| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "image_writer.h" |
| |
| #include <sys/stat.h> |
| |
| #include <memory> |
| #include <numeric> |
| #include <vector> |
| |
| #include "art_field-inl.h" |
| #include "base/logging.h" |
| #include "base/unix_file/fd_file.h" |
| #include "class_linker.h" |
| #include "compiled_method.h" |
| #include "dex_file-inl.h" |
| #include "driver/compiler_driver.h" |
| #include "elf_file.h" |
| #include "elf_utils.h" |
| #include "elf_writer.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/accounting/heap_bitmap.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/heap.h" |
| #include "gc/space/large_object_space.h" |
| #include "gc/space/space-inl.h" |
| #include "globals.h" |
| #include "image.h" |
| #include "intern_table.h" |
| #include "linear_alloc.h" |
| #include "lock_word.h" |
| #include "mirror/art_method-inl.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache-inl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/string-inl.h" |
| #include "oat.h" |
| #include "oat_file.h" |
| #include "runtime.h" |
| #include "scoped_thread_state_change.h" |
| #include "handle_scope-inl.h" |
| #include "utils/dex_cache_arrays_layout-inl.h" |
| |
| using ::art::mirror::ArtMethod; |
| using ::art::mirror::Class; |
| using ::art::mirror::DexCache; |
| using ::art::mirror::EntryPointFromInterpreter; |
| using ::art::mirror::Object; |
| using ::art::mirror::ObjectArray; |
| using ::art::mirror::String; |
| |
| namespace art { |
| |
| // Separate objects into multiple bins to optimize dirty memory use. |
| static constexpr bool kBinObjects = true; |
| |
| static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| Class* klass = obj->GetClass(); |
| CHECK_NE(PrettyClass(klass), "com.android.dex.Dex"); |
| } |
| |
| static void CheckNoDexObjects() { |
| ScopedObjectAccess soa(Thread::Current()); |
| Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr); |
| } |
| |
| bool ImageWriter::PrepareImageAddressSpace() { |
| target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet()); |
| { |
| Thread::Current()->TransitionFromSuspendedToRunnable(); |
| PruneNonImageClasses(); // Remove junk |
| ComputeLazyFieldsForImageClasses(); // Add useful information |
| ProcessStrings(); |
| Thread::Current()->TransitionFromRunnableToSuspended(kNative); |
| } |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| heap->CollectGarbage(false); // Remove garbage. |
| |
| // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped |
| // dex files. |
| // |
| // We may open them in the unstarted-runtime code for class metadata. Their fields should all be |
| // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually |
| // true. |
| if (kIsDebugBuild) { |
| CheckNoDexObjects(); |
| } |
| |
| if (!AllocMemory()) { |
| return false; |
| } |
| |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| CheckNonImageClassesRemoved(); |
| } |
| |
| Thread::Current()->TransitionFromSuspendedToRunnable(); |
| CalculateNewObjectOffsets(); |
| Thread::Current()->TransitionFromRunnableToSuspended(kNative); |
| |
| return true; |
| } |
| |
| bool ImageWriter::Write(const std::string& image_filename, |
| const std::string& oat_filename, |
| const std::string& oat_location) { |
| CHECK(!image_filename.empty()); |
| |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| |
| std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename.c_str())); |
| if (oat_file.get() == NULL) { |
| PLOG(ERROR) << "Failed to open oat file " << oat_filename << " for " << oat_location; |
| return false; |
| } |
| std::string error_msg; |
| oat_file_ = OatFile::OpenReadable(oat_file.get(), oat_location, nullptr, &error_msg); |
| if (oat_file_ == nullptr) { |
| PLOG(ERROR) << "Failed to open writable oat file " << oat_filename << " for " << oat_location |
| << ": " << error_msg; |
| oat_file->Erase(); |
| return false; |
| } |
| CHECK_EQ(class_linker->RegisterOatFile(oat_file_), oat_file_); |
| |
| interpreter_to_interpreter_bridge_offset_ = |
| oat_file_->GetOatHeader().GetInterpreterToInterpreterBridgeOffset(); |
| interpreter_to_compiled_code_bridge_offset_ = |
| oat_file_->GetOatHeader().GetInterpreterToCompiledCodeBridgeOffset(); |
| |
| jni_dlsym_lookup_offset_ = oat_file_->GetOatHeader().GetJniDlsymLookupOffset(); |
| |
| quick_generic_jni_trampoline_offset_ = |
| oat_file_->GetOatHeader().GetQuickGenericJniTrampolineOffset(); |
| quick_imt_conflict_trampoline_offset_ = |
| oat_file_->GetOatHeader().GetQuickImtConflictTrampolineOffset(); |
| quick_resolution_trampoline_offset_ = |
| oat_file_->GetOatHeader().GetQuickResolutionTrampolineOffset(); |
| quick_to_interpreter_bridge_offset_ = |
| oat_file_->GetOatHeader().GetQuickToInterpreterBridgeOffset(); |
| |
| size_t oat_loaded_size = 0; |
| size_t oat_data_offset = 0; |
| ElfWriter::GetOatElfInformation(oat_file.get(), oat_loaded_size, oat_data_offset); |
| |
| Thread::Current()->TransitionFromSuspendedToRunnable(); |
| CreateHeader(oat_loaded_size, oat_data_offset); |
| // TODO: heap validation can't handle these fix up passes. |
| Runtime::Current()->GetHeap()->DisableObjectValidation(); |
| CopyAndFixupNativeData(); |
| CopyAndFixupObjects(); |
| Thread::Current()->TransitionFromRunnableToSuspended(kNative); |
| |
| SetOatChecksumFromElfFile(oat_file.get()); |
| |
| if (oat_file->FlushCloseOrErase() != 0) { |
| LOG(ERROR) << "Failed to flush and close oat file " << oat_filename << " for " << oat_location; |
| return false; |
| } |
| |
| std::unique_ptr<File> image_file(OS::CreateEmptyFile(image_filename.c_str())); |
| ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin()); |
| if (image_file.get() == NULL) { |
| LOG(ERROR) << "Failed to open image file " << image_filename; |
| return false; |
| } |
| if (fchmod(image_file->Fd(), 0644) != 0) { |
| PLOG(ERROR) << "Failed to make image file world readable: " << image_filename; |
| image_file->Erase(); |
| return EXIT_FAILURE; |
| } |
| |
| // Write out the image + fields. |
| const auto write_count = image_header->GetImageSize() + image_header->GetArtFieldsSize(); |
| CHECK_EQ(image_end_, image_header->GetImageSize()); |
| if (!image_file->WriteFully(image_->Begin(), write_count)) { |
| PLOG(ERROR) << "Failed to write image file " << image_filename; |
| image_file->Erase(); |
| return false; |
| } |
| |
| // Write out the image bitmap at the page aligned start of the image end. |
| CHECK_ALIGNED(image_header->GetImageBitmapOffset(), kPageSize); |
| if (!image_file->Write(reinterpret_cast<char*>(image_bitmap_->Begin()), |
| image_header->GetImageBitmapSize(), |
| image_header->GetImageBitmapOffset())) { |
| PLOG(ERROR) << "Failed to write image file " << image_filename; |
| image_file->Erase(); |
| return false; |
| } |
| |
| CHECK_EQ(image_header->GetImageBitmapOffset() + image_header->GetImageBitmapSize(), |
| static_cast<size_t>(image_file->GetLength())); |
| if (image_file->FlushCloseOrErase() != 0) { |
| PLOG(ERROR) << "Failed to flush and close image file " << image_filename; |
