| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_arm.h" |
| |
| #include "arch/arm/instruction_set_features_arm.h" |
| #include "art_method.h" |
| #include "code_generator_utils.h" |
| #include "common_arm.h" |
| #include "compiled_method.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "gc/accounting/card_table.h" |
| #include "intrinsics.h" |
| #include "intrinsics_arm.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "thread.h" |
| #include "utils/arm/assembler_arm.h" |
| #include "utils/arm/managed_register_arm.h" |
| #include "utils/assembler.h" |
| #include "utils/stack_checks.h" |
| |
| namespace art { |
| |
| template<class MirrorType> |
| class GcRoot; |
| |
| namespace arm { |
| |
| static bool ExpectedPairLayout(Location location) { |
| // We expected this for both core and fpu register pairs. |
| return ((location.low() & 1) == 0) && (location.low() + 1 == location.high()); |
| } |
| |
| static constexpr int kCurrentMethodStackOffset = 0; |
| static constexpr Register kMethodRegisterArgument = R0; |
| |
| static constexpr Register kCoreAlwaysSpillRegister = R5; |
| static constexpr Register kCoreCalleeSaves[] = |
| { R5, R6, R7, R8, R10, R11, LR }; |
| static constexpr SRegister kFpuCalleeSaves[] = |
| { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 }; |
| |
| // D31 cannot be split into two S registers, and the register allocator only works on |
| // S registers. Therefore there is no need to block it. |
| static constexpr DRegister DTMP = D31; |
| |
| static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<ArmAssembler*>(codegen->GetAssembler())-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value() |
| |
| static constexpr int kRegListThreshold = 4; |
| |
| // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers, |
| // for each live D registers they treat two corresponding S registers as live ones. |
| // |
| // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build |
| // from a list of contiguous S registers a list of contiguous D registers (processing first/last |
| // S registers corner cases) and save/restore this new list treating them as D registers. |
| // - decreasing code size |
| // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is |
| // restored and then used in regular non SlowPath code as D register. |
| // |
| // For the following example (v means the S register is live): |
| // D names: | D0 | D1 | D2 | D4 | ... |
| // S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ... |
| // Live? | | v | v | v | v | v | v | | ... |
| // |
| // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed |
| // as D registers. |
| static size_t SaveContiguousSRegisterList(size_t first, |
| size_t last, |
| CodeGenerator* codegen, |
| size_t stack_offset) { |
| DCHECK_LE(first, last); |
| if ((first == last) && (first == 0)) { |
| stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first); |
| return stack_offset; |
| } |
| if (first % 2 == 1) { |
| stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first++); |
| } |
| |
| bool save_last = false; |
| if (last % 2 == 0) { |
| save_last = true; |
| --last; |
| } |
| |
| if (first < last) { |
| DRegister d_reg = static_cast<DRegister>(first / 2); |
| DCHECK_EQ((last - first + 1) % 2, 0u); |
| size_t number_of_d_regs = (last - first + 1) / 2; |
| |
| if (number_of_d_regs == 1) { |
| __ StoreDToOffset(d_reg, SP, stack_offset); |
| } else if (number_of_d_regs > 1) { |
| __ add(IP, SP, ShifterOperand(stack_offset)); |
| __ vstmiad(IP, d_reg, number_of_d_regs); |
| } |
| stack_offset += number_of_d_regs * kArmWordSize * 2; |
| } |
| |
| if (save_last) { |
| stack_offset += codegen->SaveFloatingPointRegister(stack_offset, last + 1); |
| } |
| |
| return stack_offset; |
| } |
| |
| static size_t RestoreContiguousSRegisterList(size_t first, |
| size_t last, |
| CodeGenerator* codegen, |
| size_t stack_offset) { |
| DCHECK_LE(first, last); |
| if ((first == last) && (first == 0)) { |
| stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first); |
| return stack_offset; |
| } |
| if (first % 2 == 1) { |
| stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first++); |
| } |
| |
| bool restore_last = false; |
| if (last % 2 == 0) { |
| restore_last = true; |
| --last; |
| } |
| |
| if (first < last) { |
| DRegister d_reg = static_cast<DRegister>(first / 2); |
| DCHECK_EQ((last - first + 1) % 2, 0u); |
| size_t number_of_d_regs = (last - first + 1) / 2; |
| if (number_of_d_regs == 1) { |
| __ LoadDFromOffset(d_reg, SP, stack_offset); |
| } else if (number_of_d_regs > 1) { |
| __ add(IP, SP, ShifterOperand(stack_offset)); |
| __ vldmiad(IP, d_reg, number_of_d_regs); |
| } |
| stack_offset += number_of_d_regs * kArmWordSize * 2; |
| } |
| |
| if (restore_last) { |
| stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, last + 1); |
| } |
| |
| return stack_offset; |
| } |
| |
| void SlowPathCodeARM::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| size_t orig_offset = stack_offset; |
| |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| // If the register holds an object, update the stack mask. |
| if (locations->RegisterContainsObject(i)) { |
| locations->SetStackBit(stack_offset / kVRegSize); |
| } |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_core_stack_offsets_[i] = stack_offset; |
| stack_offset += kArmWordSize; |
| } |
| |
| int reg_num = POPCOUNT(core_spills); |
| if (reg_num != 0) { |
| if (reg_num > kRegListThreshold) { |
| __ StoreList(RegList(core_spills), orig_offset); |
| } else { |
| stack_offset = orig_offset; |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| stack_offset += codegen->SaveCoreRegister(stack_offset, i); |
| } |
| } |
| } |
| |
| uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); |
| orig_offset = stack_offset; |
| for (uint32_t i : LowToHighBits(fp_spills)) { |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_fpu_stack_offsets_[i] = stack_offset; |
| stack_offset += kArmWordSize; |
| } |
| |
| stack_offset = orig_offset; |
| while (fp_spills != 0u) { |
| uint32_t begin = CTZ(fp_spills); |
| uint32_t tmp = fp_spills + (1u << begin); |
| fp_spills &= tmp; // Clear the contiguous range of 1s. |
| uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. |
| stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset); |
| } |
| DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| } |
| |
| void SlowPathCodeARM::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| size_t orig_offset = stack_offset; |
| |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| stack_offset += kArmWordSize; |
| } |
| |
| int reg_num = POPCOUNT(core_spills); |
| if (reg_num != 0) { |
| if (reg_num > kRegListThreshold) { |
| __ LoadList(RegList(core_spills), orig_offset); |
| } else { |
| stack_offset = orig_offset; |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| stack_offset += codegen->RestoreCoreRegister(stack_offset, i); |
| } |
| } |
| } |
| |
| uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false); |
| while (fp_spills != 0u) { |
| uint32_t begin = CTZ(fp_spills); |
| uint32_t tmp = fp_spills + (1u << begin); |
| fp_spills &= tmp; // Clear the contiguous range of 1s. |
| uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined. |
| stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset); |
| } |
| DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| } |
| |
| class NullCheckSlowPathARM : public SlowPathCodeARM { |
| public: |
| explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCodeARM(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| arm_codegen->InvokeRuntime(kQuickThrowNullPointer, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM); |
| }; |
| |
| class DivZeroCheckSlowPathARM : public SlowPathCodeARM { |
| public: |
| explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCodeARM(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| __ Bind(GetEntryLabel()); |
| arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM); |
| }; |
| |
| class SuspendCheckSlowPathARM : public SlowPathCodeARM { |
| public: |
| SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCodeARM(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| __ Bind(GetEntryLabel()); |
| arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| if (successor_ == nullptr) { |
| __ b(GetReturnLabel()); |
| } else { |
| __ b(arm_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; } |
| |
| private: |
| // If not null, the block to branch to after the suspend check. |
| HBasicBlock* const successor_; |
| |
| // If `successor_` is null, the label to branch to after the suspend check. |
| Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM); |
| }; |
| |
| class BoundsCheckSlowPathARM : public SlowPathCodeARM { |
| public: |
| explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction) |
| : SlowPathCodeARM(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimInt, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt); |
| QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() |
| ? kQuickThrowStringBounds |
| : kQuickThrowArrayBounds; |
| arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM); |
| }; |
| |
| class LoadClassSlowPathARM : public SlowPathCodeARM { |
| public: |
| LoadClassSlowPathARM(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit) |
| : SlowPathCodeARM(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location out = locations->Out(); |
| constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier); |
| |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| // For HLoadClass/kBssEntry/kSaveEverything, make sure we preserve the address of the entry. |
| DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); |
| bool is_load_class_bss_entry = |
| (cls_ == instruction_) && (cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry); |
| Register entry_address = kNoRegister; |
| if (is_load_class_bss_entry && call_saves_everything_except_r0) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| // In the unlucky case that the `temp` is R0, we preserve the address in `out` across |
| // the kSaveEverything call. |
| bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0)); |
| entry_address = temp_is_r0 ? out.AsRegister<Register>() : temp; |
| DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0)); |
| if (temp_is_r0) { |
| __ mov(entry_address, ShifterOperand(temp)); |
| } |
| } |
| dex::TypeIndex type_index = cls_->GetTypeIndex(); |
| __ LoadImmediate(calling_convention.GetRegisterAt(0), type_index.index_); |
| QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage |
| : kQuickInitializeType; |
| arm_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this); |
| if (do_clinit_) { |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); |
| } else { |
| CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); |
| } |
| |
| // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry. |
| if (is_load_class_bss_entry) { |
| if (call_saves_everything_except_r0) { |
| // The class entry address was preserved in `entry_address` thanks to kSaveEverything. |
| __ str(R0, Address(entry_address)); |
| } else { |
| // For non-Baker read barrier, we need to re-calculate the address of the string entry. |
| Register temp = IP; |
| CodeGeneratorARM::PcRelativePatchInfo* labels = |
| arm_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index); |
| __ BindTrackedLabel(&labels->movw_label); |
| __ movw(temp, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->movt_label); |
| __ movt(temp, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->add_pc_label); |
| __ add(temp, temp, ShifterOperand(PC)); |
| __ str(R0, Address(temp)); |
| } |
| } |
| // Move the class to the desired location. |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| __ b(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| // The dex PC of `at_`. |
| const uint32_t dex_pc_; |
| |
| // Whether to initialize the class. |
| const bool do_clinit_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM); |
| }; |
| |
| class LoadStringSlowPathARM : public SlowPathCodeARM { |
| public: |
| explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCodeARM(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| DCHECK(instruction_->IsLoadString()); |
| DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| HLoadString* load = instruction_->AsLoadString(); |
| const dex::StringIndex string_index = load->GetStringIndex(); |
| Register out = locations->Out().AsRegister<Register>(); |
| constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier); |
| |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| // In the unlucky case that the `temp` is R0, we preserve the address in `out` across |
| // the kSaveEverything call. |
| Register entry_address = kNoRegister; |
| if (call_saves_everything_except_r0) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0)); |
| entry_address = temp_is_r0 ? out : temp; |
| DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0)); |
| if (temp_is_r0) { |
| __ mov(entry_address, ShifterOperand(temp)); |
| } |
| } |
| |
| __ LoadImmediate(calling_convention.GetRegisterAt(0), string_index.index_); |
| arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| |
| // Store the resolved String to the .bss entry. |
| if (call_saves_everything_except_r0) { |
| // The string entry address was preserved in `entry_address` thanks to kSaveEverything. |
| __ str(R0, Address(entry_address)); |
| } else { |
| // For non-Baker read barrier, we need to re-calculate the address of the string entry. |
| Register temp = IP; |
| CodeGeneratorARM::PcRelativePatchInfo* labels = |
| arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index); |
| __ BindTrackedLabel(&labels->movw_label); |
| __ movw(temp, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->movt_label); |
| __ movt(temp, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->add_pc_label); |
| __ add(temp, temp, ShifterOperand(PC)); |
| __ str(R0, Address(temp)); |
| } |
| |
| arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ b(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM); |
| }; |
| |
| class TypeCheckSlowPathARM : public SlowPathCodeARM { |
| public: |
| TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal) |
| : SlowPathCodeARM(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| __ Bind(GetEntryLabel()); |
| |
| if (!is_fatal_) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot); |
| if (instruction_->IsInstanceOf()) { |
| arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); |
| arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0)); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| arm_codegen->InvokeRuntime(kQuickCheckInstanceOf, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| RestoreLiveRegisters(codegen, locations); |
| __ b(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; } |
| |
| bool IsFatal() const OVERRIDE { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM); |
| }; |
| |
| class DeoptimizationSlowPathARM : public SlowPathCodeARM { |
| public: |
| explicit DeoptimizationSlowPathARM(HDeoptimize* instruction) |
| : SlowPathCodeARM(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| __ Bind(GetEntryLabel()); |
| arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, void>(); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM); |
| }; |
| |
| class ArraySetSlowPathARM : public SlowPathCodeARM { |
| public: |
| explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCodeARM(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimNot, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ b(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM); |
| }; |
| |
| // Abstract base class for read barrier slow paths marking a reference |
| // `ref`. |
| // |
| // Argument `entrypoint` must be a register location holding the read |
| // barrier marking runtime entry point to be invoked. |
| class ReadBarrierMarkSlowPathBaseARM : public SlowPathCodeARM { |
| protected: |
| ReadBarrierMarkSlowPathBaseARM(HInstruction* instruction, Location ref, Location entrypoint) |
| : SlowPathCodeARM(instruction), ref_(ref), entrypoint_(entrypoint) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathBaseARM"; } |
| |
| // Generate assembly code calling the read barrier marking runtime |
| // entry point (ReadBarrierMarkRegX). |
| void GenerateReadBarrierMarkRuntimeCall(CodeGenerator* codegen) { |
| Register ref_reg = ref_.AsRegister<Register>(); |
| |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| DCHECK_NE(ref_reg, SP); |
| DCHECK_NE(ref_reg, LR); |
| DCHECK_NE(ref_reg, PC); |
| // IP is used internally by the ReadBarrierMarkRegX entry point |
| // as a temporary, it cannot be the entry point's input/output. |
| DCHECK_NE(ref_reg, IP); |
| DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in R0): |
| // |
| // R0 <- ref |
| // R0 <- ReadBarrierMark(R0) |
| // ref <- R0 |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| if (entrypoint_.IsValid()) { |
| arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); |
| __ blx(entrypoint_.AsRegister<Register>()); |
| } else { |
| // Entrypoint is not already loaded, load from the thread. |
| int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg); |
| // This runtime call does not require a stack map. |
| arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| } |
| } |
| |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| |
| // The location of the entrypoint if it is already loaded. |
| const Location entrypoint_; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathBaseARM); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read |
| // barrier. The field `obj.field` in the object `obj` holding this |
| // reference does not get updated by this slow path after marking. |
| // |
| // This means that after the execution of this slow path, `ref` will |
| // always be up-to-date, but `obj.field` may not; i.e., after the |
| // flip, `ref` will be a to-space reference, but `obj.field` will |
| // probably still be a from-space reference (unless it gets updated by |
| // another thread, or if another thread installed another object |
| // reference (different from `ref`) in `obj.field`). |
| // |
| // If `entrypoint` is a valid location it is assumed to already be |
| // holding the entrypoint. The case where the entrypoint is passed in |
| // is when the decision to mark is based on whether the GC is marking. |
| class ReadBarrierMarkSlowPathARM : public ReadBarrierMarkSlowPathBaseARM { |
| public: |
| ReadBarrierMarkSlowPathARM(HInstruction* instruction, |
| Location ref, |
| Location entrypoint = Location::NoLocation()) |
| : ReadBarrierMarkSlowPathBaseARM(instruction, ref, entrypoint) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| if (kIsDebugBuild) { |
| Register ref_reg = ref_.AsRegister<Register>(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| } |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| GenerateReadBarrierMarkRuntimeCall(codegen); |
| __ b(GetExitLabel()); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM); |
| }; |
| |
| // Slow path loading `obj`'s lock word, loading a reference from |
| // object `*(obj + offset + (index << scale_factor))` into `ref`, and |
| // marking `ref` if `obj` is gray according to the lock word (Baker |
| // read barrier). The field `obj.field` in the object `obj` holding |
| // this reference does not get updated by this slow path after marking |
| // (see LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM |
| // below for that). |
| // |
| // This means that after the execution of this slow path, `ref` will |
| // always be up-to-date, but `obj.field` may not; i.e., after the |
| // flip, `ref` will be a to-space reference, but `obj.field` will |
| // probably still be a from-space reference (unless it gets updated by |
| // another thread, or if another thread installed another object |
| // reference (different from `ref`) in `obj.field`). |
| // |
| // Argument `entrypoint` must be a register location holding the read |
| // barrier marking runtime entry point to be invoked. |
| class LoadReferenceWithBakerReadBarrierSlowPathARM : public ReadBarrierMarkSlowPathBaseARM { |
| public: |
| LoadReferenceWithBakerReadBarrierSlowPathARM(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location index, |
| ScaleFactor scale_factor, |
| bool needs_null_check, |
| Register temp, |
| Location entrypoint) |
| : ReadBarrierMarkSlowPathBaseARM(instruction, ref, entrypoint), |
| obj_(obj), |
| offset_(offset), |
| index_(index), |
| scale_factor_(scale_factor), |
| needs_null_check_(needs_null_check), |
| temp_(temp) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { |
| return "LoadReferenceWithBakerReadBarrierSlowPathARM"; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register ref_reg = ref_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| DCHECK_NE(ref_reg, temp_); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsArraySet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || |
| (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| // The read barrier instrumentation of object ArrayGet |
| // instructions does not support the HIntermediateAddress |
| // instruction. |
| DCHECK(!(instruction_->IsArrayGet() && |
| instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); |
| |
| __ Bind(GetEntryLabel()); |
| |
| // When using MaybeGenerateReadBarrierSlow, the read barrier call is |
| // inserted after the original load. However, in fast path based |
| // Baker's read barriers, we need to perform the load of |
| // mirror::Object::monitor_ *before* the original reference load. |
| // This load-load ordering is required by the read barrier. |
| // The fast path/slow path (for Baker's algorithm) should look like: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<mirror::Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // ref = entrypoint(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call. |
| // } |
| // |
| // Note: the original implementation in ReadBarrier::Barrier is |
| // slightly more complex as it performs additional checks that we do |
| // not do here for performance reasons. |
| |
| // /* int32_t */ monitor = obj->monitor_ |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| __ LoadFromOffset(kLoadWord, temp_, obj_, monitor_offset); |
| if (needs_null_check_) { |
| codegen->MaybeRecordImplicitNullCheck(instruction_); |
| } |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| // Introduce a dependency on the lock_word including the rb_state, |
| // which shall prevent load-load reordering without using |
| // a memory barrier (which would be more expensive). |
| // `obj` is unchanged by this operation, but its value now depends |
| // on `temp`. |
| __ add(obj_, obj_, ShifterOperand(temp_, LSR, 32)); |
| |
| // The actual reference load. |
| // A possible implicit null check has already been handled above. |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| arm_codegen->GenerateRawReferenceLoad( |
| instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false); |
| |
| // Mark the object `ref` when `obj` is gray. |
| // |
| // if (rb_state == ReadBarrier::GrayState()) |
| // ref = ReadBarrier::Mark(ref); |
| // |
| // Given the numeric representation, it's enough to check the low bit of the |
| // rb_state. We do that by shifting the bit out of the lock word with LSRS |
| // which can be a 16-bit instruction unlike the TST immediate. |
| static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Lsrs(temp_, temp_, LockWord::kReadBarrierStateShift + 1); |
| __ b(GetExitLabel(), CC); // Carry flag is the last bit shifted out by LSRS. |
| GenerateReadBarrierMarkRuntimeCall(codegen); |
| |
| __ b(GetExitLabel()); |
| } |
| |
| private: |
| // The register containing the object holding the marked object reference field. |
| Register obj_; |
| // The offset, index and scale factor to access the reference in `obj_`. |
| uint32_t offset_; |
| Location index_; |
| ScaleFactor scale_factor_; |
| // Is a null check required? |
| bool needs_null_check_; |
| // A temporary register used to hold the lock word of `obj_`. |
| Register temp_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierSlowPathARM); |
| }; |
| |
| // Slow path loading `obj`'s lock word, loading a reference from |
| // object `*(obj + offset + (index << scale_factor))` into `ref`, and |
| // marking `ref` if `obj` is gray according to the lock word (Baker |
| // read barrier). If needed, this slow path also atomically updates |
| // the field `obj.field` in the object `obj` holding this reference |
| // after marking (contrary to |
| // LoadReferenceWithBakerReadBarrierSlowPathARM above, which never |
| // tries to update `obj.field`). |
| // |
| // This means that after the execution of this slow path, both `ref` |
| // and `obj.field` will be up-to-date; i.e., after the flip, both will |
| // hold the same to-space reference (unless another thread installed |
| // another object reference (different from `ref`) in `obj.field`). |
| // |
| // Argument `entrypoint` must be a register location holding the read |
| // barrier marking runtime entry point to be invoked. |
| class LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM |
| : public ReadBarrierMarkSlowPathBaseARM { |
| public: |
| LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location index, |
| ScaleFactor scale_factor, |
| bool needs_null_check, |
| Register temp1, |
| Register temp2, |
| Location entrypoint) |
| : ReadBarrierMarkSlowPathBaseARM(instruction, ref, entrypoint), |
| obj_(obj), |
| offset_(offset), |
| index_(index), |
| scale_factor_(scale_factor), |
| needs_null_check_(needs_null_check), |
| temp1_(temp1), |
| temp2_(temp2) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { |
| return "LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM"; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register ref_reg = ref_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| DCHECK_NE(ref_reg, temp1_); |
| |
| // This slow path is only used by the UnsafeCASObject intrinsic at the moment. |
| DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking and field updating slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); |
| DCHECK_EQ(offset_, 0u); |
| DCHECK_EQ(scale_factor_, ScaleFactor::TIMES_1); |
| // The location of the offset of the marked reference field within `obj_`. |
| Location field_offset = index_; |
| DCHECK(field_offset.IsRegisterPair()) << field_offset; |
| |
| __ Bind(GetEntryLabel()); |
| |
| // /* int32_t */ monitor = obj->monitor_ |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| __ LoadFromOffset(kLoadWord, temp1_, obj_, monitor_offset); |
| if (needs_null_check_) { |
| codegen->MaybeRecordImplicitNullCheck(instruction_); |
| } |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| // Introduce a dependency on the lock_word including the rb_state, |
| // which shall prevent load-load reordering without using |
| // a memory barrier (which would be more expensive). |
| // `obj` is unchanged by this operation, but its value now depends |
| // on `temp1`. |
| __ add(obj_, obj_, ShifterOperand(temp1_, LSR, 32)); |
| |
| // The actual reference load. |
| // A possible implicit null check has already been handled above. |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| arm_codegen->GenerateRawReferenceLoad( |
| instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false); |
| |
