blob: 54d45b1e790cc1cc246f7585563fc242fab1f4fe [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "method_handles-inl.h"
#include "android-base/stringprintf.h"
#include "common_dex_operations.h"
#include "jvalue.h"
#include "jvalue-inl.h"
#include "mirror/emulated_stack_frame.h"
#include "mirror/method_handle_impl-inl.h"
#include "mirror/method_type.h"
#include "reflection.h"
#include "reflection-inl.h"
#include "well_known_classes.h"
namespace art {
using android::base::StringPrintf;
namespace {
#define PRIMITIVES_LIST(V) \
V(Primitive::kPrimBoolean, Boolean, Boolean, Z) \
V(Primitive::kPrimByte, Byte, Byte, B) \
V(Primitive::kPrimChar, Char, Character, C) \
V(Primitive::kPrimShort, Short, Short, S) \
V(Primitive::kPrimInt, Int, Integer, I) \
V(Primitive::kPrimLong, Long, Long, J) \
V(Primitive::kPrimFloat, Float, Float, F) \
V(Primitive::kPrimDouble, Double, Double, D)
// Assigns |type| to the primitive type associated with |klass|. Returns
// true iff. |klass| was a boxed type (Integer, Long etc.), false otherwise.
bool GetUnboxedPrimitiveType(ObjPtr<mirror::Class> klass, Primitive::Type* type)
REQUIRES_SHARED(Locks::mutator_lock_) {
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
std::string storage;
const char* descriptor = klass->GetDescriptor(&storage);
static const char kJavaLangPrefix[] = "Ljava/lang/";
static const size_t kJavaLangPrefixSize = sizeof(kJavaLangPrefix) - 1;
if (strncmp(descriptor, kJavaLangPrefix, kJavaLangPrefixSize) != 0) {
return false;
}
descriptor += kJavaLangPrefixSize;
#define LOOKUP_PRIMITIVE(primitive, _, java_name, ___) \
if (strcmp(descriptor, #java_name ";") == 0) { \
*type = primitive; \
return true; \
}
PRIMITIVES_LIST(LOOKUP_PRIMITIVE);
#undef LOOKUP_PRIMITIVE
return false;
}
ObjPtr<mirror::Class> GetBoxedPrimitiveClass(Primitive::Type type)
REQUIRES_SHARED(Locks::mutator_lock_) {
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
jmethodID m = nullptr;
switch (type) {
#define CASE_PRIMITIVE(primitive, _, java_name, __) \
case primitive: \
m = WellKnownClasses::java_lang_ ## java_name ## _valueOf; \
break;
PRIMITIVES_LIST(CASE_PRIMITIVE);
#undef CASE_PRIMITIVE
case Primitive::Type::kPrimNot:
case Primitive::Type::kPrimVoid:
return nullptr;
}
return jni::DecodeArtMethod(m)->GetDeclaringClass();
}
bool GetUnboxedTypeAndValue(ObjPtr<mirror::Object> o, Primitive::Type* type, JValue* value)
REQUIRES_SHARED(Locks::mutator_lock_) {
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
ObjPtr<mirror::Class> klass = o->GetClass();
ArtField* primitive_field = &klass->GetIFieldsPtr()->At(0);
#define CASE_PRIMITIVE(primitive, abbrev, _, shorthand) \
if (klass == GetBoxedPrimitiveClass(primitive)) { \
*type = primitive; \
value->Set ## shorthand(primitive_field->Get ## abbrev(o)); \
return true; \
}
PRIMITIVES_LIST(CASE_PRIMITIVE)
#undef CASE_PRIMITIVE
return false;
}
inline bool IsReferenceType(Primitive::Type type) {
return type == Primitive::kPrimNot;
}
inline bool IsPrimitiveType(Primitive::Type type) {
return !IsReferenceType(type);
}
} // namespace
bool IsParameterTypeConvertible(ObjPtr<mirror::Class> from, ObjPtr<mirror::Class> to)
REQUIRES_SHARED(Locks::mutator_lock_) {
// This function returns true if there's any conceivable conversion
// between |from| and |to|. It's expected this method will be used
// to determine if a WrongMethodTypeException should be raised. The
// decision logic follows the documentation for MethodType.asType().
if (from == to) {
return true;
}
Primitive::Type from_primitive = from->GetPrimitiveType();
Primitive::Type to_primitive = to->GetPrimitiveType();
DCHECK(from_primitive != Primitive::Type::kPrimVoid);
DCHECK(to_primitive != Primitive::Type::kPrimVoid);
// If |to| and |from| are references.
if (IsReferenceType(from_primitive) && IsReferenceType(to_primitive)) {
// Assignability is determined during parameter conversion when
// invoking the associated method handle.
return true;
}
// If |to| and |from| are primitives and a widening conversion exists.
if (Primitive::IsWidenable(from_primitive, to_primitive)) {
return true;
}
// If |to| is a reference and |from| is a primitive, then boxing conversion.
if (IsReferenceType(to_primitive) && IsPrimitiveType(from_primitive)) {
return to->IsAssignableFrom(GetBoxedPrimitiveClass(from_primitive));
}
// If |from| is a reference and |to| is a primitive, then unboxing conversion.
