blob: 29c353a4e6263988a53f3836273e9a1603780d03 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "compiler_internals.h"
#include "dataflow_iterator.h"
#include "dataflow_iterator-inl.h"
#include "gtest/gtest.h"
namespace art {
class ClassInitCheckEliminationTest : public testing::Test {
protected:
struct SFieldDef {
uint16_t field_idx;
uintptr_t declaring_dex_file;
uint16_t declaring_class_idx;
uint16_t declaring_field_idx;
};
struct BBDef {
static constexpr size_t kMaxSuccessors = 4;
static constexpr size_t kMaxPredecessors = 4;
BBType type;
size_t num_successors;
BasicBlockId successors[kMaxPredecessors];
size_t num_predecessors;
BasicBlockId predecessors[kMaxPredecessors];
};
struct MIRDef {
Instruction::Code opcode;
BasicBlockId bbid;
uint32_t field_or_method_info;
};
#define DEF_SUCC0() \
0u, { }
#define DEF_SUCC1(s1) \
1u, { s1 }
#define DEF_SUCC2(s1, s2) \
2u, { s1, s2 }
#define DEF_SUCC3(s1, s2, s3) \
3u, { s1, s2, s3 }
#define DEF_SUCC4(s1, s2, s3, s4) \
4u, { s1, s2, s3, s4 }
#define DEF_PRED0() \
0u, { }
#define DEF_PRED1(p1) \
1u, { p1 }
#define DEF_PRED2(p1, p2) \
2u, { p1, p2 }
#define DEF_PRED3(p1, p2, p3) \
3u, { p1, p2, p3 }
#define DEF_PRED4(p1, p2, p3, p4) \
4u, { p1, p2, p3, p4 }
#define DEF_BB(type, succ, pred) \
{ type, succ, pred }
#define DEF_MIR(opcode, bb, field_info) \
{ opcode, bb, field_info }
void DoPrepareSFields(const SFieldDef* defs, size_t count) {
cu_.mir_graph->sfield_lowering_infos_.Reset();
cu_.mir_graph->sfield_lowering_infos_.Resize(count);
for (size_t i = 0u; i != count; ++i) {
const SFieldDef* def = &defs[i];
MirSFieldLoweringInfo field_info(def->field_idx);
if (def->declaring_dex_file != 0u) {
field_info.declaring_dex_file_ = reinterpret_cast<const DexFile*>(def->declaring_dex_file);
field_info.declaring_class_idx_ = def->declaring_class_idx;
field_info.declaring_field_idx_ = def->declaring_field_idx;
field_info.flags_ = MirSFieldLoweringInfo::kFlagIsStatic;
}
ASSERT_EQ(def->declaring_dex_file != 0u, field_info.IsResolved());
ASSERT_FALSE(field_info.IsInitialized());
cu_.mir_graph->sfield_lowering_infos_.Insert(field_info);
}
}
template <size_t count>
void PrepareSFields(const SFieldDef (&defs)[count]) {
DoPrepareSFields(defs, count);
}
void DoPrepareBasicBlocks(const BBDef* defs, size_t count) {
cu_.mir_graph->block_id_map_.clear();
cu_.mir_graph->block_list_.Reset();
ASSERT_LT(3u, count); // null, entry, exit and at least one bytecode block.
ASSERT_EQ(kNullBlock, defs[0].type);
ASSERT_EQ(kEntryBlock, defs[1].type);
ASSERT_EQ(kExitBlock, defs[2].type);
for (size_t i = 0u; i != count; ++i) {
const BBDef* def = &defs[i];
BasicBlock* bb = cu_.mir_graph->NewMemBB(def->type, i);
cu_.mir_graph->block_list_.Insert(bb);
if (def->num_successors <= 2) {
bb->successor_block_list_type = kNotUsed;
bb->successor_blocks = nullptr;
bb->fall_through = (def->num_successors >= 1) ? def->successors[0] : 0u;
bb->taken = (def->num_successors >= 2) ? def->successors[1] : 0u;
} else {
bb->successor_block_list_type = kPackedSwitch;
bb->fall_through = 0u;
bb->taken = 0u;
bb->successor_blocks = new (&cu_.arena) GrowableArray<SuccessorBlockInfo*>(
&cu_.arena, def->num_successors, kGrowableArraySuccessorBlocks);
for (size_t j = 0u; j != def->num_successors; ++j) {
SuccessorBlockInfo* successor_block_info =
static_cast<SuccessorBlockInfo*>(cu_.arena.Alloc(sizeof(SuccessorBlockInfo),
kArenaAllocSuccessor));
successor_block_info->block = j;
successor_block_info->key = 0u; // Not used by class init check elimination.
