blob: 6df4411565c232a9e383369f4c709ef2e41e1fe8 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex_file_verifier.h"
#include "base/stringprintf.h"
#include "dex_file-inl.h"
#include "leb128.h"
#include "safe_map.h"
#include "UniquePtr.h"
#include "utf.h"
#include "utils.h"
#include "zip_archive.h"
namespace art {
static uint32_t MapTypeToBitMask(uint32_t map_type) {
switch (map_type) {
case DexFile::kDexTypeHeaderItem: return 1 << 0;
case DexFile::kDexTypeStringIdItem: return 1 << 1;
case DexFile::kDexTypeTypeIdItem: return 1 << 2;
case DexFile::kDexTypeProtoIdItem: return 1 << 3;
case DexFile::kDexTypeFieldIdItem: return 1 << 4;
case DexFile::kDexTypeMethodIdItem: return 1 << 5;
case DexFile::kDexTypeClassDefItem: return 1 << 6;
case DexFile::kDexTypeMapList: return 1 << 7;
case DexFile::kDexTypeTypeList: return 1 << 8;
case DexFile::kDexTypeAnnotationSetRefList: return 1 << 9;
case DexFile::kDexTypeAnnotationSetItem: return 1 << 10;
case DexFile::kDexTypeClassDataItem: return 1 << 11;
case DexFile::kDexTypeCodeItem: return 1 << 12;
case DexFile::kDexTypeStringDataItem: return 1 << 13;
case DexFile::kDexTypeDebugInfoItem: return 1 << 14;
case DexFile::kDexTypeAnnotationItem: return 1 << 15;
case DexFile::kDexTypeEncodedArrayItem: return 1 << 16;
case DexFile::kDexTypeAnnotationsDirectoryItem: return 1 << 17;
}
return 0;
}
static bool IsDataSectionType(uint32_t map_type) {
switch (map_type) {
case DexFile::kDexTypeHeaderItem:
case DexFile::kDexTypeStringIdItem:
case DexFile::kDexTypeTypeIdItem:
case DexFile::kDexTypeProtoIdItem:
case DexFile::kDexTypeFieldIdItem:
case DexFile::kDexTypeMethodIdItem:
case DexFile::kDexTypeClassDefItem:
return false;
}
return true;
}
static bool CheckShortyDescriptorMatch(char shorty_char, const char* descriptor,
bool is_return_type) {
switch (shorty_char) {
case 'V':
if (!is_return_type) {
LOG(ERROR) << "Invalid use of void";
return false;
}
// Intentional fallthrough.
case 'B':
case 'C':
case 'D':
case 'F':
case 'I':
case 'J':
case 'S':
case 'Z':
if ((descriptor[0] != shorty_char) || (descriptor[1] != '\0')) {
LOG(ERROR) << StringPrintf("Shorty vs. primitive type mismatch: '%c', '%s'", shorty_char, descriptor);
return false;
}
break;
case 'L':
if ((descriptor[0] != 'L') && (descriptor[0] != '[')) {
LOG(ERROR) << StringPrintf("Shorty vs. type mismatch: '%c', '%s'", shorty_char, descriptor);
return false;
}
break;
default:
LOG(ERROR) << "Bad shorty character: '" << shorty_char << "'";
return false;
}
return true;
}
bool DexFileVerifier::Verify(const DexFile* dex_file, const byte* begin, size_t size) {
UniquePtr<DexFileVerifier> verifier(new DexFileVerifier(dex_file, begin, size));
return verifier->Verify();
}
bool DexFileVerifier::CheckPointerRange(const void* start, const void* end, const char* label) const {
uint32_t range_start = reinterpret_cast<uint32_t>(start);
uint32_t range_end = reinterpret_cast<uint32_t>(end);
uint32_t file_start = reinterpret_cast<uint32_t>(begin_);
uint32_t file_end = file_start + size_;
if ((range_start < file_start) || (range_start > file_end) ||
(range_end < file_start) || (range_end > file_end)) {
LOG(ERROR) << StringPrintf("Bad range for %s: %x to %x", label,
range_start - file_start, range_end - file_start);
return false;
}
return true;
}
bool DexFileVerifier::CheckListSize(const void* start, uint32_t count,
uint32_t element_size, const char* label) const {
const byte* list_start = reinterpret_cast<const byte*>(start);
return CheckPointerRange(list_start, list_start + (count * element_size), label);
}
bool DexFileVerifier::CheckIndex(uint32_t field, uint32_t limit, const char* label) const {
if (field >= limit) {
LOG(ERROR) << StringPrintf("Bad index for %s: %x >= %x", label, field, limit);
return false;
}
return true;
}
bool DexFileVerifier::CheckHeader() const {
// Check file size from the header.
uint32_t expected_size = header_->file_size_;
if (size_ != expected_size) {
LOG(ERROR) << "Bad file size (" << size_ << ", expected " << expected_size << ")";
return false;
}
// Compute and verify the checksum in the header.
uint32_t adler_checksum = adler32(0L, Z_NULL, 0);
const uint32_t non_sum = sizeof(header_->magic_) + sizeof(header_->checksum_);
const byte* non_sum_ptr = reinterpret_cast<const byte*>(header_) + non_sum;
adler_checksum = adler32(adler_checksum, non_sum_ptr, expected_size - non_sum);
if (adler_checksum != header_->checksum_) {
LOG(ERROR) << StringPrintf("Bad checksum (%08x, expected %08x)", adler_checksum, header_->checksum_);
return false;
}
// Check the contents of the header.
if (header_->endian_tag_ != DexFile::kDexEndianConstant) {
LOG(ERROR) << StringPrintf("Unexpected endian_tag: %x", header_->endian_tag_);
return false;
}
if (header_->header_size_ != sizeof(DexFile::Header)) {
LOG(ERROR) << "Bad header size: " << header_->header_size_;
return false;
}
return true;
}
bool DexFileVerifier::CheckMap() const {
const DexFile::MapList* map = reinterpret_cast<const DexFile::MapList*>(begin_ + header_->map_off_);
const DexFile::MapItem* item = map->list_;
uint32_t count = map->size_;
uint32_t last_offset = 0;
uint32_t data_item_count = 0;
uint32_t data_items_left = header_->data_size_;
uint32_t used_bits = 0;
// Sanity check the size of the map list.
if (!CheckListSize(item, count, sizeof(DexFile::MapItem), "map size")) {
return false;
}
// Check the items listed in the map.
for (uint32_t i = 0; i < count; i++) {
if (last_offset >= item->offset_ && i != 0) {
LOG(ERROR) << StringPrintf("Out of order map item: %x then %x", last_offset, item->offset_);
return false;
}
if (item->offset_ >= header_->file_size_) {
LOG(ERROR) << StringPrintf("Map item after end of file: %x, size %x", item->offset_, header_->file_size_);
return false;
}
if (IsDataSectionType(item->type_)) {
uint32_t icount = item->size_;
if (icount > data_items_left) {
LOG(ERROR) << "Too many items in data section: " << data_item_count + icount;
return false;
}
data_items_left -= icount;
data_item_count += icount;
}
uint32_t bit = MapTypeToBitMask(item->type_);
if (bit == 0) {
LOG(ERROR) << StringPrintf("Unknown map section type %x", item->type_);
return false;
}
if ((used_bits & bit) != 0) {
LOG(ERROR) << StringPrintf("Duplicate map section of type %x", item->type_);
return false;
}
used_bits |= bit;
last_offset = item->offset_;
item++;
}
// Check for missing sections in the map.