if (IsPrimitiveType(to_primitive) && IsReferenceType(from_primitive)) {
if (from->DescriptorEquals("Ljava/lang/Object;")) {
// Object might be converted into a primitive during unboxing.
return true;
}
if (Primitive::IsNumericType(to_primitive) && from->DescriptorEquals("Ljava/lang/Number;")) {
// Number might be unboxed into any of the number primitive types.
return true;
}
Primitive::Type unboxed_type;
if (GetUnboxedPrimitiveType(from, &unboxed_type)) {
if (unboxed_type == to_primitive) {
// Straightforward unboxing conversion such as Boolean => boolean.
return true;
}
// Check if widening operations for numeric primitives would work,
// such as Byte => byte => long.
return Primitive::IsWidenable(unboxed_type, to_primitive);
}
}
return false;
}
bool IsReturnTypeConvertible(ObjPtr<mirror::Class> from, ObjPtr<mirror::Class> to)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (to->GetPrimitiveType() == Primitive::Type::kPrimVoid) {
// Result will be ignored.
return true;
} else if (from->GetPrimitiveType() == Primitive::Type::kPrimVoid) {
// Returned value will be 0 / null.
return true;
} else {
// Otherwise apply usual parameter conversion rules.
return IsParameterTypeConvertible(from, to);
}
}
bool ConvertJValueCommon(
Handle<mirror::MethodType> callsite_type,
Handle<mirror::MethodType> callee_type,
ObjPtr<mirror::Class> from,
ObjPtr<mirror::Class> to,
JValue* value) {
// The reader maybe concerned about the safety of the heap object
// that may be in |value|. There is only one case where allocation
// is obviously needed and that's for boxing. However, in the case
// of boxing |value| contains a non-reference type.
const Primitive::Type from_type = from->GetPrimitiveType();
const Primitive::Type to_type = to->GetPrimitiveType();
// Put incoming value into |src_value| and set return value to 0.
// Errors and conversions from void require the return value to be 0.
const JValue src_value(*value);
value->SetJ(0);
// Conversion from void set result to zero.
if (from_type == Primitive::kPrimVoid) {
return true;
}
// This method must be called only when the types don't match.
DCHECK(from != to);
if (IsPrimitiveType(from_type) && IsPrimitiveType(to_type)) {
// The source and target types are both primitives.
if (UNLIKELY(!ConvertPrimitiveValueNoThrow(from_type, to_type, src_value, value))) {
ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get());
return false;
}
return true;
} else if (IsReferenceType(from_type) && IsReferenceType(to_type)) {
// They're both reference types. If "from" is null, we can pass it
// through unchanged. If not, we must generate a cast exception if
// |to| is not assignable from the dynamic type of |ref|.
//
// Playing it safe with StackHandleScope here, not expecting any allocation
// in mirror::Class::IsAssignable().
StackHandleScope<2> hs(Thread::Current());
Handle<mirror::Class> h_to(hs.NewHandle(to));
Handle<mirror::Object> h_obj(hs.NewHandle(src_value.GetL()));
if (h_obj != nullptr && !to->IsAssignableFrom(h_obj->GetClass())) {
ThrowClassCastException(h_to.Get(), h_obj->GetClass());
return false;
}
value->SetL(h_obj.Get());
return true;
} else if (IsReferenceType(to_type)) {
DCHECK(IsPrimitiveType(from_type));
// The source type is a primitive and the target type is a reference, so we must box.
// The target type maybe a super class of the boxed source type, for example,
// if the source type is int, it's boxed type is java.lang.Integer, and the target
// type could be java.lang.Number.
Primitive::Type type;
if (!GetUnboxedPrimitiveType(to, &type)) {
ObjPtr<mirror::Class> boxed_from_class = GetBoxedPrimitiveClass(from_type);
if (boxed_from_class->IsSubClass(to)) {
type = from_type;
} else {
ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get());
return false;
}
}
if (UNLIKELY(from_type != type)) {
ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get());
return false;
}
if (!ConvertPrimitiveValueNoThrow(from_type, type, src_value, value)) {
ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get());
return false;
}
// Then perform the actual boxing, and then set the reference.
ObjPtr<mirror::Object> boxed = BoxPrimitive(type, src_value);
value->SetL(boxed.Ptr());
return true;
} else {
// The source type is a reference and the target type is a primitive, so we must unbox.
DCHECK(IsReferenceType(from_type));
DCHECK(IsPrimitiveType(to_type));
ObjPtr<mirror::Object> from_obj(src_value.GetL());
if (UNLIKELY(from_obj == nullptr)) {
ThrowNullPointerException(
StringPrintf("Expected to unbox a '%s' primitive type but was returned null",
from->PrettyDescriptor().c_str()).c_str());
return false;
}
Primitive::Type unboxed_type;
JValue unboxed_value;
if (UNLIKELY(!GetUnboxedTypeAndValue(from_obj, &unboxed_type, &unboxed_value))) {
ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get());
return false;
}
if (UNLIKELY(!ConvertPrimitiveValueNoThrow(unboxed_type, to_type, unboxed_value, value))) {
ThrowClassCastException(from, to);
return false;
}
return true;
}
}
namespace {
template <bool is_range>
inline void CopyArgumentsFromCallerFrame(const ShadowFrame& caller_frame,
ShadowFrame* callee_frame,
const uint32_t (&args)[Instruction::kMaxVarArgRegs],
uint32_t first_arg,
const size_t first_dst_reg,
const size_t num_regs)
REQUIRES_SHARED(Locks::mutator_lock_) {
for (size_t i = 0; i < num_regs; ++i) {
size_t dst_reg = first_dst_reg + i;
size_t src_reg = is_range ? (first_arg + i) : args[i];
// Uint required, so that sign extension does not make this wrong on 64-bit systems
uint32_t src_value = caller_frame.GetVReg(src_reg);
ObjPtr<mirror::Object> o = caller_frame.GetVRegReference<kVerifyNone>(src_reg);
// If both register locations contains the same value, the register probably holds a reference.