| return false; |
| } |
| return true; |
| } |
| |
| void ImageWriter::SetImageOffset(mirror::Object* object, |
| ImageWriter::BinSlot bin_slot, |
| size_t offset) { |
| DCHECK(object != nullptr); |
| DCHECK_NE(offset, 0U); |
| mirror::Object* obj = reinterpret_cast<mirror::Object*>(image_->Begin() + offset); |
| DCHECK_ALIGNED(obj, kObjectAlignment); |
| |
| static size_t max_offset = 0; |
| max_offset = std::max(max_offset, offset); |
| image_bitmap_->Set(obj); // Mark the obj as mutated, since we will end up changing it. |
| { |
| // Remember the object-inside-of-the-image's hash code so we can restore it after the copy. |
| auto hash_it = saved_hashes_map_.find(bin_slot); |
| if (hash_it != saved_hashes_map_.end()) { |
| std::pair<BinSlot, uint32_t> slot_hash = *hash_it; |
| saved_hashes_.push_back(std::make_pair(obj, slot_hash.second)); |
| saved_hashes_map_.erase(hash_it); |
| } |
| } |
| // The object is already deflated from when we set the bin slot. Just overwrite the lock word. |
| object->SetLockWord(LockWord::FromForwardingAddress(offset), false); |
| DCHECK(IsImageOffsetAssigned(object)); |
| } |
| |
| void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) { |
| DCHECK(object != nullptr); |
| DCHECK_NE(image_objects_offset_begin_, 0u); |
| |
| size_t previous_bin_sizes = bin_slot_previous_sizes_[bin_slot.GetBin()]; |
| size_t new_offset = image_objects_offset_begin_ + previous_bin_sizes + bin_slot.GetIndex(); |
| DCHECK_ALIGNED(new_offset, kObjectAlignment); |
| |
| SetImageOffset(object, bin_slot, new_offset); |
| DCHECK_LT(new_offset, image_end_); |
| } |
| |
| bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const { |
| // Will also return true if the bin slot was assigned since we are reusing the lock word. |
| DCHECK(object != nullptr); |
| return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress; |
| } |
| |
| size_t ImageWriter::GetImageOffset(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| DCHECK(IsImageOffsetAssigned(object)); |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); |
| DCHECK_LT(offset, image_end_); |
| return offset; |
| } |
| |
| void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) { |
| DCHECK(object != nullptr); |
| DCHECK(!IsImageOffsetAssigned(object)); |
| DCHECK(!IsImageBinSlotAssigned(object)); |
| |
| // Before we stomp over the lock word, save the hash code for later. |
| Monitor::Deflate(Thread::Current(), object);; |
| LockWord lw(object->GetLockWord(false)); |
| switch (lw.GetState()) { |
| case LockWord::kFatLocked: { |
| LOG(FATAL) << "Fat locked object " << object << " found during object copy"; |
| break; |
| } |
| case LockWord::kThinLocked: { |
| LOG(FATAL) << "Thin locked object " << object << " found during object copy"; |
| break; |
| } |
| case LockWord::kUnlocked: |
| // No hash, don't need to save it. |
| break; |
| case LockWord::kHashCode: |
| saved_hashes_map_[bin_slot] = lw.GetHashCode(); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable."; |
| UNREACHABLE(); |
| } |
| object->SetLockWord(LockWord::FromForwardingAddress(static_cast<uint32_t>(bin_slot)), |
| false); |
| DCHECK(IsImageBinSlotAssigned(object)); |
| } |
| |
| void ImageWriter::PrepareDexCacheArraySlots() { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); |
| size_t dex_cache_count = class_linker->GetDexCacheCount(); |
| uint32_t size = 0u; |
| for (size_t idx = 0; idx < dex_cache_count; ++idx) { |
| DexCache* dex_cache = class_linker->GetDexCache(idx); |
| const DexFile* dex_file = dex_cache->GetDexFile(); |
| dex_cache_array_starts_.Put(dex_file, size); |
| DexCacheArraysLayout layout(target_ptr_size_, dex_file); |
| DCHECK(layout.Valid()); |
| auto types_size = layout.TypesSize(dex_file->NumTypeIds()); |
| auto methods_size = layout.MethodsSize(dex_file->NumMethodIds()); |
| auto fields_size = layout.FieldsSize(dex_file->NumFieldIds()); |
| auto strings_size = layout.StringsSize(dex_file->NumStringIds()); |
| dex_cache_array_indexes_.Put( |
| dex_cache->GetResolvedTypes(), |
| DexCacheArrayLocation {size + layout.TypesOffset(), types_size}); |
| dex_cache_array_indexes_.Put( |
| dex_cache->GetResolvedMethods(), |
| DexCacheArrayLocation {size + layout.MethodsOffset(), methods_size}); |
| dex_cache_array_indexes_.Put( |
| dex_cache->GetResolvedFields(), |
| DexCacheArrayLocation {size + layout.FieldsOffset(), fields_size}); |
| dex_cache_array_indexes_.Put( |
| dex_cache->GetStrings(), |
| DexCacheArrayLocation {size + layout.StringsOffset(), strings_size}); |
| size += layout.Size(); |
| CHECK_EQ(layout.Size(), types_size + methods_size + fields_size + strings_size); |
| } |
| // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned() |
| // when AssignImageBinSlot() assigns their indexes out or order. |
| bin_slot_sizes_[kBinDexCacheArray] = size; |
| } |
| |
| void ImageWriter::AssignImageBinSlot(mirror::Object* object) { |
| DCHECK(object != nullptr); |
| size_t object_size = object->SizeOf(); |
| |
| // The magic happens here. We segregate objects into different bins based |
| // on how likely they are to get dirty at runtime. |
| // |
| // Likely-to-dirty objects get packed together into the same bin so that |
| // at runtime their page dirtiness ratio (how many dirty objects a page has) is |
| // maximized. |
| // |
| // This means more pages will stay either clean or shared dirty (with zygote) and |
| // the app will use less of its own (private) memory. |
| Bin bin = kBinRegular; |
| size_t current_offset = 0u; |
| |
| if (kBinObjects) { |
| // |
| // Changing the bin of an object is purely a memory-use tuning. |
| // It has no change on runtime correctness. |
| // |
| // Memory analysis has determined that the following types of objects get dirtied |
| // the most: |
| // |
| // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have |
| // a fixed layout which helps improve generated code (using PC-relative addressing), |
| // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots(). |
| // Since these arrays are huge, most pages do not overlap other objects and it's not |
| // really important where they are for the clean/dirty separation. Due to their |
| // special PC-relative addressing, we arbitrarily keep them at the beginning. |
| // * Class'es which are verified [their clinit runs only at runtime] |
| // - classes in general [because their static fields get overwritten] |
| // - initialized classes with all-final statics are unlikely to be ever dirty, |
| // so bin them separately |
| // * Art Methods that are: |
| // - native [their native entry point is not looked up until runtime] |
| // - have declaring classes that aren't initialized |
| // [their interpreter/quick entry points are trampolines until the class |
| // becomes initialized] |
| // |
| // We also assume the following objects get dirtied either never or extremely rarely: |
| // * Strings (they are immutable) |
| // * Art methods that aren't native and have initialized declared classes |
| // |
