blob: 0e2d921b7bf8ea14dd3834c11fc5d5bf76a938b9 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <limits.h>
#include "class_linker-inl.h"
#include "common_throws.h"
#include "debugger.h"
#include "dex_file-inl.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/allocator/dlmalloc.h"
#include "gc/heap.h"
#include "gc/space/dlmalloc_space.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "mirror/art_method-inl.h"
#include "mirror/class-inl.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "object_utils.h"
#include "runtime.h"
#include "scoped_fast_native_object_access.h"
#include "scoped_thread_state_change.h"
#include "thread.h"
#include "thread_list.h"
#include "toStringArray.h"
namespace art {
static jfloat VMRuntime_getTargetHeapUtilization(JNIEnv*, jobject) {
return Runtime::Current()->GetHeap()->GetTargetHeapUtilization();
}
static void VMRuntime_nativeSetTargetHeapUtilization(JNIEnv*, jobject, jfloat target) {
Runtime::Current()->GetHeap()->SetTargetHeapUtilization(target);
}
static void VMRuntime_startJitCompilation(JNIEnv*, jobject) {
}
static void VMRuntime_disableJitCompilation(JNIEnv*, jobject) {
}
static jobject VMRuntime_newNonMovableArray(JNIEnv* env, jobject, jclass javaElementClass,
jint length) {
ScopedFastNativeObjectAccess soa(env);
if (UNLIKELY(length < 0)) {
ThrowNegativeArraySizeException(length);
return nullptr;
}
mirror::Class* element_class = soa.Decode<mirror::Class*>(javaElementClass);
if (UNLIKELY(element_class == nullptr)) {
ThrowNullPointerException(NULL, "element class == null");
return nullptr;
}
if (UNLIKELY(element_class->IsPrimitiveVoid())) {
ThrowIllegalArgumentException(NULL, "Can't allocate an array of void");
return nullptr;
}
Runtime* runtime = Runtime::Current();
mirror::Class* array_class = runtime->GetClassLinker()->FindArrayClass(soa.Self(), element_class);
if (UNLIKELY(array_class == nullptr)) {
return nullptr;
}
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentNonMovingAllocator();
mirror::Array* result = mirror::Array::Alloc<true>(soa.Self(), array_class, length,
array_class->GetComponentSize(), allocator);
return soa.AddLocalReference<jobject>(result);
}
static jobject VMRuntime_newUnpaddedArray(JNIEnv* env, jobject, jclass javaElementClass,
jint length) {
ScopedFastNativeObjectAccess soa(env);
if (UNLIKELY(length < 0)) {
ThrowNegativeArraySizeException(length);
return nullptr;
}
mirror::Class* element_class = soa.Decode<mirror::Class*>(javaElementClass);
if (UNLIKELY(element_class == nullptr)) {
ThrowNullPointerException(NULL, "element class == null");
return nullptr;
}
if (UNLIKELY(element_class->IsPrimitiveVoid())) {
ThrowIllegalArgumentException(NULL, "Can't allocate an array of void");
return nullptr;
}
Runtime* runtime = Runtime::Current();
mirror::Class* array_class = runtime->GetClassLinker()->FindArrayClass(soa.Self(), element_class);
if (UNLIKELY(array_class == nullptr)) {
return nullptr;
}
gc::AllocatorType allocator = runtime->GetHeap()->GetCurrentAllocator();
mirror::Array* result = mirror::Array::Alloc<true>(soa.Self(), array_class, length,
array_class->GetComponentSize(), allocator,
true);
return soa.AddLocalReference<jobject>(result);
}
static jlong VMRuntime_addressOf(JNIEnv* env, jobject, jobject javaArray) {
if (javaArray == NULL) { // Most likely allocation failed
return 0;
}
ScopedFastNativeObjectAccess soa(env);
mirror::Array* array = soa.Decode<mirror::Array*>(javaArray);
if (!array->IsArrayInstance()) {
ThrowIllegalArgumentException(NULL, "not an array");
return 0;
}
if (Runtime::Current()->GetHeap()->IsMovableObject(array)) {
ThrowRuntimeException("Trying to get address of movable array object");
return 0;
}
return reinterpret_cast<uintptr_t>(array->GetRawData(array->GetClass()->GetComponentSize(), 0));
}
static void VMRuntime_clearGrowthLimit(JNIEnv*, jobject) {
Runtime::Current()->GetHeap()->ClearGrowthLimit();
}
static jboolean VMRuntime_isDebuggerActive(JNIEnv*, jobject) {
return Dbg::IsDebuggerActive();
}
static jobjectArray VMRuntime_properties(JNIEnv* env, jobject) {
return toStringArray(env, Runtime::Current()->GetProperties());
}
// This is for backward compatibility with dalvik which returned the
// meaningless "." when no boot classpath or classpath was
// specified. Unfortunately, some tests were using java.class.path to
// lookup relative file locations, so they are counting on this to be
// ".", presumably some applications or libraries could have as well.