if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeHeaderItem)) == 0) {
LOG(ERROR) << "Map is missing header entry";
return false;
}
if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeMapList)) == 0) {
LOG(ERROR) << "Map is missing map_list entry";
return false;
}
if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeStringIdItem)) == 0 &&
((header_->string_ids_off_ != 0) || (header_->string_ids_size_ != 0))) {
LOG(ERROR) << "Map is missing string_ids entry";
return false;
}
if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeTypeIdItem)) == 0 &&
((header_->type_ids_off_ != 0) || (header_->type_ids_size_ != 0))) {
LOG(ERROR) << "Map is missing type_ids entry";
return false;
}
if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeProtoIdItem)) == 0 &&
((header_->proto_ids_off_ != 0) || (header_->proto_ids_size_ != 0))) {
LOG(ERROR) << "Map is missing proto_ids entry";
return false;
}
if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeFieldIdItem)) == 0 &&
((header_->field_ids_off_ != 0) || (header_->field_ids_size_ != 0))) {
LOG(ERROR) << "Map is missing field_ids entry";
return false;
}
if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeMethodIdItem)) == 0 &&
((header_->method_ids_off_ != 0) || (header_->method_ids_size_ != 0))) {
LOG(ERROR) << "Map is missing method_ids entry";
return false;
}
if ((used_bits & MapTypeToBitMask(DexFile::kDexTypeClassDefItem)) == 0 &&
((header_->class_defs_off_ != 0) || (header_->class_defs_size_ != 0))) {
LOG(ERROR) << "Map is missing class_defs entry";
return false;
}
return true;
}
uint32_t DexFileVerifier::ReadUnsignedLittleEndian(uint32_t size) {
uint32_t result = 0;
if (!CheckPointerRange(ptr_, ptr_ + size, "encoded_value")) {
return 0;
}
for (uint32_t i = 0; i < size; i++) {
result |= ((uint32_t) *(ptr_++)) << (i * 8);
}
return result;
}
bool DexFileVerifier::CheckAndGetHandlerOffsets(const DexFile::CodeItem* code_item,
uint32_t* handler_offsets, uint32_t handlers_size) {
const byte* handlers_base = DexFile::GetCatchHandlerData(*code_item, 0);
for (uint32_t i = 0; i < handlers_size; i++) {
bool catch_all;
uint32_t offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(handlers_base);
int32_t size = DecodeSignedLeb128(&ptr_);
if ((size < -65536) || (size > 65536)) {
LOG(ERROR) << "Invalid exception handler size: " << size;
return false;
}
if (size <= 0) {
catch_all = true;
size = -size;
} else {
catch_all = false;
}
handler_offsets[i] = offset;
while (size-- > 0) {
uint32_t type_idx = DecodeUnsignedLeb128(&ptr_);
if (!CheckIndex(type_idx, header_->type_ids_size_, "handler type_idx")) {
return false;
}
uint32_t addr = DecodeUnsignedLeb128(&ptr_);
if (addr >= code_item->insns_size_in_code_units_) {
LOG(ERROR) << StringPrintf("Invalid handler addr: %x", addr);
return false;
}
}
if (catch_all) {
uint32_t addr = DecodeUnsignedLeb128(&ptr_);
if (addr >= code_item->insns_size_in_code_units_) {
LOG(ERROR) << StringPrintf("Invalid handler catch_all_addr: %x", addr);
return false;
}
}
}
return true;
}
bool DexFileVerifier::CheckClassDataItemField(uint32_t idx, uint32_t access_flags,
bool expect_static) const {
if (!CheckIndex(idx, header_->field_ids_size_, "class_data_item field_idx")) {
return false;
}
bool is_static = (access_flags & kAccStatic) != 0;
if (is_static != expect_static) {
LOG(ERROR) << "Static/instance field not in expected list";
return false;
}
uint32_t access_field_mask = kAccPublic | kAccPrivate | kAccProtected | kAccStatic |
kAccFinal | kAccVolatile | kAccTransient | kAccSynthetic | kAccEnum;
if ((access_flags & ~access_field_mask) != 0) {
LOG(ERROR) << StringPrintf("Bad class_data_item field access_flags %x", access_flags);
return false;
}
return true;
}
bool DexFileVerifier::CheckClassDataItemMethod(uint32_t idx, uint32_t access_flags,
uint32_t code_offset, bool expect_direct) const {
if (!CheckIndex(idx, header_->method_ids_size_, "class_data_item method_idx")) {
return false;
}
bool is_direct = (access_flags & (kAccStatic | kAccPrivate | kAccConstructor)) != 0;
bool expect_code = (access_flags & (kAccNative | kAccAbstract)) == 0;
bool is_synchronized = (access_flags & kAccSynchronized) != 0;
bool allow_synchronized = (access_flags & kAccNative) != 0;
if (is_direct != expect_direct) {
LOG(ERROR) << "Direct/virtual method not in expected list";
return false;
}
uint32_t access_method_mask = kAccPublic | kAccPrivate | kAccProtected | kAccStatic |
kAccFinal | kAccSynchronized | kAccBridge | kAccVarargs | kAccNative | kAccAbstract |
kAccStrict | kAccSynthetic | kAccConstructor | kAccDeclaredSynchronized;
if (((access_flags & ~access_method_mask) != 0) || (is_synchronized && !allow_synchronized)) {
LOG(ERROR) << StringPrintf("Bad class_data_item method access_flags %x", access_flags);
return false;
}
if (expect_code && code_offset == 0) {
LOG(ERROR)<< StringPrintf("Unexpected zero value for class_data_item method code_off"
" with access flags %x", access_flags);
return false;
} else if (!expect_code && code_offset != 0) {
LOG(ERROR) << StringPrintf("Unexpected non-zero value %x for class_data_item method code_off"
" with access flags %x", code_offset, access_flags);
return false;
}
return true;
}
bool DexFileVerifier::CheckPadding(uint32_t offset, uint32_t aligned_offset) {
if (offset < aligned_offset) {
if (!CheckPointerRange(begin_ + offset, begin_ + aligned_offset, "section")) {
return false;
}
while (offset < aligned_offset) {
if (*ptr_ != '\0') {
LOG(ERROR) << StringPrintf("Non-zero padding %x before section start at %x", *ptr_, offset);
return false;
}
ptr_++;
offset++;
}
}
return true;
}
bool DexFileVerifier::CheckEncodedValue() {
if (!CheckPointerRange(ptr_, ptr_ + 1, "encoded_value header")) {
return false;
}
uint8_t header_byte = *(ptr_++);
uint32_t value_type = header_byte & DexFile::kDexAnnotationValueTypeMask;
uint32_t value_arg = header_byte >> DexFile::kDexAnnotationValueArgShift;
switch (value_type) {
case DexFile::kDexAnnotationByte:
if (value_arg != 0) {
LOG(ERROR) << StringPrintf("Bad encoded_value byte size %x", value_arg);
return false;
}
ptr_++;
break;
case DexFile::kDexAnnotationShort:
case DexFile::kDexAnnotationChar:
if (value_arg > 1) {
LOG(ERROR) << StringPrintf("Bad encoded_value char/short size %x", value_arg);
return false;
}
ptr_ += value_arg + 1;
break;
case DexFile::kDexAnnotationInt:
case DexFile::kDexAnnotationFloat:
if (value_arg > 3) {
LOG(ERROR) << StringPrintf("Bad encoded_value int/float size %x", value_arg);
return false;
}
ptr_ += value_arg + 1;
break;
case DexFile::kDexAnnotationLong:
case DexFile::kDexAnnotationDouble:
ptr_ += value_arg + 1;
break;
case DexFile::kDexAnnotationString: {
if (value_arg > 3) {
LOG(ERROR) << StringPrintf("Bad encoded_value string size %x", value_arg);
return false;
}
uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1);
if (!CheckIndex(idx, header_->string_ids_size_, "encoded_value string")) {
return false;
}
break;
}
case DexFile::kDexAnnotationType: {
if (value_arg > 3) {
LOG(ERROR) << StringPrintf("Bad encoded_value type size %x", value_arg);