// Note: As an optimization, non-moving collectors leave a stale reference value
// in the references array even after the original vreg was overwritten to a non-reference.
if (src_value == reinterpret_cast<uintptr_t>(o.Ptr())) {
callee_frame->SetVRegReference(dst_reg, o.Ptr());
} else {
callee_frame->SetVReg(dst_reg, src_value);
}
}
}
template <bool is_range>
inline bool ConvertAndCopyArgumentsFromCallerFrame(
Thread* self,
Handle<mirror::MethodType> callsite_type,
Handle<mirror::MethodType> callee_type,
const ShadowFrame& caller_frame,
const uint32_t (&args)[Instruction::kMaxVarArgRegs],
uint32_t first_arg,
uint32_t first_dst_reg,
ShadowFrame* callee_frame)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::ObjectArray<mirror::Class>> from_types(callsite_type->GetPTypes());
ObjPtr<mirror::ObjectArray<mirror::Class>> to_types(callee_type->GetPTypes());
const int32_t num_method_params = from_types->GetLength();
if (to_types->GetLength() != num_method_params) {
ThrowWrongMethodTypeException(callee_type.Get(), callsite_type.Get());
return false;
}
ShadowFrameGetter<is_range> getter(first_arg, args, caller_frame);
ShadowFrameSetter setter(callee_frame, first_dst_reg);
return PerformConversions<ShadowFrameGetter<is_range>, ShadowFrameSetter>(self,
callsite_type,
callee_type,
&getter,
&setter,
num_method_params);
}
inline bool IsMethodHandleInvokeExact(const ArtMethod* const method) {
if (method == jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) {
return true;
} else {
DCHECK_EQ(method, jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke));
return false;
}
}
inline bool IsInvoke(const mirror::MethodHandle::Kind handle_kind) {
return handle_kind <= mirror::MethodHandle::Kind::kLastInvokeKind;
}
inline bool IsInvokeTransform(const mirror::MethodHandle::Kind handle_kind) {
return (handle_kind == mirror::MethodHandle::Kind::kInvokeTransform
|| handle_kind == mirror::MethodHandle::Kind::kInvokeCallSiteTransform);
}
inline bool IsFieldAccess(mirror::MethodHandle::Kind handle_kind) {
return (handle_kind >= mirror::MethodHandle::Kind::kFirstAccessorKind
&& handle_kind <= mirror::MethodHandle::Kind::kLastAccessorKind);
}
// Calculate the number of ins for a proxy or native method, where we
// can't just look at the code item.
static inline size_t GetInsForProxyOrNativeMethod(ArtMethod* method)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(method->IsNative() || method->IsProxyMethod());
method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
uint32_t shorty_length = 0;
const char* shorty = method->GetShorty(&shorty_length);
// Static methods do not include the receiver. The receiver isn't included
// in the shorty_length though the return value is.
size_t num_ins = method->IsStatic() ? shorty_length - 1 : shorty_length;
for (const char* c = shorty + 1; *c != '\0'; ++c) {
if (*c == 'J' || *c == 'D') {
++num_ins;
}
}
return num_ins;
}
// Returns true iff. the callsite type for a polymorphic invoke is transformer
// like, i.e that it has a single input argument whose type is
// dalvik.system.EmulatedStackFrame.
static inline bool IsCallerTransformer(Handle<mirror::MethodType> callsite_type)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::ObjectArray<mirror::Class>> param_types(callsite_type->GetPTypes());
if (param_types->GetLength() == 1) {
ObjPtr<mirror::Class> param(param_types->GetWithoutChecks(0));
// NB Comparing descriptor here as it appears faster in cycle simulation than using:
// param == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_EmulatedStackFrame)
// Costs are 98 vs 173 cycles per invocation.
return param->DescriptorEquals("Ldalvik/system/EmulatedStackFrame;");
}
return false;
}
template <bool is_range>
static inline bool DoCallPolymorphic(ArtMethod* called_method,
Handle<mirror::MethodType> callsite_type,
Handle<mirror::MethodType> target_type,
Thread* self,
ShadowFrame& shadow_frame,
const uint32_t (&args)[Instruction::kMaxVarArgRegs],
uint32_t first_arg,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Compute method information.
const DexFile::CodeItem* code_item = called_method->GetCodeItem();
// Number of registers for the callee's call frame. Note that for non-exact
// invokes, we always derive this information from the callee method. We
// cannot guarantee during verification that the number of registers encoded
// in the invoke is equal to the number of ins for the callee. This is because
// some transformations (such as boxing a long -> Long or wideining an
// int -> long will change that number.
uint16_t num_regs;
size_t num_input_regs;
size_t first_dest_reg;
if (LIKELY(code_item != nullptr)) {
num_regs = code_item->registers_size_;
first_dest_reg = num_regs - code_item->ins_size_;
num_input_regs = code_item->ins_size_;
// Parameter registers go at the end of the shadow frame.