| // Mark the object `ref` when `obj` is gray. |
| // |
| // if (rb_state == ReadBarrier::GrayState()) |
| // ref = ReadBarrier::Mark(ref); |
| // |
| // Given the numeric representation, it's enough to check the low bit of the |
| // rb_state. We do that by shifting the bit out of the lock word with LSRS |
| // which can be a 16-bit instruction unlike the TST immediate. |
| static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Lsrs(temp1_, temp1_, LockWord::kReadBarrierStateShift + 1); |
| __ b(GetExitLabel(), CC); // Carry flag is the last bit shifted out by LSRS. |
| |
| // Save the old value of the reference before marking it. |
| // Note that we cannot use IP to save the old reference, as IP is |
| // used internally by the ReadBarrierMarkRegX entry point, and we |
| // need the old reference after the call to that entry point. |
| DCHECK_NE(temp1_, IP); |
| __ Mov(temp1_, ref_reg); |
| |
| GenerateReadBarrierMarkRuntimeCall(codegen); |
| |
| // If the new reference is different from the old reference, |
| // update the field in the holder (`*(obj_ + field_offset)`). |
| // |
| // Note that this field could also hold a different object, if |
| // another thread had concurrently changed it. In that case, the |
| // LDREX/SUBS/ITNE sequence of instructions in the compare-and-set |
| // (CAS) operation below would abort the CAS, leaving the field |
| // as-is. |
| __ cmp(temp1_, ShifterOperand(ref_reg)); |
| __ b(GetExitLabel(), EQ); |
| |
| // Update the the holder's field atomically. This may fail if |
| // mutator updates before us, but it's OK. This is achieved |
| // using a strong compare-and-set (CAS) operation with relaxed |
| // memory synchronization ordering, where the expected value is |
| // the old reference and the desired value is the new reference. |
| |
| // Convenience aliases. |
| Register base = obj_; |
| // The UnsafeCASObject intrinsic uses a register pair as field |
| // offset ("long offset"), of which only the low part contains |
| // data. |
| Register offset = field_offset.AsRegisterPairLow<Register>(); |
| Register expected = temp1_; |
| Register value = ref_reg; |
| Register tmp_ptr = IP; // Pointer to actual memory. |
| Register tmp = temp2_; // Value in memory. |
| |
| __ add(tmp_ptr, base, ShifterOperand(offset)); |
| |
| if (kPoisonHeapReferences) { |
| __ PoisonHeapReference(expected); |
| if (value == expected) { |
| // Do not poison `value`, as it is the same register as |
| // `expected`, which has just been poisoned. |
| } else { |
| __ PoisonHeapReference(value); |
| } |
| } |
| |
| // do { |
| // tmp = [r_ptr] - expected; |
| // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); |
| |
| Label loop_head, exit_loop; |
| __ Bind(&loop_head); |
| |
| __ ldrex(tmp, tmp_ptr); |
| |
| __ subs(tmp, tmp, ShifterOperand(expected)); |
| |
| __ it(NE); |
| __ clrex(NE); |
| |
| __ b(&exit_loop, NE); |
| |
| __ strex(tmp, value, tmp_ptr); |
| __ cmp(tmp, ShifterOperand(1)); |
| __ b(&loop_head, EQ); |
| |
| __ Bind(&exit_loop); |
| |
| if (kPoisonHeapReferences) { |
| __ UnpoisonHeapReference(expected); |
| if (value == expected) { |
| // Do not unpoison `value`, as it is the same register as |
| // `expected`, which has just been unpoisoned. |
| } else { |
| __ UnpoisonHeapReference(value); |
| } |
| } |
| |
| __ b(GetExitLabel()); |
| } |
| |
| private: |
| // The register containing the object holding the marked object reference field. |
| const Register obj_; |
| // The offset, index and scale factor to access the reference in `obj_`. |
| uint32_t offset_; |
| Location index_; |
| ScaleFactor scale_factor_; |
| // Is a null check required? |
| bool needs_null_check_; |
| // A temporary register used to hold the lock word of `obj_`; and |
| // also to hold the original reference value, when the reference is |
| // marked. |
| const Register temp1_; |
| // A temporary register used in the implementation of the CAS, to |
| // update the object's reference field. |
| const Register temp2_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM); |
| }; |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCodeARM { |
| public: |
| ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCodeARM(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial object |
| // has been overwritten by (or after) the heap object reference load |
| // to be instrumented, e.g.: |
| // |
| // __ LoadFromOffset(kLoadWord, out, out, offset); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register reg_out = out_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| // The read barrier instrumentation of object ArrayGet |
| // instructions does not support the HIntermediateAddress |
| // instruction. |
| DCHECK(!(instruction_->IsArrayGet() && |
| instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. |
| if (instruction_->IsArrayGet()) { |
| // Compute the actual memory offset and store it in `index`. |
| Register index_reg = index_.AsRegister<Register>(); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); |
| if (codegen->IsCoreCalleeSaveRegister(index_reg)) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to art::arm::Thumb2Assembler::Lsl and |
| // art::arm::Thumb2Assembler::AddConstant below), but it has |
| // not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| Register free_reg = FindAvailableCallerSaveRegister(codegen); |
| __ Mov(free_reg, index_reg); |
| index_reg = free_reg; |
| index = Location::RegisterLocation(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the scale |
| // factor (2) cannot overflow in practice, as the runtime is |
| // unable to allocate object arrays with a size larger than |
| // 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ Lsl(index_reg, index_reg, TIMES_4); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ AddConstant(index_reg, index_reg, offset_); |
| } else { |
| // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile |
| // intrinsics, `index_` is not shifted by a scale factor of 2 |
| // (as in the case of ArrayGet), as it is actually an offset |
| // to an object field within an object. |
| DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0U); |
| DCHECK(index_.IsRegisterPair()); |
| // UnsafeGet's offset location is a register pair, the low |
| // part contains the correct offset. |
| index = index_.ToLow(); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove(ref_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimInt, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| __ LoadImmediate(calling_convention.GetRegisterAt(2), offset_); |
| } |
| arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| arm_codegen->Move32(out_, Location::RegisterLocation(R0)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ b(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; } |
| |
| private: |
| Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| size_t ref = static_cast<int>(ref_.AsRegister<Register>()); |
| size_t obj = static_cast<int>(obj_.AsRegister<Register>()); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { |
| return static_cast<Register>(i); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on ARM |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free caller-save register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathARM : public SlowPathCodeARM { |
| public: |
| ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root) |
| : SlowPathCodeARM(instruction), out_(out), root_(root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register reg_out = out_.AsRegister<Register>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); |
| arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); |
| arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| arm_codegen->Move32(out_, Location::RegisterLocation(R0)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ b(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM); |
| }; |
| |
| inline Condition ARMCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return EQ; |
| case kCondNE: return NE; |
| case kCondLT: return LT; |
| case kCondLE: return LE; |
| case kCondGT: return GT; |
| case kCondGE: return GE; |
| case kCondB: return LO; |
| case kCondBE: return LS; |
| case kCondA: return HI; |
| case kCondAE: return HS; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| // Maps signed condition to unsigned condition. |
| inline Condition ARMUnsignedCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return EQ; |
| case kCondNE: return NE; |
| // Signed to unsigned. |
| case kCondLT: return LO; |
| case kCondLE: return LS; |
| case kCondGT: return HI; |
| case kCondGE: return HS; |
| // Unsigned remain unchanged. |
| case kCondB: return LO; |
| case kCondBE: return LS; |
| case kCondA: return HI; |
| case kCondAE: return HS; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) { |
| // The ARM condition codes can express all the necessary branches, see the |
| // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual. |
| // There is no dex instruction or HIR that would need the missing conditions |
| // "equal or unordered" or "not equal". |
| switch (cond) { |
| case kCondEQ: return EQ; |
| case kCondNE: return NE /* unordered */; |
| case kCondLT: return gt_bias ? CC : LT /* unordered */; |
| case kCondLE: return gt_bias ? LS : LE /* unordered */; |
| case kCondGT: return gt_bias ? HI /* unordered */ : GT; |
| case kCondGE: return gt_bias ? CS /* unordered */ : GE; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| inline Shift ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) { |
| switch (op_kind) { |
| case HDataProcWithShifterOp::kASR: return ASR; |
| case HDataProcWithShifterOp::kLSL: return LSL; |
| case HDataProcWithShifterOp::kLSR: return LSR; |
| default: |
| LOG(FATAL) << "Unexpected op kind " << op_kind; |
| UNREACHABLE(); |
| } |
| } |
| |
| static void GenerateDataProcInstruction(HInstruction::InstructionKind kind, |
| Register out, |
| Register first, |
| const ShifterOperand& second, |
| CodeGeneratorARM* codegen) { |
| if (second.IsImmediate() && second.GetImmediate() == 0) { |
| const ShifterOperand in = kind == HInstruction::kAnd |
| ? ShifterOperand(0) |
| : ShifterOperand(first); |
| |
| __ mov(out, in); |
| } else { |
| switch (kind) { |
| case HInstruction::kAdd: |
| __ add(out, first, second); |
| break; |
| case HInstruction::kAnd: |
| __ and_(out, first, second); |
| break; |
| case HInstruction::kOr: |
| __ orr(out, first, second); |
| break; |
| case HInstruction::kSub: |
| __ sub(out, first, second); |
| break; |
| case HInstruction::kXor: |
| __ eor(out, first, second); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected instruction kind: " << kind; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| static void GenerateDataProc(HInstruction::InstructionKind kind, |
| const Location& out, |
| const Location& first, |
| const ShifterOperand& second_lo, |
| const ShifterOperand& second_hi, |
| CodeGeneratorARM* codegen) { |
| const Register first_hi = first.AsRegisterPairHigh<Register>(); |
| const Register first_lo = first.AsRegisterPairLow<Register>(); |
| const Register out_hi = out.AsRegisterPairHigh<Register>(); |
| const Register out_lo = out.AsRegisterPairLow<Register>(); |
| |
| if (kind == HInstruction::kAdd) { |
| __ adds(out_lo, first_lo, second_lo); |
| __ adc(out_hi, first_hi, second_hi); |
| } else if (kind == HInstruction::kSub) { |
| __ subs(out_lo, first_lo, second_lo); |
| __ sbc(out_hi, first_hi, second_hi); |
| } else { |
| GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen); |
| GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen); |
| } |
| } |
| |
| static ShifterOperand GetShifterOperand(Register rm, Shift shift, uint32_t shift_imm) { |
| return shift_imm == 0 ? ShifterOperand(rm) : ShifterOperand(rm, shift, shift_imm); |
| } |
| |
| static void GenerateLongDataProc(HDataProcWithShifterOp* instruction, CodeGeneratorARM* codegen) { |
| DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong); |
| DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind())); |
| |
| const LocationSummary* const locations = instruction->GetLocations(); |
| const uint32_t shift_value = instruction->GetShiftAmount(); |
| const HInstruction::InstructionKind kind = instruction->GetInstrKind(); |
| const Location first = locations->InAt(0); |
| const Location second = locations->InAt(1); |
| const Location out = locations->Out(); |
| const Register first_hi = first.AsRegisterPairHigh<Register>(); |
| const Register first_lo = first.AsRegisterPairLow<Register>(); |
| const Register out_hi = out.AsRegisterPairHigh<Register>(); |
| const Register out_lo = out.AsRegisterPairLow<Register>(); |
| const Register second_hi = second.AsRegisterPairHigh<Register>(); |
| const Register second_lo = second.AsRegisterPairLow<Register>(); |
| const Shift shift = ShiftFromOpKind(instruction->GetOpKind()); |
| |
| if (shift_value >= 32) { |
| if (shift == LSL) { |
| GenerateDataProcInstruction(kind, |
| out_hi, |
| first_hi, |
| ShifterOperand(second_lo, LSL, shift_value - 32), |
| codegen); |
| GenerateDataProcInstruction(kind, |
| out_lo, |
| first_lo, |
| ShifterOperand(0), |
| codegen); |
| } else if (shift == ASR) { |
| GenerateDataProc(kind, |
| out, |
| first, |
| GetShifterOperand(second_hi, ASR, shift_value - 32), |
| ShifterOperand(second_hi, ASR, 31), |
| codegen); |
| } else { |
| DCHECK_EQ(shift, LSR); |
| GenerateDataProc(kind, |
| out, |
| first, |
| GetShifterOperand(second_hi, LSR, shift_value - 32), |
| ShifterOperand(0), |
| codegen); |
| } |
| } else { |
| DCHECK_GT(shift_value, 1U); |
| DCHECK_LT(shift_value, 32U); |
| |
| if (shift == LSL) { |
| // We are not doing this for HInstruction::kAdd because the output will require |
| // Location::kOutputOverlap; not applicable to other cases. |
| if (kind == HInstruction::kOr || kind == HInstruction::kXor) { |
| GenerateDataProcInstruction(kind, |
| out_hi, |
| first_hi, |
| ShifterOperand(second_hi, LSL, shift_value), |
| codegen); |
| GenerateDataProcInstruction(kind, |
| out_hi, |
| out_hi, |
| ShifterOperand(second_lo, LSR, 32 - shift_value), |
| codegen); |
| GenerateDataProcInstruction(kind, |
| out_lo, |
| first_lo, |
| ShifterOperand(second_lo, LSL, shift_value), |
| codegen); |
| } else { |
| __ Lsl(IP, second_hi, shift_value); |
| __ orr(IP, IP, ShifterOperand(second_lo, LSR, 32 - shift_value)); |
| GenerateDataProc(kind, |
| out, |
| first, |
| ShifterOperand(second_lo, LSL, shift_value), |
| ShifterOperand(IP), |
| codegen); |
| } |
| } else { |
| DCHECK(shift == ASR || shift == LSR); |
| |
| // We are not doing this for HInstruction::kAdd because the output will require |
| // Location::kOutputOverlap; not applicable to other cases. |
| if (kind == HInstruction::kOr || kind == HInstruction::kXor) { |
| GenerateDataProcInstruction(kind, |
| out_lo, |
| first_lo, |
| ShifterOperand(second_lo, LSR, shift_value), |
| codegen); |
| GenerateDataProcInstruction(kind, |
| out_lo, |
| out_lo, |
| ShifterOperand(second_hi, LSL, 32 - shift_value), |
| codegen); |
| GenerateDataProcInstruction(kind, |
| out_hi, |
| first_hi, |
| ShifterOperand(second_hi, shift, shift_value), |
| codegen); |
| } else { |
| __ Lsr(IP, second_lo, shift_value); |
| __ orr(IP, IP, ShifterOperand(second_hi, LSL, 32 - shift_value)); |
| GenerateDataProc(kind, |
| out, |
| first, |
| ShifterOperand(IP), |
| ShifterOperand(second_hi, shift, shift_value), |
| codegen); |
| } |
| } |
| } |
| } |
| |
| static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARM* codegen) { |
| Primitive::Type type = instruction->InputAt(0)->GetType(); |
| Location lhs_loc = instruction->GetLocations()->InAt(0); |
| Location rhs_loc = instruction->GetLocations()->InAt(1); |
| if (rhs_loc.IsConstant()) { |
| // 0.0 is the only immediate that can be encoded directly in |
| // a VCMP instruction. |
| // |
| // Both the JLS (section 15.20.1) and the JVMS (section 6.5) |
| // specify that in a floating-point comparison, positive zero |
| // and negative zero are considered equal, so we can use the |
| // literal 0.0 for both cases here. |
| // |
| // Note however that some methods (Float.equal, Float.compare, |
| // Float.compareTo, Double.equal, Double.compare, |
| // Double.compareTo, Math.max, Math.min, StrictMath.max, |
| // StrictMath.min) consider 0.0 to be (strictly) greater than |
| // -0.0. So if we ever translate calls to these methods into a |
| // HCompare instruction, we must handle the -0.0 case with |
| // care here. |
| DCHECK(rhs_loc.GetConstant()->IsArithmeticZero()); |
| if (type == Primitive::kPrimFloat) { |
| __ vcmpsz(lhs_loc.AsFpuRegister<SRegister>()); |
| } else { |
| DCHECK_EQ(type, Primitive::kPrimDouble); |
| __ vcmpdz(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>())); |
| } |
| } else { |
| if (type == Primitive::kPrimFloat) { |
| __ vcmps(lhs_loc.AsFpuRegister<SRegister>(), rhs_loc.AsFpuRegister<SRegister>()); |
| } else { |
| DCHECK_EQ(type, Primitive::kPrimDouble); |
| __ vcmpd(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(rhs_loc.AsFpuRegisterPairLow<SRegister>())); |
| } |
| } |
| } |
| |
| static std::pair<Condition, Condition> GenerateLongTestConstant(HCondition* condition, |
| bool invert, |
| CodeGeneratorARM* codegen) { |
| DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong); |
| |
| const LocationSummary* const locations = condition->GetLocations(); |
| IfCondition cond = condition->GetCondition(); |
| IfCondition opposite = condition->GetOppositeCondition(); |
| |
| if (invert) { |
| std::swap(cond, opposite); |
| } |
| |
| std::pair<Condition, Condition> ret; |
| const Location left = locations->InAt(0); |
| const Location right = locations->InAt(1); |
| |
| DCHECK(right.IsConstant()); |
| |
| const Register left_high = left.AsRegisterPairHigh<Register>(); |
| const Register left_low = left.AsRegisterPairLow<Register>(); |
| int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); |
| |
| switch (cond) { |
| case kCondEQ: |
| case kCondNE: |
| case kCondB: |
| case kCondBE: |
| case kCondA: |
| case kCondAE: |
| __ CmpConstant(left_high, High32Bits(value)); |
| __ it(EQ); |
| __ cmp(left_low, ShifterOperand(Low32Bits(value)), EQ); |
| ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite)); |
| break; |
| case kCondLE: |
| case kCondGT: |
| // Trivially true or false. |
| if (value == std::numeric_limits<int64_t>::max()) { |
| __ cmp(left_low, ShifterOperand(left_low)); |
| ret = cond == kCondLE ? std::make_pair(EQ, NE) : std::make_pair(NE, EQ); |
| break; |
| } |
| |
| if (cond == kCondLE) { |
| DCHECK_EQ(opposite, kCondGT); |
| cond = kCondLT; |
| opposite = kCondGE; |
| } else { |
| DCHECK_EQ(cond, kCondGT); |
| DCHECK_EQ(opposite, kCondLE); |
| cond = kCondGE; |
| opposite = kCondLT; |
| } |
| |
| value++; |
| FALLTHROUGH_INTENDED; |
| case kCondGE: |
| case kCondLT: |
| __ CmpConstant(left_low, Low32Bits(value)); |
| __ sbcs(IP, left_high, ShifterOperand(High32Bits(value))); |
| ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite)); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| return ret; |
| } |
| |
| static std::pair<Condition, Condition> GenerateLongTest(HCondition* condition, |
| bool invert, |
| CodeGeneratorARM* codegen) { |
| DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong); |
| |
| const LocationSummary* const locations = condition->GetLocations(); |
| IfCondition cond = condition->GetCondition(); |
| IfCondition opposite = condition->GetOppositeCondition(); |
| |
| if (invert) { |
| std::swap(cond, opposite); |
| } |
| |
| std::pair<Condition, Condition> ret; |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| DCHECK(right.IsRegisterPair()); |
| |
| switch (cond) { |
| case kCondEQ: |
| case kCondNE: |
| case kCondB: |
| case kCondBE: |
| case kCondA: |
| case kCondAE: |
| __ cmp(left.AsRegisterPairHigh<Register>(), |
| ShifterOperand(right.AsRegisterPairHigh<Register>())); |
| __ it(EQ); |
| __ cmp(left.AsRegisterPairLow<Register>(), |
| ShifterOperand(right.AsRegisterPairLow<Register>()), |
| EQ); |
| ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite)); |
| break; |
| case kCondLE: |
| case kCondGT: |
| if (cond == kCondLE) { |
| DCHECK_EQ(opposite, kCondGT); |
| cond = kCondGE; |
| opposite = kCondLT; |
| } else { |
| DCHECK_EQ(cond, kCondGT); |
| DCHECK_EQ(opposite, kCondLE); |
| cond = kCondLT; |
| opposite = kCondGE; |
| } |
| |
| std::swap(left, right); |
| FALLTHROUGH_INTENDED; |
| case kCondGE: |
| case kCondLT: |
| __ cmp(left.AsRegisterPairLow<Register>(), |
| ShifterOperand(right.AsRegisterPairLow<Register>())); |
| __ sbcs(IP, |
| left.AsRegisterPairHigh<Register>(), |
| ShifterOperand(right.AsRegisterPairHigh<Register>())); |
| ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite)); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| return ret; |
| } |
| |
| static std::pair<Condition, Condition> GenerateTest(HCondition* condition, |
| bool invert, |
| CodeGeneratorARM* codegen) { |
| const LocationSummary* const locations = condition->GetLocations(); |
| const Primitive::Type type = condition->GetLeft()->GetType(); |
| IfCondition cond = condition->GetCondition(); |
| IfCondition opposite = condition->GetOppositeCondition(); |
| std::pair<Condition, Condition> ret; |
| const Location right = locations->InAt(1); |
| |
| if (invert) { |
| std::swap(cond, opposite); |
| } |
| |
| if (type == Primitive::kPrimLong) { |
| ret = locations->InAt(1).IsConstant() |
| ? GenerateLongTestConstant(condition, invert, codegen) |
| : GenerateLongTest(condition, invert, codegen); |
| } else if (Primitive::IsFloatingPointType(type)) { |
| GenerateVcmp(condition, codegen); |
| __ vmstat(); |
| ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()), |
| ARMFPCondition(opposite, condition->IsGtBias())); |
| } else { |
| DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type; |
| |
| const Register left = locations->InAt(0).AsRegister<Register>(); |
| |
| if (right.IsRegister()) { |
| __ cmp(left, ShifterOperand(right.AsRegister<Register>())); |
| } else { |
| DCHECK(right.IsConstant()); |
| __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant())); |
| } |
| |
| ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite)); |
| } |
| |
| return ret; |
| } |
| |
| static bool CanGenerateTest(HCondition* condition, ArmAssembler* assembler) { |
| if (condition->GetLeft()->GetType() == Primitive::kPrimLong) { |
| const LocationSummary* const locations = condition->GetLocations(); |
| const IfCondition c = condition->GetCondition(); |
| |
| if (locations->InAt(1).IsConstant()) { |
| const int64_t value = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue(); |
| ShifterOperand so; |
| |
| if (c < kCondLT || c > kCondGE) { |
| // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, |
| // we check that the least significant half of the first input to be compared |
| // is in a low register (the other half is read outside an IT block), and |
| // the constant fits in an 8-bit unsigned integer, so that a 16-bit CMP |
| // encoding can be used. |
| if (!ArmAssembler::IsLowRegister(locations->InAt(0).AsRegisterPairLow<Register>()) || |
| !IsUint<8>(Low32Bits(value))) { |
| return false; |
| } |
| } else if (c == kCondLE || c == kCondGT) { |
| if (value < std::numeric_limits<int64_t>::max() && |
| !assembler->ShifterOperandCanHold(kNoRegister, |
| kNoRegister, |
| SBC, |
| High32Bits(value + 1), |
| kCcSet, |
| &so)) { |
| return false; |
| } |
| } else if (!assembler->ShifterOperandCanHold(kNoRegister, |
| kNoRegister, |
| SBC, |
| High32Bits(value), |
| kCcSet, |
| &so)) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) { |
| const Primitive::Type type = constant->GetType(); |
| bool ret = false; |
| |
| DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type; |
| |
| if (type == Primitive::kPrimLong) { |
| const uint64_t value = constant->AsLongConstant()->GetValueAsUint64(); |
| |
| ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value)); |
| } else { |
| ret = IsUint<8>(CodeGenerator::GetInt32ValueOf(constant)); |
| } |
| |
| return ret; |
| } |
| |
| static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) { |
| DCHECK(!Primitive::IsFloatingPointType(constant->GetType())); |
| |
| if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) { |
| return Location::ConstantLocation(constant->AsConstant()); |
| } |
| |
| return Location::RequiresRegister(); |
| } |
| |
| static bool CanGenerateConditionalMove(const Location& out, const Location& src) { |
| // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, |
| // we check that we are not dealing with floating-point output (there is no |
| // 16-bit VMOV encoding). |
| if (!out.IsRegister() && !out.IsRegisterPair()) { |
| return false; |
| } |
| |
| // For constants, we also check that the output is in one or two low registers, |
| // and that the constants fit in an 8-bit unsigned integer, so that a 16-bit |
| // MOV encoding can be used. |
| if (src.IsConstant()) { |
| if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) { |
| return false; |
| } |
| |
| if (out.IsRegister()) { |
| if (!ArmAssembler::IsLowRegister(out.AsRegister<Register>())) { |
| return false; |
| } |
| } else { |
| DCHECK(out.IsRegisterPair()); |
| |
| if (!ArmAssembler::IsLowRegister(out.AsRegisterPairHigh<Register>())) { |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| #undef __ |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<ArmAssembler*>(GetAssembler())-> // NOLINT |
| |
| Label* CodeGeneratorARM::GetFinalLabel(HInstruction* instruction, Label* final_label) { |
| DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck()); |
| DCHECK(!instruction->IsInvoke() || !instruction->GetLocations()->CanCall()); |
| |
| const HBasicBlock* const block = instruction->GetBlock(); |
| const HLoopInformation* const info = block->GetLoopInformation(); |
| HInstruction* const next = instruction->GetNext(); |
| |
| // Avoid a branch to a branch. |
| if (next->IsGoto() && (info == nullptr || |
| !info->IsBackEdge(*block) || |
| !info->HasSuspendCheck())) { |
| final_label = GetLabelOf(next->AsGoto()->GetSuccessor()); |
| } |
| |
| return final_label; |
| } |
| |
| void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << Register(reg); |
| } |
| |
| void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << SRegister(reg); |
| } |
| |
| size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ StoreToOffset(kStoreWord, static_cast<Register>(reg_id), SP, stack_index); |
| return kArmWordSize; |
| } |
| |
| size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ LoadFromOffset(kLoadWord, static_cast<Register>(reg_id), SP, stack_index); |
| return kArmWordSize; |
| } |
| |
| size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| __ StoreSToOffset(static_cast<SRegister>(reg_id), SP, stack_index); |
| return kArmWordSize; |
| } |
| |
| size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| __ LoadSFromOffset(static_cast<SRegister>(reg_id), SP, stack_index); |
| return kArmWordSize; |
| } |
| |
| CodeGeneratorARM::CodeGeneratorARM(HGraph* graph, |
| const ArmInstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfCoreRegisters, |
| kNumberOfSRegisters, |
| kNumberOfRegisterPairs, |
| ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), |
| arraysize(kCoreCalleeSaves)), |
| ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves), |
| arraysize(kFpuCalleeSaves)), |
| compiler_options, |
| stats), |
