profile specified.");
}
static const char* kEmptyString = "";
static const char* kOrdinaryProfile = "=== profile ===";
static const char* kReferenceProfile = "=== reference profile ===";
// Open apk/zip files and and read dex files.
MemMap::Init(); // for ZipArchive::OpenFromFd
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
std::string dump;
// Dump individual profile files.
if (!profile_files_fd_.empty()) {
for (int profile_file_fd : profile_files_fd_) {
int ret = DumpOneProfile(kOrdinaryProfile,
kEmptyString,
profile_file_fd,
&dex_files,
&dump);
if (ret != 0) {
return ret;
}
}
}
if (!profile_files_.empty()) {
for (const std::string& profile_file : profile_files_) {
int ret = DumpOneProfile(kOrdinaryProfile, profile_file, kInvalidFd, &dex_files, &dump);
if (ret != 0) {
return ret;
}
}
}
// Dump reference profile file.
if (FdIsValid(reference_profile_file_fd_)) {
int ret = DumpOneProfile(kReferenceProfile,
kEmptyString,
reference_profile_file_fd_,
&dex_files,
&dump);
if (ret != 0) {
return ret;
}
}
if (!reference_profile_file_.empty()) {
int ret = DumpOneProfile(kReferenceProfile,
reference_profile_file_,
kInvalidFd,
&dex_files,
&dump);
if (ret != 0) {
return ret;
}
}
if (!FdIsValid(dump_output_to_fd_)) {
std::cout << dump;
} else {
unix_file::FdFile out_fd(dump_output_to_fd_, false /*check_usage*/);
if (!out_fd.WriteFully(dump.c_str(), dump.length())) {
return -1;
}
}
return 0;
}
bool ShouldOnlyDumpProfile() {
return dump_only_;
}
bool GetClassNamesAndMethods(int fd,
std::vector<std::unique_ptr<const DexFile>>* dex_files,
std::set<std::string>* out_lines) {
ProfileCompilationInfo profile_info;
if (!profile_info.Load(fd)) {
LOG(ERROR) << "Cannot load profile info";
return false;
}
for (const std::unique_ptr<const DexFile>& dex_file : *dex_files) {
std::set<dex::TypeIndex> class_types;
ProfileCompilationInfo::MethodMap methods;
if (profile_info.GetClassesAndMethods(dex_file.get(), &class_types, &methods)) {
for (const dex::TypeIndex& type_index : class_types) {
const DexFile::TypeId& type_id = dex_file->GetTypeId(type_index);
out_lines->insert(std::string(dex_file->GetTypeDescriptor(type_id)));
}
for (const auto& pair : methods) {
// TODO: Process inline caches.
const uint16_t dex_method_idx = pair.first;
const DexFile::MethodId& id = dex_file->GetMethodId(dex_method_idx);
std::string signature_string(dex_file->GetMethodSignature(id).ToString());
std::string type_string(dex_file->GetTypeDescriptor(dex_file->GetTypeId(id.class_idx_)));
std::string method_name(dex_file->GetMethodName(id));
out_lines->insert(type_string + kMethodSep + method_name + signature_string);
}
}
}
return true;
}
bool GetClassNamesAndMethods(const std::string& profile_file,
std::vector<std::unique_ptr<const DexFile>>* dex_files,
std::set<std::string>* out_lines) {
int fd = open(profile_file.c_str(), O_RDONLY);
if (!FdIsValid(fd)) {
LOG(ERROR) << "Cannot open " << profile_file << strerror(errno);
return false;
}
if (!GetClassNamesAndMethods(fd, dex_files, out_lines)) {
return false;
}
if (close(fd) < 0) {
PLOG(WARNING) << "Failed to close descriptor";
}
return true;
}
int DumpClasses() {
// Validate that at least one profile file or reference was specified.
if (profile_files_.empty() && profile_files_fd_.empty() &&
reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("No profile files or reference profile specified.");
}
// Open apk/zip files and and read dex files.
MemMap::Init(); // for ZipArchive::OpenFromFd
// Open the dex files to get the names for classes.