DCHECK_NE(first_dest_reg, (size_t)-1);
} else {
// No local regs for proxy and native methods.
DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
num_regs = num_input_regs = GetInsForProxyOrNativeMethod(called_method);
first_dest_reg = 0;
}
// Allocate shadow frame on the stack.
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0);
ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();
// Whether this polymorphic invoke was issued by a transformer method.
bool is_caller_transformer = false;
// Thread might be suspended during PerformArgumentConversions due to the
// allocations performed during boxing.
{
ScopedStackedShadowFramePusher pusher(
self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
if (callsite_type->IsExactMatch(target_type.Get())) {
// This is an exact invoke, we can take the fast path of just copying all
// registers without performing any argument conversions.
CopyArgumentsFromCallerFrame<is_range>(shadow_frame,
new_shadow_frame,
args,
first_arg,
first_dest_reg,
num_input_regs);
} else {
// This includes the case where we're entering this invoke-polymorphic
// from a transformer method. In that case, the callsite_type will contain
// a single argument of type dalvik.system.EmulatedStackFrame. In that
// case, we'll have to unmarshal the EmulatedStackFrame into the
// new_shadow_frame and perform argument conversions on it.
if (IsCallerTransformer(callsite_type)) {
is_caller_transformer = true;
// The emulated stack frame is the first and only argument when we're coming
// through from a transformer.
size_t first_arg_register = (is_range) ? first_arg : args[0];
ObjPtr<mirror::EmulatedStackFrame> emulated_stack_frame(
reinterpret_cast<mirror::EmulatedStackFrame*>(
shadow_frame.GetVRegReference(first_arg_register)));
if (!emulated_stack_frame->WriteToShadowFrame(self,
target_type,
first_dest_reg,
new_shadow_frame)) {
DCHECK(self->IsExceptionPending());
result->SetL(0);
return false;
}
} else {
if (!callsite_type->IsConvertible(target_type.Get())) {
ThrowWrongMethodTypeException(target_type.Get(), callsite_type.Get());
return false;
}
if (!ConvertAndCopyArgumentsFromCallerFrame<is_range>(self,
callsite_type,
target_type,
shadow_frame,
args,
first_arg,
first_dest_reg,
new_shadow_frame)) {
DCHECK(self->IsExceptionPending());
result->SetL(0);
return false;
}
}
}
}
PerformCall(self, code_item, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result);
if (self->IsExceptionPending()) {
return false;
}
// If the caller of this signature polymorphic method was a transformer,
// we need to copy the result back out to the emulated stack frame.
if (is_caller_transformer) {
StackHandleScope<2> hs(self);
size_t first_callee_register = is_range ? (first_arg) : args[0];
Handle<mirror::EmulatedStackFrame> emulated_stack_frame(
hs.NewHandle(reinterpret_cast<mirror::EmulatedStackFrame*>(
shadow_frame.GetVRegReference(first_callee_register))));
Handle<mirror::MethodType> emulated_stack_type(hs.NewHandle(emulated_stack_frame->GetType()));
JValue local_result;
local_result.SetJ(result->GetJ());
if (ConvertReturnValue(emulated_stack_type, target_type, &local_result)) {
emulated_stack_frame->SetReturnValue(self, local_result);
return true;
}
DCHECK(self->IsExceptionPending());
return false;
}
return ConvertReturnValue(callsite_type, target_type, result);
}
template <bool is_range>
static inline bool DoCallTransform(ArtMethod* called_method,
Handle<mirror::MethodType> callsite_type,
Handle<mirror::MethodType> callee_type,
Thread* self,
ShadowFrame& shadow_frame,
Handle<mirror::MethodHandle> receiver,
const uint32_t (&args)[Instruction::kMaxVarArgRegs],
uint32_t first_arg,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
// This can be fixed to two, because the method we're calling here
// (MethodHandle.transformInternal) doesn't have any locals and the signature
// is known :
//
// private MethodHandle.transformInternal(EmulatedStackFrame sf);
//
// This means we need only two vregs :
// - One for the receiver object.