static const char* DefaultToDot(const std::string& class_path) {
return class_path.empty() ? "." : class_path.c_str();
}
static jstring VMRuntime_bootClassPath(JNIEnv* env, jobject) {
return env->NewStringUTF(DefaultToDot(Runtime::Current()->GetBootClassPathString()));
}
static jstring VMRuntime_classPath(JNIEnv* env, jobject) {
return env->NewStringUTF(DefaultToDot(Runtime::Current()->GetClassPathString()));
}
static jstring VMRuntime_vmVersion(JNIEnv* env, jobject) {
return env->NewStringUTF(Runtime::GetVersion());
}
static jstring VMRuntime_vmLibrary(JNIEnv* env, jobject) {
return env->NewStringUTF(kIsDebugBuild ? "libartd.so" : "libart.so");
}
static void VMRuntime_setTargetSdkVersionNative(JNIEnv* env, jobject, jint targetSdkVersion) {
// This is the target SDK version of the app we're about to run.
// Note that targetSdkVersion may be CUR_DEVELOPMENT (10000).
// Note that targetSdkVersion may be 0, meaning "current".
if (targetSdkVersion > 0 && targetSdkVersion <= 13 /* honeycomb-mr2 */) {
Runtime* runtime = Runtime::Current();
JavaVMExt* vm = runtime->GetJavaVM();
if (vm->check_jni) {
LOG(INFO) << "CheckJNI enabled: not enabling JNI app bug workarounds.";
} else {
LOG(INFO) << "Turning on JNI app bug workarounds for target SDK version "
<< targetSdkVersion << "...";
vm->work_around_app_jni_bugs = true;
LOG(WARNING) << "Permenantly disabling heap compaction due to jni workarounds";
Runtime::Current()->GetHeap()->DisableCompaction();
}
}
}
static void VMRuntime_registerNativeAllocation(JNIEnv* env, jobject, jint bytes) {
if (UNLIKELY(bytes < 0)) {
ScopedObjectAccess soa(env);
ThrowRuntimeException("allocation size negative %d", bytes);
return;
}
Runtime::Current()->GetHeap()->RegisterNativeAllocation(env, bytes);
}
static void VMRuntime_registerNativeFree(JNIEnv* env, jobject, jint bytes) {
if (UNLIKELY(bytes < 0)) {
ScopedObjectAccess soa(env);
ThrowRuntimeException("allocation size negative %d", bytes);
return;
}
Runtime::Current()->GetHeap()->RegisterNativeFree(env, bytes);
}
static void VMRuntime_updateProcessState(JNIEnv* env, jobject, jint process_state) {
Runtime::Current()->GetHeap()->UpdateProcessState(static_cast<gc::ProcessState>(process_state));
Runtime::Current()->UpdateProfilerState(process_state);
}
static void VMRuntime_trimHeap(JNIEnv*, jobject) {
Runtime::Current()->GetHeap()->DoPendingTransitionOrTrim();
}
static void VMRuntime_concurrentGC(JNIEnv* env, jobject) {
Runtime::Current()->GetHeap()->ConcurrentGC(ThreadForEnv(env));
}
typedef std::map<std::string, mirror::String*> StringTable;
static void PreloadDexCachesStringsCallback(mirror::Object** root, void* arg,
uint32_t /*thread_id*/, RootType /*root_type*/)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
StringTable& table = *reinterpret_cast<StringTable*>(arg);
mirror::String* string = const_cast<mirror::Object*>(*root)->AsString();
table[string->ToModifiedUtf8()] = string;
}
// Based on ClassLinker::ResolveString.