bb->successor_blocks->Insert(successor_block_info);
}
}
bb->predecessors = new (&cu_.arena) GrowableArray<BasicBlockId>(
&cu_.arena, def->num_predecessors, kGrowableArrayPredecessors);
for (size_t j = 0u; j != def->num_predecessors; ++j) {
ASSERT_NE(0u, def->predecessors[j]);
bb->predecessors->Insert(def->predecessors[j]);
}
if (def->type == kDalvikByteCode || def->type == kEntryBlock || def->type == kExitBlock) {
bb->data_flow_info = static_cast<BasicBlockDataFlow*>(
cu_.arena.Alloc(sizeof(BasicBlockDataFlow), kArenaAllocDFInfo));
}
}
cu_.mir_graph->num_blocks_ = count;
ASSERT_EQ(count, cu_.mir_graph->block_list_.Size());
cu_.mir_graph->entry_block_ = cu_.mir_graph->block_list_.Get(1);
ASSERT_EQ(kEntryBlock, cu_.mir_graph->entry_block_->block_type);
cu_.mir_graph->exit_block_ = cu_.mir_graph->block_list_.Get(2);
ASSERT_EQ(kExitBlock, cu_.mir_graph->exit_block_->block_type);
}
template <size_t count>
void PrepareBasicBlocks(const BBDef (&defs)[count]) {
DoPrepareBasicBlocks(defs, count);
}
void DoPrepareMIRs(const MIRDef* defs, size_t count) {
mir_count_ = count;
mirs_ = reinterpret_cast<MIR*>(cu_.arena.Alloc(sizeof(MIR) * count, kArenaAllocMIR));
uint64_t merged_df_flags = 0u;
for (size_t i = 0u; i != count; ++i) {
const MIRDef* def = &defs[i];
MIR* mir = &mirs_[i];
mir->dalvikInsn.opcode = def->opcode;
ASSERT_LT(def->bbid, cu_.mir_graph->block_list_.Size());
BasicBlock* bb = cu_.mir_graph->block_list_.Get(def->bbid);
bb->AppendMIR(mir);
if (def->opcode >= Instruction::SGET && def->opcode <= Instruction::SPUT_SHORT) {
ASSERT_LT(def->field_or_method_info, cu_.mir_graph->sfield_lowering_infos_.Size());
mir->meta.sfield_lowering_info = def->field_or_method_info;
}
mir->ssa_rep = nullptr;
mir->offset = 2 * i; // All insns need to be at least 2 code units long.
mir->optimization_flags = 0u;
merged_df_flags |= MIRGraph::GetDataFlowAttributes(def->opcode);
}
cu_.mir_graph->merged_df_flags_ = merged_df_flags;
code_item_ = static_cast<DexFile::CodeItem*>(
cu_.arena.Alloc(sizeof(DexFile::CodeItem), kArenaAllocMisc));
memset(code_item_, 0, sizeof(DexFile::CodeItem));
code_item_->insns_size_in_code_units_ = 2u * count;
cu_.mir_graph->current_code_item_ = cu_.code_item = code_item_;
}
template <size_t count>
void PrepareMIRs(const MIRDef (&defs)[count]) {
DoPrepareMIRs(defs, count);
}
void PerformClassInitCheckElimination() {
cu_.mir_graph->SSATransformationStart();
cu_.mir_graph->ComputeDFSOrders();
cu_.mir_graph->SSATransformationEnd();
bool gate_result = cu_.mir_graph->EliminateClassInitChecksGate();
ASSERT_TRUE(gate_result);
RepeatingPreOrderDfsIterator iterator(cu_.mir_graph.get());
bool change = false;
for (BasicBlock* bb = iterator.Next(change); bb != nullptr; bb = iterator.Next(change)) {
change = cu_.mir_graph->EliminateClassInitChecks(bb);
}
cu_.mir_graph->EliminateClassInitChecksEnd();
}
ClassInitCheckEliminationTest()
: pool_(),
cu_(&pool_),
mir_count_(0u),
mirs_(nullptr),
code_item_(nullptr) {
cu_.mir_graph.reset(new MIRGraph(&cu_, &cu_.arena));
}
ArenaPool pool_;
CompilationUnit cu_;
size_t mir_count_;
MIR* mirs_;
DexFile::CodeItem* code_item_;
};
TEST_F(ClassInitCheckEliminationTest, SingleBlock) {
static const SFieldDef sfields[] = {
{ 0u, 1u, 0u, 0u },
{ 1u, 1u, 1u, 1u },
{ 2u, 1u, 2u, 2u },
{ 3u, 1u, 3u, 3u }, // Same declaring class as sfield[4].