| block_labels_(nullptr), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetArena(), this), |
| assembler_(graph->GetArena()), |
| isa_features_(isa_features), |
| uint32_literals_(std::less<uint32_t>(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_string_patches_(StringReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_type_patches_(TypeReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jit_string_patches_(StringReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jit_class_patches_(TypeReferenceValueComparator(), |
| graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { |
| // Always save the LR register to mimic Quick. |
| AddAllocatedRegister(Location::RegisterLocation(LR)); |
| } |
| |
| void CodeGeneratorARM::Finalize(CodeAllocator* allocator) { |
| // Ensure that we fix up branches and literal loads and emit the literal pool. |
| __ FinalizeCode(); |
| |
| // Adjust native pc offsets in stack maps. |
| for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) { |
| uint32_t old_position = |
| stack_map_stream_.GetStackMap(i).native_pc_code_offset.Uint32Value(kThumb2); |
| uint32_t new_position = __ GetAdjustedPosition(old_position); |
| stack_map_stream_.SetStackMapNativePcOffset(i, new_position); |
| } |
| // Adjust pc offsets for the disassembly information. |
| if (disasm_info_ != nullptr) { |
| GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval(); |
| frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start); |
| frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end); |
| for (auto& it : *disasm_info_->GetInstructionIntervals()) { |
| it.second.start = __ GetAdjustedPosition(it.second.start); |
| it.second.end = __ GetAdjustedPosition(it.second.end); |
| } |
| for (auto& it : *disasm_info_->GetSlowPathIntervals()) { |
| it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start); |
| it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end); |
| } |
| } |
| |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| void CodeGeneratorARM::SetupBlockedRegisters() const { |
| // Stack register, LR and PC are always reserved. |
| blocked_core_registers_[SP] = true; |
| blocked_core_registers_[LR] = true; |
| blocked_core_registers_[PC] = true; |
| |
| // Reserve thread register. |
| blocked_core_registers_[TR] = true; |
| |
| // Reserve temp register. |
| blocked_core_registers_[IP] = true; |
| |
| if (GetGraph()->IsDebuggable()) { |
| // Stubs do not save callee-save floating point registers. If the graph |
| // is debuggable, we need to deal with these registers differently. For |
| // now, just block them. |
| for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { |
| blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; |
| } |
| } |
| } |
| |
| InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| void CodeGeneratorARM::ComputeSpillMask() { |
| core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; |
| DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; |
| // There is no easy instruction to restore just the PC on thumb2. We spill and |
| // restore another arbitrary register. |
| core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister); |
| fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; |
| // We use vpush and vpop for saving and restoring floating point registers, which take |
| // a SRegister and the number of registers to save/restore after that SRegister. We |
| // therefore update the `fpu_spill_mask_` to also contain those registers not allocated, |
| // but in the range. |
| if (fpu_spill_mask_ != 0) { |
| uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_); |
| uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_); |
| for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) { |
| fpu_spill_mask_ |= (1 << i); |
| } |
| } |
| } |
| |
| static dwarf::Reg DWARFReg(Register reg) { |
| return dwarf::Reg::ArmCore(static_cast<int>(reg)); |
| } |
| |
| static dwarf::Reg DWARFReg(SRegister reg) { |
| return dwarf::Reg::ArmFp(static_cast<int>(reg)); |
| } |
| |
| void CodeGeneratorARM::GenerateFrameEntry() { |
| bool skip_overflow_check = |
| IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm); |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| __ Bind(&frame_entry_label_); |
| |
| if (HasEmptyFrame()) { |
| return; |
| } |
| |
| if (!skip_overflow_check) { |
| __ AddConstant(IP, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kArm))); |
| __ LoadFromOffset(kLoadWord, IP, IP, 0); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| __ PushList(core_spill_mask_); |
| __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_)); |
| __ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize); |
| if (fpu_spill_mask_ != 0) { |
| SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); |
| __ vpushs(start_register, POPCOUNT(fpu_spill_mask_)); |
| __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_)); |
| __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize); |
| } |
| |
| if (GetGraph()->HasShouldDeoptimizeFlag()) { |
| // Initialize should_deoptimize flag to 0. |
| __ mov(IP, ShifterOperand(0)); |
| __ StoreToOffset(kStoreWord, IP, SP, -kShouldDeoptimizeFlagSize); |
| } |
| |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| __ AddConstant(SP, -adjust); |
| __ cfi().AdjustCFAOffset(adjust); |
| |
| // Save the current method if we need it. Note that we do not |
| // do this in HCurrentMethod, as the instruction might have been removed |
| // in the SSA graph. |
| if (RequiresCurrentMethod()) { |
| __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0); |
| } |
| } |
| |
| void CodeGeneratorARM::GenerateFrameExit() { |
| if (HasEmptyFrame()) { |
| __ bx(LR); |
| return; |
| } |
| __ cfi().RememberState(); |
| int adjust = GetFrameSize() - FrameEntrySpillSize(); |
| __ AddConstant(SP, adjust); |
| __ cfi().AdjustCFAOffset(-adjust); |
| if (fpu_spill_mask_ != 0) { |
| SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_)); |
| __ vpops(start_register, POPCOUNT(fpu_spill_mask_)); |
| __ cfi().AdjustCFAOffset(-static_cast<int>(kArmPointerSize) * POPCOUNT(fpu_spill_mask_)); |
| __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_); |
| } |
| // Pop LR into PC to return. |
| DCHECK_NE(core_spill_mask_ & (1 << LR), 0U); |
| uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC; |
| __ PopList(pop_mask); |
| __ cfi().RestoreState(); |
| __ cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| void CodeGeneratorARM::Bind(HBasicBlock* block) { |
| Label* label = GetLabelOf(block); |
| __ BindTrackedLabel(label); |
| } |
| |
| Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| uint32_t index = gp_index_++; |
| uint32_t stack_index = stack_index_++; |
| if (index < calling_convention.GetNumberOfRegisters()) { |
| return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); |
| } |
| } |
| |
| case Primitive::kPrimLong: { |
| uint32_t index = gp_index_; |
| uint32_t stack_index = stack_index_; |
| gp_index_ += 2; |
| stack_index_ += 2; |
| if (index + 1 < calling_convention.GetNumberOfRegisters()) { |
| if (calling_convention.GetRegisterAt(index) == R1) { |
| // Skip R1, and use R2_R3 instead. |
| gp_index_++; |
| index++; |
| } |
| } |
| if (index + 1 < calling_convention.GetNumberOfRegisters()) { |
| DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1, |
| calling_convention.GetRegisterAt(index + 1)); |
| |
| return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index), |
| calling_convention.GetRegisterAt(index + 1)); |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); |
| } |
| } |
| |
| case Primitive::kPrimFloat: { |
| uint32_t stack_index = stack_index_++; |
| if (float_index_ % 2 == 0) { |
| float_index_ = std::max(double_index_, float_index_); |
| } |
| if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) { |
| return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index)); |
| } |
| } |
| |
| case Primitive::kPrimDouble: { |
| double_index_ = std::max(double_index_, RoundUp(float_index_, 2)); |
| uint32_t stack_index = stack_index_; |
| stack_index_ += 2; |
| if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) { |
| uint32_t index = double_index_; |
| double_index_ += 2; |
| Location result = Location::FpuRegisterPairLocation( |
| calling_convention.GetFpuRegisterAt(index), |
| calling_convention.GetFpuRegisterAt(index + 1)); |
| DCHECK(ExpectedPairLayout(result)); |
| return result; |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index)); |
| } |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unexpected parameter type " << type; |
| break; |
| } |
| return Location::NoLocation(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| return Location::RegisterLocation(R0); |
| } |
| |
| case Primitive::kPrimFloat: { |
| return Location::FpuRegisterLocation(S0); |
| } |
| |
| case Primitive::kPrimLong: { |
| return Location::RegisterPairLocation(R0, R1); |
| } |
| |
| case Primitive::kPrimDouble: { |
| return Location::FpuRegisterPairLocation(S0, S1); |
| } |
| |
| case Primitive::kPrimVoid: |
| return Location::NoLocation(); |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const { |
| return Location::RegisterLocation(kMethodRegisterArgument); |
| } |
| |
| void CodeGeneratorARM::Move32(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegister()) { |
| if (source.IsRegister()) { |
| __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>()); |
| } else { |
| __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex()); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (source.IsRegister()) { |
| __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>()); |
| } else if (source.IsFpuRegister()) { |
| __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>()); |
| } else { |
| __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex()); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| if (source.IsRegister()) { |
| __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex()); |
| } else if (source.IsFpuRegister()) { |
| __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex()); |
| } else { |
| DCHECK(source.IsStackSlot()) << source; |
| __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex()); |
| __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); |
| } |
| } |
| } |
| |
| void CodeGeneratorARM::Move64(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegisterPair()) { |
| if (source.IsRegisterPair()) { |
| EmitParallelMoves( |
| Location::RegisterLocation(source.AsRegisterPairHigh<Register>()), |
| Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()), |
| Primitive::kPrimInt, |
| Location::RegisterLocation(source.AsRegisterPairLow<Register>()), |
| Location::RegisterLocation(destination.AsRegisterPairLow<Register>()), |
| Primitive::kPrimInt); |
| } else if (source.IsFpuRegister()) { |
| UNIMPLEMENTED(FATAL); |
| } else if (source.IsFpuRegisterPair()) { |
| __ vmovrrd(destination.AsRegisterPairLow<Register>(), |
| destination.AsRegisterPairHigh<Register>(), |
| FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())); |
| } else { |
| DCHECK(source.IsDoubleStackSlot()); |
| DCHECK(ExpectedPairLayout(destination)); |
| __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow<Register>(), |
| SP, source.GetStackIndex()); |
| } |
| } else if (destination.IsFpuRegisterPair()) { |
| if (source.IsDoubleStackSlot()) { |
| __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), |
| SP, |
| source.GetStackIndex()); |
| } else if (source.IsRegisterPair()) { |
| __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), |
| source.AsRegisterPairLow<Register>(), |
| source.AsRegisterPairHigh<Register>()); |
| } else { |
| UNIMPLEMENTED(FATAL); |
| } |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()); |
| if (source.IsRegisterPair()) { |
| // No conflict possible, so just do the moves. |
| if (source.AsRegisterPairLow<Register>() == R1) { |
| DCHECK_EQ(source.AsRegisterPairHigh<Register>(), R2); |
| __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex()); |
| __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize)); |
| } else { |
| __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow<Register>(), |
| SP, destination.GetStackIndex()); |
| } |
| } else if (source.IsFpuRegisterPair()) { |
| __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()), |
| SP, |
| destination.GetStackIndex()); |
| } else { |
| DCHECK(source.IsDoubleStackSlot()); |
| EmitParallelMoves( |
| Location::StackSlot(source.GetStackIndex()), |
| Location::StackSlot(destination.GetStackIndex()), |
| Primitive::kPrimInt, |
| Location::StackSlot(source.GetHighStackIndex(kArmWordSize)), |
| Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)), |
| Primitive::kPrimInt); |
| } |
| } |
| } |
| |
| void CodeGeneratorARM::MoveConstant(Location location, int32_t value) { |
| DCHECK(location.IsRegister()); |
| __ LoadImmediate(location.AsRegister<Register>(), value); |
| } |
| |
| void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) { |
| HParallelMove move(GetGraph()->GetArena()); |
| move.AddMove(src, dst, dst_type, nullptr); |
| GetMoveResolver()->EmitNativeCode(&move); |
| } |
| |
| void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else if (location.IsRegisterPair()) { |
| locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>())); |
| locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>())); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(entrypoint, instruction, slow_path); |
| GenerateInvokeRuntime(GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value()); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| |
| void CodeGeneratorARM::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| GenerateInvokeRuntime(entry_point_offset); |
| } |
| |
| void CodeGeneratorARM::GenerateInvokeRuntime(int32_t entry_point_offset) { |
| __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset); |
| __ blx(LR); |
| } |
| |
| void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| DCHECK(!successor->IsExitBlock()); |
| |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| |
| HLoopInformation* info = block->GetLoopInformation(); |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck()); |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { |
| __ b(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateLongComparesAndJumps(HCondition* cond, |
| Label* true_label, |
| Label* false_label) { |
| LocationSummary* locations = cond->GetLocations(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| IfCondition if_cond = cond->GetCondition(); |
| |
| Register left_high = left.AsRegisterPairHigh<Register>(); |
| Register left_low = left.AsRegisterPairLow<Register>(); |
| IfCondition true_high_cond = if_cond; |
| IfCondition false_high_cond = cond->GetOppositeCondition(); |
| Condition final_condition = ARMUnsignedCondition(if_cond); // unsigned on lower part |
| |
| // Set the conditions for the test, remembering that == needs to be |
| // decided using the low words. |
| switch (if_cond) { |
| case kCondEQ: |
| case kCondNE: |
| // Nothing to do. |
| break; |
| case kCondLT: |
| false_high_cond = kCondGT; |
| break; |
| case kCondLE: |
| true_high_cond = kCondLT; |
| break; |
| case kCondGT: |
| false_high_cond = kCondLT; |
| break; |
| case kCondGE: |
| true_high_cond = kCondGT; |
| break; |
| case kCondB: |
| false_high_cond = kCondA; |
| break; |
| case kCondBE: |
| true_high_cond = kCondB; |
| break; |
| case kCondA: |
| false_high_cond = kCondB; |
| break; |
| case kCondAE: |
| true_high_cond = kCondA; |
| break; |
| } |
| if (right.IsConstant()) { |
| int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t val_low = Low32Bits(value); |
| int32_t val_high = High32Bits(value); |
| |
| __ CmpConstant(left_high, val_high); |
| if (if_cond == kCondNE) { |
| __ b(true_label, ARMCondition(true_high_cond)); |
| } else if (if_cond == kCondEQ) { |
| __ b(false_label, ARMCondition(false_high_cond)); |
| } else { |
| __ b(true_label, ARMCondition(true_high_cond)); |
| __ b(false_label, ARMCondition(false_high_cond)); |
| } |
| // Must be equal high, so compare the lows. |
| __ CmpConstant(left_low, val_low); |
| } else { |
| Register right_high = right.AsRegisterPairHigh<Register>(); |
| Register right_low = right.AsRegisterPairLow<Register>(); |
| |
| __ cmp(left_high, ShifterOperand(right_high)); |
| if (if_cond == kCondNE) { |
| __ b(true_label, ARMCondition(true_high_cond)); |
| } else if (if_cond == kCondEQ) { |
| __ b(false_label, ARMCondition(false_high_cond)); |
| } else { |
| __ b(true_label, ARMCondition(true_high_cond)); |
| __ b(false_label, ARMCondition(false_high_cond)); |
| } |
| // Must be equal high, so compare the lows. |
| __ cmp(left_low, ShifterOperand(right_low)); |
| } |
| // The last comparison might be unsigned. |
| // TODO: optimize cases where this is always true/false |
| __ b(true_label, final_condition); |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition, |
| Label* true_target_in, |
| Label* false_target_in) { |
| if (CanGenerateTest(condition, codegen_->GetAssembler())) { |
| Label* non_fallthrough_target; |
| bool invert; |
| |
| if (true_target_in == nullptr) { |
| DCHECK(false_target_in != nullptr); |
| non_fallthrough_target = false_target_in; |
| invert = true; |
| } else { |
| non_fallthrough_target = true_target_in; |
| invert = false; |
| } |
| |
| const auto cond = GenerateTest(condition, invert, codegen_); |
| |
| __ b(non_fallthrough_target, cond.first); |
| |
| if (false_target_in != nullptr && false_target_in != non_fallthrough_target) { |
| __ b(false_target_in); |
| } |
| |
| return; |
| } |
| |
| // Generated branching requires both targets to be explicit. If either of the |
| // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. |
| Label fallthrough_target; |
| Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; |
| Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; |
| |
| DCHECK_EQ(condition->InputAt(0)->GetType(), Primitive::kPrimLong); |
| GenerateLongComparesAndJumps(condition, true_target, false_target); |
| |
| if (false_target != &fallthrough_target) { |
| __ b(false_target); |
| } |
| |
| if (fallthrough_target.IsLinked()) { |
| __ Bind(&fallthrough_target); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| Label* true_target, |
| Label* false_target) { |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ b(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ b(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| // Condition has been materialized, compare the output to 0. |
| Location cond_val = instruction->GetLocations()->InAt(condition_input_index); |
| DCHECK(cond_val.IsRegister()); |
| if (true_target == nullptr) { |
| __ CompareAndBranchIfZero(cond_val.AsRegister<Register>(), false_target); |
| } else { |
| __ CompareAndBranchIfNonZero(cond_val.AsRegister<Register>(), true_target); |
| } |
| } else { |
| // Condition has not been materialized. Use its inputs as the comparison and |
| // its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| |
| // If this is a long or FP comparison that has been folded into |
| // the HCondition, generate the comparison directly. |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { |
| GenerateCompareTestAndBranch(condition, true_target, false_target); |
| return; |
| } |
| |
| Label* non_fallthrough_target; |
| Condition arm_cond; |
| LocationSummary* locations = cond->GetLocations(); |
| DCHECK(locations->InAt(0).IsRegister()); |
| Register left = locations->InAt(0).AsRegister<Register>(); |
| Location right = locations->InAt(1); |
| |
| if (true_target == nullptr) { |
| arm_cond = ARMCondition(condition->GetOppositeCondition()); |
| non_fallthrough_target = false_target; |
| } else { |
| arm_cond = ARMCondition(condition->GetCondition()); |
| non_fallthrough_target = true_target; |
| } |
| |
| if (right.IsConstant() && (arm_cond == NE || arm_cond == EQ) && |
| CodeGenerator::GetInt32ValueOf(right.GetConstant()) == 0) { |
| if (arm_cond == EQ) { |
| __ CompareAndBranchIfZero(left, non_fallthrough_target); |
| } else { |
| DCHECK_EQ(arm_cond, NE); |
| __ CompareAndBranchIfNonZero(left, non_fallthrough_target); |
| } |
| } else { |
| if (right.IsRegister()) { |
| __ cmp(left, ShifterOperand(right.AsRegister<Register>())); |
| } else { |
| DCHECK(right.IsConstant()); |
| __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant())); |
| } |
| |
| __ b(non_fallthrough_target, arm_cond); |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ b(false_target); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? |
| nullptr : codegen_->GetLabelOf(true_successor); |
| Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? |
| nullptr : codegen_->GetLabelOf(false_successor); |
| GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCodeARM* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM>(deoptimize); |
| GenerateTestAndBranch(deoptimize, |
| /* condition_input_index */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target */ nullptr); |
| } |
| |
| void LocationsBuilderARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(flag, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| __ LoadFromOffset(kLoadWord, |
| flag->GetLocations()->Out().AsRegister<Register>(), |
| SP, |
| codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); |
| } |
| |
| void LocationsBuilderARM::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); |
| const bool is_floating_point = Primitive::IsFloatingPointType(select->GetType()); |
| |
| if (is_floating_point) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue())); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue())); |
| } |
| |
| if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { |
| locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition())); |
| // The code generator handles overlap with the values, but not with the condition. |
| locations->SetOut(Location::SameAsFirstInput()); |
| } else if (is_floating_point) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| if (!locations->InAt(1).IsConstant()) { |
| locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue())); |
| } |
| |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) { |
| HInstruction* const condition = select->GetCondition(); |
| const LocationSummary* const locations = select->GetLocations(); |
| const Primitive::Type type = select->GetType(); |
| const Location first = locations->InAt(0); |
| const Location out = locations->Out(); |
| const Location second = locations->InAt(1); |
| Location src; |
| |
| if (condition->IsIntConstant()) { |
| if (condition->AsIntConstant()->IsFalse()) { |
| src = first; |
| } else { |
| src = second; |
| } |
| |
| codegen_->MoveLocation(out, src, type); |
| return; |
| } |
| |
| if (!Primitive::IsFloatingPointType(type) && |
| (IsBooleanValueOrMaterializedCondition(condition) || |
| CanGenerateTest(condition->AsCondition(), codegen_->GetAssembler()))) { |
| bool invert = false; |
| |
| if (out.Equals(second)) { |
| src = first; |
| invert = true; |
| } else if (out.Equals(first)) { |
| src = second; |
| } else if (second.IsConstant()) { |
| DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant())); |
| src = second; |
| } else if (first.IsConstant()) { |
| DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant())); |
| src = first; |
| invert = true; |
| } else { |
| src = second; |
| } |
| |
| if (CanGenerateConditionalMove(out, src)) { |
| if (!out.Equals(first) && !out.Equals(second)) { |
| codegen_->MoveLocation(out, src.Equals(first) ? second : first, type); |
| } |
| |
| std::pair<Condition, Condition> cond; |
| |
| if (IsBooleanValueOrMaterializedCondition(condition)) { |
| __ CmpConstant(locations->InAt(2).AsRegister<Register>(), 0); |
| cond = invert ? std::make_pair(EQ, NE) : std::make_pair(NE, EQ); |
| } else { |
| cond = GenerateTest(condition->AsCondition(), invert, codegen_); |
| } |
| |
| if (out.IsRegister()) { |
| ShifterOperand operand; |
| |
| if (src.IsConstant()) { |
| operand = ShifterOperand(CodeGenerator::GetInt32ValueOf(src.GetConstant())); |
| } else { |
| DCHECK(src.IsRegister()); |
| operand = ShifterOperand(src.AsRegister<Register>()); |
| } |
| |
| __ it(cond.first); |
| __ mov(out.AsRegister<Register>(), operand, cond.first); |
| } else { |
| DCHECK(out.IsRegisterPair()); |
| |
| ShifterOperand operand_high; |
| ShifterOperand operand_low; |
| |
| if (src.IsConstant()) { |
| const int64_t value = src.GetConstant()->AsLongConstant()->GetValue(); |
| |
| operand_high = ShifterOperand(High32Bits(value)); |
| operand_low = ShifterOperand(Low32Bits(value)); |
| } else { |
| DCHECK(src.IsRegisterPair()); |
| operand_high = ShifterOperand(src.AsRegisterPairHigh<Register>()); |
| operand_low = ShifterOperand(src.AsRegisterPairLow<Register>()); |
| } |
| |
| __ it(cond.first); |
| __ mov(out.AsRegisterPairLow<Register>(), operand_low, cond.first); |
| __ it(cond.first); |
| __ mov(out.AsRegisterPairHigh<Register>(), operand_high, cond.first); |
| } |
| |
| return; |
| } |
| } |
| |
| Label* false_target = nullptr; |
| Label* true_target = nullptr; |
| Label select_end; |
| Label* target = codegen_->GetFinalLabel(select, &select_end); |
| |
| if (out.Equals(second)) { |
| true_target = target; |
| src = first; |
| } else { |
| false_target = target; |
| src = second; |
| |
| if (!out.Equals(first)) { |
| codegen_->MoveLocation(out, first, type); |
| } |
| } |
| |
| GenerateTestAndBranch(select, 2, true_target, false_target); |
| codegen_->MoveLocation(out, src, type); |
| |
| if (select_end.IsLinked()) { |
| __ Bind(&select_end); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) { |
| new (GetGraph()->GetArena()) LocationSummary(info); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) { |
| // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorARM::GenerateNop() { |
| __ nop(); |
| } |
| |
| void LocationsBuilderARM::HandleCondition(HCondition* cond) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); |
| // Handle the long/FP comparisons made in instruction simplification. |
| switch (cond->InputAt(0)->GetType()) { |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1))); |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| break; |
| |
| default: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1))); |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) { |
| if (cond->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| const Register out = cond->GetLocations()->Out().AsRegister<Register>(); |
| |
| if (ArmAssembler::IsLowRegister(out) && CanGenerateTest(cond, codegen_->GetAssembler())) { |
| const auto condition = GenerateTest(cond, false, codegen_); |
| |
| __ it(condition.first); |
| __ mov(out, ShifterOperand(1), condition.first); |
| __ it(condition.second); |
| __ mov(out, ShifterOperand(0), condition.second); |
| return; |
| } |
| |
| // Convert the jumps into the result. |
| Label done_label; |
| Label* const final_label = codegen_->GetFinalLabel(cond, &done_label); |
| |
| if (cond->InputAt(0)->GetType() == Primitive::kPrimLong) { |
| Label true_label, false_label; |
| |
| GenerateLongComparesAndJumps(cond, &true_label, &false_label); |
| |
| // False case: result = 0. |
| __ Bind(&false_label); |
| __ LoadImmediate(out, 0); |
| __ b(final_label); |
| |
| // True case: result = 1. |
| __ Bind(&true_label); |
| __ LoadImmediate(out, 1); |
| } else { |
| DCHECK(CanGenerateTest(cond, codegen_->GetAssembler())); |
| |
| const auto condition = GenerateTest(cond, false, codegen_); |