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
// Build a vector of class names from individual profile files.
std::set<std::string> class_names;
if (!profile_files_fd_.empty()) {
for (int profile_file_fd : profile_files_fd_) {
if (!GetClassNamesAndMethods(profile_file_fd, &dex_files, &class_names)) {
return -1;
}
}
}
if (!profile_files_.empty()) {
for (const std::string& profile_file : profile_files_) {
if (!GetClassNamesAndMethods(profile_file, &dex_files, &class_names)) {
return -1;
}
}
}
// Concatenate class names from reference profile file.
if (FdIsValid(reference_profile_file_fd_)) {
if (!GetClassNamesAndMethods(reference_profile_file_fd_, &dex_files, &class_names)) {
return -1;
}
}
if (!reference_profile_file_.empty()) {
if (!GetClassNamesAndMethods(reference_profile_file_, &dex_files, &class_names)) {
return -1;
}
}
// Dump the class names.
std::string dump;
for (const std::string& class_name : class_names) {
dump += class_name + std::string("\n");
}
if (!FdIsValid(dump_output_to_fd_)) {
std::cout << dump;
} else {
unix_file::FdFile out_fd(dump_output_to_fd_, false /*check_usage*/);
if (!out_fd.WriteFully(dump.c_str(), dump.length())) {
return -1;
}
}
return 0;
}
bool ShouldOnlyDumpClassesAndMethods() {
return dump_classes_and_methods_;
}
// Read lines from the given file, dropping comments and empty lines. Post-process each line with
// the given function.
template <typename T>
static T* ReadCommentedInputFromFile(
const char* input_filename, std::function<std::string(const char*)>* process) {
std::unique_ptr<std::ifstream> input_file(new std::ifstream(input_filename, std::ifstream::in));
if (input_file.get() == nullptr) {
LOG(ERROR) << "Failed to open input file " << input_filename;
return nullptr;
}
std::unique_ptr<T> result(
ReadCommentedInputStream<T>(*input_file, process));
input_file->close();
return result.release();
}
// Read lines from the given stream, dropping comments and empty lines. Post-process each line
// with the given function.
template <typename T>
static T* ReadCommentedInputStream(
std::istream& in_stream,
std::function<std::string(const char*)>* process) {
std::unique_ptr<T> output(new T());
while (in_stream.good()) {
std::string dot;
std::getline(in_stream, dot);
if (android::base::StartsWith(dot, "#") || dot.empty()) {
continue;
}
if (process != nullptr) {
std::string descriptor((*process)(dot.c_str()));
output->insert(output->end(), descriptor);
} else {
output->insert(output->end(), dot);
}
}
return output.release();
}
// Find class klass_descriptor in the given dex_files and store its reference
// in the out parameter class_ref.
// Return true if the definition of the class was found in any of the dex_files.
bool FindClass(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
const std::string& klass_descriptor,
/*out*/ProfileMethodInfo::ProfileClassReference* class_ref) {
for (const std::unique_ptr<const DexFile>& dex_file_ptr : dex_files) {
const DexFile* dex_file = dex_file_ptr.get();
const DexFile::TypeId* type_id = dex_file->FindTypeId(klass_descriptor.c_str());
if (type_id == nullptr) {
continue;
}
dex::TypeIndex type_index = dex_file->GetIndexForTypeId(*type_id);
if (dex_file->FindClassDef(type_index) == nullptr) {
// Class is only referenced in the current dex file but not defined in it.
continue;
}
class_ref->dex_file = dex_file;
class_ref->type_index = type_index;
return true;
}
return false;
}
// Find the method specified by method_spec in the class class_ref.