static void PreloadDexCachesResolveString(SirtRef<mirror::DexCache>& dex_cache, uint32_t string_idx,
StringTable& strings)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::String* string = dex_cache->GetResolvedString(string_idx);
if (string != NULL) {
return;
}
const DexFile* dex_file = dex_cache->GetDexFile();
const char* utf8 = dex_file->StringDataByIdx(string_idx);
string = strings[utf8];
if (string == NULL) {
return;
}
// LOG(INFO) << "VMRuntime.preloadDexCaches resolved string=" << utf8;
dex_cache->SetResolvedString(string_idx, string);
}
// Based on ClassLinker::ResolveType.
static void PreloadDexCachesResolveType(mirror::DexCache* dex_cache, uint32_t type_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Class* klass = dex_cache->GetResolvedType(type_idx);
if (klass != NULL) {
return;
}
const DexFile* dex_file = dex_cache->GetDexFile();
const char* class_name = dex_file->StringByTypeIdx(type_idx);
ClassLinker* linker = Runtime::Current()->GetClassLinker();
if (class_name[1] == '\0') {
klass = linker->FindPrimitiveClass(class_name[0]);
} else {
klass = linker->LookupClass(class_name, NULL);
}
if (klass == NULL) {
return;
}
// LOG(INFO) << "VMRuntime.preloadDexCaches resolved klass=" << class_name;
dex_cache->SetResolvedType(type_idx, klass);
// Skip uninitialized classes because filled static storage entry implies it is initialized.
if (!klass->IsInitialized()) {
// LOG(INFO) << "VMRuntime.preloadDexCaches uninitialized klass=" << class_name;
return;
}
// LOG(INFO) << "VMRuntime.preloadDexCaches static storage klass=" << class_name;
}
// Based on ClassLinker::ResolveField.
static void PreloadDexCachesResolveField(SirtRef<mirror::DexCache>& dex_cache,
uint32_t field_idx,
bool is_static)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtField* field = dex_cache->GetResolvedField(field_idx);
if (field != NULL) {
return;
}
const DexFile* dex_file = dex_cache->GetDexFile();
const DexFile::FieldId& field_id = dex_file->GetFieldId(field_idx);
mirror::Class* klass = dex_cache->GetResolvedType(field_id.class_idx_);
if (klass == NULL) {
return;
}
if (is_static) {
field = klass->FindStaticField(dex_cache.get(), field_idx);
} else {
field = klass->FindInstanceField(dex_cache.get(), field_idx);
}
if (field == NULL) {
return;
}
// LOG(INFO) << "VMRuntime.preloadDexCaches resolved field " << PrettyField(field);
dex_cache->SetResolvedField(field_idx, field);
}
// Based on ClassLinker::ResolveMethod.
static void PreloadDexCachesResolveMethod(SirtRef<mirror::DexCache>& dex_cache,
uint32_t method_idx,
InvokeType invoke_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::ArtMethod* method = dex_cache->GetResolvedMethod(method_idx);
if (method != NULL) {
return;
}
const DexFile* dex_file = dex_cache->GetDexFile();
const DexFile::MethodId& method_id = dex_file->GetMethodId(method_idx);
mirror::Class* klass = dex_cache->GetResolvedType(method_id.class_idx_);
if (klass == NULL) {
return;
}
switch (invoke_type) {
case kDirect:
case kStatic:
method = klass->FindDirectMethod(dex_cache.get(), method_idx);
break;
case kInterface:
method = klass->FindInterfaceMethod(dex_cache.get(), method_idx);
break;
case kSuper:
case kVirtual:
method = klass->FindVirtualMethod(dex_cache.get(), method_idx);
break;
default:
LOG(FATAL) << "Unreachable - invocation type: " << invoke_type;
}
if (method == NULL) {
return;
}
// LOG(INFO) << "VMRuntime.preloadDexCaches resolved method " << PrettyMethod(method);
dex_cache->SetResolvedMethod(method_idx, method);
}
struct DexCacheStats {
uint32_t num_strings;
uint32_t num_types;
uint32_t num_fields;
uint32_t num_methods;
DexCacheStats() : num_strings(0),
num_types(0),
num_fields(0),
num_methods(0) {}
};
static const bool kPreloadDexCachesEnabled = true;
// Disabled because it takes a long time (extra half second) but
// gives almost no benefit in terms of saving private dirty pages.