| |
| __ mov(out, ShifterOperand(0), AL, kCcKeep); |
| __ b(final_label, condition.second); |
| __ LoadImmediate(out, 1); |
| } |
| |
| if (done_label.IsLinked()) { |
| __ Bind(&done_label); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) { |
| ret->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARM::VisitReturn(HReturn* ret) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); |
| locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType())); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| } |
| |
| void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderARM intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); |
| } |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| |
| // For PC-relative dex cache the invoke has an extra input, the PC-relative address base. |
| if (invoke->HasPcRelativeDexCache()) { |
| invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); |
| } |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorARM intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorARM calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderARM intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) { |
| HandleInvoke(invoke); |
| // Add the hidden argument. |
| invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| LocationSummary* locations = invoke->GetLocations(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| Register hidden_reg = locations->GetTemp(1).AsRegister<Register>(); |
| Location receiver = locations->InAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| |
| // Set the hidden argument. This is safe to do this here, as R12 |
| // won't be modified thereafter, before the `blx` (call) instruction. |
| DCHECK_EQ(R12, hidden_reg); |
| __ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex()); |
| |
| if (receiver.IsStackSlot()) { |
| __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex()); |
| // /* HeapReference<Class> */ temp = temp->klass_ |
| __ LoadFromOffset(kLoadWord, temp, temp, class_offset); |
| } else { |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| __ LoadFromOffset(kLoadWord, temp, temp, |
| mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| invoke->GetImtIndex(), kArmPointerSize)); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ LoadFromOffset(kLoadWord, temp, temp, method_offset); |
| uint32_t entry_point = |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value(); |
| // LR = temp->GetEntryPoint(); |
| __ LoadFromOffset(kLoadWord, LR, temp, entry_point); |
| // LR(); |
| __ blx(LR); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderARM::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| codegen_->GenerateInvokePolymorphicCall(invoke); |
| } |
| |
| void LocationsBuilderARM::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = neg->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| DCHECK(in.IsRegister()); |
| __ rsb(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(0)); |
| break; |
| |
| case Primitive::kPrimLong: |
| DCHECK(in.IsRegisterPair()); |
| // out.lo = 0 - in.lo (and update the carry/borrow (C) flag) |
| __ rsbs(out.AsRegisterPairLow<Register>(), |
| in.AsRegisterPairLow<Register>(), |
| ShifterOperand(0)); |
| // We cannot emit an RSC (Reverse Subtract with Carry) |
| // instruction here, as it does not exist in the Thumb-2 |
| // instruction set. We use the following approach |
| // using SBC and SUB instead. |
| // |
| // out.hi = -C |
| __ sbc(out.AsRegisterPairHigh<Register>(), |
| out.AsRegisterPairHigh<Register>(), |
| ShifterOperand(out.AsRegisterPairHigh<Register>())); |
| // out.hi = out.hi - in.hi |
| __ sub(out.AsRegisterPairHigh<Register>(), |
| out.AsRegisterPairHigh<Register>(), |
| ShifterOperand(in.AsRegisterPairHigh<Register>())); |
| break; |
| |
| case Primitive::kPrimFloat: |
| DCHECK(in.IsFpuRegister()); |
| __ vnegs(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| DCHECK(in.IsFpuRegisterPair()); |
| __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(in.AsFpuRegisterPairLow<SRegister>())); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) { |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| |
| // The float-to-long, double-to-long and long-to-float type conversions |
| // rely on a call to the runtime. |
| LocationSummary::CallKind call_kind = |
| (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) |
| && result_type == Primitive::kPrimLong) |
| || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat)) |
| ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); |
| |
| // The Java language does not allow treating boolean as an integral type but |
| // our bit representation makes it safe. |
| |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to byte is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to short is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: { |
| // Processing a Dex `float-to-long' instruction. |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation( |
| calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(Location::RegisterPairLocation(R0, R1)); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `double-to-long' instruction. |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterPairLocation( |
| calling_convention.GetFpuRegisterAt(0), |
| calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(Location::RegisterPairLocation(R0, R1)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to char is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `int-to-char' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-float' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: { |
| // Processing a Dex `long-to-float' instruction. |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = conversion->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to byte is a result of code transformations. |
| __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 8); |
| break; |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 8); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to short is a result of code transformations. |
| __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16); |
| break; |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| DCHECK(out.IsRegister()); |
| if (in.IsRegisterPair()) { |
| __ Mov(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); |
| } else if (in.IsDoubleStackSlot()) { |
| __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), SP, in.GetStackIndex()); |
| } else { |
| DCHECK(in.IsConstant()); |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ LoadImmediate(out.AsRegister<Register>(), static_cast<int32_t>(value)); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: { |
| // Processing a Dex `float-to-int' instruction. |
| SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>(); |
| __ vcvtis(temp, in.AsFpuRegister<SRegister>()); |
| __ vmovrs(out.AsRegister<Register>(), temp); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `double-to-int' instruction. |
| SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>(); |
| __ vcvtid(temp_s, FromLowSToD(in.AsFpuRegisterPairLow<SRegister>())); |
| __ vmovrs(out.AsRegister<Register>(), temp_s); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| DCHECK(out.IsRegisterPair()); |
| DCHECK(in.IsRegister()); |
| __ Mov(out.AsRegisterPairLow<Register>(), in.AsRegister<Register>()); |
| // Sign extension. |
| __ Asr(out.AsRegisterPairHigh<Register>(), |
| out.AsRegisterPairLow<Register>(), |
| 31); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-long' instruction. |
| codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc()); |
| CheckEntrypointTypes<kQuickF2l, int64_t, float>(); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-long' instruction. |
| codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc()); |
| CheckEntrypointTypes<kQuickD2l, int64_t, double>(); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to char is a result of code transformations. |
| __ ubfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16); |
| break; |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `int-to-char' instruction. |
| __ ubfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: { |
| // Processing a Dex `int-to-float' instruction. |
| __ vmovsr(out.AsFpuRegister<SRegister>(), in.AsRegister<Register>()); |
| __ vcvtsi(out.AsFpuRegister<SRegister>(), out.AsFpuRegister<SRegister>()); |
| break; |
| } |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-float' instruction. |
| codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc()); |
| CheckEntrypointTypes<kQuickL2f, float, int64_t>(); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| __ vcvtsd(out.AsFpuRegister<SRegister>(), |
| FromLowSToD(in.AsFpuRegisterPairLow<SRegister>())); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: { |
| // Processing a Dex `int-to-double' instruction. |
| __ vmovsr(out.AsFpuRegisterPairLow<SRegister>(), in.AsRegister<Register>()); |
| __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), |
| out.AsFpuRegisterPairLow<SRegister>()); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| // Processing a Dex `long-to-double' instruction. |
| Register low = in.AsRegisterPairLow<Register>(); |
| Register high = in.AsRegisterPairHigh<Register>(); |
| SRegister out_s = out.AsFpuRegisterPairLow<SRegister>(); |
| DRegister out_d = FromLowSToD(out_s); |
| SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>(); |
| DRegister temp_d = FromLowSToD(temp_s); |
| SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow<SRegister>(); |
| DRegister constant_d = FromLowSToD(constant_s); |
| |
| // temp_d = int-to-double(high) |
| __ vmovsr(temp_s, high); |
| __ vcvtdi(temp_d, temp_s); |
| // constant_d = k2Pow32EncodingForDouble |
| __ LoadDImmediate(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble)); |
| // out_d = unsigned-to-double(low) |
| __ vmovsr(out_s, low); |
| __ vcvtdu(out_d, out_s); |
| // out_d += temp_d * constant_d |
| __ vmlad(out_d, temp_d, constant_d); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), |
| in.AsFpuRegister<SRegister>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderARM::VisitAdd(HAdd* add) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) { |
| LocationSummary* locations = add->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: |
| if (second.IsRegister()) { |
| __ add(out.AsRegister<Register>(), |
| first.AsRegister<Register>(), |
| ShifterOperand(second.AsRegister<Register>())); |
| } else { |
| __ AddConstant(out.AsRegister<Register>(), |
| first.AsRegister<Register>(), |
| second.GetConstant()->AsIntConstant()->GetValue()); |
| } |
| break; |
| |
| case Primitive::kPrimLong: { |
| if (second.IsConstant()) { |
| uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant())); |
| GenerateAddLongConst(out, first, value); |
| } else { |
| DCHECK(second.IsRegisterPair()); |
| __ adds(out.AsRegisterPairLow<Register>(), |
| first.AsRegisterPairLow<Register>(), |
| ShifterOperand(second.AsRegisterPairLow<Register>())); |
| __ adc(out.AsRegisterPairHigh<Register>(), |
| first.AsRegisterPairHigh<Register>(), |
| ShifterOperand(second.AsRegisterPairHigh<Register>())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| __ vadds(out.AsFpuRegister<SRegister>(), |
| first.AsFpuRegister<SRegister>(), |
| second.AsFpuRegister<SRegister>()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(second.AsFpuRegisterPairLow<SRegister>())); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitSub(HSub* sub) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitSub(HSub* sub) { |
| LocationSummary* locations = sub->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (second.IsRegister()) { |
| __ sub(out.AsRegister<Register>(), |
| first.AsRegister<Register>(), |
| ShifterOperand(second.AsRegister<Register>())); |
| } else { |
| __ AddConstant(out.AsRegister<Register>(), |
| first.AsRegister<Register>(), |
| -second.GetConstant()->AsIntConstant()->GetValue()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (second.IsConstant()) { |
| uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant())); |
| GenerateAddLongConst(out, first, -value); |
| } else { |
| DCHECK(second.IsRegisterPair()); |
| __ subs(out.AsRegisterPairLow<Register>(), |
| first.AsRegisterPairLow<Register>(), |
| ShifterOperand(second.AsRegisterPairLow<Register>())); |
| __ sbc(out.AsRegisterPairHigh<Register>(), |
| first.AsRegisterPairHigh<Register>(), |
| ShifterOperand(second.AsRegisterPairHigh<Register>())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| __ vsubs(out.AsFpuRegister<SRegister>(), |
| first.AsFpuRegister<SRegister>(), |
| second.AsFpuRegister<SRegister>()); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| __ vsubd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(second.AsFpuRegisterPairLow<SRegister>())); |
| break; |
| } |
| |
| |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitMul(HMul* mul) { |
| LocationSummary* locations = mul->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: { |
| __ mul(out.AsRegister<Register>(), |
| first.AsRegister<Register>(), |
| second.AsRegister<Register>()); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| Register out_hi = out.AsRegisterPairHigh<Register>(); |
| Register out_lo = out.AsRegisterPairLow<Register>(); |
| Register in1_hi = first.AsRegisterPairHigh<Register>(); |
| Register in1_lo = first.AsRegisterPairLow<Register>(); |
| Register in2_hi = second.AsRegisterPairHigh<Register>(); |
| Register in2_lo = second.AsRegisterPairLow<Register>(); |
| |
| // Extra checks to protect caused by the existence of R1_R2. |
| // The algorithm is wrong if out.hi is either in1.lo or in2.lo: |
| // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2); |
| DCHECK_NE(out_hi, in1_lo); |
| DCHECK_NE(out_hi, in2_lo); |
| |
| // input: in1 - 64 bits, in2 - 64 bits |
| // output: out |
| // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo |
| // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] |
| // parts: out.lo = (in1.lo * in2.lo)[31:0] |
| |
| // IP <- in1.lo * in2.hi |
| __ mul(IP, in1_lo, in2_hi); |
| // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo |
| __ mla(out_hi, in1_hi, in2_lo, IP); |
| // out.lo <- (in1.lo * in2.lo)[31:0]; |
| __ umull(out_lo, IP, in1_lo, in2_lo); |
| // out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] |
| __ add(out_hi, out_hi, ShifterOperand(IP)); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| __ vmuls(out.AsFpuRegister<SRegister>(), |
| first.AsFpuRegister<SRegister>(), |
| second.AsFpuRegister<SRegister>()); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| __ vmuld(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(second.AsFpuRegisterPairLow<SRegister>())); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = locations->Out().AsRegister<Register>(); |
| Register dividend = locations->InAt(0).AsRegister<Register>(); |
| int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->IsRem()) { |
| __ LoadImmediate(out, 0); |
| } else { |
| if (imm == 1) { |
| __ Mov(out, dividend); |
| } else { |
| __ rsb(out, dividend, ShifterOperand(0)); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::DivRemByPowerOfTwo(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = locations->Out().AsRegister<Register>(); |
| Register dividend = locations->InAt(0).AsRegister<Register>(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); |
| int ctz_imm = CTZ(abs_imm); |
| |
| if (ctz_imm == 1) { |
| __ Lsr(temp, dividend, 32 - ctz_imm); |
| } else { |
| __ Asr(temp, dividend, 31); |
| __ Lsr(temp, temp, 32 - ctz_imm); |
| } |
| __ add(out, temp, ShifterOperand(dividend)); |
| |
| if (instruction->IsDiv()) { |
| __ Asr(out, out, ctz_imm); |
| if (imm < 0) { |
| __ rsb(out, out, ShifterOperand(0)); |
| } |
| } else { |
| __ ubfx(out, out, 0, ctz_imm); |
| __ sub(out, out, ShifterOperand(temp)); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = locations->Out().AsRegister<Register>(); |
| Register dividend = locations->InAt(0).AsRegister<Register>(); |
| Register temp1 = locations->GetTemp(0).AsRegister<Register>(); |
| Register temp2 = locations->GetTemp(1).AsRegister<Register>(); |
| int64_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); |
| |
| __ LoadImmediate(temp1, magic); |
| __ smull(temp2, temp1, dividend, temp1); |
| |
| if (imm > 0 && magic < 0) { |
| __ add(temp1, temp1, ShifterOperand(dividend)); |
| } else if (imm < 0 && magic > 0) { |
| __ sub(temp1, temp1, ShifterOperand(dividend)); |
| } |
| |
| if (shift != 0) { |
| __ Asr(temp1, temp1, shift); |
| } |
| |
| if (instruction->IsDiv()) { |
| __ sub(out, temp1, ShifterOperand(temp1, ASR, 31)); |
| } else { |
| __ sub(temp1, temp1, ShifterOperand(temp1, ASR, 31)); |
| // TODO: Strength reduction for mls. |
| __ LoadImmediate(temp2, imm); |
| __ mls(out, temp1, temp2, dividend); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateDivRemConstantIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (IsPowerOfTwo(AbsOrMin(imm))) { |
| DivRemByPowerOfTwo(instruction); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitDiv(HDiv* div) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| if (div->GetResultType() == Primitive::kPrimLong) { |
| // pLdiv runtime call. |
| call_kind = LocationSummary::kCallOnMainOnly; |
| } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) { |
| // sdiv will be replaced by other instruction sequence. |
| } else if (div->GetResultType() == Primitive::kPrimInt && |
| !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| // pIdivmod runtime call. |
| call_kind = LocationSummary::kCallOnMainOnly; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); |
| |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (div->InputAt(1)->IsConstant()) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant())); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| int32_t value = div->InputAt(1)->AsIntConstant()->GetValue(); |
| if (value == 1 || value == 0 || value == -1) { |
| // No temp register required. |
| } else { |
| locations->AddTemp(Location::RequiresRegister()); |
| if (!IsPowerOfTwo(AbsOrMin(value))) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but |
| // we only need the former. |
| locations->SetOut(Location::RegisterLocation(R0)); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| locations->SetOut(Location::RegisterPairLocation(R0, R1)); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) { |
| LocationSummary* locations = div->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (second.IsConstant()) { |
| GenerateDivRemConstantIntegral(div); |
| } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| __ sdiv(out.AsRegister<Register>(), |
| first.AsRegister<Register>(), |
| second.AsRegister<Register>()); |
| } else { |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>()); |
| DCHECK_EQ(R0, out.AsRegister<Register>()); |
| |
| codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc()); |
| CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>(); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>()); |
| DCHECK_EQ(R0, out.AsRegisterPairLow<Register>()); |
| DCHECK_EQ(R1, out.AsRegisterPairHigh<Register>()); |
| |
| codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc()); |
| CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| __ vdivs(out.AsFpuRegister<SRegister>(), |
| first.AsFpuRegister<SRegister>(), |
| second.AsFpuRegister<SRegister>()); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| __ vdivd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(second.AsFpuRegisterPairLow<SRegister>())); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| |
| // Most remainders are implemented in the runtime. |
| LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly; |
| if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) { |
| // sdiv will be replaced by other instruction sequence. |
| call_kind = LocationSummary::kNoCall; |
| } else if ((rem->GetResultType() == Primitive::kPrimInt) |
| && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| // Have hardware divide instruction for int, do it with three instructions. |
| call_kind = LocationSummary::kNoCall; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case Primitive::kPrimInt: { |
| if (rem->InputAt(1)->IsConstant()) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant())); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| int32_t value = rem->InputAt(1)->AsIntConstant()->GetValue(); |
| if (value == 1 || value == 0 || value == -1) { |
| // No temp register required. |
| } else { |
| locations->AddTemp(Location::RequiresRegister()); |
| if (!IsPowerOfTwo(AbsOrMin(value))) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| locations->AddTemp(Location::RequiresRegister()); |
| } else { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but |
| // we only need the latter. |
| locations->SetOut(Location::RegisterLocation(R1)); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(1, Location::RegisterPairLocation( |
| calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); |
| // The runtime helper puts the output in R2,R3. |
| locations->SetOut(Location::RegisterPairLocation(R2, R3)); |
| break; |
| } |
| case Primitive::kPrimFloat: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(Location::FpuRegisterLocation(S0)); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterPairLocation( |
| calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1))); |
| locations->SetInAt(1, Location::FpuRegisterPairLocation( |
| calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3))); |
| locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitRem(HRem* rem) { |
| LocationSummary* locations = rem->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| Primitive::Type type = rem->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: { |
| if (second.IsConstant()) { |
| GenerateDivRemConstantIntegral(rem); |
| } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) { |
| Register reg1 = first.AsRegister<Register>(); |
| Register reg2 = second.AsRegister<Register>(); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| |
| // temp = reg1 / reg2 (integer division) |
| // dest = reg1 - temp * reg2 |
| __ sdiv(temp, reg1, reg2); |
| __ mls(out.AsRegister<Register>(), temp, reg2, reg1); |
| } else { |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>()); |
| DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>()); |
| DCHECK_EQ(R1, out.AsRegister<Register>()); |
| |
| codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc()); |
| CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>(); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc()); |
| CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc()); |
| CheckEntrypointTypes<kQuickFmodf, float, float, float>(); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc()); |
| CheckEntrypointTypes<kQuickFmod, double, double, double>(); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location value = locations->InAt(0); |
| |
| switch (instruction->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: { |
| if (value.IsRegister()) { |
| __ CompareAndBranchIfZero(value.AsRegister<Register>(), slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { |
| __ b(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| if (value.IsRegisterPair()) { |
| __ orrs(IP, |
| value.AsRegisterPairLow<Register>(), |
| ShifterOperand(value.AsRegisterPairHigh<Register>())); |
| __ b(slow_path->GetEntryLabel(), EQ); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { |
| __ b(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::HandleIntegerRotate(LocationSummary* locations) { |
| Register in = locations->InAt(0).AsRegister<Register>(); |
| Location rhs = locations->InAt(1); |
| Register out = locations->Out().AsRegister<Register>(); |
| |
| if (rhs.IsConstant()) { |
| // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31], |
| // so map all rotations to a +ve. equivalent in that range. |
| // (e.g. left *or* right by -2 bits == 30 bits in the same direction.) |
| uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F; |
| if (rot) { |
| // Rotate, mapping left rotations to right equivalents if necessary. |
| // (e.g. left by 2 bits == right by 30.) |
| __ Ror(out, in, rot); |
| } else if (out != in) { |
| __ Mov(out, in); |
| } |
| } else { |
| __ Ror(out, in, rhs.AsRegister<Register>()); |
| } |
| } |
| |
| // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer |
| // rotates by swapping input regs (effectively rotating by the first 32-bits of |
| // a larger rotation) or flipping direction (thus treating larger right/left |
| // rotations as sub-word sized rotations in the other direction) as appropriate. |
| void InstructionCodeGeneratorARM::HandleLongRotate(HRor* ror) { |
| LocationSummary* locations = ror->GetLocations(); |
| Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>(); |
| Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); |
| Location rhs = locations->InAt(1); |
| Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>(); |
| Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>(); |
| |
| if (rhs.IsConstant()) { |
| uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant()); |
| // Map all rotations to +ve. equivalents on the interval [0,63]. |
| rot &= kMaxLongShiftDistance; |
| // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate |
| // logic below to a simple pair of binary orr. |
| // (e.g. 34 bits == in_reg swap + 2 bits right.) |
| if (rot >= kArmBitsPerWord) { |
| rot -= kArmBitsPerWord; |
| std::swap(in_reg_hi, in_reg_lo); |
| } |
| // Rotate, or mov to out for zero or word size rotations. |
| if (rot != 0u) { |
| __ Lsr(out_reg_hi, in_reg_hi, rot); |
| __ orr(out_reg_hi, out_reg_hi, ShifterOperand(in_reg_lo, arm::LSL, kArmBitsPerWord - rot)); |
| __ Lsr(out_reg_lo, in_reg_lo, rot); |
| __ orr(out_reg_lo, out_reg_lo, ShifterOperand(in_reg_hi, arm::LSL, kArmBitsPerWord - rot)); |
| } else { |
| __ Mov(out_reg_lo, in_reg_lo); |
| __ Mov(out_reg_hi, in_reg_hi); |
| } |
| } else { |
| Register shift_right = locations->GetTemp(0).AsRegister<Register>(); |
| Register shift_left = locations->GetTemp(1).AsRegister<Register>(); |
| Label end; |
| Label shift_by_32_plus_shift_right; |
| Label* final_label = codegen_->GetFinalLabel(ror, &end); |
| |
| __ and_(shift_right, rhs.AsRegister<Register>(), ShifterOperand(0x1F)); |
| __ Lsrs(shift_left, rhs.AsRegister<Register>(), 6); |
| __ rsb(shift_left, shift_right, ShifterOperand(kArmBitsPerWord), AL, kCcKeep); |
| __ b(&shift_by_32_plus_shift_right, CC); |
| |
| // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right). |
| // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right). |
| __ Lsl(out_reg_hi, in_reg_hi, shift_left); |
| __ Lsr(out_reg_lo, in_reg_lo, shift_right); |
| __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo)); |
| __ Lsl(out_reg_lo, in_reg_lo, shift_left); |
| __ Lsr(shift_left, in_reg_hi, shift_right); |
| __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_left)); |
| __ b(final_label); |
| |
| __ Bind(&shift_by_32_plus_shift_right); // Shift by 32+shift_right. |
| // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left). |
| // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left). |
| __ Lsr(out_reg_hi, in_reg_hi, shift_right); |
| __ Lsl(out_reg_lo, in_reg_lo, shift_left); |
| __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo)); |
| __ Lsr(out_reg_lo, in_reg_lo, shift_right); |