{ 4u, 1u, 3u, 4u }, // Same declaring class as sfield[3].
{ 5u, 0u, 0u, 0u }, // Unresolved.
};
static const BBDef bbs[] = {
DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(3)),
DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(1)),
};
static const MIRDef mirs[] = {
DEF_MIR(Instruction::SPUT, 3u, 5u), // Unresolved.
DEF_MIR(Instruction::SPUT, 3u, 0u),
DEF_MIR(Instruction::SGET, 3u, 1u),
DEF_MIR(Instruction::SGET, 3u, 2u),
DEF_MIR(Instruction::SGET, 3u, 5u), // Unresolved.
DEF_MIR(Instruction::SGET, 3u, 0u),
DEF_MIR(Instruction::SGET, 3u, 1u),
DEF_MIR(Instruction::SGET, 3u, 2u),
DEF_MIR(Instruction::SGET, 3u, 5u), // Unresolved.
DEF_MIR(Instruction::SGET, 3u, 3u),
DEF_MIR(Instruction::SGET, 3u, 4u),
};
static const bool expected_ignore_clinit_check[] = {
false, false, false, false, false, true, true, true, false, false, true
};
PrepareSFields(sfields);
PrepareBasicBlocks(bbs);
PrepareMIRs(mirs);
PerformClassInitCheckElimination();
ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_);
for (size_t i = 0u; i != arraysize(mirs); ++i) {
EXPECT_EQ(expected_ignore_clinit_check[i],
(mirs_[i].optimization_flags & MIR_IGNORE_CLINIT_CHECK) != 0) << i;
}
}
TEST_F(ClassInitCheckEliminationTest, Diamond) {
static const SFieldDef sfields[] = {
{ 0u, 1u, 0u, 0u },
{ 1u, 1u, 1u, 1u },
{ 2u, 1u, 2u, 2u },
{ 3u, 1u, 3u, 3u },
{ 4u, 1u, 4u, 4u },
{ 5u, 1u, 5u, 5u },
{ 6u, 1u, 6u, 6u },
{ 7u, 1u, 7u, 7u },
{ 8u, 1u, 8u, 8u }, // Same declaring class as sfield[9].
{ 9u, 1u, 8u, 9u }, // Same declaring class as sfield[8].
{ 10u, 0u, 0u, 0u }, // Unresolved.
};
static const BBDef bbs[] = {
DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(6)),
DEF_BB(kDalvikByteCode, DEF_SUCC2(4, 5), DEF_PRED1(1)),
DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)),
DEF_BB(kDalvikByteCode, DEF_SUCC1(6), DEF_PRED1(3)),
DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED2(4, 5)),
};
static const MIRDef mirs[] = {
// NOTE: MIRs here are ordered by unique tests. They will be put into appropriate blocks.
DEF_MIR(Instruction::SGET, 3u, 10u), // Unresolved.
DEF_MIR(Instruction::SPUT, 3u, 10u), // Unresolved.
DEF_MIR(Instruction::SPUT, 3u, 0u),
DEF_MIR(Instruction::SGET, 6u, 0u), // Eliminated (block #3 dominates #6).
DEF_MIR(Instruction::SPUT, 4u, 1u),
DEF_MIR(Instruction::SGET, 6u, 1u), // Not eliminated (block #4 doesn't dominate #6).
DEF_MIR(Instruction::SGET, 3u, 2u),
DEF_MIR(Instruction::SGET, 4u, 2u), // Eliminated (block #3 dominates #4).
DEF_MIR(Instruction::SGET, 3u, 3u),
DEF_MIR(Instruction::SGET, 5u, 3u), // Eliminated (block #3 dominates #5).
DEF_MIR(Instruction::SGET, 3u, 4u),
DEF_MIR(Instruction::SGET, 6u, 4u), // Eliminated (block #3 dominates #6).
DEF_MIR(Instruction::SGET, 4u, 5u),
DEF_MIR(Instruction::SGET, 6u, 5u), // Not eliminated (block #4 doesn't dominate #6).
DEF_MIR(Instruction::SGET, 5u, 6u),
DEF_MIR(Instruction::SGET, 6u, 6u), // Not eliminated (block #5 doesn't dominate #6).
DEF_MIR(Instruction::SGET, 4u, 7u),
DEF_MIR(Instruction::SGET, 5u, 7u),
DEF_MIR(Instruction::SGET, 6u, 7u), // Eliminated (initialized in both blocks #3 and #4).