return false;
}
uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1);
if (!CheckIndex(idx, header_->type_ids_size_, "encoded_value type")) {
return false;
}
break;
}
case DexFile::kDexAnnotationField:
case DexFile::kDexAnnotationEnum: {
if (value_arg > 3) {
LOG(ERROR) << StringPrintf("Bad encoded_value field/enum size %x", value_arg);
return false;
}
uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1);
if (!CheckIndex(idx, header_->field_ids_size_, "encoded_value field")) {
return false;
}
break;
}
case DexFile::kDexAnnotationMethod: {
if (value_arg > 3) {
LOG(ERROR) << StringPrintf("Bad encoded_value method size %x", value_arg);
return false;
}
uint32_t idx = ReadUnsignedLittleEndian(value_arg + 1);
if (!CheckIndex(idx, header_->method_ids_size_, "encoded_value method")) {
return false;
}
break;
}
case DexFile::kDexAnnotationArray:
if (value_arg != 0) {
LOG(ERROR) << StringPrintf("Bad encoded_value array value_arg %x", value_arg);
return false;
}
if (!CheckEncodedArray()) {
return false;
}
break;
case DexFile::kDexAnnotationAnnotation:
if (value_arg != 0) {
LOG(ERROR) << StringPrintf("Bad encoded_value annotation value_arg %x", value_arg);
return false;
}
if (!CheckEncodedAnnotation()) {
return false;
}
break;
case DexFile::kDexAnnotationNull:
if (value_arg != 0) {
LOG(ERROR) << StringPrintf("Bad encoded_value null value_arg %x", value_arg);
return false;
}
break;
case DexFile::kDexAnnotationBoolean:
if (value_arg > 1) {
LOG(ERROR) << StringPrintf("Bad encoded_value boolean size %x", value_arg);
return false;
}
break;
default:
LOG(ERROR) << StringPrintf("Bogus encoded_value value_type %x", value_type);
return false;
}
return true;
}
bool DexFileVerifier::CheckEncodedArray() {
uint32_t size = DecodeUnsignedLeb128(&ptr_);
while (size--) {
if (!CheckEncodedValue()) {
LOG(ERROR) << "Bad encoded_array value";
return false;
}
}
return true;
}
bool DexFileVerifier::CheckEncodedAnnotation() {
uint32_t idx = DecodeUnsignedLeb128(&ptr_);
if (!CheckIndex(idx, header_->type_ids_size_, "encoded_annotation type_idx")) {
return false;
}
uint32_t size = DecodeUnsignedLeb128(&ptr_);
uint32_t last_idx = 0;
for (uint32_t i = 0; i < size; i++) {
idx = DecodeUnsignedLeb128(&ptr_);
if (!CheckIndex(idx, header_->string_ids_size_, "annotation_element name_idx")) {
return false;
}
if (last_idx >= idx && i != 0) {
LOG(ERROR) << StringPrintf("Out-of-order annotation_element name_idx: %x then %x",
last_idx, idx);
return false;
}
if (!CheckEncodedValue()) {
return false;
}
last_idx = idx;
}
return true;
}
bool DexFileVerifier::CheckIntraClassDataItem() {
ClassDataItemIterator it(*dex_file_, ptr_);
for (; it.HasNextStaticField(); it.Next()) {
if (!CheckClassDataItemField(it.GetMemberIndex(), it.GetMemberAccessFlags(), true)) {
return false;
}
}
for (; it.HasNextInstanceField(); it.Next()) {
if (!CheckClassDataItemField(it.GetMemberIndex(), it.GetMemberAccessFlags(), false)) {
return false;
}
}
for (; it.HasNextDirectMethod(); it.Next()) {
if (!CheckClassDataItemMethod(it.GetMemberIndex(), it.GetMemberAccessFlags(),
it.GetMethodCodeItemOffset(), true)) {
return false;
}
}
for (; it.HasNextVirtualMethod(); it.Next()) {
if (!CheckClassDataItemMethod(it.GetMemberIndex(), it.GetMemberAccessFlags(),
it.GetMethodCodeItemOffset(), false)) {
return false;
}
}
ptr_ = it.EndDataPointer();
return true;
}
bool DexFileVerifier::CheckIntraCodeItem() {
const DexFile::CodeItem* code_item = reinterpret_cast<const DexFile::CodeItem*>(ptr_);
if (!CheckPointerRange(code_item, code_item + 1, "code")) {
return false;
}
if (code_item->ins_size_ > code_item->registers_size_) {
LOG(ERROR) << "ins_size (" << code_item->ins_size_ << ") > registers_size ("
<< code_item->registers_size_ << ")";
return false;
}
if ((code_item->outs_size_ > 5) && (code_item->outs_size_ > code_item->registers_size_)) {
/*
* outs_size can be up to 5, even if registers_size is smaller, since the
* short forms of method invocation allow repetitions of a register multiple
* times within a single parameter list. However, longer parameter lists
* need to be represented in-order in the register file.
*/
LOG(ERROR) << "outs_size (" << code_item->outs_size_ << ") > registers_size ("
<< code_item->registers_size_ << ")";
return false;
}
const uint16_t* insns = code_item->insns_;
uint32_t insns_size = code_item->insns_size_in_code_units_;
if (!CheckListSize(insns, insns_size, sizeof(uint16_t), "insns size")) {
return false;
}
// Grab the end of the insns if there are no try_items.
uint32_t try_items_size = code_item->tries_size_;
if (try_items_size == 0) {
ptr_ = reinterpret_cast<const byte*>(&insns[insns_size]);
return true;
}
// try_items are 4-byte aligned. Verify the spacer is 0.
if ((((uint32_t) &insns[insns_size] & 3) != 0) && (insns[insns_size] != 0)) {
LOG(ERROR) << StringPrintf("Non-zero padding: %x", insns[insns_size]);
return false;
}
const DexFile::TryItem* try_items = DexFile::GetTryItems(*code_item, 0);
ptr_ = DexFile::GetCatchHandlerData(*code_item, 0);
uint32_t handlers_size = DecodeUnsignedLeb128(&ptr_);
if (!CheckListSize(try_items, try_items_size, sizeof(DexFile::TryItem), "try_items size")) {
return false;
}
if ((handlers_size == 0) || (handlers_size >= 65536)) {
LOG(ERROR) << "Invalid handlers_size: " << handlers_size;
return false;
}
UniquePtr<uint32_t[]> handler_offsets(new uint32_t[handlers_size]);
if (!CheckAndGetHandlerOffsets(code_item, &handler_offsets[0], handlers_size)) {
return false;
}
uint32_t last_addr = 0;
while (try_items_size--) {
if (try_items->start_addr_ < last_addr) {
LOG(ERROR) << StringPrintf("Out-of_order try_item with start_addr: %x",
try_items->start_addr_);
return false;
}
if (try_items->start_addr_ >= insns_size) {
LOG(ERROR) << StringPrintf("Invalid try_item start_addr: %x", try_items->start_addr_);
return false;
}
uint32_t i;
for (i = 0; i < handlers_size; i++) {
if (try_items->handler_off_ == handler_offsets[i]) {
break;
}
}
if (i == handlers_size) {
LOG(ERROR) << StringPrintf("Bogus handler offset: %x", try_items->handler_off_);
return false;
}
last_addr = try_items->start_addr_ + try_items->insn_count_;
if (last_addr > insns_size) {
LOG(ERROR) << StringPrintf("Invalid try_item insn_count: %x", try_items->insn_count_);
return false;
}
try_items++;
}
return true;
}
bool DexFileVerifier::CheckIntraStringDataItem() {
uint32_t size = DecodeUnsignedLeb128(&ptr_);
const byte* file_end = begin_ + size_;
for (uint32_t i = 0; i < size; i++) {
if (ptr_ >= file_end) {
LOG(ERROR) << "String data would go beyond end-of-file";
return false;
}
uint8_t byte = *(ptr_++);
// Switch on the high 4 bits.
switch (byte >> 4) {
case 0x00:
// Special case of bit pattern 0xxx.
if (byte == 0) {
LOG(ERROR) << StringPrintf("String data shorter than indicated utf16_size %x", size);
return false;
}
break;
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
// No extra checks necessary for bit pattern 0xxx.
break;
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0f:
// Illegal bit patterns 10xx or 1111.
// Note: 1111 is valid for normal UTF-8, but not here.