static const bool kPreloadDexCachesStrings = false;
static const bool kPreloadDexCachesTypes = true;
static const bool kPreloadDexCachesFieldsAndMethods = true;
static const bool kPreloadDexCachesCollectStats = true;
static void PreloadDexCachesStatsTotal(DexCacheStats* total) {
if (!kPreloadDexCachesCollectStats) {
return;
}
ClassLinker* linker = Runtime::Current()->GetClassLinker();
const std::vector<const DexFile*>& boot_class_path = linker->GetBootClassPath();
for (size_t i = 0; i< boot_class_path.size(); i++) {
const DexFile* dex_file = boot_class_path[i];
CHECK(dex_file != NULL);
total->num_strings += dex_file->NumStringIds();
total->num_fields += dex_file->NumFieldIds();
total->num_methods += dex_file->NumMethodIds();
total->num_types += dex_file->NumTypeIds();
}
}
static void PreloadDexCachesStatsFilled(DexCacheStats* filled)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (!kPreloadDexCachesCollectStats) {
return;
}
ClassLinker* linker = Runtime::Current()->GetClassLinker();
const std::vector<const DexFile*>& boot_class_path = linker->GetBootClassPath();
for (size_t i = 0; i< boot_class_path.size(); i++) {
const DexFile* dex_file = boot_class_path[i];
CHECK(dex_file != NULL);
mirror::DexCache* dex_cache = linker->FindDexCache(*dex_file);
for (size_t i = 0; i < dex_cache->NumStrings(); i++) {
mirror::String* string = dex_cache->GetResolvedString(i);
if (string != NULL) {
filled->num_strings++;
}
}
for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
mirror::Class* klass = dex_cache->GetResolvedType(i);
if (klass != NULL) {
filled->num_types++;
}
}
for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
mirror::ArtField* field = dex_cache->GetResolvedField(i);
if (field != NULL) {
filled->num_fields++;
}
}
for (size_t i = 0; i < dex_cache->NumResolvedMethods(); i++) {
mirror::ArtMethod* method = dex_cache->GetResolvedMethod(i);
if (method != NULL) {
filled->num_methods++;
}
}
}
}
// TODO: http://b/11309598 This code was ported over based on the
// Dalvik version. However, ART has similar code in other places such
// as the CompilerDriver. This code could probably be refactored to
// serve both uses.
static void VMRuntime_preloadDexCaches(JNIEnv* env, jobject) {
if (!kPreloadDexCachesEnabled) {
return;
}
ScopedObjectAccess soa(env);
DexCacheStats total;
DexCacheStats before;
if (kPreloadDexCachesCollectStats) {
LOG(INFO) << "VMRuntime.preloadDexCaches starting";
PreloadDexCachesStatsTotal(&total);
PreloadDexCachesStatsFilled(&before);
}
Runtime* runtime = Runtime::Current();
ClassLinker* linker = runtime->GetClassLinker();
Thread* self = ThreadForEnv(env);
// We use a std::map to avoid heap allocating StringObjects to lookup in gDvm.literalStrings
StringTable strings;
if (kPreloadDexCachesStrings) {
runtime->GetInternTable()->VisitRoots(PreloadDexCachesStringsCallback, &strings,
kVisitRootFlagAllRoots);
}
const std::vector<const DexFile*>& boot_class_path = linker->GetBootClassPath();
for (size_t i = 0; i< boot_class_path.size(); i++) {
const DexFile* dex_file = boot_class_path[i];
CHECK(dex_file != NULL);
SirtRef<mirror::DexCache> dex_cache(self, linker->FindDexCache(*dex_file));
if (kPreloadDexCachesStrings) {
for (size_t i = 0; i < dex_cache->NumStrings(); i++) {
PreloadDexCachesResolveString(dex_cache, i, strings);
}
}
if (kPreloadDexCachesTypes) {
for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
PreloadDexCachesResolveType(dex_cache.get(), i);
}
}
if (kPreloadDexCachesFieldsAndMethods) {
for (size_t class_def_index = 0;
class_def_index < dex_file->NumClassDefs();
class_def_index++) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
const byte* class_data = dex_file->GetClassData(class_def);
if (class_data == NULL) {
continue;
}
ClassDataItemIterator it(*dex_file, class_data);
for (; it.HasNextStaticField(); it.Next()) {