DEF_MIR(Instruction::SGET, 4u, 8u),
DEF_MIR(Instruction::SGET, 5u, 9u),
DEF_MIR(Instruction::SGET, 6u, 8u), // Eliminated (with sfield[9] in block #5).
DEF_MIR(Instruction::SPUT, 6u, 9u), // Eliminated (with sfield[8] in block #4).
};
static const bool expected_ignore_clinit_check[] = {
false, false, // Unresolved: sfield[10], method[2]
false, true, // sfield[0]
false, false, // sfield[1]
false, true, // sfield[2]
false, true, // sfield[3]
false, true, // sfield[4]
false, false, // sfield[5]
false, false, // sfield[6]
false, false, true, // sfield[7]
false, false, true, true, // sfield[8], sfield[9]
};
PrepareSFields(sfields);
PrepareBasicBlocks(bbs);
PrepareMIRs(mirs);
PerformClassInitCheckElimination();
ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_);
for (size_t i = 0u; i != arraysize(mirs); ++i) {
EXPECT_EQ(expected_ignore_clinit_check[i],
(mirs_[i].optimization_flags & MIR_IGNORE_CLINIT_CHECK) != 0) << i;
}
}
TEST_F(ClassInitCheckEliminationTest, Loop) {
static const SFieldDef sfields[] = {
{ 0u, 1u, 0u, 0u },
{ 1u, 1u, 1u, 1u },
};
static const BBDef bbs[] = {
DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(5)),
DEF_BB(kDalvikByteCode, DEF_SUCC1(4), DEF_PRED1(1)),
DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 4), DEF_PRED2(3, 4)), // "taken" loops to self.
DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED1(4)),
};
static const MIRDef mirs[] = {
DEF_MIR(Instruction::SGET, 3u, 0u),
DEF_MIR(Instruction::SGET, 4u, 1u),
DEF_MIR(Instruction::SGET, 5u, 0u), // Eliminated.
DEF_MIR(Instruction::SGET, 5u, 1u), // Eliminated.
};
static const bool expected_ignore_clinit_check[] = {
false, false, true, true
};
PrepareSFields(sfields);
PrepareBasicBlocks(bbs);
PrepareMIRs(mirs);
PerformClassInitCheckElimination();
ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_);
for (size_t i = 0u; i != arraysize(mirs); ++i) {
EXPECT_EQ(expected_ignore_clinit_check[i],
(mirs_[i].optimization_flags & MIR_IGNORE_CLINIT_CHECK) != 0) << i;
}
}
TEST_F(ClassInitCheckEliminationTest, Catch) {
static const SFieldDef sfields[] = {
{ 0u, 1u, 0u, 0u },
{ 1u, 1u, 1u, 1u },
};
static const BBDef bbs[] = {
DEF_BB(kNullBlock, DEF_SUCC0(), DEF_PRED0()),
DEF_BB(kEntryBlock, DEF_SUCC1(3), DEF_PRED0()),
DEF_BB(kExitBlock, DEF_SUCC0(), DEF_PRED1(5)),
DEF_BB(kDalvikByteCode, DEF_SUCC2(5, 4), DEF_PRED1(1)),
DEF_BB(kDalvikByteCode, DEF_SUCC1(5), DEF_PRED1(3)), // Catch handler.
DEF_BB(kDalvikByteCode, DEF_SUCC1(2), DEF_PRED2(3, 4)),
};
static const MIRDef mirs[] = {
DEF_MIR(Instruction::SGET, 3u, 0u),
DEF_MIR(Instruction::SGET, 3u, 1u),
DEF_MIR(Instruction::SGET, 4u, 1u),
DEF_MIR(Instruction::SGET, 5u, 0u), // Not eliminated.
DEF_MIR(Instruction::SGET, 5u, 1u), // Eliminated.
};
static const bool expected_ignore_clinit_check[] = {
false, false, false, false, true
};
PrepareSFields(sfields);
PrepareBasicBlocks(bbs);
BasicBlock* catch_handler = cu_.mir_graph->GetBasicBlock(4u);
catch_handler->catch_entry = true;
PrepareMIRs(mirs);
PerformClassInitCheckElimination();
ASSERT_EQ(arraysize(expected_ignore_clinit_check), mir_count_);
for (size_t i = 0u; i != arraysize(mirs); ++i) {
EXPECT_EQ(expected_ignore_clinit_check[i],
(mirs_[i].optimization_flags & MIR_IGNORE_CLINIT_CHECK) != 0) << i;
}
}
} // namespace art