LOG(ERROR) << StringPrintf("Illegal start byte %x in string data", byte);
return false;
case 0x0c:
case 0x0d: {
// Bit pattern 110x has an additional byte.
uint8_t byte2 = *(ptr_++);
if ((byte2 & 0xc0) != 0x80) {
LOG(ERROR) << StringPrintf("Illegal continuation byte %x in string data", byte2);
return false;
}
uint16_t value = ((byte & 0x1f) << 6) | (byte2 & 0x3f);
if ((value != 0) && (value < 0x80)) {
LOG(ERROR) << StringPrintf("Illegal representation for value %x in string data", value);
return false;
}
break;
}
case 0x0e: {
// Bit pattern 1110 has 2 additional bytes.
uint8_t byte2 = *(ptr_++);
if ((byte2 & 0xc0) != 0x80) {
LOG(ERROR) << StringPrintf("Illegal continuation byte %x in string data", byte2);
return false;
}
uint8_t byte3 = *(ptr_++);
if ((byte3 & 0xc0) != 0x80) {
LOG(ERROR) << StringPrintf("Illegal continuation byte %x in string data", byte3);
return false;
}
uint16_t value = ((byte & 0x0f) << 12) | ((byte2 & 0x3f) << 6) | (byte3 & 0x3f);
if (value < 0x800) {
LOG(ERROR) << StringPrintf("Illegal representation for value %x in string data", value);
return false;
}
break;
}
}
}
if (*(ptr_++) != '\0') {
LOG(ERROR) << StringPrintf("String longer than indicated size %x", size);
return false;
}
return true;
}
bool DexFileVerifier::CheckIntraDebugInfoItem() {
DecodeUnsignedLeb128(&ptr_);
uint32_t parameters_size = DecodeUnsignedLeb128(&ptr_);
if (parameters_size > 65536) {
LOG(ERROR) << StringPrintf("Invalid parameters_size: %x", parameters_size);
return false;
}
for (uint32_t j = 0; j < parameters_size; j++) {
uint32_t parameter_name = DecodeUnsignedLeb128(&ptr_);
if (parameter_name != 0) {
parameter_name--;
if (!CheckIndex(parameter_name, header_->string_ids_size_, "debug_info_item parameter_name")) {
return false;
}
}
}
while (true) {
uint8_t opcode = *(ptr_++);
switch (opcode) {
case DexFile::DBG_END_SEQUENCE: {
return true;
}
case DexFile::DBG_ADVANCE_PC: {
DecodeUnsignedLeb128(&ptr_);
break;
}
case DexFile::DBG_ADVANCE_LINE: {
DecodeSignedLeb128(&ptr_);
break;
}
case DexFile::DBG_START_LOCAL: {
uint32_t reg_num = DecodeUnsignedLeb128(&ptr_);
if (reg_num >= 65536) {
LOG(ERROR) << StringPrintf("Bad reg_num for opcode %x", opcode);
return false;
}
uint32_t name_idx = DecodeUnsignedLeb128(&ptr_);
if (name_idx != 0) {
name_idx--;
if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_START_LOCAL name_idx")) {
return false;
}
}
uint32_t type_idx = DecodeUnsignedLeb128(&ptr_);
if (type_idx != 0) {
type_idx--;
if (!CheckIndex(type_idx, header_->string_ids_size_, "DBG_START_LOCAL type_idx")) {
return false;
}
}
break;
}
case DexFile::DBG_END_LOCAL:
case DexFile::DBG_RESTART_LOCAL: {
uint32_t reg_num = DecodeUnsignedLeb128(&ptr_);
if (reg_num >= 65536) {
LOG(ERROR) << StringPrintf("Bad reg_num for opcode %x", opcode);
return false;
}
break;
}
case DexFile::DBG_START_LOCAL_EXTENDED: {
uint32_t reg_num = DecodeUnsignedLeb128(&ptr_);
if (reg_num >= 65536) {
LOG(ERROR) << StringPrintf("Bad reg_num for opcode %x", opcode);
return false;
}
uint32_t name_idx = DecodeUnsignedLeb128(&ptr_);
if (name_idx != 0) {
name_idx--;
if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED name_idx")) {
return false;
}
}
uint32_t type_idx = DecodeUnsignedLeb128(&ptr_);
if (type_idx != 0) {
type_idx--;
if (!CheckIndex(type_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED type_idx")) {
return false;
}
}
uint32_t sig_idx = DecodeUnsignedLeb128(&ptr_);
if (sig_idx != 0) {
sig_idx--;
if (!CheckIndex(sig_idx, header_->string_ids_size_, "DBG_START_LOCAL_EXTENDED sig_idx")) {
return false;
}
}
break;
}
case DexFile::DBG_SET_FILE: {
uint32_t name_idx = DecodeUnsignedLeb128(&ptr_);
if (name_idx != 0) {
name_idx--;
if (!CheckIndex(name_idx, header_->string_ids_size_, "DBG_SET_FILE name_idx")) {
return false;
}
}
break;
}
}
}
}
bool DexFileVerifier::CheckIntraAnnotationItem() {
if (!CheckPointerRange(ptr_, ptr_ + 1, "annotation visibility")) {
return false;
}
// Check visibility
switch (*(ptr_++)) {
case DexFile::kDexVisibilityBuild:
case DexFile::kDexVisibilityRuntime:
case DexFile::kDexVisibilitySystem:
break;
default:
LOG(ERROR) << StringPrintf("Bad annotation visibility: %x", *ptr_);
return false;
}
if (!CheckEncodedAnnotation()) {
return false;
}
return true;
}
bool DexFileVerifier::CheckIntraAnnotationsDirectoryItem() {
const DexFile::AnnotationsDirectoryItem* item =
reinterpret_cast<const DexFile::AnnotationsDirectoryItem*>(ptr_);
if (!CheckPointerRange(item, item + 1, "annotations_directory")) {
return false;
}
// Field annotations follow immediately after the annotations directory.
const DexFile::FieldAnnotationsItem* field_item =
reinterpret_cast<const DexFile::FieldAnnotationsItem*>(item + 1);
uint32_t field_count = item->fields_size_;
if (!CheckListSize(field_item, field_count, sizeof(DexFile::FieldAnnotationsItem), "field_annotations list")) {
return false;
}
uint32_t last_idx = 0;
for (uint32_t i = 0; i < field_count; i++) {
if (last_idx >= field_item->field_idx_ && i != 0) {
LOG(ERROR) << StringPrintf("Out-of-order field_idx for annotation: %x then %x", last_idx, field_item->field_idx_);
return false;
}
last_idx = field_item->field_idx_;
field_item++;
}
// Method annotations follow immediately after field annotations.
const DexFile::MethodAnnotationsItem* method_item =
reinterpret_cast<const DexFile::MethodAnnotationsItem*>(field_item);
uint32_t method_count = item->methods_size_;
if (!CheckListSize(method_item, method_count, sizeof(DexFile::MethodAnnotationsItem), "method_annotations list")) {
return false;
}
last_idx = 0;
for (uint32_t i = 0; i < method_count; i++) {
if (last_idx >= method_item->method_idx_ && i != 0) {
LOG(ERROR) << StringPrintf("Out-of-order method_idx for annotation: %x then %x",
last_idx, method_item->method_idx_);
return false;
}
last_idx = method_item->method_idx_;
method_item++;
}
// Parameter annotations follow immediately after method annotations.
const DexFile::ParameterAnnotationsItem* parameter_item =
reinterpret_cast<const DexFile::ParameterAnnotationsItem*>(method_item);
uint32_t parameter_count = item->parameters_size_;
if (!CheckListSize(parameter_item, parameter_count, sizeof(DexFile::ParameterAnnotationsItem),
"parameter_annotations list")) {
return false;
}
last_idx = 0;
for (uint32_t i = 0; i < parameter_count; i++) {
if (last_idx >= parameter_item->method_idx_ && i != 0) {
LOG(ERROR) << StringPrintf("Out-of-order method_idx for annotation: %x then %x",
last_idx, parameter_item->method_idx_);
return false;
}
last_idx = parameter_item->method_idx_;
parameter_item++;
}
// Return a pointer to the end of the annotations.
ptr_ = reinterpret_cast<const byte*>(parameter_item);
return true;
}
bool DexFileVerifier::CheckIntraSectionIterate(uint32_t offset, uint32_t count, uint16_t type) {
// Get the right alignment mask for the type of section.
uint32_t alignment_mask;
switch (type) {
case DexFile::kDexTypeClassDataItem:
case DexFile::kDexTypeStringDataItem:
case DexFile::kDexTypeDebugInfoItem:
case DexFile::kDexTypeAnnotationItem:
case DexFile::kDexTypeEncodedArrayItem:
alignment_mask = sizeof(uint8_t) - 1;
break;
default:
alignment_mask = sizeof(uint32_t) - 1;
break;
}
// Iterate through the items in the section.