// - One for the only method argument (an EmulatedStackFrame).
static constexpr size_t kNumRegsForTransform = 2;
const DexFile::CodeItem* code_item = called_method->GetCodeItem();
DCHECK(code_item != nullptr);
DCHECK_EQ(kNumRegsForTransform, code_item->registers_size_);
DCHECK_EQ(kNumRegsForTransform, code_item->ins_size_);
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(kNumRegsForTransform, &shadow_frame, called_method, /* dex pc */ 0);
ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();
StackHandleScope<1> hs(self);
MutableHandle<mirror::EmulatedStackFrame> sf(hs.NewHandle<mirror::EmulatedStackFrame>(nullptr));
if (IsCallerTransformer(callsite_type)) {
// If we're entering this transformer from another transformer, we can pass
// through the handle directly to the callee, instead of having to
// instantiate a new stack frame based on the shadow frame.
size_t first_callee_register = is_range ? first_arg : args[0];
sf.Assign(reinterpret_cast<mirror::EmulatedStackFrame*>(
shadow_frame.GetVRegReference(first_callee_register)));
} else {
sf.Assign(mirror::EmulatedStackFrame::CreateFromShadowFrameAndArgs<is_range>(self,
callsite_type,
callee_type,
shadow_frame,
first_arg,
args));
// Something went wrong while creating the emulated stack frame, we should
// throw the pending exception.
if (sf == nullptr) {
DCHECK(self->IsExceptionPending());
return false;
}
}
new_shadow_frame->SetVRegReference(0, receiver.Get());
new_shadow_frame->SetVRegReference(1, sf.Get());
PerformCall(self,
code_item,
shadow_frame.GetMethod(),
0 /* first destination register */,
new_shadow_frame,
result);
if (self->IsExceptionPending()) {
return false;
}
// If the called transformer method we called has returned a value, then we
// need to copy it back to |result|.
sf->GetReturnValue(self, result);
return ConvertReturnValue(callsite_type, callee_type, result);
}
inline static ObjPtr<mirror::Class> GetAndInitializeDeclaringClass(Thread* self, ArtField* field)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Method handle invocations on static fields should ensure class is
// initialized. This usually happens when an instance is constructed
// or class members referenced, but this is not guaranteed when
// looking up method handles.
ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
if (UNLIKELY(!klass->IsInitialized())) {
StackHandleScope<1> hs(self);
HandleWrapperObjPtr<mirror::Class> h(hs.NewHandleWrapper(&klass));
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h, true, true)) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
}
return klass;
}
ArtMethod* RefineTargetMethod(Thread* self,
ShadowFrame& shadow_frame,
const mirror::MethodHandle::Kind& handle_kind,
Handle<mirror::MethodType> handle_type,
Handle<mirror::MethodType> callsite_type,
const uint32_t receiver_reg,
ArtMethod* target_method)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (handle_kind == mirror::MethodHandle::Kind::kInvokeVirtual ||
handle_kind == mirror::MethodHandle::Kind::kInvokeInterface) {
// For virtual and interface methods ensure target_method points to
// the actual method to invoke.
ObjPtr<mirror::Object> receiver(shadow_frame.GetVRegReference(receiver_reg));
if (IsCallerTransformer(callsite_type)) {
// The current receiver is an emulated stack frame, the method's
// receiver needs to be fetched from there as the emulated frame
// will be unpacked into a new frame.
receiver = ObjPtr<mirror::EmulatedStackFrame>::DownCast(receiver)->GetReceiver();
}
ObjPtr<mirror::Class> declaring_class(target_method->GetDeclaringClass());
if (receiver == nullptr || receiver->GetClass() != declaring_class) {
// Verify that _vRegC is an object reference and of the type expected by
// the receiver.
if (!VerifyObjectIsClass(receiver, declaring_class)) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
return receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(
target_method, kRuntimePointerSize);
}
} else if (handle_kind == mirror::MethodHandle::Kind::kInvokeDirect) {
// String constructors are a special case, they are replaced with
// StringFactory methods.
if (target_method->IsConstructor() && target_method->GetDeclaringClass()->IsStringClass()) {
DCHECK(handle_type->GetRType()->IsStringClass());
return WellKnownClasses::StringInitToStringFactory(target_method);
}
} else if (handle_kind == mirror::MethodHandle::Kind::kInvokeSuper) {
ObjPtr<mirror::Class> declaring_class = target_method->GetDeclaringClass();
// Note that we're not dynamically dispatching on the type of the receiver
// here. We use the static type of the "receiver" object that we've
// recorded in the method handle's type, which will be the same as the
// special caller that was specified at the point of lookup.
ObjPtr<mirror::Class> referrer_class = handle_type->GetPTypes()->Get(0);
if (!declaring_class->IsInterface()) {
ObjPtr<mirror::Class> super_class = referrer_class->GetSuperClass();
uint16_t vtable_index = target_method->GetMethodIndex();
DCHECK(super_class != nullptr);
DCHECK(super_class->HasVTable());
// Note that super_class is a super of referrer_class and target_method
// will always be declared by super_class (or one of its super classes).
DCHECK_LT(vtable_index, super_class->GetVTableLength());
return super_class->GetVTableEntry(vtable_index, kRuntimePointerSize);
} else {
return referrer_class->FindVirtualMethodForInterfaceSuper(target_method, kRuntimePointerSize);
}
}
return target_method;
}
template <bool is_range>
bool DoInvokePolymorphicMethod(Thread* self,
ShadowFrame& shadow_frame,
Handle<mirror::MethodHandle> method_handle,
Handle<mirror::MethodType> callsite_type,
const uint32_t (&args)[Instruction::kMaxVarArgRegs],
uint32_t first_arg,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
Handle<mirror::MethodType> handle_type(hs.NewHandle(method_handle->GetMethodType()));
const mirror::MethodHandle::Kind handle_kind = method_handle->GetHandleKind();
DCHECK(IsInvoke(handle_kind));
// Get the method we're actually invoking along with the kind of
// invoke that is desired. We don't need to perform access checks at this
// point because they would have been performed on our behalf at the point
// of creation of the method handle.