uint32_t field_idx = it.GetMemberIndex();
PreloadDexCachesResolveField(dex_cache, field_idx, true);
}
for (; it.HasNextInstanceField(); it.Next()) {
uint32_t field_idx = it.GetMemberIndex();
PreloadDexCachesResolveField(dex_cache, field_idx, false);
}
for (; it.HasNextDirectMethod(); it.Next()) {
uint32_t method_idx = it.GetMemberIndex();
InvokeType invoke_type = it.GetMethodInvokeType(class_def);
PreloadDexCachesResolveMethod(dex_cache, method_idx, invoke_type);
}
for (; it.HasNextVirtualMethod(); it.Next()) {
uint32_t method_idx = it.GetMemberIndex();
InvokeType invoke_type = it.GetMethodInvokeType(class_def);
PreloadDexCachesResolveMethod(dex_cache, method_idx, invoke_type);
}
}
}
}
if (kPreloadDexCachesCollectStats) {
DexCacheStats after;
PreloadDexCachesStatsFilled(&after);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches strings total=%d before=%d after=%d",
total.num_strings, before.num_strings, after.num_strings);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches types total=%d before=%d after=%d",
total.num_types, before.num_types, after.num_types);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches fields total=%d before=%d after=%d",
total.num_fields, before.num_fields, after.num_fields);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches methods total=%d before=%d after=%d",
total.num_methods, before.num_methods, after.num_methods);
LOG(INFO) << StringPrintf("VMRuntime.preloadDexCaches finished");
}
}
/*
* This is called by the framework when it knows the application directory and
* process name. We use this information to start up the sampling profiler for
* for ART.
*/
static void VMRuntime_registerAppInfo(JNIEnv* env, jclass, jstring pkgName, jstring appDir, jstring procName) {
const char *pkgNameChars = env->GetStringUTFChars(pkgName, NULL);
const char *appDirChars = env->GetStringUTFChars(appDir, NULL);
const char *procNameChars = env->GetStringUTFChars(procName, NULL);
std::string profileFile = StringPrintf("/data/dalvik-cache/profiles/%s", pkgNameChars);
Runtime::Current()->StartProfiler(profileFile.c_str(), procNameChars);
env->ReleaseStringUTFChars(appDir, appDirChars);
env->ReleaseStringUTFChars(procName, procNameChars);
env->ReleaseStringUTFChars(pkgName, pkgNameChars);
}
static JNINativeMethod gMethods[] = {
NATIVE_METHOD(VMRuntime, addressOf, "!(Ljava/lang/Object;)J"),
NATIVE_METHOD(VMRuntime, bootClassPath, "()Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, classPath, "()Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, clearGrowthLimit, "()V"),
NATIVE_METHOD(VMRuntime, concurrentGC, "()V"),
NATIVE_METHOD(VMRuntime, disableJitCompilation, "()V"),
NATIVE_METHOD(VMRuntime, getTargetHeapUtilization, "()F"),
NATIVE_METHOD(VMRuntime, isDebuggerActive, "()Z"),
NATIVE_METHOD(VMRuntime, nativeSetTargetHeapUtilization, "(F)V"),
NATIVE_METHOD(VMRuntime, newNonMovableArray, "!(Ljava/lang/Class;I)Ljava/lang/Object;"),
NATIVE_METHOD(VMRuntime, newUnpaddedArray, "!(Ljava/lang/Class;I)Ljava/lang/Object;"),
NATIVE_METHOD(VMRuntime, properties, "()[Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, setTargetSdkVersionNative, "(I)V"),
NATIVE_METHOD(VMRuntime, registerNativeAllocation, "(I)V"),
NATIVE_METHOD(VMRuntime, registerNativeFree, "(I)V"),
NATIVE_METHOD(VMRuntime, updateProcessState, "(I)V"),
NATIVE_METHOD(VMRuntime, startJitCompilation, "()V"),
NATIVE_METHOD(VMRuntime, trimHeap, "()V"),
NATIVE_METHOD(VMRuntime, vmVersion, "()Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, vmLibrary, "()Ljava/lang/String;"),
NATIVE_METHOD(VMRuntime, preloadDexCaches, "()V"),
NATIVE_METHOD(VMRuntime, registerAppInfo, "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V"),
};
void register_dalvik_system_VMRuntime(JNIEnv* env) {
REGISTER_NATIVE_METHODS("dalvik/system/VMRuntime");
}
} // namespace art