for (uint32_t i = 0; i < count; i++) {
uint32_t aligned_offset = (offset + alignment_mask) & ~alignment_mask;
// Check the padding between items.
if (!CheckPadding(offset, aligned_offset)) {
return false;
}
// Check depending on the section type.
switch (type) {
case DexFile::kDexTypeStringIdItem: {
if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::StringId), "string_ids")) {
return false;
}
ptr_ += sizeof(DexFile::StringId);
break;
}
case DexFile::kDexTypeTypeIdItem: {
if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::TypeId), "type_ids")) {
return false;
}
ptr_ += sizeof(DexFile::TypeId);
break;
}
case DexFile::kDexTypeProtoIdItem: {
if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::ProtoId), "proto_ids")) {
return false;
}
ptr_ += sizeof(DexFile::ProtoId);
break;
}
case DexFile::kDexTypeFieldIdItem: {
if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::FieldId), "field_ids")) {
return false;
}
ptr_ += sizeof(DexFile::FieldId);
break;
}
case DexFile::kDexTypeMethodIdItem: {
if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::MethodId), "method_ids")) {
return false;
}
ptr_ += sizeof(DexFile::MethodId);
break;
}
case DexFile::kDexTypeClassDefItem: {
if (!CheckPointerRange(ptr_, ptr_ + sizeof(DexFile::ClassDef), "class_defs")) {
return false;
}
ptr_ += sizeof(DexFile::ClassDef);
break;
}
case DexFile::kDexTypeTypeList: {
const DexFile::TypeList* list = reinterpret_cast<const DexFile::TypeList*>(ptr_);
const DexFile::TypeItem* item = &list->GetTypeItem(0);
uint32_t count = list->Size();
if (!CheckPointerRange(list, list + 1, "type_list") ||
!CheckListSize(item, count, sizeof(DexFile::TypeItem), "type_list size")) {
return false;
}
ptr_ = reinterpret_cast<const byte*>(item + count);
break;
}
case DexFile::kDexTypeAnnotationSetRefList: {
const DexFile::AnnotationSetRefList* list =
reinterpret_cast<const DexFile::AnnotationSetRefList*>(ptr_);
const DexFile::AnnotationSetRefItem* item = list->list_;
uint32_t count = list->size_;
if (!CheckPointerRange(list, list + 1, "annotation_set_ref_list") ||
!CheckListSize(item, count, sizeof(DexFile::AnnotationSetRefItem),
"annotation_set_ref_list size")) {
return false;
}
ptr_ = reinterpret_cast<const byte*>(item + count);
break;
}
case DexFile::kDexTypeAnnotationSetItem: {
const DexFile::AnnotationSetItem* set =
reinterpret_cast<const DexFile::AnnotationSetItem*>(ptr_);
const uint32_t* item = set->entries_;
uint32_t count = set->size_;
if (!CheckPointerRange(set, set + 1, "annotation_set_item") ||
!CheckListSize(item, count, sizeof(uint32_t), "annotation_set_item size")) {
return false;
}
ptr_ = reinterpret_cast<const byte*>(item + count);
break;
}
case DexFile::kDexTypeClassDataItem: {
if (!CheckIntraClassDataItem()) {
return false;
}
break;
}
case DexFile::kDexTypeCodeItem: {
if (!CheckIntraCodeItem()) {
return false;
}
break;
}
case DexFile::kDexTypeStringDataItem: {
if (!CheckIntraStringDataItem()) {
return false;
}
break;
}
case DexFile::kDexTypeDebugInfoItem: {
if (!CheckIntraDebugInfoItem()) {
return false;
}
break;
}
case DexFile::kDexTypeAnnotationItem: {
if (!CheckIntraAnnotationItem()) {
return false;
}
break;
}
case DexFile::kDexTypeEncodedArrayItem: {
if (!CheckEncodedArray()) {
return false;
}
break;
}
case DexFile::kDexTypeAnnotationsDirectoryItem: {
if (!CheckIntraAnnotationsDirectoryItem()) {
return false;
}
break;
}
default:
LOG(ERROR) << StringPrintf("Unknown map item type %x", type);
return false;
}
if (IsDataSectionType(type)) {
offset_to_type_map_.Put(aligned_offset, type);
}
aligned_offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_);
if (aligned_offset > size_) {
LOG(ERROR) << StringPrintf("Item %d at ends out of bounds", i);
return false;
}
offset = aligned_offset;
}
return true;
}
bool DexFileVerifier::CheckIntraIdSection(uint32_t offset, uint32_t count, uint16_t type) {
uint32_t expected_offset;
uint32_t expected_size;
// Get the expected offset and size from the header.
switch (type) {
case DexFile::kDexTypeStringIdItem:
expected_offset = header_->string_ids_off_;
expected_size = header_->string_ids_size_;
break;
case DexFile::kDexTypeTypeIdItem:
expected_offset = header_->type_ids_off_;
expected_size = header_->type_ids_size_;
break;
case DexFile::kDexTypeProtoIdItem:
expected_offset = header_->proto_ids_off_;
expected_size = header_->proto_ids_size_;
break;
case DexFile::kDexTypeFieldIdItem:
expected_offset = header_->field_ids_off_;
expected_size = header_->field_ids_size_;
break;
case DexFile::kDexTypeMethodIdItem:
expected_offset = header_->method_ids_off_;
expected_size = header_->method_ids_size_;
break;
case DexFile::kDexTypeClassDefItem:
expected_offset = header_->class_defs_off_;
expected_size = header_->class_defs_size_;
break;
default:
LOG(ERROR) << StringPrintf("Bad type for id section: %x", type);
return false;
}
// Check that the offset and size are what were expected from the header.
if (offset != expected_offset) {
LOG(ERROR) << StringPrintf("Bad offset for section: got %x, expected %x", offset, expected_offset);
return false;
}
if (count != expected_size) {
LOG(ERROR) << StringPrintf("Bad size for section: got %x, expected %x", count, expected_size);
return false;
}
return CheckIntraSectionIterate(offset, count, type);
}
bool DexFileVerifier::CheckIntraDataSection(uint32_t offset, uint32_t count, uint16_t type) {
uint32_t data_start = header_->data_off_;
uint32_t data_end = data_start + header_->data_size_;
// Sanity check the offset of the section.
if ((offset < data_start) || (offset > data_end)) {
LOG(ERROR) << StringPrintf("Bad offset for data subsection: %x", offset);
return false;
}
if (!CheckIntraSectionIterate(offset, count, type)) {
return false;
}
uint32_t next_offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_);
if (next_offset > data_end) {
LOG(ERROR) << StringPrintf("Out-of-bounds end of data subsection: %x", next_offset);
return false;
}
return true;
}
bool DexFileVerifier::CheckIntraSection() {
const DexFile::MapList* map = reinterpret_cast<const DexFile::MapList*>(begin_ + header_->map_off_);
const DexFile::MapItem* item = map->list_;
uint32_t count = map->size_;
uint32_t offset = 0;
ptr_ = begin_;
// Check the items listed in the map.
while (count--) {
uint32_t section_offset = item->offset_;
uint32_t section_count = item->size_;
uint16_t type = item->type_;
// Check for padding and overlap between items.
if (!CheckPadding(offset, section_offset)) {
return false;
} else if (offset > section_offset) {
LOG(ERROR) << StringPrintf("Section overlap or out-of-order map: %x, %x", offset, section_offset);
return false;
}
// Check each item based on its type.