uint32_t FindMethodIndex(const ProfileMethodInfo::ProfileClassReference& class_ref,
const std::string& method_spec) {
std::vector<std::string> name_and_signature;
Split(method_spec, kProfileParsingFirstCharInSignature, &name_and_signature);
if (name_and_signature.size() != 2) {
LOG(ERROR) << "Invalid method name and signature " << method_spec;
}
const std::string& name = name_and_signature[0];
const std::string& signature = kProfileParsingFirstCharInSignature + name_and_signature[1];
const DexFile* dex_file = class_ref.dex_file;
const DexFile::StringId* name_id = dex_file->FindStringId(name.c_str());
if (name_id == nullptr) {
LOG(WARNING) << "Could not find name: " << name;
return DexFile::kDexNoIndex;
}
dex::TypeIndex return_type_idx;
std::vector<dex::TypeIndex> param_type_idxs;
if (!dex_file->CreateTypeList(signature, &return_type_idx, &param_type_idxs)) {
LOG(WARNING) << "Could not create type list" << signature;
return DexFile::kDexNoIndex;
}
const DexFile::ProtoId* proto_id = dex_file->FindProtoId(return_type_idx, param_type_idxs);
if (proto_id == nullptr) {
LOG(WARNING) << "Could not find proto_id: " << name;
return DexFile::kDexNoIndex;
}
const DexFile::MethodId* method_id = dex_file->FindMethodId(
dex_file->GetTypeId(class_ref.type_index), *name_id, *proto_id);
if (method_id == nullptr) {
LOG(WARNING) << "Could not find method_id: " << name;
return DexFile::kDexNoIndex;
}
return dex_file->GetIndexForMethodId(*method_id);
}
// Given a method, return true if the method has a single INVOKE_VIRTUAL in its byte code.
// Upon success it returns true and stores the method index and the invoke dex pc
// in the output parameters.
// The format of the method spec is "inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;".
//
// TODO(calin): support INVOKE_INTERFACE and the range variants.
bool HasSingleInvoke(const ProfileMethodInfo::ProfileClassReference& class_ref,
uint16_t method_index,
/*out*/uint32_t* dex_pc) {
const DexFile* dex_file = class_ref.dex_file;
uint32_t offset = dex_file->FindCodeItemOffset(
*dex_file->FindClassDef(class_ref.type_index),
method_index);
const DexFile::CodeItem* code_item = dex_file->GetCodeItem(offset);
bool found_invoke = false;
for (CodeItemIterator it(*code_item); !it.Done(); it.Advance()) {
if (it.CurrentInstruction().Opcode() == Instruction::INVOKE_VIRTUAL) {
if (found_invoke) {
LOG(ERROR) << "Multiple invoke INVOKE_VIRTUAL found: "
<< dex_file->PrettyMethod(method_index);
return false;
}
found_invoke = true;
*dex_pc = it.CurrentDexPc();
}
}
if (!found_invoke) {
LOG(ERROR) << "Could not find any INVOKE_VIRTUAL: " << dex_file->PrettyMethod(method_index);
}
return found_invoke;
}
// Process a line defining a class or a method and its inline caches.
// Upon success return true and add the class or the method info to profile.
// The possible line formats are:
// "LJustTheCass;".
// "LTestInline;->inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;".
// "LTestInline;->inlineMissingTypes(LSuper;)I+missing_types".
// "LTestInline;->inlineNoInlineCaches(LSuper;)I".
// "LTestInline;->*".
// The method and classes are searched only in the given dex files.
bool ProcessLine(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
const std::string& line,
/*out*/ProfileCompilationInfo* profile) {
std::string klass;
std::string method_str;
size_t method_sep_index = line.find(kMethodSep);
if (method_sep_index == std::string::npos) {
klass = line;
} else {
klass = line.substr(0, method_sep_index);
method_str = line.substr(method_sep_index + kMethodSep.size());
}
ProfileMethodInfo::ProfileClassReference class_ref;
if (!FindClass(dex_files, klass, &class_ref)) {
LOG(WARNING) << "Could not find class: " << klass;
return false;
}
if (method_str.empty() || method_str == kClassAllMethods) {
// Start by adding the class.
std::set<DexCacheResolvedClasses> resolved_class_set;
const DexFile* dex_file = class_ref.dex_file;
const auto& dex_resolved_classes = resolved_class_set.emplace(
dex_file->GetLocation(),
dex_file->GetBaseLocation(),
dex_file->GetLocationChecksum());
dex_resolved_classes.first->AddClass(class_ref.type_index);
std::vector<ProfileMethodInfo> methods;
if (method_str == kClassAllMethods) {
// Add all of the methods.
const DexFile::ClassDef* class_def = dex_file->FindClassDef(class_ref.type_index);
const uint8_t* class_data = dex_file->GetClassData(*class_def);
if (class_data != nullptr) {
ClassDataItemIterator it(*dex_file, class_data);
while (it.HasNextStaticField() || it.HasNextInstanceField()) {
it.Next();
}
while (it.HasNextDirectMethod() || it.HasNextVirtualMethod()) {
if (it.GetMethodCodeItemOffset() != 0) {
// Add all of the methods that have code to the profile.