| __ Lsl(shift_right, in_reg_hi, shift_left); |
| __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_right)); |
| |
| if (end.IsLinked()) { |
| __ Bind(&end); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM::VisitRor(HRor* ror) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall); |
| switch (ror->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (ror->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant())); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitRor(HRor* ror) { |
| LocationSummary* locations = ror->GetLocations(); |
| Primitive::Type type = ror->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: { |
| HandleIntegerRotate(locations); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| HandleLongRotate(ror); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARM::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); |
| |
| switch (op->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (op->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Make the output overlap, as it will be used to hold the masked |
| // second input. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (op->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant())); |
| // For simplicity, use kOutputOverlap even though we only require that low registers |
| // don't clash with high registers which the register allocator currently guarantees. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = op->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| Primitive::Type type = op->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: { |
| Register out_reg = out.AsRegister<Register>(); |
| Register first_reg = first.AsRegister<Register>(); |
| if (second.IsRegister()) { |
| Register second_reg = second.AsRegister<Register>(); |
| // ARM doesn't mask the shift count so we need to do it ourselves. |
| __ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftDistance)); |
| if (op->IsShl()) { |
| __ Lsl(out_reg, first_reg, out_reg); |
| } else if (op->IsShr()) { |
| __ Asr(out_reg, first_reg, out_reg); |
| } else { |
| __ Lsr(out_reg, first_reg, out_reg); |
| } |
| } else { |
| int32_t cst = second.GetConstant()->AsIntConstant()->GetValue(); |
| uint32_t shift_value = cst & kMaxIntShiftDistance; |
| if (shift_value == 0) { // ARM does not support shifting with 0 immediate. |
| __ Mov(out_reg, first_reg); |
| } else if (op->IsShl()) { |
| __ Lsl(out_reg, first_reg, shift_value); |
| } else if (op->IsShr()) { |
| __ Asr(out_reg, first_reg, shift_value); |
| } else { |
| __ Lsr(out_reg, first_reg, shift_value); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| Register o_h = out.AsRegisterPairHigh<Register>(); |
| Register o_l = out.AsRegisterPairLow<Register>(); |
| |
| Register high = first.AsRegisterPairHigh<Register>(); |
| Register low = first.AsRegisterPairLow<Register>(); |
| |
| if (second.IsRegister()) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| |
| Register second_reg = second.AsRegister<Register>(); |
| |
| if (op->IsShl()) { |
| __ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftDistance)); |
| // Shift the high part |
| __ Lsl(o_h, high, o_l); |
| // Shift the low part and `or` what overflew on the high part |
| __ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord)); |
| __ Lsr(temp, low, temp); |
| __ orr(o_h, o_h, ShifterOperand(temp)); |
| // If the shift is > 32 bits, override the high part |
| __ subs(temp, o_l, ShifterOperand(kArmBitsPerWord)); |
| __ it(PL); |
| __ Lsl(o_h, low, temp, PL); |
| // Shift the low part |
| __ Lsl(o_l, low, o_l); |
| } else if (op->IsShr()) { |
| __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance)); |
| // Shift the low part |
| __ Lsr(o_l, low, o_h); |
| // Shift the high part and `or` what underflew on the low part |
| __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord)); |
| __ Lsl(temp, high, temp); |
| __ orr(o_l, o_l, ShifterOperand(temp)); |
| // If the shift is > 32 bits, override the low part |
| __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord)); |
| __ it(PL); |
| __ Asr(o_l, high, temp, PL); |
| // Shift the high part |
| __ Asr(o_h, high, o_h); |
| } else { |
| __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance)); |
| // same as Shr except we use `Lsr`s and not `Asr`s |
| __ Lsr(o_l, low, o_h); |
| __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord)); |
| __ Lsl(temp, high, temp); |
| __ orr(o_l, o_l, ShifterOperand(temp)); |
| __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord)); |
| __ it(PL); |
| __ Lsr(o_l, high, temp, PL); |
| __ Lsr(o_h, high, o_h); |
| } |
| } else { |
| // Register allocator doesn't create partial overlap. |
| DCHECK_NE(o_l, high); |
| DCHECK_NE(o_h, low); |
| int32_t cst = second.GetConstant()->AsIntConstant()->GetValue(); |
| uint32_t shift_value = cst & kMaxLongShiftDistance; |
| if (shift_value > 32) { |
| if (op->IsShl()) { |
| __ Lsl(o_h, low, shift_value - 32); |
| __ LoadImmediate(o_l, 0); |
| } else if (op->IsShr()) { |
| __ Asr(o_l, high, shift_value - 32); |
| __ Asr(o_h, high, 31); |
| } else { |
| __ Lsr(o_l, high, shift_value - 32); |
| __ LoadImmediate(o_h, 0); |
| } |
| } else if (shift_value == 32) { |
| if (op->IsShl()) { |
| __ mov(o_h, ShifterOperand(low)); |
| __ LoadImmediate(o_l, 0); |
| } else if (op->IsShr()) { |
| __ mov(o_l, ShifterOperand(high)); |
| __ Asr(o_h, high, 31); |
| } else { |
| __ mov(o_l, ShifterOperand(high)); |
| __ LoadImmediate(o_h, 0); |
| } |
| } else if (shift_value == 1) { |
| if (op->IsShl()) { |
| __ Lsls(o_l, low, 1); |
| __ adc(o_h, high, ShifterOperand(high)); |
| } else if (op->IsShr()) { |
| __ Asrs(o_h, high, 1); |
| __ Rrx(o_l, low); |
| } else { |
| __ Lsrs(o_h, high, 1); |
| __ Rrx(o_l, low); |
| } |
| } else { |
| DCHECK(2 <= shift_value && shift_value < 32) << shift_value; |
| if (op->IsShl()) { |
| __ Lsl(o_h, high, shift_value); |
| __ orr(o_h, o_h, ShifterOperand(low, LSR, 32 - shift_value)); |
| __ Lsl(o_l, low, shift_value); |
| } else if (op->IsShr()) { |
| __ Lsr(o_l, low, shift_value); |
| __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value)); |
| __ Asr(o_h, high, shift_value); |
| } else { |
| __ Lsr(o_l, low, shift_value); |
| __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value)); |
| __ Lsr(o_h, high, shift_value); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderARM::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderARM::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| if (instruction->IsStringAlloc()) { |
| locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); |
| } else { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| locations->SetOut(Location::RegisterLocation(R0)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| if (instruction->IsStringAlloc()) { |
| // String is allocated through StringFactory. Call NewEmptyString entry point. |
| Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>(); |
| MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize); |
| __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString)); |
| __ LoadFromOffset(kLoadWord, LR, temp, code_offset.Int32Value()); |
| __ blx(LR); |
| codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); |
| } else { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(Location::RegisterLocation(R0)); |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| QuickEntrypointEnum entrypoint = |
| CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass()); |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitParameterValue( |
| HParameterValue* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the parameter is already at its location. |
| } |
| |
| void LocationsBuilderARM::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the method is already at its location. |
| } |
| |
| void LocationsBuilderARM::VisitNot(HNot* not_) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitNot(HNot* not_) { |
| LocationSummary* locations = not_->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| switch (not_->GetResultType()) { |
| case Primitive::kPrimInt: |
| __ mvn(out.AsRegister<Register>(), ShifterOperand(in.AsRegister<Register>())); |
| break; |
| |
| case Primitive::kPrimLong: |
| __ mvn(out.AsRegisterPairLow<Register>(), |
| ShifterOperand(in.AsRegisterPairLow<Register>())); |
| __ mvn(out.AsRegisterPairHigh<Register>(), |
| ShifterOperand(in.AsRegisterPairHigh<Register>())); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = bool_not->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| __ eor(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(1)); |
| } |
| |
| void LocationsBuilderARM::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); |
| switch (compare->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // Output overlaps because it is written before doing the low comparison. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = compare->GetLocations(); |
| Register out = locations->Out().AsRegister<Register>(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| Label less, greater, done; |
| Label* final_label = codegen_->GetFinalLabel(compare, &done); |
| Primitive::Type type = compare->InputAt(0)->GetType(); |
| Condition less_cond; |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: { |
| __ LoadImmediate(out, 0); |
| __ cmp(left.AsRegister<Register>(), |
| ShifterOperand(right.AsRegister<Register>())); // Signed compare. |
| less_cond = LT; |
| break; |
| } |
| case Primitive::kPrimLong: { |
| __ cmp(left.AsRegisterPairHigh<Register>(), |
| ShifterOperand(right.AsRegisterPairHigh<Register>())); // Signed compare. |
| __ b(&less, LT); |
| __ b(&greater, GT); |
| // Do LoadImmediate before the last `cmp`, as LoadImmediate might affect the status flags. |
| __ LoadImmediate(out, 0); |
| __ cmp(left.AsRegisterPairLow<Register>(), |
| ShifterOperand(right.AsRegisterPairLow<Register>())); // Unsigned compare. |
| less_cond = LO; |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| __ LoadImmediate(out, 0); |
| GenerateVcmp(compare, codegen_); |
| __ vmstat(); // transfer FP status register to ARM APSR. |
| less_cond = ARMFPCondition(kCondLT, compare->IsGtBias()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected compare type " << type; |
| UNREACHABLE(); |
| } |
| |
| __ b(final_label, EQ); |
| __ b(&less, less_cond); |
| |
| __ Bind(&greater); |
| __ LoadImmediate(out, 1); |
| __ b(final_label); |
| |
| __ Bind(&less); |
| __ LoadImmediate(out, -1); |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void CodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) { |
| // TODO (ported from quick): revisit ARM barrier kinds. |
| DmbOptions flavor = DmbOptions::ISH; // Quiet C++ warnings. |
| switch (kind) { |
| case MemBarrierKind::kAnyStore: |
| case MemBarrierKind::kLoadAny: |
| case MemBarrierKind::kAnyAny: { |
| flavor = DmbOptions::ISH; |
| break; |
| } |
| case MemBarrierKind::kStoreStore: { |
| flavor = DmbOptions::ISHST; |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected memory barrier " << kind; |
| } |
| __ dmb(flavor); |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr, |
| uint32_t offset, |
| Register out_lo, |
| Register out_hi) { |
| if (offset != 0) { |
| // Ensure `out_lo` is different from `addr`, so that loading |
| // `offset` into `out_lo` does not clutter `addr`. |
| DCHECK_NE(out_lo, addr); |
| __ LoadImmediate(out_lo, offset); |
| __ add(IP, addr, ShifterOperand(out_lo)); |
| addr = IP; |
| } |
| __ ldrexd(out_lo, out_hi, addr); |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr, |
| uint32_t offset, |
| Register value_lo, |
| Register value_hi, |
| Register temp1, |
| Register temp2, |
| HInstruction* instruction) { |
| Label fail; |
| if (offset != 0) { |
| __ LoadImmediate(temp1, offset); |
| __ add(IP, addr, ShifterOperand(temp1)); |
| addr = IP; |
| } |
| __ Bind(&fail); |
| // We need a load followed by store. (The address used in a STREX instruction must |
| // be the same as the address in the most recently executed LDREX instruction.) |
| __ ldrexd(temp1, temp2, addr); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ strexd(temp1, value_lo, value_hi, addr); |
| __ CompareAndBranchIfNonZero(temp1, &fail); |
| } |
| |
| void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| |
| Primitive::Type field_type = field_info.GetFieldType(); |
| if (Primitive::IsFloatingPointType(field_type)) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| |
| bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble; |
| bool generate_volatile = field_info.IsVolatile() |
| && is_wide |
| && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); |
| // Temporary registers for the write barrier. |
| // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark. |
| if (needs_write_barrier) { |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } else if (generate_volatile) { |
| // ARM encoding have some additional constraints for ldrexd/strexd: |
| // - registers need to be consecutive |
| // - the first register should be even but not R14. |
| // We don't test for ARM yet, and the assertion makes sure that we |
| // revisit this if we ever enable ARM encoding. |
| DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| if (field_type == Primitive::kPrimDouble) { |
| // For doubles we need two more registers to copy the value. |
| locations->AddTemp(Location::RegisterLocation(R2)); |
| locations->AddTemp(Location::RegisterLocation(R3)); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register base = locations->InAt(0).AsRegister<Register>(); |
| Location value = locations->InAt(1); |
| |
| bool is_volatile = field_info.IsVolatile(); |
| bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: { |
| __ StoreToOffset(kStoreByte, value.AsRegister<Register>(), base, offset); |
| break; |
| } |
| |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: { |
| __ StoreToOffset(kStoreHalfword, value.AsRegister<Register>(), base, offset); |
| break; |
| } |
| |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| if (kPoisonHeapReferences && needs_write_barrier) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as a null reference does not |
| // need poisoning. |
| DCHECK_EQ(field_type, Primitive::kPrimNot); |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| __ Mov(temp, value.AsRegister<Register>()); |
| __ PoisonHeapReference(temp); |
| __ StoreToOffset(kStoreWord, temp, base, offset); |
| } else { |
| __ StoreToOffset(kStoreWord, value.AsRegister<Register>(), base, offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (is_volatile && !atomic_ldrd_strd) { |
| GenerateWideAtomicStore(base, offset, |
| value.AsRegisterPairLow<Register>(), |
| value.AsRegisterPairHigh<Register>(), |
| locations->GetTemp(0).AsRegister<Register>(), |
| locations->GetTemp(1).AsRegister<Register>(), |
| instruction); |
| } else { |
| __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), base, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| __ StoreSToOffset(value.AsFpuRegister<SRegister>(), base, offset); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()); |
| if (is_volatile && !atomic_ldrd_strd) { |
| Register value_reg_lo = locations->GetTemp(0).AsRegister<Register>(); |
| Register value_reg_hi = locations->GetTemp(1).AsRegister<Register>(); |
| |
| __ vmovrrd(value_reg_lo, value_reg_hi, value_reg); |
| |
| GenerateWideAtomicStore(base, offset, |
| value_reg_lo, |
| value_reg_hi, |
| locations->GetTemp(2).AsRegister<Register>(), |
| locations->GetTemp(3).AsRegister<Register>(), |
| instruction); |
| } else { |
| __ StoreDToOffset(value_reg, base, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| // Longs and doubles are handled in the switch. |
| if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { |
| Register temp = locations->GetTemp(0).AsRegister<Register>(); |
| Register card = locations->GetTemp(1).AsRegister<Register>(); |
| codegen_->MarkGCCard( |
| temp, card, base, value.AsRegister<Register>(), value_can_be_null); |
| } |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| } |
| |
| void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| bool object_field_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_field_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| |
| bool volatile_for_double = field_info.IsVolatile() |
| && (field_info.GetFieldType() == Primitive::kPrimDouble) |
| && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); |
| // The output overlaps in case of volatile long: we don't want the |
| // code generated by GenerateWideAtomicLoad to overwrite the |
| // object's location. Likewise, in the case of an object field get |
| // with read barriers enabled, we do not want the load to overwrite |
| // the object's location, as we need it to emit the read barrier. |
| bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) || |
| object_field_get_with_read_barrier; |
| |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), |
| (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap)); |
| } |
| if (volatile_for_double) { |
| // ARM encoding have some additional constraints for ldrexd/strexd: |
| // - registers need to be consecutive |
| // - the first register should be even but not R14. |
| // We don't test for ARM yet, and the assertion makes sure that we |
| // revisit this if we ever enable ARM encoding. |
| DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| Location LocationsBuilderARM::ArithmeticZeroOrFpuRegister(HInstruction* input) { |
| DCHECK(input->GetType() == Primitive::kPrimDouble || input->GetType() == Primitive::kPrimFloat) |
| << input->GetType(); |
| if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) || |
| (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) { |
| return Location::ConstantLocation(input->AsConstant()); |
| } else { |
| return Location::RequiresFpuRegister(); |
| } |
| } |
| |
| Location LocationsBuilderARM::ArmEncodableConstantOrRegister(HInstruction* constant, |
| Opcode opcode) { |
| DCHECK(!Primitive::IsFloatingPointType(constant->GetType())); |
| if (constant->IsConstant() && |
| CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) { |
| return Location::ConstantLocation(constant->AsConstant()); |
| } |
| return Location::RequiresRegister(); |
| } |
| |
| bool LocationsBuilderARM::CanEncodeConstantAsImmediate(HConstant* input_cst, |
| Opcode opcode) { |
| uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst)); |
| if (Primitive::Is64BitType(input_cst->GetType())) { |
| Opcode high_opcode = opcode; |
| SetCc low_set_cc = kCcDontCare; |
| switch (opcode) { |
| case SUB: |
| // Flip the operation to an ADD. |
| value = -value; |
| opcode = ADD; |
| FALLTHROUGH_INTENDED; |
| case ADD: |
| if (Low32Bits(value) == 0u) { |
| return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare); |
| } |
| high_opcode = ADC; |
| low_set_cc = kCcSet; |
| break; |
| default: |
| break; |
| } |
| return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) && |
| CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare); |
| } else { |
| return CanEncodeConstantAsImmediate(Low32Bits(value), opcode); |
| } |
| } |
| |
| bool LocationsBuilderARM::CanEncodeConstantAsImmediate(uint32_t value, |
| Opcode opcode, |
| SetCc set_cc) { |
| ShifterOperand so; |
| ArmAssembler* assembler = codegen_->GetAssembler(); |
| if (assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, opcode, value, set_cc, &so)) { |
| return true; |
| } |
| Opcode neg_opcode = kNoOperand; |
| uint32_t neg_value = 0; |
| switch (opcode) { |
| case AND: neg_opcode = BIC; neg_value = ~value; break; |
| case ORR: neg_opcode = ORN; neg_value = ~value; break; |
| case ADD: neg_opcode = SUB; neg_value = -value; break; |
| case ADC: neg_opcode = SBC; neg_value = ~value; break; |
| case SUB: neg_opcode = ADD; neg_value = -value; break; |
| case SBC: neg_opcode = ADC; neg_value = ~value; break; |
| case MOV: neg_opcode = MVN; neg_value = ~value; break; |
| default: |
| return false; |
| } |
| |
| if (assembler->ShifterOperandCanHold(kNoRegister, |
| kNoRegister, |
| neg_opcode, |
| neg_value, |
| set_cc, |
| &so)) { |
| return true; |
| } |
| |
| return opcode == AND && IsPowerOfTwo(value + 1); |
| } |
| |
| void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location base_loc = locations->InAt(0); |
| Register base = base_loc.AsRegister<Register>(); |
| Location out = locations->Out(); |
| bool is_volatile = field_info.IsVolatile(); |
| bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: |
| __ LoadFromOffset(kLoadUnsignedByte, out.AsRegister<Register>(), base, offset); |
| break; |
| |
| case Primitive::kPrimByte: |
| __ LoadFromOffset(kLoadSignedByte, out.AsRegister<Register>(), base, offset); |
| break; |
| |
| case Primitive::kPrimShort: |
| __ LoadFromOffset(kLoadSignedHalfword, out.AsRegister<Register>(), base, offset); |
| break; |
| |
| case Primitive::kPrimChar: |
| __ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister<Register>(), base, offset); |
| break; |
| |
| case Primitive::kPrimInt: |
| __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset); |
| break; |
| |
| case Primitive::kPrimNot: { |
| // /* HeapReference<Object> */ out = *(base + offset) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| Location temp_loc = locations->GetTemp(0); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, base, offset, temp_loc, /* needs_null_check */ true); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } else { |
| __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: |
| if (is_volatile && !atomic_ldrd_strd) { |
| GenerateWideAtomicLoad(base, offset, |
| out.AsRegisterPairLow<Register>(), |
| out.AsRegisterPairHigh<Register>()); |
| } else { |
| __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), base, offset); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| __ LoadSFromOffset(out.AsFpuRegister<SRegister>(), base, offset); |
| break; |
| |
| case Primitive::kPrimDouble: { |
| DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()); |
| if (is_volatile && !atomic_ldrd_strd) { |
| Register lo = locations->GetTemp(0).AsRegister<Register>(); |
| Register hi = locations->GetTemp(1).AsRegister<Register>(); |
| GenerateWideAtomicLoad(base, offset, lo, hi); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ vmovdrr(out_reg, lo, hi); |
| } else { |
| __ LoadDFromOffset(out_reg, base, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) { |
| // Potential implicit null checks, in the case of reference or |
| // double fields, are handled in the previous switch statement. |
| } else { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (is_volatile) { |
| if (field_type == Primitive::kPrimNot) { |
| // Memory barriers, in the case of references, are also handled |
| // in the previous switch statement. |
| } else { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderARM::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARM calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARM calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARM calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARM calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARM calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARM calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARM calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARM calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void CodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| Location obj = instruction->GetLocations()->InAt(0); |
| |
| __ LoadFromOffset(kLoadWord, IP, obj.AsRegister<Register>(), 0); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void CodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction); |
| AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| __ CompareAndBranchIfZero(obj.AsRegister<Register>(), slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| static LoadOperandType GetLoadOperandType(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimNot: |
| return kLoadWord; |
| case Primitive::kPrimBoolean: |
| return kLoadUnsignedByte; |
| case Primitive::kPrimByte: |
| return kLoadSignedByte; |
| case Primitive::kPrimChar: |
| return kLoadUnsignedHalfword; |
| case Primitive::kPrimShort: |
| return kLoadSignedHalfword; |
| case Primitive::kPrimInt: |
| return kLoadWord; |
| case Primitive::kPrimLong: |
| return kLoadWordPair; |
| case Primitive::kPrimFloat: |
| return kLoadSWord; |
| case Primitive::kPrimDouble: |
| return kLoadDWord; |
| default: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| static StoreOperandType GetStoreOperandType(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimNot: |
| return kStoreWord; |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| return kStoreByte; |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| return kStoreHalfword; |
| case Primitive::kPrimInt: |
| return kStoreWord; |
| case Primitive::kPrimLong: |
| return kStoreWordPair; |
| case Primitive::kPrimFloat: |
| return kStoreSWord; |
| case Primitive::kPrimDouble: |
| return kStoreDWord; |
| default: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void CodeGeneratorARM::LoadFromShiftedRegOffset(Primitive::Type type, |
| Location out_loc, |
| Register base, |
| Register reg_offset, |
| Condition cond) { |
| uint32_t shift_count = Primitive::ComponentSizeShift(type); |
| Address mem_address(base, reg_offset, Shift::LSL, shift_count); |
| |
| switch (type) { |
| case Primitive::kPrimByte: |
| __ ldrsb(out_loc.AsRegister<Register>(), mem_address, cond); |
| break; |
| case Primitive::kPrimBoolean: |
| __ ldrb(out_loc.AsRegister<Register>(), mem_address, cond); |
| break; |
| case Primitive::kPrimShort: |
| __ ldrsh(out_loc.AsRegister<Register>(), mem_address, cond); |
| break; |
| case Primitive::kPrimChar: |
| __ ldrh(out_loc.AsRegister<Register>(), mem_address, cond); |
| break; |
| case Primitive::kPrimNot: |
| case Primitive::kPrimInt: |
| __ ldr(out_loc.AsRegister<Register>(), mem_address, cond); |
| break; |
| // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types. |
| case Primitive::kPrimLong: |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| default: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void CodeGeneratorARM::StoreToShiftedRegOffset(Primitive::Type type, |
| Location loc, |
| Register base, |
| Register reg_offset, |
| Condition cond) { |
| uint32_t shift_count = Primitive::ComponentSizeShift(type); |
| Address mem_address(base, reg_offset, Shift::LSL, shift_count); |
| |
| switch (type) { |
| case Primitive::kPrimByte: |
| case Primitive::kPrimBoolean: |
| __ strb(loc.AsRegister<Register>(), mem_address, cond); |
| break; |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| __ strh(loc.AsRegister<Register>(), mem_address, cond); |
| break; |
| case Primitive::kPrimNot: |
| case Primitive::kPrimInt: |
| __ str(loc.AsRegister<Register>(), mem_address, cond); |
| break; |
| // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types. |
| case Primitive::kPrimLong: |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| default: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) { |
| bool object_array_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_array_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in the case of an object array get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // array's location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier. |
| // Also need for String compression feature. |