ArtMethod* target_method = method_handle->GetTargetMethod();
uint32_t receiver_reg = is_range ? first_arg: args[0];
ArtMethod* called_method = RefineTargetMethod(self,
shadow_frame,
handle_kind,
handle_type,
callsite_type,
receiver_reg,
target_method);
if (called_method == nullptr) {
DCHECK(self->IsExceptionPending());
return false;
}
if (IsInvokeTransform(handle_kind)) {
// There are two cases here - method handles representing regular
// transforms and those representing call site transforms. Method
// handles for call site transforms adapt their MethodType to match
// the call site. For these, the |callee_type| is the same as the
// |callsite_type|. The VarargsCollector is such a tranform, its
// method type depends on the call site, ie. x(a) or x(a, b), or
// x(a, b, c). The VarargsCollector invokes a variable arity method
// with the arity arguments in an array.
Handle<mirror::MethodType> callee_type =
(handle_kind == mirror::MethodHandle::Kind::kInvokeCallSiteTransform) ? callsite_type
: handle_type;
return DoCallTransform<is_range>(called_method,
callsite_type,
callee_type,
self,
shadow_frame,
method_handle /* receiver */,
args,
first_arg,
result);
} else {
return DoCallPolymorphic<is_range>(called_method,
callsite_type,
handle_type,
self,
shadow_frame,
args,
first_arg,
result);
}
}
// Helper for getters in invoke-polymorphic.
inline static void DoFieldGetForInvokePolymorphic(Thread* self,
const ShadowFrame& shadow_frame,
ObjPtr<mirror::Object>& obj,
ArtField* field,
Primitive::Type field_type,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
switch (field_type) {
case Primitive::kPrimBoolean:
DoFieldGetCommon<Primitive::kPrimBoolean>(self, shadow_frame, obj, field, result);
break;
case Primitive::kPrimByte:
DoFieldGetCommon<Primitive::kPrimByte>(self, shadow_frame, obj, field, result);
break;
case Primitive::kPrimChar:
DoFieldGetCommon<Primitive::kPrimChar>(self, shadow_frame, obj, field, result);
break;
case Primitive::kPrimShort:
DoFieldGetCommon<Primitive::kPrimShort>(self, shadow_frame, obj, field, result);
break;
case Primitive::kPrimInt:
DoFieldGetCommon<Primitive::kPrimInt>(self, shadow_frame, obj, field, result);
break;
case Primitive::kPrimLong:
DoFieldGetCommon<Primitive::kPrimLong>(self, shadow_frame, obj, field, result);
break;
case Primitive::kPrimFloat:
DoFieldGetCommon<Primitive::kPrimInt>(self, shadow_frame, obj, field, result);
break;
case Primitive::kPrimDouble:
DoFieldGetCommon<Primitive::kPrimLong>(self, shadow_frame, obj, field, result);
break;
case Primitive::kPrimNot:
DoFieldGetCommon<Primitive::kPrimNot>(self, shadow_frame, obj, field, result);
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
}
// Helper for setters in invoke-polymorphic.
inline bool DoFieldPutForInvokePolymorphic(Thread* self,
ShadowFrame& shadow_frame,
ObjPtr<mirror::Object>& obj,
ArtField* field,
Primitive::Type field_type,
const JValue& value)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!Runtime::Current()->IsActiveTransaction());
static const bool kTransaction = false; // Not in a transaction.
static const bool kAssignabilityCheck = false; // No access check.
switch (field_type) {
case Primitive::kPrimBoolean:
return
DoFieldPutCommon<Primitive::kPrimBoolean, kAssignabilityCheck, kTransaction>(
self, shadow_frame, obj, field, value);
case Primitive::kPrimByte:
return DoFieldPutCommon<Primitive::kPrimByte, kAssignabilityCheck, kTransaction>(
self, shadow_frame, obj, field, value);
case Primitive::kPrimChar:
return DoFieldPutCommon<Primitive::kPrimChar, kAssignabilityCheck, kTransaction>(
self, shadow_frame, obj, field, value);
case Primitive::kPrimShort:
return DoFieldPutCommon<Primitive::kPrimShort, kAssignabilityCheck, kTransaction>(
self, shadow_frame, obj, field, value);
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
return DoFieldPutCommon<Primitive::kPrimInt, kAssignabilityCheck, kTransaction>(
self, shadow_frame, obj, field, value);
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
return DoFieldPutCommon<Primitive::kPrimLong, kAssignabilityCheck, kTransaction>(
self, shadow_frame, obj, field, value);
case Primitive::kPrimNot:
return DoFieldPutCommon<Primitive::kPrimNot, kAssignabilityCheck, kTransaction>(
self, shadow_frame, obj, field, value);
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
}
static JValue GetValueFromShadowFrame(const ShadowFrame& shadow_frame,
Primitive::Type field_type,
uint32_t vreg)
REQUIRES_SHARED(Locks::mutator_lock_) {
JValue field_value;
switch (field_type) {
case Primitive::kPrimBoolean:
field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimByte:
field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimChar:
field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimShort:
field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg)));
break;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
field_value.SetI(shadow_frame.GetVReg(vreg));
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
field_value.SetJ(shadow_frame.GetVRegLong(vreg));