const uint32_t method_idx = it.GetMemberIndex();
methods.push_back(ProfileMethodInfo(dex_file, method_idx));
}
it.Next();
}
}
}
profile->AddMethodsAndClasses(methods, resolved_class_set);
return true;
}
// Process the method.
std::string method_spec;
std::vector<std::string> inline_cache_elems;
std::vector<std::string> method_elems;
bool is_missing_types = false;
Split(method_str, kProfileParsingInlineChacheSep, &method_elems);
if (method_elems.size() == 2) {
method_spec = method_elems[0];
is_missing_types = method_elems[1] == kMissingTypesMarker;
if (!is_missing_types) {
Split(method_elems[1], kProfileParsingTypeSep, &inline_cache_elems);
}
} else if (method_elems.size() == 1) {
method_spec = method_elems[0];
} else {
LOG(ERROR) << "Invalid method line: " << line;
return false;
}
const uint32_t method_index = FindMethodIndex(class_ref, method_spec);
if (method_index == DexFile::kDexNoIndex) {
return false;
}
std::vector<ProfileMethodInfo> pmi;
std::vector<ProfileMethodInfo::ProfileInlineCache> inline_caches;
if (is_missing_types || !inline_cache_elems.empty()) {
uint32_t dex_pc;
if (!HasSingleInvoke(class_ref, method_index, &dex_pc)) {
return false;
}
std::vector<ProfileMethodInfo::ProfileClassReference> classes(inline_cache_elems.size());
size_t class_it = 0;
for (const std::string& ic_class : inline_cache_elems) {
if (!FindClass(dex_files, ic_class, &(classes[class_it++]))) {
LOG(ERROR) << "Could not find class: " << ic_class;
return false;
}
}
inline_caches.emplace_back(dex_pc, is_missing_types, classes);
}
pmi.emplace_back(class_ref.dex_file, method_index, inline_caches);
profile->AddMethodsAndClasses(pmi, std::set<DexCacheResolvedClasses>());
return true;
}
// Creates a profile from a human friendly textual representation.
// The expected input format is:
// # Classes
// Ljava/lang/Comparable;
// Ljava/lang/Math;
// # Methods with inline caches
// LTestInline;->inlinePolymorphic(LSuper;)I+LSubA;,LSubB;,LSubC;
// LTestInline;->noInlineCache(LSuper;)I
int CreateProfile() {
// Validate parameters for this command.
if (apk_files_.empty() && apks_fd_.empty()) {
Usage("APK files must be specified");
}
if (dex_locations_.empty()) {
Usage("DEX locations must be specified");
}
if (reference_profile_file_.empty() && !FdIsValid(reference_profile_file_fd_)) {
Usage("Reference profile must be specified with --reference-profile-file or "
"--reference-profile-file-fd");
}
if (!profile_files_.empty() || !profile_files_fd_.empty()) {
Usage("Profile must be specified with --reference-profile-file or "
"--reference-profile-file-fd");
}
// for ZipArchive::OpenFromFd
MemMap::Init();
// Open the profile output file if needed.
int fd = reference_profile_file_fd_;
if (!FdIsValid(fd)) {
CHECK(!reference_profile_file_.empty());
fd = open(reference_profile_file_.c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644);
if (fd < 0) {
LOG(ERROR) << "Cannot open " << reference_profile_file_ << strerror(errno);
return -1;
}
}
// Read the user-specified list of classes and methods.
std::unique_ptr<std::unordered_set<std::string>>
user_lines(ReadCommentedInputFromFile<std::unordered_set<std::string>>(
create_profile_from_file_.c_str(), nullptr)); // No post-processing.
// Open the dex files to look up classes and methods.
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
// Process the lines one by one and add the successful ones to the profile.
ProfileCompilationInfo info;
for (const auto& line : *user_lines) {
ProcessLine(dex_files, line, &info);
}
// Write the profile file.