| // We assume that "regular" bin objects are highly unlikely to become dirtied, |
| // so packing them together will not result in a noticeably tighter dirty-to-clean ratio. |
| // |
| if (object->IsClass()) { |
| bin = kBinClassVerified; |
| mirror::Class* klass = object->AsClass(); |
| |
| if (klass->GetStatus() == Class::kStatusInitialized) { |
| bin = kBinClassInitialized; |
| |
| // If the class's static fields are all final, put it into a separate bin |
| // since it's very likely it will stay clean. |
| uint32_t num_static_fields = klass->NumStaticFields(); |
| if (num_static_fields == 0) { |
| bin = kBinClassInitializedFinalStatics; |
| } else { |
| // Maybe all the statics are final? |
| bool all_final = true; |
| for (uint32_t i = 0; i < num_static_fields; ++i) { |
| ArtField* field = klass->GetStaticField(i); |
| if (!field->IsFinal()) { |
| all_final = false; |
| break; |
| } |
| } |
| |
| if (all_final) { |
| bin = kBinClassInitializedFinalStatics; |
| } |
| } |
| } |
| } else if (object->IsArtMethod<kVerifyNone>()) { |
| mirror::ArtMethod* art_method = down_cast<ArtMethod*>(object); |
| if (art_method->IsNative()) { |
| bin = kBinArtMethodNative; |
| } else { |
| mirror::Class* declaring_class = art_method->GetDeclaringClass(); |
| if (declaring_class->GetStatus() != Class::kStatusInitialized) { |
| bin = kBinArtMethodNotInitialized; |
| } else { |
| // This is highly unlikely to dirty since there's no entry points to mutate. |
| bin = kBinArtMethodsManagedInitialized; |
| } |
| } |
| } else if (object->GetClass<kVerifyNone>()->IsStringClass()) { |
| bin = kBinString; // Strings are almost always immutable (except for object header). |
| } else if (object->IsArrayInstance()) { |
| mirror::Class* klass = object->GetClass<kVerifyNone>(); |
| auto* component_type = klass->GetComponentType(); |
| if (!component_type->IsPrimitive() || component_type->IsPrimitiveInt() || |
| component_type->IsPrimitiveLong()) { |
| auto it = dex_cache_array_indexes_.find(object); |
| if (it != dex_cache_array_indexes_.end()) { |
| bin = kBinDexCacheArray; |
| // Use prepared offset defined by the DexCacheLayout. |
| current_offset = it->second.offset_; |
| // Override incase of cross compilation. |
| object_size = it->second.length_; |
| } // else bin = kBinRegular |
| } |
| } // else bin = kBinRegular |
| } |
| |
| size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment |
| if (bin != kBinDexCacheArray) { |
| current_offset = bin_slot_sizes_[bin]; // How many bytes the current bin is at (aligned). |
| // Move the current bin size up to accomodate the object we just assigned a bin slot. |
| bin_slot_sizes_[bin] += offset_delta; |
| } |
| |
| BinSlot new_bin_slot(bin, current_offset); |
| SetImageBinSlot(object, new_bin_slot); |
| |
| ++bin_slot_count_[bin]; |
| |
| DCHECK_LT(GetBinSizeSum(), image_->Size()); |
| |
| // Grow the image closer to the end by the object we just assigned. |
| image_end_ += offset_delta; |
| DCHECK_LT(image_end_, image_->Size()); |
| } |
| |
| bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| |
| // We always stash the bin slot into a lockword, in the 'forwarding address' state. |
| // If it's in some other state, then we haven't yet assigned an image bin slot. |
| if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) { |
| return false; |
| } else if (kIsDebugBuild) { |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); |
| BinSlot bin_slot(offset); |
| DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()]) |
| << "bin slot offset should not exceed the size of that bin"; |
| } |
| return true; |
| } |
| |
| ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const { |
| DCHECK(object != nullptr); |
| DCHECK(IsImageBinSlotAssigned(object)); |
| |
| LockWord lock_word = object->GetLockWord(false); |
| size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t |
| DCHECK_LE(offset, std::numeric_limits<uint32_t>::max()); |
| |
| BinSlot bin_slot(static_cast<uint32_t>(offset)); |
| DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()]); |
| |
| return bin_slot; |
| } |
| |
| bool ImageWriter::AllocMemory() { |
| auto* runtime = Runtime::Current(); |
| const size_t heap_size = runtime->GetHeap()->GetTotalMemory(); |
| // Add linear alloc usage since we need to have room for the ArtFields. |
| const size_t length = RoundUp(heap_size + runtime->GetLinearAlloc()->GetUsedMemory(), kPageSize); |
| std::string error_msg; |
| image_.reset(MemMap::MapAnonymous("image writer image", nullptr, length, PROT_READ | PROT_WRITE, |
| false, false, &error_msg)); |
| if (UNLIKELY(image_.get() == nullptr)) { |
| LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg; |
| return false; |
| } |
| |
| // Create the image bitmap. |
| image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create("image bitmap", image_->Begin(), |
| RoundUp(length, kPageSize))); |
| if (image_bitmap_.get() == nullptr) { |
| LOG(ERROR) << "Failed to allocate memory for image bitmap"; |
| return false; |
| } |
| return true; |
| } |
| |
| void ImageWriter::ComputeLazyFieldsForImageClasses() { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| class_linker->VisitClassesWithoutClassesLock(ComputeLazyFieldsForClassesVisitor, NULL); |
| } |
| |
| bool ImageWriter::ComputeLazyFieldsForClassesVisitor(Class* c, void* /*arg*/) { |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| mirror::Class::ComputeName(hs.NewHandle(c)); |
| return true; |
| } |
| |
| // Count the number of strings in the heap and put the result in arg as a size_t pointer. |
| static void CountStringsCallback(Object* obj, void* arg) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| if (obj->GetClass()->IsStringClass()) { |
| ++*reinterpret_cast<size_t*>(arg); |
| } |
| } |
| |
| // Collect all the java.lang.String in the heap and put them in the output strings_ array. |
| class StringCollector { |
| public: |
| StringCollector(Handle<mirror::ObjectArray<mirror::String>> strings, size_t index) |
| : strings_(strings), index_(index) { |
| } |
| static void Callback(Object* obj, void* arg) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| auto* collector = reinterpret_cast<StringCollector*>(arg); |
| if (obj->GetClass()->IsStringClass()) { |
| collector->strings_->SetWithoutChecks<false>(collector->index_++, obj->AsString()); |
| } |
| } |
| size_t GetIndex() const { |
| return index_; |
| } |
| |
| private: |
| Handle<mirror::ObjectArray<mirror::String>> strings_; |
| size_t index_; |
| }; |
| |
| // Compare strings based on length, used for sorting strings by length / reverse length. |
| class LexicographicalStringComparator { |
| public: |
| bool operator()(const mirror::HeapReference<mirror::String>& lhs, |
| const mirror::HeapReference<mirror::String>& rhs) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| mirror::String* lhs_s = lhs.AsMirrorPtr(); |
| mirror::String* rhs_s = rhs.AsMirrorPtr(); |
| uint16_t* lhs_begin = lhs_s->GetCharArray()->GetData() + lhs_s->GetOffset(); |
| uint16_t* rhs_begin = rhs_s->GetCharArray()->GetData() + rhs_s->GetOffset(); |