switch (type) {
case DexFile::kDexTypeHeaderItem:
if (section_count != 1) {
LOG(ERROR) << "Multiple header items";
return false;
}
if (section_offset != 0) {
LOG(ERROR) << StringPrintf("Header at %x, not at start of file", section_offset);
return false;
}
ptr_ = begin_ + header_->header_size_;
offset = header_->header_size_;
break;
case DexFile::kDexTypeStringIdItem:
case DexFile::kDexTypeTypeIdItem:
case DexFile::kDexTypeProtoIdItem:
case DexFile::kDexTypeFieldIdItem:
case DexFile::kDexTypeMethodIdItem:
case DexFile::kDexTypeClassDefItem:
if (!CheckIntraIdSection(section_offset, section_count, type)) {
return false;
}
offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_);
break;
case DexFile::kDexTypeMapList:
if (section_count != 1) {
LOG(ERROR) << "Multiple map list items";
return false;
}
if (section_offset != header_->map_off_) {
LOG(ERROR) << StringPrintf("Map not at header-defined offset: %x, expected %x",
section_offset, header_->map_off_);
return false;
}
ptr_ += sizeof(uint32_t) + (map->size_ * sizeof(DexFile::MapItem));
offset = section_offset + sizeof(uint32_t) + (map->size_ * sizeof(DexFile::MapItem));
break;
case DexFile::kDexTypeTypeList:
case DexFile::kDexTypeAnnotationSetRefList:
case DexFile::kDexTypeAnnotationSetItem:
case DexFile::kDexTypeClassDataItem:
case DexFile::kDexTypeCodeItem:
case DexFile::kDexTypeStringDataItem:
case DexFile::kDexTypeDebugInfoItem:
case DexFile::kDexTypeAnnotationItem:
case DexFile::kDexTypeEncodedArrayItem:
case DexFile::kDexTypeAnnotationsDirectoryItem:
if (!CheckIntraDataSection(section_offset, section_count, type)) {
return false;
}
offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_);
break;
default:
LOG(ERROR) << StringPrintf("Unknown map item type %x", type);
return false;
}
item++;
}
return true;
}
bool DexFileVerifier::CheckOffsetToTypeMap(uint32_t offset, uint16_t type) {
typedef SafeMap<uint32_t, uint16_t>::iterator It; // TODO: C++0x auto
It it = offset_to_type_map_.find(offset);
if (it == offset_to_type_map_.end()) {
LOG(ERROR) << StringPrintf("No data map entry found @ %x; expected %x", offset, type);
return false;
}
if (it->second != type) {
LOG(ERROR) << StringPrintf("Unexpected data map entry @ %x; expected %x, found %x",
offset, type, it->second);
return false;
}
return true;
}
uint16_t DexFileVerifier::FindFirstClassDataDefiner(const byte* ptr) const {
ClassDataItemIterator it(*dex_file_, ptr);
if (it.HasNextStaticField() || it.HasNextInstanceField()) {
const DexFile::FieldId& field = dex_file_->GetFieldId(it.GetMemberIndex());
return field.class_idx_;
}
if (it.HasNextDirectMethod() || it.HasNextVirtualMethod()) {
const DexFile::MethodId& method = dex_file_->GetMethodId(it.GetMemberIndex());
return method.class_idx_;
}
return DexFile::kDexNoIndex16;
}
uint16_t DexFileVerifier::FindFirstAnnotationsDirectoryDefiner(const byte* ptr) const {
const DexFile::AnnotationsDirectoryItem* item =
reinterpret_cast<const DexFile::AnnotationsDirectoryItem*>(ptr);
if (item->fields_size_ != 0) {
DexFile::FieldAnnotationsItem* field_items = (DexFile::FieldAnnotationsItem*) (item + 1);
const DexFile::FieldId& field = dex_file_->GetFieldId(field_items[0].field_idx_);
return field.class_idx_;
}
if (item->methods_size_ != 0) {
DexFile::MethodAnnotationsItem* method_items = (DexFile::MethodAnnotationsItem*) (item + 1);
const DexFile::MethodId& method = dex_file_->GetMethodId(method_items[0].method_idx_);
return method.class_idx_;
}
if (item->parameters_size_ != 0) {
DexFile::ParameterAnnotationsItem* parameter_items = (DexFile::ParameterAnnotationsItem*) (item + 1);
const DexFile::MethodId& method = dex_file_->GetMethodId(parameter_items[0].method_idx_);
return method.class_idx_;
}
return DexFile::kDexNoIndex16;
}
bool DexFileVerifier::CheckInterStringIdItem() {
const DexFile::StringId* item = reinterpret_cast<const DexFile::StringId*>(ptr_);
// Check the map to make sure it has the right offset->type.
if (!CheckOffsetToTypeMap(item->string_data_off_, DexFile::kDexTypeStringDataItem)) {
return false;
}
// Check ordering between items.
if (previous_item_ != NULL) {
const DexFile::StringId* prev_item = reinterpret_cast<const DexFile::StringId*>(previous_item_);
const char* prev_str = dex_file_->GetStringData(*prev_item);
const char* str = dex_file_->GetStringData(*item);
if (CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(prev_str, str) >= 0) {
LOG(ERROR) << StringPrintf("Out-of-order string_ids: '%s' then '%s'", prev_str, str);
return false;
}
}
ptr_ += sizeof(DexFile::StringId);
return true;
}
bool DexFileVerifier::CheckInterTypeIdItem() {
const DexFile::TypeId* item = reinterpret_cast<const DexFile::TypeId*>(ptr_);
const char* descriptor = dex_file_->StringDataByIdx(item->descriptor_idx_);
// Check that the descriptor is a valid type.
if (!IsValidDescriptor(descriptor)) {
LOG(ERROR) << StringPrintf("Invalid type descriptor: '%s'", descriptor);
return false;
}
// Check ordering between items.
if (previous_item_ != NULL) {
const DexFile::TypeId* prev_item = reinterpret_cast<const DexFile::TypeId*>(previous_item_);
if (prev_item->descriptor_idx_ >= item->descriptor_idx_) {
LOG(ERROR) << StringPrintf("Out-of-order type_ids: %x then %x",
prev_item->descriptor_idx_, item->descriptor_idx_);
return false;
}
}
ptr_ += sizeof(DexFile::TypeId);
return true;
}
bool DexFileVerifier::CheckInterProtoIdItem() {
const DexFile::ProtoId* item = reinterpret_cast<const DexFile::ProtoId*>(ptr_);
const char* shorty = dex_file_->StringDataByIdx(item->shorty_idx_);
if (item->parameters_off_ != 0 &&
!CheckOffsetToTypeMap(item->parameters_off_, DexFile::kDexTypeTypeList)) {
return false;
}
// Check the return type and advance the shorty.
if (!CheckShortyDescriptorMatch(*shorty, dex_file_->StringByTypeIdx(item->return_type_idx_), true)) {
return false;
}
shorty++;
DexFileParameterIterator it(*dex_file_, *item);
while (it.HasNext() && *shorty != '\0') {
const char* descriptor = it.GetDescriptor();
if (!CheckShortyDescriptorMatch(*shorty, descriptor, false)) {
return false;
}
it.Next();
shorty++;
}
if (it.HasNext() || *shorty != '\0') {
LOG(ERROR) << "Mismatched length for parameters and shorty";
return false;
}
// Check ordering between items. This relies on type_ids being in order.
if (previous_item_ != NULL) {
const DexFile::ProtoId* prev = reinterpret_cast<const DexFile::ProtoId*>(previous_item_);
if (prev->return_type_idx_ > item->return_type_idx_) {
LOG(ERROR) << "Out-of-order proto_id return types";
return false;
} else if (prev->return_type_idx_ == item->return_type_idx_) {
DexFileParameterIterator curr_it(*dex_file_, *item);
DexFileParameterIterator prev_it(*dex_file_, *prev);
while (curr_it.HasNext() && prev_it.HasNext()) {
uint16_t prev_idx = prev_it.GetTypeIdx();
uint16_t curr_idx = curr_it.GetTypeIdx();
if (prev_idx == DexFile::kDexNoIndex16) {
break;
}
if (curr_idx == DexFile::kDexNoIndex16) {
LOG(ERROR) << "Out-of-order proto_id arguments";
return false;
}
if (prev_idx < curr_idx) {
break;
} else if (prev_idx > curr_idx) {
LOG(ERROR) << "Out-of-order proto_id arguments";
return false;
}
prev_it.Next();
curr_it.Next();
}
}
}
ptr_ += sizeof(DexFile::ProtoId);
return true;
}
bool DexFileVerifier::CheckInterFieldIdItem() {
const DexFile::FieldId* item = reinterpret_cast<const DexFile::FieldId*>(ptr_);
// Check that the class descriptor is valid.