CHECK(info.Save(fd));
if (close(fd) < 0) {
PLOG(WARNING) << "Failed to close descriptor";
}
return 0;
}
bool ShouldCreateProfile() {
return !create_profile_from_file_.empty();
}
int GenerateTestProfile() {
// Validate parameters for this command.
if (test_profile_method_ratio_ > 100) {
Usage("Invalid ratio for --generate-test-profile-method-ratio");
}
if (test_profile_class_ratio_ > 100) {
Usage("Invalid ratio for --generate-test-profile-class-ratio");
}
// If given APK files or DEX locations, check that they're ok.
if (!apk_files_.empty() || !apks_fd_.empty() || !dex_locations_.empty()) {
if (apk_files_.empty() && apks_fd_.empty()) {
Usage("APK files must be specified when passing DEX locations to --generate-test-profile");
}
if (dex_locations_.empty()) {
Usage("DEX locations must be specified when passing APK files to --generate-test-profile");
}
}
// ShouldGenerateTestProfile confirms !test_profile_.empty().
int profile_test_fd = open(test_profile_.c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644);
if (profile_test_fd < 0) {
LOG(ERROR) << "Cannot open " << test_profile_ << strerror(errno);
return -1;
}
bool result;
if (apk_files_.empty() && apks_fd_.empty() && dex_locations_.empty()) {
result = ProfileCompilationInfo::GenerateTestProfile(profile_test_fd,
test_profile_num_dex_,
test_profile_method_ratio_,
test_profile_class_ratio_,
test_profile_seed_);
} else {
// Initialize MemMap for ZipArchive::OpenFromFd.
MemMap::Init();
// Open the dex files to look up classes and methods.
std::vector<std::unique_ptr<const DexFile>> dex_files;
OpenApkFilesFromLocations(&dex_files);
// Create a random profile file based on the set of dex files.
result = ProfileCompilationInfo::GenerateTestProfile(profile_test_fd,
dex_files,
test_profile_seed_);
}
close(profile_test_fd); // ignore close result.
return result ? 0 : -1;
}
bool ShouldGenerateTestProfile() {
return !test_profile_.empty();
}
private:
static void ParseFdForCollection(const StringPiece& option,
const char* arg_name,
std::vector<int>* fds) {
int fd;
ParseUintOption(option, arg_name, &fd, Usage);
fds->push_back(fd);
}
static void CloseAllFds(const std::vector<int>& fds, const char* descriptor) {
for (size_t i = 0; i < fds.size(); i++) {
if (close(fds[i]) < 0) {
PLOG(WARNING) << "Failed to close descriptor for " << descriptor << " at index " << i;
}
}
}
void LogCompletionTime() {
static constexpr uint64_t kLogThresholdTime = MsToNs(100); // 100ms
uint64_t time_taken = NanoTime() - start_ns_;
if (time_taken > kLogThresholdTime) {
LOG(WARNING) << "profman took " << PrettyDuration(time_taken);
}
}
std::vector<std::string> profile_files_;
std::vector<int> profile_files_fd_;
std::vector<std::string> dex_locations_;
std::vector<std::string> apk_files_;
std::vector<int> apks_fd_;
std::string reference_profile_file_;
int reference_profile_file_fd_;
bool dump_only_;
bool dump_classes_and_methods_;
int dump_output_to_fd_;
std::string test_profile_;
std::string create_profile_from_file_;
uint16_t test_profile_num_dex_;
uint16_t test_profile_method_ratio_;
uint16_t test_profile_class_ratio_;
uint32_t test_profile_seed_;
uint64_t start_ns_;
};
// See ProfileAssistant::ProcessingResult for return codes.
static int profman(int argc, char** argv) {
ProfMan profman;
// Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError.
profman.ParseArgs(argc, argv);
if (profman.ShouldGenerateTestProfile()) {
return profman.GenerateTestProfile();
}
if (profman.ShouldOnlyDumpProfile()) {
return profman.DumpProfileInfo();
}
if (profman.ShouldOnlyDumpClassesAndMethods()) {
return profman.DumpClasses();
}
if (profman.ShouldCreateProfile()) {
return profman.CreateProfile();
}
// Process profile information and assess if we need to do a profile guided compilation.
// This operation involves I/O.
return profman.ProcessProfiles();
}
} // namespace art
int main(int argc, char **argv) {
return art::profman(argc, argv);
}