break;
case Primitive::kPrimNot:
field_value.SetL(shadow_frame.GetVRegReference(vreg));
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable: " << field_type;
UNREACHABLE();
}
return field_value;
}
template <bool is_range, bool do_conversions>
bool DoInvokePolymorphicFieldAccess(Thread* self,
ShadowFrame& shadow_frame,
Handle<mirror::MethodHandle> method_handle,
Handle<mirror::MethodType> callsite_type,
const uint32_t (&args)[Instruction::kMaxVarArgRegs],
uint32_t first_arg,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
Handle<mirror::MethodType> handle_type(hs.NewHandle(method_handle->GetMethodType()));
const mirror::MethodHandle::Kind handle_kind = method_handle->GetHandleKind();
ArtField* field = method_handle->GetTargetField();
Primitive::Type field_type = field->GetTypeAsPrimitiveType();
switch (handle_kind) {
case mirror::MethodHandle::kInstanceGet: {
size_t obj_reg = is_range ? first_arg : args[0];
ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(obj_reg);
DoFieldGetForInvokePolymorphic(self, shadow_frame, obj, field, field_type, result);
if (do_conversions && !ConvertReturnValue(callsite_type, handle_type, result)) {
DCHECK(self->IsExceptionPending());
return false;
}
return true;
}
case mirror::MethodHandle::kStaticGet: {
ObjPtr<mirror::Object> obj = GetAndInitializeDeclaringClass(self, field);
if (obj == nullptr) {
DCHECK(self->IsExceptionPending());
return false;
}
DoFieldGetForInvokePolymorphic(self, shadow_frame, obj, field, field_type, result);
if (do_conversions && !ConvertReturnValue(callsite_type, handle_type, result)) {
DCHECK(self->IsExceptionPending());
return false;
}
return true;
}
case mirror::MethodHandle::kInstancePut: {
size_t obj_reg = is_range ? first_arg : args[0];
size_t value_reg = is_range ? (first_arg + 1) : args[1];
const size_t kPTypeIndex = 1;
// Use ptypes instead of field type since we may be unboxing a reference for a primitive
// field. The field type is incorrect for this case.
JValue value = GetValueFromShadowFrame(
shadow_frame,
callsite_type->GetPTypes()->Get(kPTypeIndex)->GetPrimitiveType(),
value_reg);
if (do_conversions && !ConvertArgumentValue(callsite_type,
handle_type,
kPTypeIndex,
&value)) {
DCHECK(self->IsExceptionPending());
return false;
}
ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(obj_reg);
return DoFieldPutForInvokePolymorphic(self, shadow_frame, obj, field, field_type, value);
}
case mirror::MethodHandle::kStaticPut: {
ObjPtr<mirror::Object> obj = GetAndInitializeDeclaringClass(self, field);
if (obj == nullptr) {
DCHECK(self->IsExceptionPending());
return false;
}
size_t value_reg = is_range ? first_arg : args[0];
const size_t kPTypeIndex = 0;
// Use ptypes instead of field type since we may be unboxing a reference for a primitive
// field. The field type is incorrect for this case.
JValue value = GetValueFromShadowFrame(
shadow_frame,
callsite_type->GetPTypes()->Get(kPTypeIndex)->GetPrimitiveType(),
value_reg);
if (do_conversions && !ConvertArgumentValue(callsite_type,
handle_type,
kPTypeIndex,
&value)) {
DCHECK(self->IsExceptionPending());
return false;
}
return DoFieldPutForInvokePolymorphic(self, shadow_frame, obj, field, field_type, value);
}
default:
LOG(FATAL) << "Unreachable: " << handle_kind;
UNREACHABLE();
}
}
template <bool is_range>
static inline bool DoInvokePolymorphicNonExact(Thread* self,
ShadowFrame& shadow_frame,
Handle<mirror::MethodHandle> method_handle,
Handle<mirror::MethodType> callsite_type,
const uint32_t (&args)[Instruction::kMaxVarArgRegs],
uint32_t first_arg,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
const mirror::MethodHandle::Kind handle_kind = method_handle->GetHandleKind();
ObjPtr<mirror::MethodType> handle_type(method_handle->GetMethodType());
CHECK(handle_type != nullptr);
if (IsFieldAccess(handle_kind)) {
DCHECK(!callsite_type->IsExactMatch(handle_type.Ptr()));
if (!callsite_type->IsConvertible(handle_type.Ptr())) {
ThrowWrongMethodTypeException(handle_type.Ptr(), callsite_type.Get());
return false;
}
const bool do_convert = true;
return DoInvokePolymorphicFieldAccess<is_range, do_convert>(
self,
shadow_frame,
method_handle,
callsite_type,
args,
first_arg,
result);
}
return DoInvokePolymorphicMethod<is_range>(self,
shadow_frame,
method_handle,
callsite_type,
args,
first_arg,
result);
}
template <bool is_range>
bool DoInvokePolymorphicExact(Thread* self,
ShadowFrame& shadow_frame,
Handle<mirror::MethodHandle> method_handle,
Handle<mirror::MethodType> callsite_type,
const uint32_t (&args)[Instruction::kMaxVarArgRegs],
uint32_t first_arg,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
const mirror::MethodHandle::Kind handle_kind = method_handle->GetHandleKind();
Handle<mirror::MethodType> method_handle_type(hs.NewHandle(method_handle->GetMethodType()));
if (IsFieldAccess(handle_kind)) {
const bool do_convert = false;
return DoInvokePolymorphicFieldAccess<is_range, do_convert>(
self,
shadow_frame,
method_handle,
callsite_type,
args,
first_arg,
result);
}
// Slow-path check.