const char* descriptor = dex_file_->StringByTypeIdx(item->class_idx_);
if (!IsValidDescriptor(descriptor) || descriptor[0] != 'L') {
LOG(ERROR) << "Invalid descriptor for class_idx: '" << descriptor << '"';
return false;
}
// Check that the type descriptor is a valid field name.
descriptor = dex_file_->StringByTypeIdx(item->type_idx_);
if (!IsValidDescriptor(descriptor) || descriptor[0] == 'V') {
LOG(ERROR) << "Invalid descriptor for type_idx: '" << descriptor << '"';
return false;
}
// Check that the name is valid.
descriptor = dex_file_->StringDataByIdx(item->name_idx_);
if (!IsValidMemberName(descriptor)) {
LOG(ERROR) << "Invalid field name: '" << descriptor << '"';
return false;
}
// Check ordering between items. This relies on the other sections being in order.
if (previous_item_ != NULL) {
const DexFile::FieldId* prev_item = reinterpret_cast<const DexFile::FieldId*>(previous_item_);
if (prev_item->class_idx_ > item->class_idx_) {
LOG(ERROR) << "Out-of-order field_ids";
return false;
} else if (prev_item->class_idx_ == item->class_idx_) {
if (prev_item->name_idx_ > item->name_idx_) {
LOG(ERROR) << "Out-of-order field_ids";
return false;
} else if (prev_item->name_idx_ == item->name_idx_) {
if (prev_item->type_idx_ >= item->type_idx_) {
LOG(ERROR) << "Out-of-order field_ids";
return false;
}
}
}
}
ptr_ += sizeof(DexFile::FieldId);
return true;
}
bool DexFileVerifier::CheckInterMethodIdItem() {
const DexFile::MethodId* item = reinterpret_cast<const DexFile::MethodId*>(ptr_);
// Check that the class descriptor is a valid reference name.
const char* descriptor = dex_file_->StringByTypeIdx(item->class_idx_);
if (!IsValidDescriptor(descriptor) || (descriptor[0] != 'L' && descriptor[0] != '[')) {
LOG(ERROR) << "Invalid descriptor for class_idx: '" << descriptor << '"';
return false;
}
// Check that the name is valid.
descriptor = dex_file_->StringDataByIdx(item->name_idx_);
if (!IsValidMemberName(descriptor)) {
LOG(ERROR) << "Invalid method name: '" << descriptor << '"';
return false;
}
// Check ordering between items. This relies on the other sections being in order.
if (previous_item_ != NULL) {
const DexFile::MethodId* prev_item = reinterpret_cast<const DexFile::MethodId*>(previous_item_);
if (prev_item->class_idx_ > item->class_idx_) {
LOG(ERROR) << "Out-of-order method_ids";
return false;
} else if (prev_item->class_idx_ == item->class_idx_) {
if (prev_item->name_idx_ > item->name_idx_) {
LOG(ERROR) << "Out-of-order method_ids";
return false;
} else if (prev_item->name_idx_ == item->name_idx_) {
if (prev_item->proto_idx_ >= item->proto_idx_) {
LOG(ERROR) << "Out-of-order method_ids";
return false;
}
}
}
}
ptr_ += sizeof(DexFile::MethodId);
return true;
}
bool DexFileVerifier::CheckInterClassDefItem() {
const DexFile::ClassDef* item = reinterpret_cast<const DexFile::ClassDef*>(ptr_);
uint32_t class_idx = item->class_idx_;
const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
if (!IsValidDescriptor(descriptor) || descriptor[0] != 'L') {
LOG(ERROR) << "Invalid class descriptor: '" << descriptor << "'";
return false;
}
if (item->interfaces_off_ != 0 &&
!CheckOffsetToTypeMap(item->interfaces_off_, DexFile::kDexTypeTypeList)) {
return false;
}
if (item->annotations_off_ != 0 &&
!CheckOffsetToTypeMap(item->annotations_off_, DexFile::kDexTypeAnnotationsDirectoryItem)) {
return false;
}
if (item->class_data_off_ != 0 &&
!CheckOffsetToTypeMap(item->class_data_off_, DexFile::kDexTypeClassDataItem)) {
return false;
}
if (item->static_values_off_ != 0 &&
!CheckOffsetToTypeMap(item->static_values_off_, DexFile::kDexTypeEncodedArrayItem)) {
return false;
}
if (item->superclass_idx_ != DexFile::kDexNoIndex16) {
descriptor = dex_file_->StringByTypeIdx(item->superclass_idx_);
if (!IsValidDescriptor(descriptor) || descriptor[0] != 'L') {
LOG(ERROR) << "Invalid superclass: '" << descriptor << "'";
return false;
}
}
const DexFile::TypeList* interfaces = dex_file_->GetInterfacesList(*item);
if (interfaces != NULL) {
uint32_t size = interfaces->Size();
// Ensure that all interfaces refer to classes (not arrays or primitives).
for (uint32_t i = 0; i < size; i++) {
descriptor = dex_file_->StringByTypeIdx(interfaces->GetTypeItem(i).type_idx_);
if (!IsValidDescriptor(descriptor) || descriptor[0] != 'L') {
LOG(ERROR) << "Invalid interface: '" << descriptor << "'";
return false;
}
}
/*
* Ensure that there are no duplicates. This is an O(N^2) test, but in
* practice the number of interfaces implemented by any given class is low.
*/
for (uint32_t i = 1; i < size; i++) {
uint32_t idx1 = interfaces->GetTypeItem(i).type_idx_;
for (uint32_t j =0; j < i; j++) {
uint32_t idx2 = interfaces->GetTypeItem(j).type_idx_;
if (idx1 == idx2) {
LOG(ERROR) << "Duplicate interface: '" << dex_file_->StringByTypeIdx(idx1) << "'";
return false;
}
}
}
}
// Check that references in class_data_item are to the right class.
if (item->class_data_off_ != 0) {
const byte* data = begin_ + item->class_data_off_;
uint16_t data_definer = FindFirstClassDataDefiner(data);
if ((data_definer != item->class_idx_) && (data_definer != DexFile::kDexNoIndex16)) {
LOG(ERROR) << "Invalid class_data_item";
return false;
}
}
// Check that references in annotations_directory_item are to right class.
if (item->annotations_off_ != 0) {
const byte* data = begin_ + item->annotations_off_;
uint16_t annotations_definer = FindFirstAnnotationsDirectoryDefiner(data);
if ((annotations_definer != item->class_idx_) && (annotations_definer != DexFile::kDexNoIndex16)) {
LOG(ERROR) << "Invalid annotations_directory_item";
return false;
}
}
ptr_ += sizeof(DexFile::ClassDef);
return true;
}
bool DexFileVerifier::CheckInterAnnotationSetRefList() {
const DexFile::AnnotationSetRefList* list =
reinterpret_cast<const DexFile::AnnotationSetRefList*>(ptr_);
const DexFile::AnnotationSetRefItem* item = list->list_;
uint32_t count = list->size_;
while (count--) {
if (item->annotations_off_ != 0 &&
!CheckOffsetToTypeMap(item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) {
return false;
}
item++;
}
ptr_ = reinterpret_cast<const byte*>(item);
return true;
}
bool DexFileVerifier::CheckInterAnnotationSetItem() {
const DexFile::AnnotationSetItem* set = reinterpret_cast<const DexFile::AnnotationSetItem*>(ptr_);
const uint32_t* offsets = set->entries_;
uint32_t count = set->size_;
uint32_t last_idx = 0;
for (uint32_t i = 0; i < count; i++) {
if (*offsets != 0 && !CheckOffsetToTypeMap(*offsets, DexFile::kDexTypeAnnotationItem)) {
return false;
}
// Get the annotation from the offset and the type index for the annotation.