| return std::lexicographical_compare(lhs_begin, lhs_begin + lhs_s->GetLength(), |
| rhs_begin, rhs_begin + rhs_s->GetLength()); |
| } |
| }; |
| |
| static bool IsPrefix(mirror::String* pref, mirror::String* full) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| if (pref->GetLength() > full->GetLength()) { |
| return false; |
| } |
| uint16_t* pref_begin = pref->GetCharArray()->GetData() + pref->GetOffset(); |
| uint16_t* full_begin = full->GetCharArray()->GetData() + full->GetOffset(); |
| return std::equal(pref_begin, pref_begin + pref->GetLength(), full_begin); |
| } |
| |
| void ImageWriter::ProcessStrings() { |
| size_t total_strings = 0; |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| ClassLinker* cl = Runtime::Current()->GetClassLinker(); |
| // Count the strings. |
| heap->VisitObjects(CountStringsCallback, &total_strings); |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| auto strings = hs.NewHandle(cl->AllocStringArray(self, total_strings)); |
| StringCollector string_collector(strings, 0U); |
| // Read strings into the array. |
| heap->VisitObjects(StringCollector::Callback, &string_collector); |
| // Some strings could have gotten freed if AllocStringArray caused a GC. |
| CHECK_LE(string_collector.GetIndex(), total_strings); |
| total_strings = string_collector.GetIndex(); |
| auto* strings_begin = reinterpret_cast<mirror::HeapReference<mirror::String>*>( |
| strings->GetRawData(sizeof(mirror::HeapReference<mirror::String>), 0)); |
| std::sort(strings_begin, strings_begin + total_strings, LexicographicalStringComparator()); |
| // Characters of strings which are non equal prefix of another string (not the same string). |
| // We don't count the savings from equal strings since these would get interned later anyways. |
| size_t prefix_saved_chars = 0; |
| // Count characters needed for the strings. |
| size_t num_chars = 0u; |
| mirror::String* prev_s = nullptr; |
| for (size_t idx = 0; idx != total_strings; ++idx) { |
| mirror::String* s = strings->GetWithoutChecks(idx); |
| size_t length = s->GetLength(); |
| num_chars += length; |
| if (prev_s != nullptr && IsPrefix(prev_s, s)) { |
| size_t prev_length = prev_s->GetLength(); |
| num_chars -= prev_length; |
| if (prev_length != length) { |
| prefix_saved_chars += prev_length; |
| } |
| } |
| prev_s = s; |
| } |
| // Create character array, copy characters and point the strings there. |
| mirror::CharArray* array = mirror::CharArray::Alloc(self, num_chars); |
| string_data_array_ = array; |
| uint16_t* array_data = array->GetData(); |
| size_t pos = 0u; |
| prev_s = nullptr; |
| for (size_t idx = 0; idx != total_strings; ++idx) { |
| mirror::String* s = strings->GetWithoutChecks(idx); |
| uint16_t* s_data = s->GetCharArray()->GetData() + s->GetOffset(); |
| int32_t s_length = s->GetLength(); |
| int32_t prefix_length = 0u; |
| if (idx != 0u && IsPrefix(prev_s, s)) { |
| prefix_length = prev_s->GetLength(); |
| } |
| memcpy(array_data + pos, s_data + prefix_length, (s_length - prefix_length) * sizeof(*s_data)); |
| s->SetOffset(pos - prefix_length); |
| s->SetArray(array); |
| pos += s_length - prefix_length; |
| prev_s = s; |
| } |
| CHECK_EQ(pos, num_chars); |
| |
| if (kIsDebugBuild || VLOG_IS_ON(compiler)) { |
| LOG(INFO) << "Total # image strings=" << total_strings << " combined length=" |
| << num_chars << " prefix saved chars=" << prefix_saved_chars; |
| } |
| ComputeEagerResolvedStrings(); |
| } |
| |
| void ImageWriter::ComputeEagerResolvedStringsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) { |
| if (!obj->GetClass()->IsStringClass()) { |
| return; |
| } |
| mirror::String* string = obj->AsString(); |
| const uint16_t* utf16_string = string->GetCharArray()->GetData() + string->GetOffset(); |
| size_t utf16_length = static_cast<size_t>(string->GetLength()); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); |
| size_t dex_cache_count = class_linker->GetDexCacheCount(); |
| for (size_t i = 0; i < dex_cache_count; ++i) { |
| DexCache* dex_cache = class_linker->GetDexCache(i); |
| const DexFile& dex_file = *dex_cache->GetDexFile(); |
| const DexFile::StringId* string_id; |
| if (UNLIKELY(utf16_length == 0)) { |
| string_id = dex_file.FindStringId(""); |
| } else { |
| string_id = dex_file.FindStringId(utf16_string, utf16_length); |
| } |
| if (string_id != nullptr) { |
| // This string occurs in this dex file, assign the dex cache entry. |
| uint32_t string_idx = dex_file.GetIndexForStringId(*string_id); |
| if (dex_cache->GetResolvedString(string_idx) == NULL) { |
| dex_cache->SetResolvedString(string_idx, string); |
| } |
| } |
| } |
| } |
| |
| void ImageWriter::ComputeEagerResolvedStrings() { |
| Runtime::Current()->GetHeap()->VisitObjects(ComputeEagerResolvedStringsCallback, this); |
| } |
| |
| bool ImageWriter::IsImageClass(Class* klass) { |
| std::string temp; |
| return compiler_driver_.IsImageClass(klass->GetDescriptor(&temp)); |
| } |
| |
| struct NonImageClasses { |
| ImageWriter* image_writer; |
| std::set<std::string>* non_image_classes; |
| }; |
| |
| void ImageWriter::PruneNonImageClasses() { |
| if (compiler_driver_.GetImageClasses() == NULL) { |
| return; |
| } |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| |
| // Make a list of classes we would like to prune. |
| std::set<std::string> non_image_classes; |
| NonImageClasses context; |
| context.image_writer = this; |
| context.non_image_classes = &non_image_classes; |
| class_linker->VisitClasses(NonImageClassesVisitor, &context); |
| |
| // Remove the undesired classes from the class roots. |
| for (const std::string& it : non_image_classes) { |
| bool result = class_linker->RemoveClass(it.c_str(), NULL); |
| DCHECK(result); |
| } |
| |
| // Clear references to removed classes from the DexCaches. |
| ArtMethod* resolution_method = runtime->GetResolutionMethod(); |
| ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock()); |
| size_t dex_cache_count = class_linker->GetDexCacheCount(); |
| for (size_t idx = 0; idx < dex_cache_count; ++idx) { |
| DexCache* dex_cache = class_linker->GetDexCache(idx); |
| for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) { |
| Class* klass = dex_cache->GetResolvedType(i); |
| if (klass != NULL && !IsImageClass(klass)) { |
| dex_cache->SetResolvedType(i, NULL); |
| } |
| } |
| for (size_t i = 0; i < dex_cache->NumResolvedMethods(); i++) { |
| ArtMethod* method = dex_cache->GetResolvedMethod(i); |
| if (method != NULL && !IsImageClass(method->GetDeclaringClass())) { |
| dex_cache->SetResolvedMethod(i, resolution_method); |
| } |
| } |
| for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) { |
| ArtField* field = dex_cache->GetResolvedField(i, sizeof(void*)); |
| if (field != nullptr && !IsImageClass(field->GetDeclaringClass())) { |
| dex_cache->SetResolvedField(i, nullptr, sizeof(void*)); |
| } |
| } |
| // Clean the dex field. It might have been populated during the initialization phase, but |
| // contains data only valid during a real run. |
| dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr); |
| } |
| } |
| |
| bool ImageWriter::NonImageClassesVisitor(Class* klass, void* arg) { |
| NonImageClasses* context = reinterpret_cast<NonImageClasses*>(arg); |
| if (!context->image_writer->IsImageClass(klass)) { |
| std::string temp; |
| context->non_image_classes->insert(klass->GetDescriptor(&temp)); |
| } |
| return true; |
| } |
| |
| void ImageWriter::CheckNonImageClassesRemoved() { |
| if (compiler_driver_.GetImageClasses() != nullptr) { |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| heap->VisitObjects(CheckNonImageClassesRemovedCallback, this); |
| } |
| } |
| |
| void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) { |
| ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg); |
| if (obj->IsClass()) { |
| Class* klass = obj->AsClass(); |
| if (!image_writer->IsImageClass(klass)) { |
| image_writer->DumpImageClasses(); |
| std::string temp; |
| CHECK(image_writer->IsImageClass(klass)) << klass->GetDescriptor(&temp) |
| << " " << PrettyDescriptor(klass); |
| } |
| } |
| } |
| |
| void ImageWriter::DumpImageClasses() { |
| const std::set<std::string>* image_classes = compiler_driver_.GetImageClasses(); |
| CHECK(image_classes != NULL); |
| for (const std::string& image_class : *image_classes) { |
| LOG(INFO) << " " << image_class; |
| } |
| } |
| |
| void ImageWriter::CalculateObjectBinSlots(Object* obj) { |
| DCHECK(obj != NULL); |
| // if it is a string, we want to intern it if its not interned. |
| if (obj->GetClass()->IsStringClass()) { |
| // we must be an interned string that was forward referenced and already assigned |
| if (IsImageBinSlotAssigned(obj)) { |
| DCHECK_EQ(obj, obj->AsString()->Intern()); |
| return; |
| } |
| mirror::String* const interned = obj->AsString()->Intern(); |
| if (obj != interned) { |
| if (!IsImageBinSlotAssigned(interned)) { |
| // interned obj is after us, allocate its location early |
| AssignImageBinSlot(interned); |
| } |
| // point those looking for this object to the interned version. |
| SetImageBinSlot(obj, GetImageBinSlot(interned)); |
| return; |
| } |
| // else (obj == interned), nothing to do but fall through to the normal case |
| } |
| |
| AssignImageBinSlot(obj); |
| } |
| |
| ObjectArray<Object>* ImageWriter::CreateImageRoots() const { |
| Runtime* runtime = Runtime::Current(); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| Thread* self = Thread::Current(); |
| StackHandleScope<3> hs(self); |
| Handle<Class> object_array_class(hs.NewHandle( |
| class_linker->FindSystemClass(self, "[Ljava/lang/Object;"))); |
| |
| // build an Object[] of all the DexCaches used in the source_space_. |
| // Since we can't hold the dex lock when allocating the dex_caches |
| // ObjectArray, we lock the dex lock twice, first to get the number |
| // of dex caches first and then lock it again to copy the dex |
| // caches. We check that the number of dex caches does not change. |
| size_t dex_cache_count; |
| { |
| ReaderMutexLock mu(self, *class_linker->DexLock()); |
| dex_cache_count = class_linker->GetDexCacheCount(); |
| } |
| Handle<ObjectArray<Object>> dex_caches( |
| hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), |
| dex_cache_count))); |
| CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array."; |
| { |
| ReaderMutexLock mu(self, *class_linker->DexLock()); |
| CHECK_EQ(dex_cache_count, class_linker->GetDexCacheCount()) |
| << "The number of dex caches changed."; |
| for (size_t i = 0; i < dex_cache_count; ++i) { |
| dex_caches->Set<false>(i, class_linker->GetDexCache(i)); |
| } |
| } |
| |
| // build an Object[] of the roots needed to restore the runtime |
| Handle<ObjectArray<Object>> image_roots(hs.NewHandle( |
| ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax))); |
| image_roots->Set<false>(ImageHeader::kResolutionMethod, runtime->GetResolutionMethod()); |
| image_roots->Set<false>(ImageHeader::kImtConflictMethod, runtime->GetImtConflictMethod()); |
| image_roots->Set<false>(ImageHeader::kImtUnimplementedMethod, |
| runtime->GetImtUnimplementedMethod()); |
| image_roots->Set<false>(ImageHeader::kDefaultImt, runtime->GetDefaultImt()); |
| image_roots->Set<false>(ImageHeader::kCalleeSaveMethod, |
| runtime->GetCalleeSaveMethod(Runtime::kSaveAll)); |
| image_roots->Set<false>(ImageHeader::kRefsOnlySaveMethod, |
| runtime->GetCalleeSaveMethod(Runtime::kRefsOnly)); |
| image_roots->Set<false>(ImageHeader::kRefsAndArgsSaveMethod, |
| runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs)); |
| image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get()); |
| image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots()); |
| for (int i = 0; i < ImageHeader::kImageRootsMax; i++) { |
| CHECK(image_roots->Get(i) != NULL); |
| } |
| return image_roots.Get(); |
| } |
| |
| // Walk instance fields of the given Class. Separate function to allow recursion on the super |
| // class. |
| void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) { |
| // Visit fields of parent classes first. |
| StackHandleScope<1> hs(Thread::Current()); |
| Handle<mirror::Class> h_class(hs.NewHandle(klass)); |
| mirror::Class* super = h_class->GetSuperClass(); |
| if (super != nullptr) { |
| WalkInstanceFields(obj, super); |
| } |
| // |
| size_t num_reference_fields = h_class->NumReferenceInstanceFields(); |
| MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset(); |
| for (size_t i = 0; i < num_reference_fields; ++i) { |
| mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset); |
| if (value != nullptr) { |
| WalkFieldsInOrder(value); |
| } |
| field_offset = MemberOffset(field_offset.Uint32Value() + |
| sizeof(mirror::HeapReference<mirror::Object>)); |
| } |
| } |
| |
| // For an unvisited object, visit it then all its children found via fields. |
| void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) { |
| // Use our own visitor routine (instead of GC visitor) to get better locality between |
| // an object and its fields |
| if (!IsImageBinSlotAssigned(obj)) { |
| // Walk instance fields of all objects |
| StackHandleScope<2> hs(Thread::Current()); |
| Handle<mirror::Object> h_obj(hs.NewHandle(obj)); |
| Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass())); |
| // visit the object itself. |
| CalculateObjectBinSlots(h_obj.Get()); |
| WalkInstanceFields(h_obj.Get(), klass.Get()); |
| // Walk static fields of a Class. |
| if (h_obj->IsClass()) { |
| size_t num_reference_static_fields = klass->NumReferenceStaticFields(); |
| MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(); |
| for (size_t i = 0; i < num_reference_static_fields; ++i) { |
| mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset); |
| if (value != nullptr) { |
| WalkFieldsInOrder(value); |
| } |
| field_offset = MemberOffset(field_offset.Uint32Value() + |
| sizeof(mirror::HeapReference<mirror::Object>)); |
| } |
| |
| // Visit and assign offsets for fields. |
| ArtField* fields[2] = { h_obj->AsClass()->GetSFields(), h_obj->AsClass()->GetIFields() }; |