if (IsInvokeTransform(handle_kind) || IsCallerTransformer(callsite_type)) {
return DoInvokePolymorphicMethod<is_range>(self,
shadow_frame,
method_handle,
callsite_type,
args,
first_arg,
result);
}
// On the fast-path. This is equivalent to DoCallPolymoprhic without the conversion paths.
ArtMethod* target_method = method_handle->GetTargetMethod();
uint32_t receiver_reg = is_range ? first_arg : args[0];
ArtMethod* called_method = RefineTargetMethod(self,
shadow_frame,
handle_kind,
method_handle_type,
callsite_type,
receiver_reg,
target_method);
if (called_method == nullptr) {
DCHECK(self->IsExceptionPending());
return false;
}
// Compute method information.
const DexFile::CodeItem* code_item = called_method->GetCodeItem();
uint16_t num_regs;
size_t num_input_regs;
size_t first_dest_reg;
if (LIKELY(code_item != nullptr)) {
num_regs = code_item->registers_size_;
first_dest_reg = num_regs - code_item->ins_size_;
num_input_regs = code_item->ins_size_;
// Parameter registers go at the end of the shadow frame.
DCHECK_NE(first_dest_reg, (size_t)-1);
} else {
// No local regs for proxy and native methods.
DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
num_regs = num_input_regs = GetInsForProxyOrNativeMethod(called_method);
first_dest_reg = 0;
}
// Allocate shadow frame on the stack.
const char* old_cause = self->StartAssertNoThreadSuspension("DoCallCommon");
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0);
ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();
CopyArgumentsFromCallerFrame<is_range>(shadow_frame,
new_shadow_frame,
args,
first_arg,
first_dest_reg,
num_input_regs);
self->EndAssertNoThreadSuspension(old_cause);
PerformCall(self, code_item, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result);
if (self->IsExceptionPending()) {
return false;
}
return true;
}
} // namespace
template <bool is_range>
bool DoInvokePolymorphic(Thread* self,
ArtMethod* invoke_method,
ShadowFrame& shadow_frame,
Handle<mirror::MethodHandle> method_handle,
Handle<mirror::MethodType> callsite_type,
const uint32_t (&args)[Instruction::kMaxVarArgRegs],
uint32_t first_arg,
JValue* result)
REQUIRES_SHARED(Locks::mutator_lock_) {
ObjPtr<mirror::MethodType> method_handle_type = method_handle->GetMethodType();
if (IsMethodHandleInvokeExact(invoke_method)) {
// We need to check the nominal type of the handle in addition to the
// real type. The "nominal" type is present when MethodHandle.asType is
// called any handle, and results in the declared type of the handle
// changing.
ObjPtr<mirror::MethodType> nominal_type(method_handle->GetNominalType());
if (UNLIKELY(nominal_type != nullptr)) {
if (UNLIKELY(!callsite_type->IsExactMatch(nominal_type.Ptr()))) {
ThrowWrongMethodTypeException(nominal_type.Ptr(), callsite_type.Get());
return false;
}
if (LIKELY(!nominal_type->IsExactMatch(method_handle_type.Ptr()))) {
// Different nominal type means we have to treat as non-exact.
return DoInvokePolymorphicNonExact<is_range>(self,
shadow_frame,
method_handle,
callsite_type,
args,
first_arg,
result);
}
}
if (!callsite_type->IsExactMatch(method_handle_type.Ptr())) {
ThrowWrongMethodTypeException(method_handle_type.Ptr(), callsite_type.Get());
return false;
}
return DoInvokePolymorphicExact<is_range>(self,
shadow_frame,
method_handle,
callsite_type,
args,
first_arg,
result);
} else {
if (UNLIKELY(callsite_type->IsExactMatch(method_handle_type.Ptr()))) {
// A non-exact invoke that can be invoked exactly.
return DoInvokePolymorphicExact<is_range>(self,
shadow_frame,
method_handle,
callsite_type,
args,
first_arg,
result);
}
return DoInvokePolymorphicNonExact<is_range>(self,
shadow_frame,
method_handle,
callsite_type,
args,
first_arg,
result);
}
}
#define EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(_is_range) \
template REQUIRES_SHARED(Locks::mutator_lock_) \
bool DoInvokePolymorphic<_is_range>( \
Thread* self, \
ArtMethod* invoke_method, \
ShadowFrame& shadow_frame, \
Handle<mirror::MethodHandle> method_handle, \
Handle<mirror::MethodType> callsite_type, \
const uint32_t (&args)[Instruction::kMaxVarArgRegs], \
uint32_t first_arg, \
JValue* result)
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true);
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false);
#undef EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL
} // namespace art