const DexFile::AnnotationItem* annotation =
reinterpret_cast<const DexFile::AnnotationItem*>(begin_ + *offsets);
const uint8_t* data = annotation->annotation_;
uint32_t idx = DecodeUnsignedLeb128(&data);
if (last_idx >= idx && i != 0) {
LOG(ERROR) << StringPrintf("Out-of-order entry types: %x then %x", last_idx, idx);
return false;
}
last_idx = idx;
offsets++;
}
ptr_ = reinterpret_cast<const byte*>(offsets);
return true;
}
bool DexFileVerifier::CheckInterClassDataItem() {
ClassDataItemIterator it(*dex_file_, ptr_);
uint16_t defining_class = FindFirstClassDataDefiner(ptr_);
for (; it.HasNextStaticField() || it.HasNextInstanceField(); it.Next()) {
const DexFile::FieldId& field = dex_file_->GetFieldId(it.GetMemberIndex());
if (field.class_idx_ != defining_class) {
LOG(ERROR) << "Mismatched defining class for class_data_item field";
return false;
}
}
for (; it.HasNextDirectMethod() || it.HasNextVirtualMethod(); it.Next()) {
uint32_t code_off = it.GetMethodCodeItemOffset();
if (code_off != 0 && !CheckOffsetToTypeMap(code_off, DexFile::kDexTypeCodeItem)) {
return false;
}
const DexFile::MethodId& method = dex_file_->GetMethodId(it.GetMemberIndex());
if (method.class_idx_ != defining_class) {
LOG(ERROR) << "Mismatched defining class for class_data_item method";
return false;
}
}
ptr_ = it.EndDataPointer();
return true;
}
bool DexFileVerifier::CheckInterAnnotationsDirectoryItem() {
const DexFile::AnnotationsDirectoryItem* item =
reinterpret_cast<const DexFile::AnnotationsDirectoryItem*>(ptr_);
uint16_t defining_class = FindFirstAnnotationsDirectoryDefiner(ptr_);
if (item->class_annotations_off_ != 0 &&
!CheckOffsetToTypeMap(item->class_annotations_off_, DexFile::kDexTypeAnnotationSetItem)) {
return false;
}
// Field annotations follow immediately after the annotations directory.
const DexFile::FieldAnnotationsItem* field_item =
reinterpret_cast<const DexFile::FieldAnnotationsItem*>(item + 1);
uint32_t field_count = item->fields_size_;
for (uint32_t i = 0; i < field_count; i++) {
const DexFile::FieldId& field = dex_file_->GetFieldId(field_item->field_idx_);
if (field.class_idx_ != defining_class) {
LOG(ERROR) << "Mismatched defining class for field_annotation";
return false;
}
if (!CheckOffsetToTypeMap(field_item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) {
return false;
}
field_item++;
}
// Method annotations follow immediately after field annotations.
const DexFile::MethodAnnotationsItem* method_item =
reinterpret_cast<const DexFile::MethodAnnotationsItem*>(field_item);
uint32_t method_count = item->methods_size_;
for (uint32_t i = 0; i < method_count; i++) {
const DexFile::MethodId& method = dex_file_->GetMethodId(method_item->method_idx_);
if (method.class_idx_ != defining_class) {
LOG(ERROR) << "Mismatched defining class for method_annotation";
return false;
}
if (!CheckOffsetToTypeMap(method_item->annotations_off_, DexFile::kDexTypeAnnotationSetItem)) {
return false;
}
method_item++;
}
// Parameter annotations follow immediately after method annotations.
const DexFile::ParameterAnnotationsItem* parameter_item =
reinterpret_cast<const DexFile::ParameterAnnotationsItem*>(method_item);
uint32_t parameter_count = item->parameters_size_;
for (uint32_t i = 0; i < parameter_count; i++) {
const DexFile::MethodId& parameter_method = dex_file_->GetMethodId(parameter_item->method_idx_);
if (parameter_method.class_idx_ != defining_class) {
LOG(ERROR) << "Mismatched defining class for parameter_annotation";
return false;
}
if (!CheckOffsetToTypeMap(parameter_item->annotations_off_,
DexFile::kDexTypeAnnotationSetRefList)) {
return false;
}
parameter_item++;
}
ptr_ = reinterpret_cast<const byte*>(parameter_item);
return true;
}
bool DexFileVerifier::CheckInterSectionIterate(uint32_t offset, uint32_t count, uint16_t type) {
// Get the right alignment mask for the type of section.
uint32_t alignment_mask;
switch (type) {
case DexFile::kDexTypeClassDataItem:
alignment_mask = sizeof(uint8_t) - 1;
break;
default:
alignment_mask = sizeof(uint32_t) - 1;
break;
}
// Iterate through the items in the section.
previous_item_ = NULL;
for (uint32_t i = 0; i < count; i++) {
uint32_t new_offset = (offset + alignment_mask) & ~alignment_mask;
ptr_ = begin_ + new_offset;
const byte* prev_ptr = ptr_;
// Check depending on the section type.
switch (type) {
case DexFile::kDexTypeStringIdItem: {
if (!CheckInterStringIdItem()) {
return false;
}
break;
}
case DexFile::kDexTypeTypeIdItem: {
if (!CheckInterTypeIdItem()) {
return false;
}
break;
}
case DexFile::kDexTypeProtoIdItem: {
if (!CheckInterProtoIdItem()) {
return false;
}
break;
}
case DexFile::kDexTypeFieldIdItem: {
if (!CheckInterFieldIdItem()) {
return false;
}
break;
}
case DexFile::kDexTypeMethodIdItem: {
if (!CheckInterMethodIdItem()) {
return false;
}
break;
}
case DexFile::kDexTypeClassDefItem: {
if (!CheckInterClassDefItem()) {
return false;
}
break;
}
case DexFile::kDexTypeAnnotationSetRefList: {
if (!CheckInterAnnotationSetRefList()) {
return false;
}
break;
}
case DexFile::kDexTypeAnnotationSetItem: {
if (!CheckInterAnnotationSetItem()) {
return false;
}
break;
}
case DexFile::kDexTypeClassDataItem: {
if (!CheckInterClassDataItem()) {
return false;
}
break;
}
case DexFile::kDexTypeAnnotationsDirectoryItem: {
if (!CheckInterAnnotationsDirectoryItem()) {
return false;
}
break;
}
default:
LOG(ERROR) << StringPrintf("Unknown map item type %x", type);
return false;
}
previous_item_ = prev_ptr;
offset = reinterpret_cast<uint32_t>(ptr_) - reinterpret_cast<uint32_t>(begin_);
}
return true;
}
bool DexFileVerifier::CheckInterSection() {
const DexFile::MapList* map = reinterpret_cast<const DexFile::MapList*>(begin_ + header_->map_off_);
const DexFile::MapItem* item = map->list_;
uint32_t count = map->size_;
// Cross check the items listed in the map.
while (count--) {
uint32_t section_offset = item->offset_;
uint32_t section_count = item->size_;
uint16_t type = item->type_;
switch (type) {
case DexFile::kDexTypeHeaderItem:
case DexFile::kDexTypeMapList:
case DexFile::kDexTypeTypeList:
case DexFile::kDexTypeCodeItem:
case DexFile::kDexTypeStringDataItem:
case DexFile::kDexTypeDebugInfoItem:
case DexFile::kDexTypeAnnotationItem:
case DexFile::kDexTypeEncodedArrayItem:
break;
case DexFile::kDexTypeStringIdItem:
case DexFile::kDexTypeTypeIdItem:
case DexFile::kDexTypeProtoIdItem:
case DexFile::kDexTypeFieldIdItem:
case DexFile::kDexTypeMethodIdItem:
case DexFile::kDexTypeClassDefItem:
case DexFile::kDexTypeAnnotationSetRefList:
case DexFile::kDexTypeAnnotationSetItem:
case DexFile::kDexTypeClassDataItem:
case DexFile::kDexTypeAnnotationsDirectoryItem: {
if (!CheckInterSectionIterate(section_offset, section_count, type)) {
return false;
}
break;
}
default:
LOG(ERROR) << StringPrintf("Unknown map item type %x", type);
return false;
}
item++;
}
return true;
}
bool DexFileVerifier::Verify() {
// Check the header.
if (!CheckHeader()) {
return false;
}
// Check the map section.
if (!CheckMap()) {
return false;
}
// Check structure within remaining sections.
if (!CheckIntraSection()) {
return false;
}
// Check references from one section to another.
if (!CheckInterSection()) {
return false;
}
return true;
}
} // namespace art