| size_t num_fields[2] = { h_obj->AsClass()->NumStaticFields(), |
| h_obj->AsClass()->NumInstanceFields() }; |
| for (size_t i = 0; i < 2; ++i) { |
| for (size_t j = 0; j < num_fields[i]; ++j) { |
| auto* field = fields[i] + j; |
| auto it = art_field_reloc_.find(field); |
| CHECK(it == art_field_reloc_.end()) << "Field at index " << i << ":" << j |
| << " already assigned " << PrettyField(field); |
| art_field_reloc_.emplace(field, bin_slot_sizes_[kBinArtField]); |
| bin_slot_sizes_[kBinArtField] += sizeof(ArtField); |
| } |
| } |
| } else if (h_obj->IsObjectArray()) { |
| // Walk elements of an object array. |
| int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength(); |
| for (int32_t i = 0; i < length; i++) { |
| mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>(); |
| mirror::Object* value = obj_array->Get(i); |
| if (value != nullptr) { |
| WalkFieldsInOrder(value); |
| } |
| } |
| } |
| } |
| } |
| |
| void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) { |
| ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); |
| DCHECK(writer != nullptr); |
| writer->WalkFieldsInOrder(obj); |
| } |
| |
| void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) { |
| ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg); |
| DCHECK(writer != nullptr); |
| writer->UnbinObjectsIntoOffset(obj); |
| } |
| |
| void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) { |
| CHECK(obj != nullptr); |
| |
| // We know the bin slot, and the total bin sizes for all objects by now, |
| // so calculate the object's final image offset. |
| |
| DCHECK(IsImageBinSlotAssigned(obj)); |
| BinSlot bin_slot = GetImageBinSlot(obj); |
| // Change the lockword from a bin slot into an offset |
| AssignImageOffset(obj, bin_slot); |
| } |
| |
| void ImageWriter::CalculateNewObjectOffsets() { |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| Handle<ObjectArray<Object>> image_roots(hs.NewHandle(CreateImageRoots())); |
| |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| DCHECK_EQ(0U, image_end_); |
| |
| // Leave space for the header, but do not write it yet, we need to |
| // know where image_roots is going to end up |
| image_end_ += RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment |
| |
| DCHECK_LT(image_end_, image_->Size()); |
| image_objects_offset_begin_ = image_end_; |
| // Prepare bin slots for dex cache arrays. |
| PrepareDexCacheArraySlots(); |
| // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots. |
| heap->VisitObjects(WalkFieldsCallback, this); |
| // Calculate cumulative bin slot sizes. |
| size_t previous_sizes = 0u; |
| for (size_t i = 0; i != kBinSize; ++i) { |
| bin_slot_previous_sizes_[i] = previous_sizes; |
| previous_sizes += bin_slot_sizes_[i]; |
| } |
| DCHECK_EQ(previous_sizes, GetBinSizeSum()); |
| DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_); |
| |
| // Transform each object's bin slot into an offset which will be used to do the final copy. |
| heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this); |
| DCHECK(saved_hashes_map_.empty()); // All binslot hashes should've been put into vector by now. |
| |
| DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_); |
| |
| image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Get())); |
| |
| // Note that image_end_ is left at end of used mirror space |
| } |
| |
| void ImageWriter::CreateHeader(size_t oat_loaded_size, size_t oat_data_offset) { |
| CHECK_NE(0U, oat_loaded_size); |
| const uint8_t* oat_file_begin = GetOatFileBegin(); |
| const uint8_t* oat_file_end = oat_file_begin + oat_loaded_size; |
| oat_data_begin_ = oat_file_begin + oat_data_offset; |
| const uint8_t* oat_data_end = oat_data_begin_ + oat_file_->Size(); |
| // Write out sections. |
| size_t cur_pos = image_end_; |
| // Add fields. |
| auto fields_offset = cur_pos; |
| CHECK_EQ(image_objects_offset_begin_ + GetBinSizeSum(kBinArtField), fields_offset); |
| auto fields_size = bin_slot_sizes_[kBinArtField]; |
| cur_pos += fields_size; |
| // Return to write header at start of image with future location of image_roots. At this point, |
| // image_end_ is the size of the image (excluding bitmaps, ArtFields). |
| /* |
| const size_t heap_bytes_per_bitmap_byte = kBitsPerByte * kObjectAlignment; |
| const size_t bitmap_bytes = RoundUp(image_end_, heap_bytes_per_bitmap_byte) / |
| heap_bytes_per_bitmap_byte; |
| */ |
| const size_t bitmap_bytes = image_bitmap_->Size(); |
| auto bitmap_offset = RoundUp(cur_pos, kPageSize); |
| auto bitmap_size = RoundUp(bitmap_bytes, kPageSize); |
| cur_pos += bitmap_size; |
| new (image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_begin_), |
| static_cast<uint32_t>(image_end_), |
| fields_offset, fields_size, |
| bitmap_offset, bitmap_size, |
| image_roots_address_, |
| oat_file_->GetOatHeader().GetChecksum(), |
| PointerToLowMemUInt32(oat_file_begin), |
| PointerToLowMemUInt32(oat_data_begin_), |
| PointerToLowMemUInt32(oat_data_end), |
| PointerToLowMemUInt32(oat_file_end), |
| compile_pic_); |
| } |
| |
| void ImageWriter::CopyAndFixupNativeData() { |
| // Copy ArtFields to their locations and update the array for convenience. |
| auto fields_offset = image_objects_offset_begin_ + GetBinSizeSum(kBinArtField); |
| for (auto& pair : art_field_reloc_) { |
| pair.second += fields_offset; |
| auto* dest = image_->Begin() + pair.second; |
| DCHECK_GE(dest, image_->Begin() + image_end_); |
| memcpy(dest, pair.first, sizeof(ArtField)); |
| reinterpret_cast<ArtField*>(dest)->SetDeclaringClass( |
| down_cast<Class*>(GetImageAddress(pair.first->GetDeclaringClass()))); |
| } |
| } |
| |
| void ImageWriter::CopyAndFixupObjects() { |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| heap->VisitObjects(CopyAndFixupObjectsCallback, this); |
| // Fix up the object previously had hash codes. |
| for (const std::pair<mirror::Object*, uint32_t>& hash_pair : saved_hashes_) { |
| Object* obj = hash_pair.first; |
| DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0U); |
| obj->SetLockWord(LockWord::FromHashCode(hash_pair.second, 0U), false); |
| } |
| saved_hashes_.clear(); |
| } |
| |
| void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) { |
| DCHECK(obj != nullptr); |
| DCHECK(arg != nullptr); |
| reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj); |
| } |
| |
| bool ImageWriter::CopyAndFixupIfDexCacheFieldArray(mirror::Object* dst, mirror::Object* obj, |
| mirror::Class* klass) { |
| if (!klass->IsArrayClass()) { |
| return false; |
| } |
| auto* component_type = klass->GetComponentType(); |
| bool is_int_arr = component_type->IsPrimitiveInt(); |
| bool is_long_arr = component_type->IsPrimitiveLong(); |
| if (!is_int_arr && !is_long_arr) { |
| return false; |
| } |
| auto it = dex_cache_array_indexes_.find(obj); // Is this a dex cache array? |
| if (it == dex_cache_array_indexes_.end()) { |
| return false; |
| } |
| mirror::Array* arr = obj->AsArray(); |
| CHECK_EQ(reinterpret_cast<Object*>( |
| image_->Begin() + it->second.offset_ + image_objects_offset_begin_), dst); |