| if ((object_array_get_with_read_barrier && kUseBakerReadBarrier) |
| || (mirror::kUseStringCompression && instruction->IsStringCharAt())) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Location index = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); |
| Primitive::Type type = instruction->GetType(); |
| const bool maybe_compressed_char_at = mirror::kUseStringCompression && |
| instruction->IsStringCharAt(); |
| HInstruction* array_instr = instruction->GetArray(); |
| bool has_intermediate_address = array_instr->IsIntermediateAddress(); |
| |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: { |
| Register length; |
| if (maybe_compressed_char_at) { |
| length = locations->GetTemp(0).AsRegister<Register>(); |
| uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| __ LoadFromOffset(kLoadWord, length, obj, count_offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| if (index.IsConstant()) { |
| int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); |
| if (maybe_compressed_char_at) { |
| Label uncompressed_load, done; |
| Label* final_label = codegen_->GetFinalLabel(instruction, &done); |
| __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ b(&uncompressed_load, CS); |
| __ LoadFromOffset(kLoadUnsignedByte, |
| out_loc.AsRegister<Register>(), |
| obj, |
| data_offset + const_index); |
| __ b(final_label); |
| __ Bind(&uncompressed_load); |
| __ LoadFromOffset(GetLoadOperandType(Primitive::kPrimChar), |
| out_loc.AsRegister<Register>(), |
| obj, |
| data_offset + (const_index << 1)); |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| } else { |
| uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type)); |
| |
| LoadOperandType load_type = GetLoadOperandType(type); |
| __ LoadFromOffset(load_type, out_loc.AsRegister<Register>(), obj, full_offset); |
| } |
| } else { |
| Register temp = IP; |
| |
| if (has_intermediate_address) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); |
| DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); |
| } |
| temp = obj; |
| } else { |
| __ add(temp, obj, ShifterOperand(data_offset)); |
| } |
| if (maybe_compressed_char_at) { |
| Label uncompressed_load, done; |
| Label* final_label = codegen_->GetFinalLabel(instruction, &done); |
| __ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ b(&uncompressed_load, CS); |
| __ ldrb(out_loc.AsRegister<Register>(), |
| Address(temp, index.AsRegister<Register>(), Shift::LSL, 0)); |
| __ b(final_label); |
| __ Bind(&uncompressed_load); |
| __ ldrh(out_loc.AsRegister<Register>(), |
| Address(temp, index.AsRegister<Register>(), Shift::LSL, 1)); |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| } else { |
| codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>()); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| // The read barrier instrumentation of object ArrayGet |
| // instructions does not support the HIntermediateAddress |
| // instruction. |
| DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier)); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ out = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| Location temp = locations->GetTemp(0); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier call. |
| codegen_->GenerateArrayLoadWithBakerReadBarrier( |
| instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true); |
| } else { |
| Register out = out_loc.AsRegister<Register>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ LoadFromOffset(kLoadWord, out, obj, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); |
| } else { |
| Register temp = IP; |
| |
| if (has_intermediate_address) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); |
| DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); |
| } |
| temp = obj; |
| } else { |
| __ add(temp, obj, ShifterOperand(data_offset)); |
| } |
| codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>()); |
| |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow( |
| instruction, out_loc, out_loc, obj_loc, data_offset, index); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), obj, offset); |
| } else { |
| __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8)); |
| __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), IP, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| SRegister out = out_loc.AsFpuRegister<SRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ LoadSFromOffset(out, obj, offset); |
| } else { |
| __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4)); |
| __ LoadSFromOffset(out, IP, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| SRegister out = out_loc.AsFpuRegisterPairLow<SRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ LoadDFromOffset(FromLowSToD(out), obj, offset); |
| } else { |
| __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8)); |
| __ LoadDFromOffset(FromLowSToD(out), IP, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| |
| if (type == Primitive::kPrimNot) { |
| // Potential implicit null checks, in the case of reference |
| // arrays, are handled in the previous switch statement. |
| } else if (!maybe_compressed_char_at) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) { |
| Primitive::Type value_type = instruction->GetComponentType(); |
| |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( |
| instruction, |
| may_need_runtime_call_for_type_check ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(value_type)) { |
| locations->SetInAt(2, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| if (needs_write_barrier) { |
| // Temporary registers for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location array_loc = locations->InAt(0); |
| Register array = array_loc.AsRegister<Register>(); |
| Location index = locations->InAt(1); |
| Primitive::Type value_type = instruction->GetComponentType(); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| uint32_t data_offset = |
| mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value(); |
| Location value_loc = locations->InAt(2); |
| HInstruction* array_instr = instruction->GetArray(); |
| bool has_intermediate_address = array_instr->IsIntermediateAddress(); |
| |
| switch (value_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: { |
| if (index.IsConstant()) { |
| int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); |
| uint32_t full_offset = |
| data_offset + (const_index << Primitive::ComponentSizeShift(value_type)); |
| StoreOperandType store_type = GetStoreOperandType(value_type); |
| __ StoreToOffset(store_type, value_loc.AsRegister<Register>(), array, full_offset); |
| } else { |
| Register temp = IP; |
| |
| if (has_intermediate_address) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* tmp = array_instr->AsIntermediateAddress(); |
| DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == data_offset); |
| } |
| temp = array; |
| } else { |
| __ add(temp, array, ShifterOperand(data_offset)); |
| } |
| codegen_->StoreToShiftedRegOffset(value_type, |
| value_loc, |
| temp, |
| index.AsRegister<Register>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| Register value = value_loc.AsRegister<Register>(); |
| // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet. |
| // See the comment in instruction_simplifier_shared.cc. |
| DCHECK(!has_intermediate_address); |
| |
| if (instruction->InputAt(2)->IsNullConstant()) { |
| // Just setting null. |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ StoreToOffset(kStoreWord, value, array, offset); |
| } else { |
| DCHECK(index.IsRegister()) << index; |
| __ add(IP, array, ShifterOperand(data_offset)); |
| codegen_->StoreToShiftedRegOffset(value_type, |
| value_loc, |
| IP, |
| index.AsRegister<Register>()); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| DCHECK(!needs_write_barrier); |
| DCHECK(!may_need_runtime_call_for_type_check); |
| break; |
| } |
| |
| DCHECK(needs_write_barrier); |
| Location temp1_loc = locations->GetTemp(0); |
| Register temp1 = temp1_loc.AsRegister<Register>(); |
| Location temp2_loc = locations->GetTemp(1); |
| Register temp2 = temp2_loc.AsRegister<Register>(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| Label done; |
| Label* final_label = codegen_->GetFinalLabel(instruction, &done); |
| SlowPathCodeARM* slow_path = nullptr; |
| |
| if (may_need_runtime_call_for_type_check) { |
| slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (instruction->GetValueCanBeNull()) { |
| Label non_zero; |
| __ CompareAndBranchIfNonZero(value, &non_zero); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ StoreToOffset(kStoreWord, value, array, offset); |
| } else { |
| DCHECK(index.IsRegister()) << index; |
| __ add(IP, array, ShifterOperand(data_offset)); |
| codegen_->StoreToShiftedRegOffset(value_type, |
| value_loc, |
| IP, |
| index.AsRegister<Register>()); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ b(final_label); |
| __ Bind(&non_zero); |
| } |
| |
| // Note that when read barriers are enabled, the type checks |
| // are performed without read barriers. This is fine, even in |
| // the case where a class object is in the from-space after |
| // the flip, as a comparison involving such a type would not |
| // produce a false positive; it may of course produce a false |
| // negative, in which case we would take the ArraySet slow |
| // path. |
| |
| // /* HeapReference<Class> */ temp1 = array->klass_ |
| __ LoadFromOffset(kLoadWord, temp1, array, class_offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ MaybeUnpoisonHeapReference(temp1); |
| |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset); |
| // /* HeapReference<Class> */ temp2 = value->klass_ |
| __ LoadFromOffset(kLoadWord, temp2, value, class_offset); |
| // If heap poisoning is enabled, no need to unpoison `temp1` |
| // nor `temp2`, as we are comparing two poisoned references. |
| __ cmp(temp1, ShifterOperand(temp2)); |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| Label do_put; |
| __ b(&do_put, EQ); |
| // If heap poisoning is enabled, the `temp1` reference has |
| // not been unpoisoned yet; unpoison it now. |
| __ MaybeUnpoisonHeapReference(temp1); |
| |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset); |
| // If heap poisoning is enabled, no need to unpoison |
| // `temp1`, as we are comparing against null below. |
| __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ b(slow_path->GetEntryLabel(), NE); |
| } |
| } |
| |
| Register source = value; |
| if (kPoisonHeapReferences) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as a null reference does not |
| // need poisoning. |
| DCHECK_EQ(value_type, Primitive::kPrimNot); |
| __ Mov(temp1, value); |
| __ PoisonHeapReference(temp1); |
| source = temp1; |
| } |
| |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ StoreToOffset(kStoreWord, source, array, offset); |
| } else { |
| DCHECK(index.IsRegister()) << index; |
| |
| __ add(IP, array, ShifterOperand(data_offset)); |
| codegen_->StoreToShiftedRegOffset(value_type, |
| Location::RegisterLocation(source), |
| IP, |
| index.AsRegister<Register>()); |
| } |
| |
| if (!may_need_runtime_call_for_type_check) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull()); |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| Location value = locations->InAt(2); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), array, offset); |
| } else { |
| __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8)); |
| __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), IP, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| Location value = locations->InAt(2); |
| DCHECK(value.IsFpuRegister()); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ StoreSToOffset(value.AsFpuRegister<SRegister>(), array, offset); |
| } else { |
| __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4)); |
| __ StoreSToOffset(value.AsFpuRegister<SRegister>(), IP, data_offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| Location value = locations->InAt(2); |
| DCHECK(value.IsFpuRegisterPair()); |
| if (index.IsConstant()) { |
| size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), array, offset); |
| } else { |
| __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8)); |
| __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), IP, data_offset); |
| } |
| |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << value_type; |
| UNREACHABLE(); |
| } |
| |
| // Objects are handled in the switch. |
| if (value_type != Primitive::kPrimNot) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| Register obj = locations->InAt(0).AsRegister<Register>(); |
| Register out = locations->Out().AsRegister<Register>(); |
| __ LoadFromOffset(kLoadWord, out, obj, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // Mask out compression flag from String's array length. |
| if (mirror::kUseStringCompression && instruction->IsStringLength()) { |
| __ Lsr(out, out, 1u); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset())); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| |
| if (second.IsRegister()) { |
| __ add(out.AsRegister<Register>(), |
| first.AsRegister<Register>(), |
| ShifterOperand(second.AsRegister<Register>())); |
| } else { |
| __ AddConstant(out.AsRegister<Register>(), |
| first.AsRegister<Register>(), |
| second.GetConstant()->AsIntConstant()->GetValue()); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) { |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); |
| |
| HInstruction* index = instruction->InputAt(0); |
| HInstruction* length = instruction->InputAt(1); |
| // If both index and length are constants we can statically check the bounds. But if at least one |
| // of them is not encodable ArmEncodableConstantOrRegister will create |
| // Location::RequiresRegister() which is not desired to happen. Instead we create constant |
| // locations. |
| bool both_const = index->IsConstant() && length->IsConstant(); |
| locations->SetInAt(0, both_const |
| ? Location::ConstantLocation(index->AsConstant()) |
| : ArmEncodableConstantOrRegister(index, CMP)); |
| locations->SetInAt(1, both_const |
| ? Location::ConstantLocation(length->AsConstant()) |
| : ArmEncodableConstantOrRegister(length, CMP)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| |
| if (length_loc.IsConstant()) { |
| int32_t length = helpers::Int32ConstantFrom(length_loc); |
| if (index_loc.IsConstant()) { |
| // BCE will remove the bounds check if we are guaranteed to pass. |
| int32_t index = helpers::Int32ConstantFrom(index_loc); |
| if (index < 0 || index >= length) { |
| SlowPathCodeARM* slow_path = |
| new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction); |
| codegen_->AddSlowPath(slow_path); |
| __ b(slow_path->GetEntryLabel()); |
| } else { |
| // Some optimization after BCE may have generated this, and we should not |
| // generate a bounds check if it is a valid range. |
| } |
| return; |
| } |
| |
| SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction); |
| __ cmp(index_loc.AsRegister<Register>(), ShifterOperand(length)); |
| codegen_->AddSlowPath(slow_path); |
| __ b(slow_path->GetEntryLabel(), HS); |
| } else { |
| SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction); |
| if (index_loc.IsConstant()) { |
| int32_t index = helpers::Int32ConstantFrom(index_loc); |
| __ cmp(length_loc.AsRegister<Register>(), ShifterOperand(index)); |
| } else { |
| __ cmp(length_loc.AsRegister<Register>(), ShifterOperand(index_loc.AsRegister<Register>())); |
| } |
| codegen_->AddSlowPath(slow_path); |
| __ b(slow_path->GetEntryLabel(), LS); |
| } |
| } |
| |
| void CodeGeneratorARM::MarkGCCard(Register temp, |
| Register card, |
| Register object, |
| Register value, |
| bool can_be_null) { |
| Label is_null; |
| if (can_be_null) { |
| __ CompareAndBranchIfZero(value, &is_null); |
| } |
| __ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset<kArmPointerSize>().Int32Value()); |
| __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); |
| __ strb(card, Address(card, temp)); |
| if (can_be_null) { |
| __ Bind(&is_null); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) { |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| |
| void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathARM* slow_path = |
| down_cast<SuspendCheckSlowPathARM*>(instruction->GetSlowPath()); |
| if (slow_path == nullptr) { |
| slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| __ LoadFromOffset( |
| kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value()); |
| if (successor == nullptr) { |
| __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ CompareAndBranchIfZero(IP, codegen_->GetLabelOf(successor)); |
| __ b(slow_path->GetEntryLabel()); |
| } |
| } |
| |
| ArmAssembler* ParallelMoveResolverARM::GetAssembler() const { |
| return codegen_->GetAssembler(); |
| } |
| |
| void ParallelMoveResolverARM::EmitMove(size_t index) { |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>()); |
| } else if (destination.IsFpuRegister()) { |
| __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>()); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), |
| SP, destination.GetStackIndex()); |
| } |
| } else if (source.IsStackSlot()) { |
| if (destination.IsRegister()) { |
| __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), |
| SP, source.GetStackIndex()); |
| } else if (destination.IsFpuRegister()) { |
| __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex()); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex()); |
| __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); |
| } |
| } else if (source.IsFpuRegister()) { |
| if (destination.IsRegister()) { |
| __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>()); |
| } else if (destination.IsFpuRegister()) { |
| __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>()); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex()); |
| } |
| } else if (source.IsDoubleStackSlot()) { |
| if (destination.IsDoubleStackSlot()) { |
| __ LoadDFromOffset(DTMP, SP, source.GetStackIndex()); |
| __ StoreDToOffset(DTMP, SP, destination.GetStackIndex()); |
| } else if (destination.IsRegisterPair()) { |
| DCHECK(ExpectedPairLayout(destination)); |
| __ LoadFromOffset( |
| kLoadWordPair, destination.AsRegisterPairLow<Register>(), SP, source.GetStackIndex()); |
| } else { |
| DCHECK(destination.IsFpuRegisterPair()) << destination; |
| __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), |
| SP, |
| source.GetStackIndex()); |
| } |
| } else if (source.IsRegisterPair()) { |
| if (destination.IsRegisterPair()) { |
| __ Mov(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>()); |
| __ Mov(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>()); |
| } else if (destination.IsFpuRegisterPair()) { |
| __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), |
| source.AsRegisterPairLow<Register>(), |
| source.AsRegisterPairHigh<Register>()); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| DCHECK(ExpectedPairLayout(source)); |
| __ StoreToOffset( |
| kStoreWordPair, source.AsRegisterPairLow<Register>(), SP, destination.GetStackIndex()); |
| } |
| } else if (source.IsFpuRegisterPair()) { |
| if (destination.IsRegisterPair()) { |
| __ vmovrrd(destination.AsRegisterPairLow<Register>(), |
| destination.AsRegisterPairHigh<Register>(), |
| FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())); |
| } else if (destination.IsFpuRegisterPair()) { |
| __ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), |
| FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()), |
| SP, |
| destination.GetStackIndex()); |
| } |
| } else { |
| DCHECK(source.IsConstant()) << source; |
| HConstant* constant = source.GetConstant(); |
| if (constant->IsIntConstant() || constant->IsNullConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(constant); |
| if (destination.IsRegister()) { |
| __ LoadImmediate(destination.AsRegister<Register>(), value); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| __ LoadImmediate(IP, value); |
| __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); |
| } |
| } else if (constant->IsLongConstant()) { |
| int64_t value = constant->AsLongConstant()->GetValue(); |
| if (destination.IsRegisterPair()) { |
| __ LoadImmediate(destination.AsRegisterPairLow<Register>(), Low32Bits(value)); |
| __ LoadImmediate(destination.AsRegisterPairHigh<Register>(), High32Bits(value)); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| __ LoadImmediate(IP, Low32Bits(value)); |
| __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); |
| __ LoadImmediate(IP, High32Bits(value)); |
| __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize)); |
| } |
| } else if (constant->IsDoubleConstant()) { |
| double value = constant->AsDoubleConstant()->GetValue(); |
| if (destination.IsFpuRegisterPair()) { |
| __ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), value); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| uint64_t int_value = bit_cast<uint64_t, double>(value); |
| __ LoadImmediate(IP, Low32Bits(int_value)); |
| __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); |
| __ LoadImmediate(IP, High32Bits(int_value)); |
| __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize)); |
| } |
| } else { |
| DCHECK(constant->IsFloatConstant()) << constant->DebugName(); |
| float value = constant->AsFloatConstant()->GetValue(); |
| if (destination.IsFpuRegister()) { |
| __ LoadSImmediate(destination.AsFpuRegister<SRegister>(), value); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| __ LoadImmediate(IP, bit_cast<int32_t, float>(value)); |
| __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex()); |
| } |
| } |
| } |
| } |
| |
| void ParallelMoveResolverARM::Exchange(Register reg, int mem) { |
| __ Mov(IP, reg); |
| __ LoadFromOffset(kLoadWord, reg, SP, mem); |
| __ StoreToOffset(kStoreWord, IP, SP, mem); |
| } |
| |
| void ParallelMoveResolverARM::Exchange(int mem1, int mem2) { |
| ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters()); |
| int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0; |
| __ LoadFromOffset(kLoadWord, static_cast<Register>(ensure_scratch.GetRegister()), |
| SP, mem1 + stack_offset); |
| __ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset); |
| __ StoreToOffset(kStoreWord, static_cast<Register>(ensure_scratch.GetRegister()), |
| SP, mem2 + stack_offset); |
| __ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset); |
| } |
| |
| void ParallelMoveResolverARM::EmitSwap(size_t index) { |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister() && destination.IsRegister()) { |
| DCHECK_NE(source.AsRegister<Register>(), IP); |
| DCHECK_NE(destination.AsRegister<Register>(), IP); |
| __ Mov(IP, source.AsRegister<Register>()); |
| __ Mov(source.AsRegister<Register>(), destination.AsRegister<Register>()); |
| __ Mov(destination.AsRegister<Register>(), IP); |
| } else if (source.IsRegister() && destination.IsStackSlot()) { |
| Exchange(source.AsRegister<Register>(), destination.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsRegister()) { |
| Exchange(destination.AsRegister<Register>(), source.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsStackSlot()) { |
| Exchange(source.GetStackIndex(), destination.GetStackIndex()); |
| } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { |
| __ vmovrs(IP, source.AsFpuRegister<SRegister>()); |
| __ vmovs(source.AsFpuRegister<SRegister>(), destination.AsFpuRegister<SRegister>()); |
| __ vmovsr(destination.AsFpuRegister<SRegister>(), IP); |
| } else if (source.IsRegisterPair() && destination.IsRegisterPair()) { |
| __ vmovdrr(DTMP, source.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>()); |
| __ Mov(source.AsRegisterPairLow<Register>(), destination.AsRegisterPairLow<Register>()); |
| __ Mov(source.AsRegisterPairHigh<Register>(), destination.AsRegisterPairHigh<Register>()); |
| __ vmovrrd(destination.AsRegisterPairLow<Register>(), |
| destination.AsRegisterPairHigh<Register>(), |
| DTMP); |
| } else if (source.IsRegisterPair() || destination.IsRegisterPair()) { |
| Register low_reg = source.IsRegisterPair() |
| ? source.AsRegisterPairLow<Register>() |
| : destination.AsRegisterPairLow<Register>(); |
| int mem = source.IsRegisterPair() |
| ? destination.GetStackIndex() |
| : source.GetStackIndex(); |
| DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination)); |
| __ vmovdrr(DTMP, low_reg, static_cast<Register>(low_reg + 1)); |
| __ LoadFromOffset(kLoadWordPair, low_reg, SP, mem); |
| __ StoreDToOffset(DTMP, SP, mem); |
| } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) { |
| DRegister first = FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()); |
| DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()); |
| __ vmovd(DTMP, first); |
| __ vmovd(first, second); |
| __ vmovd(second, DTMP); |
| } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) { |
| DRegister reg = source.IsFpuRegisterPair() |
| ? FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()) |
| : FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()); |
| int mem = source.IsFpuRegisterPair() |
| ? destination.GetStackIndex() |
| : source.GetStackIndex(); |
| __ vmovd(DTMP, reg); |
| __ LoadDFromOffset(reg, SP, mem); |
| __ StoreDToOffset(DTMP, SP, mem); |
| } else if (source.IsFpuRegister() || destination.IsFpuRegister()) { |
| SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister<SRegister>() |
| : destination.AsFpuRegister<SRegister>(); |
| int mem = source.IsFpuRegister() |
| ? destination.GetStackIndex() |
| : source.GetStackIndex(); |
| |
| __ vmovrs(IP, reg); |
| __ LoadSFromOffset(reg, SP, mem); |
| __ StoreToOffset(kStoreWord, IP, SP, mem); |
| } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) { |
| Exchange(source.GetStackIndex(), destination.GetStackIndex()); |
| Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize)); |
| } else { |
| LOG(FATAL) << "Unimplemented" << source << " <-> " << destination; |
| } |
| } |
| |
| void ParallelMoveResolverARM::SpillScratch(int reg) { |
| __ Push(static_cast<Register>(reg)); |
| } |
| |
| void ParallelMoveResolverARM::RestoreScratch(int reg) { |
| __ Pop(static_cast<Register>(reg)); |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorARM::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimeAddress: |
| DCHECK(!GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadClass::LoadKind::kBootImageAddress: |
| break; |
| case HLoadClass::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kDexCacheViaMethod: |
| break; |
| } |
| return desired_class_load_kind; |
| } |
| |
| void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) { |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( |
| cls, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Location::RegisterLocation(R0)); |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), R0); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); |
| LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); |
| if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadClass::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the type resolution or initialization and marking to save everything we need. |
| // Note that IP may be clobbered by saving/restoring the live register (only one thanks |
| // to the custom calling convention) or by marking, so we request a different temp. |
| locations->AddTemp(Location::RequiresRegister()); |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK() |
| // that the the kPrimNot result register is the same as the first argument register. |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) { |
| codegen_->GenerateLoadClassRuntimeCall(cls); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| LocationSummary* locations = cls->GetLocations(); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| |
| const ReadBarrierOption read_barrier_option = cls->IsInBootImage() |
| ? kWithoutReadBarrier |
| : kCompilerReadBarrierOption; |
| bool generate_null_check = false; |
| switch (load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| Register current_method = locations->InAt(0).AsRegister<Register>(); |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| current_method, |
| ArtMethod::DeclaringClassOffset().Int32Value(), |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimeAddress: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| __ LoadLiteral(out, codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(), |
| cls->GetTypeIndex())); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| CodeGeneratorARM::PcRelativePatchInfo* labels = |
| codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex()); |
| __ BindTrackedLabel(&labels->movw_label); |
| __ movw(out, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->movt_label); |
| __ movt(out, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->add_pc_label); |
| __ add(out, out, ShifterOperand(PC)); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageAddress: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| uint32_t address = dchecked_integral_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(cls->GetClass().Get())); |
| DCHECK_NE(address, 0u); |
| __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address)); |
| break; |
| } |
| case HLoadClass::LoadKind::kBssEntry: { |
| Register temp = (!kUseReadBarrier || kUseBakerReadBarrier) |
| ? locations->GetTemp(0).AsRegister<Register>() |
| : out; |
| CodeGeneratorARM::PcRelativePatchInfo* labels = |
| codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex()); |
| __ BindTrackedLabel(&labels->movw_label); |
| __ movw(temp, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->movt_label); |
| __ movt(temp, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->add_pc_label); |
| __ add(temp, temp, ShifterOperand(PC)); |
| GenerateGcRootFieldLoad(cls, out_loc, temp, /* offset */ 0, read_barrier_option); |
| generate_null_check = true; |
| break; |
| } |
| case HLoadClass::LoadKind::kJitTableAddress: { |
| __ LoadLiteral(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), |
| cls->GetTypeIndex(), |
| cls->GetClass())); |
| // /* GcRoot<mirror::Class> */ out = *out |
| GenerateGcRootFieldLoad(cls, out_loc, out, /* offset */ 0, read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kDexCacheViaMethod: |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| if (generate_null_check || cls->MustGenerateClinitCheck()) { |
| DCHECK(cls->CanCallRuntime()); |
| SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM( |
| cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); |
| codegen_->AddSlowPath(slow_path); |
| if (generate_null_check) { |
| __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); |
| } |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class is not null. |
| SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM( |
| check->GetLoadClass(), check, check->GetDexPc(), true); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, |
| check->GetLocations()->InAt(0).AsRegister<Register>()); |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateClassInitializationCheck( |
| SlowPathCodeARM* slow_path, Register class_reg) { |
| __ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value()); |
| __ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized)); |
| __ b(slow_path->GetEntryLabel(), LT); |
| // Even if the initialized flag is set, we may be in a situation where caches are not synced |
| // properly. Therefore, we do a memory fence. |
| __ dmb(ISH); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| HLoadString::LoadKind CodeGeneratorARM::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: |
| DCHECK(!GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().GetCompilePic()); |
| break; |
| case HLoadString::LoadKind::kBootImageAddress: |
| break; |
| case HLoadString::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kDexCacheViaMethod: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| void LocationsBuilderARM::VisitLoadString(HLoadString* load) { |
| LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) { |
| locations->SetOut(Location::RegisterLocation(R0)); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadString::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the pResolveString and marking to save everything we need, including temps. |
| // Note that IP may be clobbered by saving/restoring the live register (only one thanks |
| // to the custom calling convention) or by marking, so we request a different temp. |
| locations->AddTemp(Location::RequiresRegister()); |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK() |
| // that the the kPrimNot result register is the same as the first argument register. |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { |
| LocationSummary* locations = load->GetLocations(); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| |
| switch (load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimeAddress: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| __ LoadLiteral(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(), |
| load->GetStringIndex())); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| CodeGeneratorARM::PcRelativePatchInfo* labels = |
| codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex()); |
| __ BindTrackedLabel(&labels->movw_label); |
| __ movw(out, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->movt_label); |
| __ movt(out, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->add_pc_label); |
| __ add(out, out, ShifterOperand(PC)); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBootImageAddress: { |
| uint32_t address = dchecked_integral_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(load->GetString().Get())); |
| DCHECK_NE(address, 0u); |
| __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address)); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBssEntry: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| Register temp = (!kUseReadBarrier || kUseBakerReadBarrier) |
| ? locations->GetTemp(0).AsRegister<Register>() |
| : out; |
| CodeGeneratorARM::PcRelativePatchInfo* labels = |
| codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex()); |
| __ BindTrackedLabel(&labels->movw_label); |
| __ movw(temp, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->movt_label); |
| __ movt(temp, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->add_pc_label); |
| __ add(temp, temp, ShifterOperand(PC)); |
| GenerateGcRootFieldLoad(load, out_loc, temp, /* offset */ 0, kCompilerReadBarrierOption); |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load); |
| codegen_->AddSlowPath(slow_path); |
| __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| case HLoadString::LoadKind::kJitTableAddress: { |
| __ LoadLiteral(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), |
| load->GetStringIndex(), |
| load->GetString())); |
| // /* GcRoot<mirror::String> */ out = *out |
| GenerateGcRootFieldLoad(load, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption); |
| return; |
| } |
| default: |
| break; |
| } |
| |
| // TODO: Consider re-adding the compiler code to do string dex cache lookup again. |
| DCHECK(load_kind == HLoadString::LoadKind::kDexCacheViaMethod); |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), out); |
| __ LoadImmediate(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_); |
| codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| } |
| |
| static int32_t GetExceptionTlsOffset() { |
| return Thread::ExceptionOffset<kArmPointerSize>().Int32Value(); |
| } |
| |
| void LocationsBuilderARM::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) { |
| Register out = load->GetLocations()->Out().AsRegister<Register>(); |
| __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset()); |
| } |
| |
| void LocationsBuilderARM::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ LoadImmediate(IP, 0); |
| __ StoreToOffset(kStoreWord, IP, TR, GetExceptionTlsOffset()); |
| } |
| |
| void LocationsBuilderARM::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| // Temp is used for read barrier. |
| static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { |
| if (kEmitCompilerReadBarrier && |
| (kUseBakerReadBarrier || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Interface case has 3 temps, one for holding the number of interfaces, one for the current |
| // interface pointer, one for loading the current interface. |
| // The other checks have one temp for loading the object's class. |
| static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { |
| if (type_check_kind == TypeCheckKind::kInterfaceCheck) { |
| return 3; |
| } |
| return 1 + NumberOfInstanceOfTemps(type_check_kind); |
| } |
| |
| void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool baker_read_barrier_slow_path = false; |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = |
| kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| baker_read_barrier_slow_path = kUseBakerReadBarrier; |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| if (baker_read_barrier_slow_path) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| // The "out" register is used as a temporary, so it overlaps with the inputs. |
| // Note that TypeCheckSlowPathARM uses this register too. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Register cls = locations->InAt(1).AsRegister<Register>(); |
| Location out_loc = locations->Out(); |
| Register out = out_loc.AsRegister<Register>(); |
| const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); |
| DCHECK_LE(num_temps, 1u); |
| Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| Label done; |
| Label* const final_label = codegen_->GetFinalLabel(instruction, &done); |
| SlowPathCodeARM* slow_path = nullptr; |
| |
| // Return 0 if `obj` is null. |
| // avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| DCHECK_NE(out, obj); |
| __ LoadImmediate(out, 0); |
| __ CompareAndBranchIfZero(obj, final_label); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // Classes must be equal for the instanceof to succeed. |
| __ cmp(out, ShifterOperand(cls)); |
| // We speculatively set the result to false without changing the condition |
| // flags, which allows us to avoid some branching later. |
| __ mov(out, ShifterOperand(0), AL, kCcKeep); |
| |
| // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, |
| // we check that the output is in a low register, so that a 16-bit MOV |
| // encoding can be used. |
| if (ArmAssembler::IsLowRegister(out)) { |
| __ it(EQ); |
| __ mov(out, ShifterOperand(1), EQ); |
| } else { |
| __ b(final_label, NE); |
| __ LoadImmediate(out, 1); |
| } |
| |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // If `out` is null, we use it for the result, and jump to the final label. |
| __ CompareAndBranchIfZero(out, final_label); |
| __ cmp(out, ShifterOperand(cls)); |
| __ b(&loop, NE); |
| __ LoadImmediate(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // Walk over the class hierarchy to find a match. |
| Label loop, success; |
| __ Bind(&loop); |
| __ cmp(out, ShifterOperand(cls)); |
| __ b(&success, EQ); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // This is essentially a null check, but it sets the condition flags to the |
| // proper value for the code that follows the loop, i.e. not `EQ`. |
| __ cmp(out, ShifterOperand(1)); |
| __ b(&loop, HS); |
| |
| // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, |
| // we check that the output is in a low register, so that a 16-bit MOV |
| // encoding can be used. |
| if (ArmAssembler::IsLowRegister(out)) { |
| // If `out` is null, we use it for the result, and the condition flags |
| // have already been set to `NE`, so the IT block that comes afterwards |
| // (and which handles the successful case) turns into a NOP (instead of |
| // overwriting `out`). |
| __ Bind(&success); |
| // There is only one branch to the `success` label (which is bound to this |
| // IT block), and it has the same condition, `EQ`, so in that case the MOV |
| // is executed. |
| __ it(EQ); |
| __ mov(out, ShifterOperand(1), EQ); |
| } else { |
| // If `out` is null, we use it for the result, and jump to the final label. |
| __ b(final_label); |
| __ Bind(&success); |
| __ LoadImmediate(out, 1); |
| } |
| |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // Do an exact check. |
| Label exact_check; |
| __ cmp(out, ShifterOperand(cls)); |
| __ b(&exact_check, EQ); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| component_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| // If `out` is null, we use it for the result, and jump to the final label. |
| __ CompareAndBranchIfZero(out, final_label); |
| __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ cmp(out, ShifterOperand(0)); |
| // We speculatively set the result to false without changing the condition |
| // flags, which allows us to avoid some branching later. |
| __ mov(out, ShifterOperand(0), AL, kCcKeep); |
| |
| // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8, |
| // we check that the output is in a low register, so that a 16-bit MOV |
| // encoding can be used. |
| if (ArmAssembler::IsLowRegister(out)) { |
| __ Bind(&exact_check); |
| __ it(EQ); |
| __ mov(out, ShifterOperand(1), EQ); |
| } else { |
| __ b(final_label, NE); |
| __ Bind(&exact_check); |
| __ LoadImmediate(out, 1); |
| } |
| |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| // No read barrier since the slow path will retry upon failure. |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kWithoutReadBarrier); |
| __ cmp(out, ShifterOperand(cls)); |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ b(slow_path->GetEntryLabel(), NE); |
| __ LoadImmediate(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ b(slow_path->GetEntryLabel()); |
| break; |
| } |
| } |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); |
| |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path. |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = obj_loc.AsRegister<Register>(); |
| Register cls = locations->InAt(1).AsRegister<Register>(); |
| Location temp_loc = locations->GetTemp(0); |
| Register temp = temp_loc.AsRegister<Register>(); |
| const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); |
| DCHECK_LE(num_temps, 3u); |
| Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); |
| Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); |
| const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| const uint32_t object_array_data_offset = |
| mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); |
| |
| // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases |
| // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding |
| // read barriers is done for performance and code size reasons. |
| bool is_type_check_slow_path_fatal = false; |
| if (!kEmitCompilerReadBarrier) { |
| is_type_check_slow_path_fatal = |
| (type_check_kind == TypeCheckKind::kExactCheck || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck) && |
| !instruction->CanThrowIntoCatchBlock(); |
| } |
| SlowPathCodeARM* type_check_slow_path = |
| new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction, |
| is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(type_check_slow_path); |
| |
| Label done; |
| Label* final_label = codegen_->GetFinalLabel(instruction, &done); |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ CompareAndBranchIfZero(obj, final_label); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| __ cmp(temp, ShifterOperand(cls)); |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ b(type_check_slow_path->GetEntryLabel(), NE); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); |
| |
| // Otherwise, compare the classes. |
| __ cmp(temp, ShifterOperand(cls)); |
| __ b(&loop, NE); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // Walk over the class hierarchy to find a match. |
| Label loop; |
| __ Bind(&loop); |
| __ cmp(temp, ShifterOperand(cls)); |
| __ b(final_label, EQ); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); |
| // Otherwise, jump to the beginning of the loop. |
| __ b(&loop); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // Do an exact check. |
| __ cmp(temp, ShifterOperand(cls)); |
| __ b(final_label, EQ); |
| |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| component_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the component type is null, jump to the slow path to throw the exception. |
| __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel()); |
| // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type` |
| // to further check that this component type is not a primitive type. |
| __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot"); |
| __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| // We always go into the type check slow path for the unresolved check case. |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| |
| __ b(type_check_slow_path->GetEntryLabel()); |
| break; |
| |
| case TypeCheckKind::kInterfaceCheck: { |
| // Avoid read barriers to improve performance of the fast path. We can not get false |
| // positives by doing this. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // /* HeapReference<Class> */ temp = temp->iftable_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| temp_loc, |
| iftable_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Iftable is never null. |
| __ ldr(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset)); |
| // Loop through the iftable and check if any class matches. |
| Label start_loop; |
| __ Bind(&start_loop); |
| __ CompareAndBranchIfZero(maybe_temp2_loc.AsRegister<Register>(), |
| type_check_slow_path->GetEntryLabel()); |
| __ ldr(maybe_temp3_loc.AsRegister<Register>(), Address(temp, object_array_data_offset)); |
| __ MaybeUnpoisonHeapReference(maybe_temp3_loc.AsRegister<Register>()); |
| // Go to next interface. |
| __ add(temp, temp, ShifterOperand(2 * kHeapReferenceSize)); |
| __ sub(maybe_temp2_loc.AsRegister<Register>(), |
| maybe_temp2_loc.AsRegister<Register>(), |
| ShifterOperand(2)); |
| // Compare the classes and continue the loop if they do not match. |
| __ cmp(cls, ShifterOperand(maybe_temp3_loc.AsRegister<Register>())); |
| __ b(&start_loop, NE); |
| break; |
| } |
| } |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| __ Bind(type_check_slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, |
| instruction, |
| instruction->GetDexPc()); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); } |
| void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); } |
| void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); } |
| |
| void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt |
| || instruction->GetResultType() == Primitive::kPrimLong); |
| // Note: GVN reorders commutative operations to have the constant on the right hand side. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| |
| void LocationsBuilderARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt |
| || instruction->GetResultType() == Primitive::kPrimLong); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| Register first_reg = first.AsRegister<Register>(); |
| ShifterOperand second_reg(second.AsRegister<Register>()); |
| Register out_reg = out.AsRegister<Register>(); |
| |
| switch (instruction->GetOpKind()) { |
| case HInstruction::kAnd: |
| __ bic(out_reg, first_reg, second_reg); |
| break; |
| case HInstruction::kOr: |
| __ orn(out_reg, first_reg, second_reg); |
| break; |
| // There is no EON on arm. |
| case HInstruction::kXor: |
| default: |
| LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); |
| UNREACHABLE(); |
| } |
| return; |
| |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| Register first_low = first.AsRegisterPairLow<Register>(); |
| Register first_high = first.AsRegisterPairHigh<Register>(); |
| ShifterOperand second_low(second.AsRegisterPairLow<Register>()); |
| ShifterOperand second_high(second.AsRegisterPairHigh<Register>()); |
| Register out_low = out.AsRegisterPairLow<Register>(); |
| Register out_high = out.AsRegisterPairHigh<Register>(); |
| |
| switch (instruction->GetOpKind()) { |
| case HInstruction::kAnd: |
| __ bic(out_low, first_low, second_low); |
| __ bic(out_high, first_high, second_high); |
| break; |
| case HInstruction::kOr: |
| __ orn(out_low, first_low, second_low); |
| __ orn(out_high, first_high, second_high); |
| break; |
| // There is no EON on arm. |
| case HInstruction::kXor: |
| default: |
| LOG(FATAL) << "Unexpected instruction " << instruction->DebugName(); |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM::VisitDataProcWithShifterOp( |
| HDataProcWithShifterOp* instruction) { |
| DCHECK(instruction->GetType() == Primitive::kPrimInt || |
| instruction->GetType() == Primitive::kPrimLong); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| const bool overlap = instruction->GetType() == Primitive::kPrimLong && |
| HDataProcWithShifterOp::IsExtensionOp(instruction->GetOpKind()); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), |
| overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitDataProcWithShifterOp( |
| HDataProcWithShifterOp* instruction) { |
| const LocationSummary* const locations = instruction->GetLocations(); |
| const HInstruction::InstructionKind kind = instruction->GetInstrKind(); |
| const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind(); |
| const Location left = locations->InAt(0); |
| const Location right = locations->InAt(1); |
| const Location out = locations->Out(); |
| |
| if (instruction->GetType() == Primitive::kPrimInt) { |
| DCHECK(!HDataProcWithShifterOp::IsExtensionOp(op_kind)); |
| |
| const Register second = instruction->InputAt(1)->GetType() == Primitive::kPrimLong |
| ? right.AsRegisterPairLow<Register>() |
| : right.AsRegister<Register>(); |
| |
| GenerateDataProcInstruction(kind, |
| out.AsRegister<Register>(), |
| left.AsRegister<Register>(), |
| ShifterOperand(second, |
| ShiftFromOpKind(op_kind), |
| instruction->GetShiftAmount()), |
| codegen_); |
| } else { |
| DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong); |
| |
| if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) { |
| const Register second = right.AsRegister<Register>(); |
| |
| DCHECK_NE(out.AsRegisterPairLow<Register>(), second); |
| GenerateDataProc(kind, |
| out, |
| left, |
| ShifterOperand(second), |
| ShifterOperand(second, ASR, 31), |
| codegen_); |
| } else { |
| GenerateLongDataProc(instruction, codegen_); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateAndConst(Register out, Register first, uint32_t value) { |
| // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier). |
| if (value == 0xffffffffu) { |
| if (out != first) { |
| __ mov(out, ShifterOperand(first)); |
| } |
| return; |
| } |
| if (value == 0u) { |
| __ mov(out, ShifterOperand(0)); |
| return; |
| } |
| ShifterOperand so; |
| if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, AND, value, &so)) { |
| __ and_(out, first, so); |
| } else if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, BIC, ~value, &so)) { |
| __ bic(out, first, ShifterOperand(~value)); |
| } else { |
| DCHECK(IsPowerOfTwo(value + 1)); |
| __ ubfx(out, first, 0, WhichPowerOf2(value + 1)); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateOrrConst(Register out, Register first, uint32_t value) { |
| // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier). |
| if (value == 0u) { |
| if (out != first) { |
| __ mov(out, ShifterOperand(first)); |
| } |
| return; |
| } |
| if (value == 0xffffffffu) { |
| __ mvn(out, ShifterOperand(0)); |
| return; |
| } |
| ShifterOperand so; |
| if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORR, value, &so)) { |
| __ orr(out, first, so); |
| } else { |
| DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORN, ~value, &so)); |
| __ orn(out, first, ShifterOperand(~value)); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateEorConst(Register out, Register first, uint32_t value) { |
| // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier). |
| if (value == 0u) { |
| if (out != first) { |
| __ mov(out, ShifterOperand(first)); |
| } |
| return; |
| } |
| __ eor(out, first, ShifterOperand(value)); |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateAddLongConst(Location out, |
| Location first, |
| uint64_t value) { |
| Register out_low = out.AsRegisterPairLow<Register>(); |
| Register out_high = out.AsRegisterPairHigh<Register>(); |
| Register first_low = first.AsRegisterPairLow<Register>(); |
| Register first_high = first.AsRegisterPairHigh<Register>(); |
| uint32_t value_low = Low32Bits(value); |
| uint32_t value_high = High32Bits(value); |
| if (value_low == 0u) { |
| if (out_low != first_low) { |
| __ mov(out_low, ShifterOperand(first_low)); |
| } |
| __ AddConstant(out_high, first_high, value_high); |
| return; |
| } |
| __ AddConstantSetFlags(out_low, first_low, value_low); |
| ShifterOperand so; |
| if (__ ShifterOperandCanHold(out_high, first_high, ADC, value_high, kCcDontCare, &so)) { |
| __ adc(out_high, first_high, so); |
| } else if (__ ShifterOperandCanHold(out_low, first_low, SBC, ~value_high, kCcDontCare, &so)) { |
| __ sbc(out_high, first_high, so); |
| } else { |
| LOG(FATAL) << "Unexpected constant " << value_high; |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| if (second.IsConstant()) { |
| uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant())); |
| uint32_t value_low = Low32Bits(value); |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| Register first_reg = first.AsRegister<Register>(); |
| Register out_reg = out.AsRegister<Register>(); |
| if (instruction->IsAnd()) { |
| GenerateAndConst(out_reg, first_reg, value_low); |
| } else if (instruction->IsOr()) { |
| GenerateOrrConst(out_reg, first_reg, value_low); |
| } else { |
| DCHECK(instruction->IsXor()); |
| GenerateEorConst(out_reg, first_reg, value_low); |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| uint32_t value_high = High32Bits(value); |
| Register first_low = first.AsRegisterPairLow<Register>(); |
| Register first_high = first.AsRegisterPairHigh<Register>(); |
| Register out_low = out.AsRegisterPairLow<Register>(); |
| Register out_high = out.AsRegisterPairHigh<Register>(); |
| if (instruction->IsAnd()) { |
| GenerateAndConst(out_low, first_low, value_low); |
| GenerateAndConst(out_high, first_high, value_high); |
| } else if (instruction->IsOr()) { |
| GenerateOrrConst(out_low, first_low, value_low); |
| GenerateOrrConst(out_high, first_high, value_high); |
| } else { |
| DCHECK(instruction->IsXor()); |
| GenerateEorConst(out_low, first_low, value_low); |
| GenerateEorConst(out_high, first_high, value_high); |
| } |
| } |
| return; |
| } |
| |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| Register first_reg = first.AsRegister<Register>(); |
| ShifterOperand second_reg(second.AsRegister<Register>()); |
| Register out_reg = out.AsRegister<Register>(); |
| if (instruction->IsAnd()) { |
| __ and_(out_reg, first_reg, second_reg); |
| } else if (instruction->IsOr()) { |