| dex_cache_array_indexes_.erase(it); |
| // Fixup int pointers for the field array. |
| CHECK(!arr->IsObjectArray()); |
| const size_t num_elements = arr->GetLength(); |
| if (target_ptr_size_ == 4) { |
| // Will get fixed up by fixup object. |
| dst->SetClass(down_cast<mirror::Class*>( |
| GetImageAddress(mirror::IntArray::GetArrayClass()))); |
| } else { |
| DCHECK_EQ(target_ptr_size_, 8u); |
| dst->SetClass(down_cast<mirror::Class*>( |
| GetImageAddress(mirror::LongArray::GetArrayClass()))); |
| } |
| mirror::Array* dest_array = down_cast<mirror::Array*>(dst); |
| dest_array->SetLength(num_elements); |
| for (size_t i = 0, count = num_elements; i < count; ++i) { |
| ArtField* field = reinterpret_cast<ArtField*>(is_int_arr ? |
| arr->AsIntArray()->GetWithoutChecks(i) : arr->AsLongArray()->GetWithoutChecks(i)); |
| uint8_t* fixup_location = nullptr; |
| if (field != nullptr) { |
| auto it2 = art_field_reloc_.find(field); |
| CHECK(it2 != art_field_reloc_.end()) << "No relocation for field " << PrettyField(field); |
| fixup_location = image_begin_ + it2->second; |
| } |
| if (target_ptr_size_ == 4) { |
| down_cast<mirror::IntArray*>(dest_array)->SetWithoutChecks<kVerifyNone>( |
| i, static_cast<uint32_t>(reinterpret_cast<uint64_t>(fixup_location))); |
| } else { |
| down_cast<mirror::LongArray*>(dest_array)->SetWithoutChecks<kVerifyNone>( |
| i, reinterpret_cast<uint64_t>(fixup_location)); |
| } |
| } |
| dst->SetLockWord(LockWord::Default(), false); |
| return true; |
| } |
| |
| void ImageWriter::CopyAndFixupObject(Object* obj) { |
| // see GetLocalAddress for similar computation |
| size_t offset = GetImageOffset(obj); |
| auto* dst = reinterpret_cast<Object*>(image_->Begin() + offset); |
| const uint8_t* src = reinterpret_cast<const uint8_t*>(obj); |
| size_t n; |
| mirror::Class* klass = obj->GetClass(); |
| |
| if (CopyAndFixupIfDexCacheFieldArray(dst, obj, klass)) { |
| return; |
| } |
| if (klass->IsArtMethodClass()) { |
| // Size without pointer fields since we don't want to overrun the buffer if target art method |
| // is 32 bits but source is 64 bits. |
| n = mirror::ArtMethod::SizeWithoutPointerFields(target_ptr_size_); |
| } else { |
| n = obj->SizeOf(); |
| } |
| DCHECK_LE(offset + n, image_->Size()); |
| memcpy(dst, src, n); |
| |
| // Write in a hash code of objects which have inflated monitors or a hash code in their monitor |
| // word. |
| dst->SetLockWord(LockWord::Default(), false); |
| FixupObject(obj, dst); |
| } |
| |
| // Rewrite all the references in the copied object to point to their image address equivalent |
| class FixupVisitor { |
| public: |
| FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) { |
| } |
| |
| void operator()(Object* obj, MemberOffset offset, bool /*is_static*/) const |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset); |
| // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the |
| // image. |
| copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( |
| offset, image_writer_->GetImageAddress(ref)); |
| } |
| |
| // java.lang.ref.Reference visitor. |
| void operator()(mirror::Class* /*klass*/, mirror::Reference* ref) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { |
| copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( |
| mirror::Reference::ReferentOffset(), image_writer_->GetImageAddress(ref->GetReferent())); |
| } |
| |
| protected: |
| ImageWriter* const image_writer_; |
| mirror::Object* const copy_; |
| }; |
| |
| class FixupClassVisitor FINAL : public FixupVisitor { |
| public: |
| FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) { |
| } |
| |
| void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| DCHECK(obj->IsClass()); |
| FixupVisitor::operator()(obj, offset, /*is_static*/false); |
| } |
| |
| void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, |
| mirror::Reference* ref ATTRIBUTE_UNUSED) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { |
| LOG(FATAL) << "Reference not expected here."; |
| } |
| }; |
| |
| void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) { |
| // Copy and fix up ArtFields in the class. |
| ArtField* fields[2] = { orig->AsClass()->GetSFields(), orig->AsClass()->GetIFields() }; |
| size_t num_fields[2] = { orig->AsClass()->NumStaticFields(), |
| orig->AsClass()->NumInstanceFields() }; |
| // Update the arrays. |
| for (size_t i = 0; i < 2; ++i) { |
| if (num_fields[i] == 0) { |
| CHECK(fields[i] == nullptr); |
| continue; |
| } |
| auto it = art_field_reloc_.find(fields[i]); |
| CHECK(it != art_field_reloc_.end()) << PrettyClass(orig->AsClass()) << " : " |
| << PrettyField(fields[i]); |
| auto* image_fields = reinterpret_cast<ArtField*>(image_begin_ + it->second); |
| if (i == 0) { |
| down_cast<Class*>(copy)->SetSFieldsUnchecked(image_fields); |
| } else { |
| down_cast<Class*>(copy)->SetIFieldsUnchecked(image_fields); |
| } |
| } |
| FixupClassVisitor visitor(this, copy); |
| static_cast<mirror::Object*>(orig)->VisitReferences<true /*visit class*/>(visitor, visitor); |
| } |
| |
| void ImageWriter::FixupObject(Object* orig, Object* copy) { |
| DCHECK(orig != nullptr); |
| DCHECK(copy != nullptr); |
| if (kUseBakerOrBrooksReadBarrier) { |
| orig->AssertReadBarrierPointer(); |
| if (kUseBrooksReadBarrier) { |
| // Note the address 'copy' isn't the same as the image address of 'orig'. |
| copy->SetReadBarrierPointer(GetImageAddress(orig)); |
| DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig)); |
| } |
| } |
| if (orig->IsClass()) { |
| FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy)); |
| } else { |
| FixupVisitor visitor(this, copy); |
| orig->VisitReferences<true /*visit class*/>(visitor, visitor); |
| } |
| if (orig->IsArtMethod<kVerifyNone>()) { |
| FixupMethod(orig->AsArtMethod<kVerifyNone>(), down_cast<ArtMethod*>(copy)); |
| } |
| } |
| |
| const uint8_t* ImageWriter::GetQuickCode(mirror::ArtMethod* method, bool* quick_is_interpreted) { |
| DCHECK(!method->IsResolutionMethod() && !method->IsImtConflictMethod() && |
| !method->IsImtUnimplementedMethod() && !method->IsAbstract()) << PrettyMethod(method); |
| |
| // Use original code if it exists. Otherwise, set the code pointer to the resolution |
| // trampoline. |
| |
| // Quick entrypoint: |
| uint32_t quick_oat_code_offset = PointerToLowMemUInt32( |
| method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_)); |
| const uint8_t* quick_code = GetOatAddress(quick_oat_code_offset); |
| *quick_is_interpreted = false; |
| if (quick_code != nullptr && |
| (!method->IsStatic() || method->IsConstructor() || method->GetDeclaringClass()->IsInitialized())) { |
| // We have code for a non-static or initialized method, just use the code. |
| } else if (quick_code == nullptr && method->IsNative() && |
| (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) { |
| // Non-static or initialized native method missing compiled code, use generic JNI version. |
| quick_code = GetOatAddress(quick_generic_jni_trampoline_offset_); |
| } else if (quick_code == nullptr && !method->IsNative()) { |