| __ orr(out_reg, first_reg, second_reg); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ eor(out_reg, first_reg, second_reg); |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| Register first_low = first.AsRegisterPairLow<Register>(); |
| Register first_high = first.AsRegisterPairHigh<Register>(); |
| ShifterOperand second_low(second.AsRegisterPairLow<Register>()); |
| ShifterOperand second_high(second.AsRegisterPairHigh<Register>()); |
| Register out_low = out.AsRegisterPairLow<Register>(); |
| Register out_high = out.AsRegisterPairHigh<Register>(); |
| if (instruction->IsAnd()) { |
| __ and_(out_low, first_low, second_low); |
| __ and_(out_high, first_high, second_high); |
| } else if (instruction->IsOr()) { |
| __ orr(out_low, first_low, second_low); |
| __ orr(out_high, first_high, second_high); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ eor(out_low, first_low, second_low); |
| __ eor(out_high, first_high, second_high); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateReferenceLoadOneRegister( |
| HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| Register out_reg = out.AsRegister<Register>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| __ Mov(maybe_temp.AsRegister<Register>(), out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateReferenceLoadTwoRegisters( |
| HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| Register out_reg = out.AsRegister<Register>(); |
| Register obj_reg = obj.AsRegister<Register>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::GenerateGcRootFieldLoad(HInstruction* instruction, |
| Location root, |
| Register obj, |
| uint32_t offset, |
| ReadBarrierOption read_barrier_option) { |
| Register root_reg = root.AsRegister<Register>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used. |
| // |
| // Note that we do not actually check the value of |
| // `GetIsGcMarking()` to decide whether to mark the loaded GC |
| // root or not. Instead, we load into `temp` the read barrier |
| // mark entry point corresponding to register `root`. If `temp` |
| // is null, it means that `GetIsGcMarking()` is false, and vice |
| // versa. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load. |
| // if (temp != nullptr) { // <=> Thread::Current()->GetIsGcMarking() |
| // // Slow path. |
| // root = temp(root); // root = ReadBarrier::Mark(root); // Runtime entry point call. |
| // } |
| |
| // Slow path marking the GC root `root`. The entrypoint will already be loaded in `temp`. |
| Location temp = Location::RegisterLocation(LR); |
| SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM( |
| instruction, root, /* entrypoint */ temp); |
| codegen_->AddSlowPath(slow_path); |
| |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(root.reg()); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset); |
| |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, root_reg, obj, offset); |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // The entrypoint is null when the GC is not marking, this prevents one load compared to |
| // checking GetIsGcMarking. |
| __ CompareAndBranchIfNonZero(temp.AsRegister<Register>(), slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } else { |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = obj + offset |
| __ AddConstant(root_reg, obj, offset); |
| // /* mirror::Object* */ root = root->Read() |
| codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, root_reg, obj, offset); |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| } |
| |
| void CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| Location no_index = Location::NoLocation(); |
| ScaleFactor no_scale_factor = TIMES_1; |
| GenerateReferenceLoadWithBakerReadBarrier( |
| instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check); |
| } |
| |
| void CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t data_offset, |
| Location index, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ ref = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| ScaleFactor scale_factor = TIMES_4; |
| GenerateReferenceLoadWithBakerReadBarrier( |
| instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check); |
| } |
| |
| void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location index, |
| ScaleFactor scale_factor, |
| Location temp, |
| bool needs_null_check, |
| bool always_update_field, |
| Register* temp2) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // Query `art::Thread::Current()->GetIsGcMarking()` to decide |
| // whether we need to enter the slow path to mark the reference. |
| // Then, in the slow path, check the gray bit in the lock word of |
| // the reference's holder (`obj`) to decide whether to mark `ref` or |
| // not. |
| // |
| // Note that we do not actually check the value of `GetIsGcMarking()`; |
| // instead, we load into `temp3` the read barrier mark entry point |
| // corresponding to register `ref`. If `temp3` is null, it means |
| // that `GetIsGcMarking()` is false, and vice versa. |
| // |
| // temp3 = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // if (temp3 != nullptr) { // <=> Thread::Current()->GetIsGcMarking() |
| // // Slow path. |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<mirror::Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // ref = temp3(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call. |
| // } |
| // } else { |
| // HeapReference<mirror::Object> ref = *src; // Original reference load. |
| // } |
| |
| Register temp_reg = temp.AsRegister<Register>(); |
| |
| // Slow path marking the object `ref` when the GC is marking. The |
| // entrypoint will already be loaded in `temp3`. |
| Location temp3 = Location::RegisterLocation(LR); |
| SlowPathCodeARM* slow_path; |
| if (always_update_field) { |
| DCHECK(temp2 != nullptr); |
| // LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM only |
| // supports address of the form `obj + field_offset`, where `obj` |
| // is a register and `field_offset` is a register pair (of which |
| // only the lower half is used). Thus `offset` and `scale_factor` |
| // above are expected to be null in this code path. |
| DCHECK_EQ(offset, 0u); |
| DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1); |
| Location field_offset = index; |
| slow_path = |
| new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM( |
| instruction, |
| ref, |
| obj, |
| offset, |
| /* index */ field_offset, |
| scale_factor, |
| needs_null_check, |
| temp_reg, |
| *temp2, |
| /* entrypoint */ temp3); |
| } else { |
| slow_path = new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierSlowPathARM( |
| instruction, |
| ref, |
| obj, |
| offset, |
| index, |
| scale_factor, |
| needs_null_check, |
| temp_reg, |
| /* entrypoint */ temp3); |
| } |
| AddSlowPath(slow_path); |
| |
| // temp3 = Thread::Current()->pReadBarrierMarkReg ## ref.reg() |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref.reg()); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadWord, temp3.AsRegister<Register>(), TR, entry_point_offset); |
| // The entrypoint is null when the GC is not marking, this prevents one load compared to |
| // checking GetIsGcMarking. |
| __ CompareAndBranchIfNonZero(temp3.AsRegister<Register>(), slow_path->GetEntryLabel()); |
| // Fast path: just load the reference. |
| GenerateRawReferenceLoad(instruction, ref, obj, offset, index, scale_factor, needs_null_check); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM::GenerateRawReferenceLoad(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location index, |
| ScaleFactor scale_factor, |
| bool needs_null_check) { |
| Register ref_reg = ref.AsRegister<Register>(); |
| |
| if (index.IsValid()) { |
| // Load types involving an "index": ArrayGet, |
| // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject |
| // intrinsics. |
| // /* HeapReference<mirror::Object> */ ref = *(obj + offset + (index << scale_factor)) |
| if (index.IsConstant()) { |
| size_t computed_offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset; |
| __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset); |
| } else { |
| // Handle the special case of the |
| // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject |
| // intrinsics, which use a register pair as index ("long |
| // offset"), of which only the low part contains data. |
| Register index_reg = index.IsRegisterPair() |
| ? index.AsRegisterPairLow<Register>() |
| : index.AsRegister<Register>(); |
| __ add(IP, obj, ShifterOperand(index_reg, LSL, scale_factor)); |
| __ LoadFromOffset(kLoadWord, ref_reg, IP, offset); |
| } |
| } else { |
| // /* HeapReference<mirror::Object> */ ref = *(obj + offset) |
| __ LoadFromOffset(kLoadWord, ref_reg, obj, offset); |
| } |
| |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| } |
| |
| void CodeGeneratorARM::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) |
| ReadBarrierForHeapReferenceSlowPathARM(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| |
| __ b(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (kEmitCompilerReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| __ UnpoisonHeapReference(out.AsRegister<Register>()); |
| } |
| } |
| |
| void CodeGeneratorARM::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCodeARM* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ b(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) { |
| return desired_dispatch_info; |
| } |
| |
| Register CodeGeneratorARM::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, |
| Register temp) { |
| DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); |
| Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| if (!invoke->GetLocations()->Intrinsified()) { |
| return location.AsRegister<Register>(); |
| } |
| // For intrinsics we allow any location, so it may be on the stack. |
| if (!location.IsRegister()) { |
| __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex()); |
| return temp; |
| } |
| // For register locations, check if the register was saved. If so, get it from the stack. |
| // Note: There is a chance that the register was saved but not overwritten, so we could |
| // save one load. However, since this is just an intrinsic slow path we prefer this |
| // simple and more robust approach rather that trying to determine if that's the case. |
| SlowPathCode* slow_path = GetCurrentSlowPath(); |
| if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) { |
| int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>()); |
| __ LoadFromOffset(kLoadWord, temp, SP, stack_offset); |
| return temp; |
| } |
| return location.AsRegister<Register>(); |
| } |
| |
| Location CodeGeneratorARM::GenerateCalleeMethodStaticOrDirectCall(HInvokeStaticOrDirect* invoke, |
| Location temp) { |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| switch (invoke->GetMethodLoadKind()) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { |
| uint32_t offset = |
| GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); |
| // temp = thread->string_init_entrypoint |
| __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, offset); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: |
| __ LoadImmediate(temp.AsRegister<Register>(), invoke->GetMethodAddress()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { |
| HArmDexCacheArraysBase* base = |
| invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase(); |
| Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke, |
| temp.AsRegister<Register>()); |
| int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset(); |
| __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), base_reg, offset); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { |
| Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| Register method_reg; |
| Register reg = temp.AsRegister<Register>(); |
| if (current_method.IsRegister()) { |
| method_reg = current_method.AsRegister<Register>(); |
| } else { |
| DCHECK(invoke->GetLocations()->Intrinsified()); |
| DCHECK(!current_method.IsValid()); |
| method_reg = reg; |
| __ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset); |
| } |
| // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; |
| __ LoadFromOffset(kLoadWord, |
| reg, |
| method_reg, |
| ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value()); |
| // temp = temp[index_in_cache]; |
| // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. |
| uint32_t index_in_cache = invoke->GetDexMethodIndex(); |
| __ LoadFromOffset(kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache)); |
| break; |
| } |
| } |
| return callee_method; |
| } |
| |
| void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { |
| Location callee_method = GenerateCalleeMethodStaticOrDirectCall(invoke, temp); |
| |
| switch (invoke->GetCodePtrLocation()) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: |
| __ bl(GetFrameEntryLabel()); |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: |
| // LR = callee_method->entry_point_from_quick_compiled_code_ |
| __ LoadFromOffset( |
| kLoadWord, LR, callee_method.AsRegister<Register>(), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value()); |
| // LR() |
| __ blx(LR); |
| break; |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorARM::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) { |
| Register temp = temp_location.AsRegister<Register>(); |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kArmPointerSize).Uint32Value(); |
| |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| Register receiver = calling_convention.GetRegisterAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ LoadFromOffset(kLoadWord, temp, receiver, class_offset); |
| MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| // temp = temp->GetMethodAt(method_offset); |
| uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kArmPointerSize).Int32Value(); |
| __ LoadFromOffset(kLoadWord, temp, temp, method_offset); |
| // LR = temp->GetEntryPoint(); |
| __ LoadFromOffset(kLoadWord, LR, temp, entry_point); |
| // LR(); |
| __ blx(LR); |
| } |
| |
| CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeStringPatch( |
| const DexFile& dex_file, dex::StringIndex string_index) { |
| return NewPcRelativePatch(dex_file, string_index.index_, &pc_relative_string_patches_); |
| } |
| |
| CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeTypePatch( |
| const DexFile& dex_file, dex::TypeIndex type_index) { |
| return NewPcRelativePatch(dex_file, type_index.index_, &pc_relative_type_patches_); |
| } |
| |
| CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewTypeBssEntryPatch( |
| const DexFile& dex_file, dex::TypeIndex type_index) { |
| return NewPcRelativePatch(dex_file, type_index.index_, &type_bss_entry_patches_); |
| } |
| |
| CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeDexCacheArrayPatch( |
| const DexFile& dex_file, uint32_t element_offset) { |
| return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_); |
| } |
| |
| CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativePatch( |
| const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) { |
| patches->emplace_back(dex_file, offset_or_index); |
| return &patches->back(); |
| } |
| |
| Literal* CodeGeneratorARM::DeduplicateBootImageStringLiteral(const DexFile& dex_file, |
| dex::StringIndex string_index) { |
| return boot_image_string_patches_.GetOrCreate( |
| StringReference(&dex_file, string_index), |
| [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| Literal* CodeGeneratorARM::DeduplicateBootImageTypeLiteral(const DexFile& dex_file, |
| dex::TypeIndex type_index) { |
| return boot_image_type_patches_.GetOrCreate( |
| TypeReference(&dex_file, type_index), |
| [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| Literal* CodeGeneratorARM::DeduplicateBootImageAddressLiteral(uint32_t address) { |
| return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_); |
| } |
| |
| Literal* CodeGeneratorARM::DeduplicateJitStringLiteral(const DexFile& dex_file, |
| dex::StringIndex string_index, |
| Handle<mirror::String> handle) { |
| jit_string_roots_.Overwrite(StringReference(&dex_file, string_index), |
| reinterpret_cast64<uint64_t>(handle.GetReference())); |
| return jit_string_patches_.GetOrCreate( |
| StringReference(&dex_file, string_index), |
| [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| Literal* CodeGeneratorARM::DeduplicateJitClassLiteral(const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| Handle<mirror::Class> handle) { |
| jit_class_roots_.Overwrite(TypeReference(&dex_file, type_index), |
| reinterpret_cast64<uint64_t>(handle.GetReference())); |
| return jit_class_patches_.GetOrCreate( |
| TypeReference(&dex_file, type_index), |
| [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> |
| inline void CodeGeneratorARM::EmitPcRelativeLinkerPatches( |
| const ArenaDeque<PcRelativePatchInfo>& infos, |
| ArenaVector<LinkerPatch>* linker_patches) { |
| for (const PcRelativePatchInfo& info : infos) { |
| const DexFile& dex_file = info.target_dex_file; |
| size_t offset_or_index = info.offset_or_index; |
| DCHECK(info.add_pc_label.IsBound()); |
| uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position()); |
| // Add MOVW patch. |
| DCHECK(info.movw_label.IsBound()); |
| uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position()); |
| linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index)); |
| // Add MOVT patch. |
| DCHECK(info.movt_label.IsBound()); |
| uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position()); |
| linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index)); |
| } |
| } |
| |
| void CodeGeneratorARM::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| /* MOVW+MOVT for each entry */ 2u * pc_relative_dex_cache_patches_.size() + |
| boot_image_string_patches_.size() + |
| /* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() + |
| boot_image_type_patches_.size() + |
| /* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() + |
| /* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size(); |
| linker_patches->reserve(size); |
| EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_, |
| linker_patches); |
| for (const auto& entry : boot_image_string_patches_) { |
| const StringReference& target_string = entry.first; |
| Literal* literal = entry.second; |
| DCHECK(literal->GetLabel()->IsBound()); |
| uint32_t literal_offset = literal->GetLabel()->Position(); |
| linker_patches->push_back(LinkerPatch::StringPatch(literal_offset, |
| target_string.dex_file, |
| target_string.string_index.index_)); |
| } |
| if (!GetCompilerOptions().IsBootImage()) { |
| DCHECK(pc_relative_type_patches_.empty()); |
| EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_, |
| linker_patches); |
| } else { |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_, |
| linker_patches); |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_, |
| linker_patches); |
| } |
| EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_, |
| linker_patches); |
| for (const auto& entry : boot_image_type_patches_) { |
| const TypeReference& target_type = entry.first; |
| Literal* literal = entry.second; |
| DCHECK(literal->GetLabel()->IsBound()); |
| uint32_t literal_offset = literal->GetLabel()->Position(); |
| linker_patches->push_back(LinkerPatch::TypePatch(literal_offset, |
| target_type.dex_file, |
| target_type.type_index.index_)); |
| } |
| DCHECK_EQ(size, linker_patches->size()); |
| } |
| |
| Literal* CodeGeneratorARM::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) { |
| return map->GetOrCreate( |
| value, |
| [this, value]() { return __ NewLiteral<uint32_t>(value); }); |
| } |
| |
| Literal* CodeGeneratorARM::DeduplicateMethodLiteral(MethodReference target_method, |
| MethodToLiteralMap* map) { |
| return map->GetOrCreate( |
| target_method, |
| [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| void LocationsBuilderARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall); |
| locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, |
| Location::RequiresRegister()); |
| locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); |
| locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| LocationSummary* locations = instr->GetLocations(); |
| Register res = locations->Out().AsRegister<Register>(); |
| Register accumulator = |
| locations->InAt(HMultiplyAccumulate::kInputAccumulatorIndex).AsRegister<Register>(); |
| Register mul_left = |
| locations->InAt(HMultiplyAccumulate::kInputMulLeftIndex).AsRegister<Register>(); |
| Register mul_right = |
| locations->InAt(HMultiplyAccumulate::kInputMulRightIndex).AsRegister<Register>(); |
| |
| if (instr->GetOpKind() == HInstruction::kAdd) { |
| __ mla(res, mul_left, mul_right, accumulator); |
| } else { |
| __ mls(res, mul_left, mul_right, accumulator); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| // Simple implementation of packed switch - generate cascaded compare/jumps. |
| void LocationsBuilderARM::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold && |
| codegen_->GetAssembler()->IsThumb()) { |
| locations->AddTemp(Location::RequiresRegister()); // We need a temp for the table base. |
| if (switch_instr->GetStartValue() != 0) { |
| locations->AddTemp(Location::RequiresRegister()); // We need a temp for the bias. |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| Register value_reg = locations->InAt(0).AsRegister<Register>(); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| if (num_entries <= kPackedSwitchCompareJumpThreshold || !codegen_->GetAssembler()->IsThumb()) { |
| // Create a series of compare/jumps. |
| Register temp_reg = IP; |
| // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store |
| // the immediate, because IP is used as the destination register. For the other |
| // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant, |
| // and they can be encoded in the instruction without making use of IP register. |
| __ AddConstantSetFlags(temp_reg, value_reg, -lower_bound); |
| |
| const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); |
| // Jump to successors[0] if value == lower_bound. |
| __ b(codegen_->GetLabelOf(successors[0]), EQ); |
| int32_t last_index = 0; |
| for (; num_entries - last_index > 2; last_index += 2) { |
| __ AddConstantSetFlags(temp_reg, temp_reg, -2); |
| // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. |
| __ b(codegen_->GetLabelOf(successors[last_index + 1]), LO); |
| // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. |
| __ b(codegen_->GetLabelOf(successors[last_index + 2]), EQ); |
| } |
| if (num_entries - last_index == 2) { |
| // The last missing case_value. |
| __ CmpConstant(temp_reg, 1); |
| __ b(codegen_->GetLabelOf(successors[last_index + 1]), EQ); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { |
| __ b(codegen_->GetLabelOf(default_block)); |
| } |
| } else { |
| // Create a table lookup. |
| Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); |
| |
| // Materialize a pointer to the switch table |
| std::vector<Label*> labels(num_entries); |
| const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); |
| for (uint32_t i = 0; i < num_entries; i++) { |
| labels[i] = codegen_->GetLabelOf(successors[i]); |
| } |
| JumpTable* table = __ CreateJumpTable(std::move(labels), temp_reg); |
| |
| // Remove the bias. |
| Register key_reg; |
| if (lower_bound != 0) { |
| key_reg = locations->GetTemp(1).AsRegister<Register>(); |
| __ AddConstant(key_reg, value_reg, -lower_bound); |
| } else { |
| key_reg = value_reg; |
| } |
| |
| // Check whether the value is in the table, jump to default block if not. |
| __ CmpConstant(key_reg, num_entries - 1); |
| __ b(codegen_->GetLabelOf(default_block), Condition::HI); |
| |
| // Load the displacement from the table. |
| __ ldr(temp_reg, Address(temp_reg, key_reg, Shift::LSL, 2)); |
| |
| // Dispatch is a direct add to the PC (for Thumb2). |
| __ EmitJumpTableDispatch(table, temp_reg); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) { |
| Register base_reg = base->GetLocations()->Out().AsRegister<Register>(); |
| CodeGeneratorARM::PcRelativePatchInfo* labels = |
| codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset()); |
| __ BindTrackedLabel(&labels->movw_label); |
| __ movw(base_reg, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->movt_label); |
| __ movt(base_reg, /* placeholder */ 0u); |
| __ BindTrackedLabel(&labels->add_pc_label); |
| __ add(base_reg, base_reg, ShifterOperand(PC)); |
| } |
| |
| void CodeGeneratorARM::MoveFromReturnRegister(Location trg, Primitive::Type type) { |
| if (!trg.IsValid()) { |
| DCHECK_EQ(type, Primitive::kPrimVoid); |
| return; |
| } |
| |
| DCHECK_NE(type, Primitive::kPrimVoid); |
| |
| Location return_loc = InvokeDexCallingConventionVisitorARM().GetReturnLocation(type); |
| if (return_loc.Equals(trg)) { |
| return; |
| } |
| |
| // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged |
| // with the last branch. |
| if (type == Primitive::kPrimLong) { |
| HParallelMove parallel_move(GetGraph()->GetArena()); |
| parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimInt, nullptr); |
| parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimInt, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else if (type == Primitive::kPrimDouble) { |
| HParallelMove parallel_move(GetGraph()->GetArena()); |
| parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimFloat, nullptr); |
| parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimFloat, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| // Let the parallel move resolver take care of all of this. |
| HParallelMove parallel_move(GetGraph()->GetArena()); |
| parallel_move.AddMove(return_loc, trg, type, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } |
| } |
| |
| void LocationsBuilderARM::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kArmPointerSize).SizeValue(); |
| __ LoadFromOffset(kLoadWord, |
| locations->Out().AsRegister<Register>(), |
| locations->InAt(0).AsRegister<Register>(), |
| method_offset); |
| } else { |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetIndex(), kArmPointerSize)); |
| __ LoadFromOffset(kLoadWord, |
| locations->Out().AsRegister<Register>(), |
| locations->InAt(0).AsRegister<Register>(), |
| mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value()); |
| __ LoadFromOffset(kLoadWord, |
| locations->Out().AsRegister<Register>(), |
| locations->Out().AsRegister<Register>(), |
| method_offset); |
| } |
| } |
| |
| static void PatchJitRootUse(uint8_t* code, |
| const uint8_t* roots_data, |
| Literal* literal, |
| uint64_t index_in_table) { |
| DCHECK(literal->GetLabel()->IsBound()); |
| uint32_t literal_offset = literal->GetLabel()->Position(); |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); |
| uint8_t* data = code + literal_offset; |
| reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address); |
| } |
| |
| void CodeGeneratorARM::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { |
| for (const auto& entry : jit_string_patches_) { |
| const auto& it = jit_string_roots_.find(entry.first); |
| DCHECK(it != jit_string_roots_.end()); |
| PatchJitRootUse(code, roots_data, entry.second, it->second); |
| } |
| for (const auto& entry : jit_class_patches_) { |
| const auto& it = jit_class_roots_.find(entry.first); |
| DCHECK(it != jit_class_roots_.end()); |
| PatchJitRootUse(code, roots_data, entry.second, it->second); |
| } |
| } |
| |
| #undef __ |
| #undef QUICK_ENTRY_POINT |
| |
| } // namespace arm |
| } // namespace art |