| // We don't have code at all for a non-native method, use the interpreter. |
| quick_code = GetOatAddress(quick_to_interpreter_bridge_offset_); |
| *quick_is_interpreted = true; |
| } else { |
| CHECK(!method->GetDeclaringClass()->IsInitialized()); |
| // We have code for a static method, but need to go through the resolution stub for class |
| // initialization. |
| quick_code = GetOatAddress(quick_resolution_trampoline_offset_); |
| } |
| return quick_code; |
| } |
| |
| const uint8_t* ImageWriter::GetQuickEntryPoint(mirror::ArtMethod* method) { |
| // Calculate the quick entry point following the same logic as FixupMethod() below. |
| // The resolution method has a special trampoline to call. |
| Runtime* runtime = Runtime::Current(); |
| if (UNLIKELY(method == runtime->GetResolutionMethod())) { |
| return GetOatAddress(quick_resolution_trampoline_offset_); |
| } else if (UNLIKELY(method == runtime->GetImtConflictMethod() || |
| method == runtime->GetImtUnimplementedMethod())) { |
| return GetOatAddress(quick_imt_conflict_trampoline_offset_); |
| } else { |
| // We assume all methods have code. If they don't currently then we set them to the use the |
| // resolution trampoline. Abstract methods never have code and so we need to make sure their |
| // use results in an AbstractMethodError. We use the interpreter to achieve this. |
| if (UNLIKELY(method->IsAbstract())) { |
| return GetOatAddress(quick_to_interpreter_bridge_offset_); |
| } else { |
| bool quick_is_interpreted; |
| return GetQuickCode(method, &quick_is_interpreted); |
| } |
| } |
| } |
| |
| void ImageWriter::FixupMethod(ArtMethod* orig, ArtMethod* copy) { |
| // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to |
| // oat_begin_ |
| // For 64 bit targets we need to repack the current runtime pointer sized fields to the right |
| // locations. |
| // Copy all of the fields from the runtime methods to the target methods first since we did a |
| // bytewise copy earlier. |
| copy->SetEntryPointFromInterpreterPtrSize<kVerifyNone>( |
| orig->GetEntryPointFromInterpreterPtrSize(target_ptr_size_), target_ptr_size_); |
| copy->SetEntryPointFromJniPtrSize<kVerifyNone>( |
| orig->GetEntryPointFromJniPtrSize(target_ptr_size_), target_ptr_size_); |
| copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>( |
| orig->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_), target_ptr_size_); |
| |
| // The resolution method has a special trampoline to call. |
| Runtime* runtime = Runtime::Current(); |
| if (UNLIKELY(orig == runtime->GetResolutionMethod())) { |
| copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>( |
| GetOatAddress(quick_resolution_trampoline_offset_), target_ptr_size_); |
| } else if (UNLIKELY(orig == runtime->GetImtConflictMethod() || |
| orig == runtime->GetImtUnimplementedMethod())) { |
| copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>( |
| GetOatAddress(quick_imt_conflict_trampoline_offset_), target_ptr_size_); |
| } else { |
| // We assume all methods have code. If they don't currently then we set them to the use the |
| // resolution trampoline. Abstract methods never have code and so we need to make sure their |
| // use results in an AbstractMethodError. We use the interpreter to achieve this. |
| if (UNLIKELY(orig->IsAbstract())) { |
| copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>( |
| GetOatAddress(quick_to_interpreter_bridge_offset_), target_ptr_size_); |
| copy->SetEntryPointFromInterpreterPtrSize<kVerifyNone>( |
| reinterpret_cast<EntryPointFromInterpreter*>(const_cast<uint8_t*>( |
| GetOatAddress(interpreter_to_interpreter_bridge_offset_))), target_ptr_size_); |
| } else { |
| bool quick_is_interpreted; |
| const uint8_t* quick_code = GetQuickCode(orig, &quick_is_interpreted); |
| copy->SetEntryPointFromQuickCompiledCodePtrSize<kVerifyNone>(quick_code, target_ptr_size_); |
| |
| // JNI entrypoint: |
| if (orig->IsNative()) { |
| // The native method's pointer is set to a stub to lookup via dlsym. |
| // Note this is not the code_ pointer, that is handled above. |
| copy->SetEntryPointFromJniPtrSize<kVerifyNone>(GetOatAddress(jni_dlsym_lookup_offset_), |
| target_ptr_size_); |
| } |
| |
| // Interpreter entrypoint: |
| // Set the interpreter entrypoint depending on whether there is compiled code or not. |
| uint32_t interpreter_code = (quick_is_interpreted) |
| ? interpreter_to_interpreter_bridge_offset_ |
| : interpreter_to_compiled_code_bridge_offset_; |
| EntryPointFromInterpreter* interpreter_entrypoint = |
| reinterpret_cast<EntryPointFromInterpreter*>( |
| const_cast<uint8_t*>(GetOatAddress(interpreter_code))); |
| copy->SetEntryPointFromInterpreterPtrSize<kVerifyNone>( |
| interpreter_entrypoint, target_ptr_size_); |
| } |
| } |
| } |
| |
| static OatHeader* GetOatHeaderFromElf(ElfFile* elf) { |
| uint64_t data_sec_offset; |
| bool has_data_sec = elf->GetSectionOffsetAndSize(".rodata", &data_sec_offset, nullptr); |
| if (!has_data_sec) { |
| return nullptr; |
| } |
| return reinterpret_cast<OatHeader*>(elf->Begin() + data_sec_offset); |
| } |
| |
| void ImageWriter::SetOatChecksumFromElfFile(File* elf_file) { |
| std::string error_msg; |
| std::unique_ptr<ElfFile> elf(ElfFile::Open(elf_file, PROT_READ|PROT_WRITE, |
| MAP_SHARED, &error_msg)); |
| if (elf.get() == nullptr) { |
| LOG(FATAL) << "Unable open oat file: " << error_msg; |
| return; |
| } |
| OatHeader* oat_header = GetOatHeaderFromElf(elf.get()); |
| CHECK(oat_header != nullptr); |
| CHECK(oat_header->IsValid()); |
| |
| ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin()); |
| image_header->SetOatChecksum(oat_header->GetChecksum()); |
| } |
| |
| size_t ImageWriter::GetBinSizeSum(ImageWriter::Bin up_to) const { |
| DCHECK_LE(up_to, kBinSize); |
| return std::accumulate(&bin_slot_sizes_[0], &bin_slot_sizes_[up_to], /*init*/0); |
| } |
| |
| ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) { |
| // These values may need to get updated if more bins are added to the enum Bin |
| static_assert(kBinBits == 4, "wrong number of bin bits"); |
| static_assert(kBinShift == 28, "wrong number of shift"); |
| static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes"); |
| |
| DCHECK_LT(GetBin(), kBinSize); |
| DCHECK_ALIGNED(GetIndex(), kObjectAlignment); |
| } |
| |
| ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index) |
| : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) { |
| DCHECK_EQ(index, GetIndex()); |
| } |
| |
| ImageWriter::Bin ImageWriter::BinSlot::GetBin() const { |
| return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift); |
| } |
| |
| uint32_t ImageWriter::BinSlot::GetIndex() const { |
| return lockword_ & ~kBinMask; |
| } |
| |
| void ImageWriter::FreeStringDataArray() { |
| if (string_data_array_ != nullptr) { |
| gc::space::LargeObjectSpace* los = Runtime::Current()->GetHeap()->GetLargeObjectsSpace(); |
| if (los != nullptr) { |
| los->Free(Thread::Current(), reinterpret_cast<mirror::Object*>(string_data_array_)); |
| } |
| } |
| } |
| |
| } // namespace art |