blob: 7c8e7e2bdd77d48a5a4eb9d507a7a2b21b754a78 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
#define ART_COMPILER_OPTIMIZING_NODES_H_
#include "locations.h"
#include "offsets.h"
#include "primitive.h"
#include "utils/allocation.h"
#include "utils/arena_bit_vector.h"
#include "utils/growable_array.h"
namespace art {
class HBasicBlock;
class HEnvironment;
class HInstruction;
class HIntConstant;
class HGraphVisitor;
class HPhi;
class HSuspendCheck;
class LiveInterval;
class LocationSummary;
static const int kDefaultNumberOfBlocks = 8;
static const int kDefaultNumberOfSuccessors = 2;
static const int kDefaultNumberOfPredecessors = 2;
static const int kDefaultNumberOfDominatedBlocks = 1;
static const int kDefaultNumberOfBackEdges = 1;
enum IfCondition {
kCondEQ,
kCondNE,
kCondLT,
kCondLE,
kCondGT,
kCondGE,
};
class HInstructionList {
public:
HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
void AddInstruction(HInstruction* instruction);
void RemoveInstruction(HInstruction* instruction);
// Return true if `instruction1` is found before `instruction2` in
// this instruction list and false otherwise. Abort if none
// of these instructions is found.
bool FoundBefore(const HInstruction* instruction1,
const HInstruction* instruction2) const;
private:
HInstruction* first_instruction_;
HInstruction* last_instruction_;
friend class HBasicBlock;
friend class HInstructionIterator;
friend class HBackwardInstructionIterator;
DISALLOW_COPY_AND_ASSIGN(HInstructionList);
};
// Control-flow graph of a method. Contains a list of basic blocks.
class HGraph : public ArenaObject {
public:
explicit HGraph(ArenaAllocator* arena)
: arena_(arena),
blocks_(arena, kDefaultNumberOfBlocks),
reverse_post_order_(arena, kDefaultNumberOfBlocks),
maximum_number_of_out_vregs_(0),
number_of_vregs_(0),
number_of_in_vregs_(0),
number_of_temporaries_(0),
current_instruction_id_(0) {}
ArenaAllocator* GetArena() const { return arena_; }
const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
HBasicBlock* GetEntryBlock() const { return entry_block_; }
HBasicBlock* GetExitBlock() const { return exit_block_; }
void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
void AddBlock(HBasicBlock* block);
void BuildDominatorTree();
void TransformToSSA();
void SimplifyCFG();
// Find all natural loops in this graph. Aborts computation and returns false
// if one loop is not natural, that is the header does not dominate the back
// edge.
bool FindNaturalLoops() const;
void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
void SimplifyLoop(HBasicBlock* header);
int GetNextInstructionId() {
return current_instruction_id_++;
}
uint16_t GetMaximumNumberOfOutVRegs() const {
return maximum_number_of_out_vregs_;
}
void UpdateMaximumNumberOfOutVRegs(uint16_t new_value) {
maximum_number_of_out_vregs_ = std::max(new_value, maximum_number_of_out_vregs_);
}
void UpdateNumberOfTemporaries(size_t count) {
number_of_temporaries_ = std::max(count, number_of_temporaries_);
}
size_t GetNumberOfTemporaries() const {
return number_of_temporaries_;
}
void SetNumberOfVRegs(uint16_t number_of_vregs) {
number_of_vregs_ = number_of_vregs;
}
uint16_t GetNumberOfVRegs() const {
return number_of_vregs_;
}
void SetNumberOfInVRegs(uint16_t value) {
number_of_in_vregs_ = value;
}
uint16_t GetNumberOfInVRegs() const {
return number_of_in_vregs_;
}
uint16_t GetNumberOfLocalVRegs() const {
return number_of_vregs_ - number_of_in_vregs_;
}
const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
return reverse_post_order_;
}
private:
HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
void VisitBlockForDominatorTree(HBasicBlock* block,
HBasicBlock* predecessor,
GrowableArray<size_t>* visits);
void FindBackEdges(ArenaBitVector* visited);
void VisitBlockForBackEdges(HBasicBlock* block,
ArenaBitVector* visited,
ArenaBitVector* visiting);
void RemoveDeadBlocks(const ArenaBitVector& visited) const;
ArenaAllocator* const arena_;
// List of blocks in insertion order.
GrowableArray<HBasicBlock*> blocks_;
// List of blocks to perform a reverse post order tree traversal.
GrowableArray<HBasicBlock*> reverse_post_order_;
HBasicBlock* entry_block_;
HBasicBlock* exit_block_;
// The maximum number of virtual registers arguments passed to a HInvoke in this graph.
uint16_t maximum_number_of_out_vregs_;
// The number of virtual registers in this method. Contains the parameters.
uint16_t number_of_vregs_;
// The number of virtual registers used by parameters of this method.
uint16_t number_of_in_vregs_;
// The number of temporaries that will be needed for the baseline compiler.
size_t number_of_temporaries_;
// The current id to assign to a newly added instruction. See HInstruction.id_.
int current_instruction_id_;
DISALLOW_COPY_AND_ASSIGN(HGraph);
};
class HLoopInformation : public ArenaObject {
public:
HLoopInformation(HBasicBlock* header, HGraph* graph)
: header_(header),
suspend_check_(nullptr),
back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
// Make bit vector growable, as the number of blocks may change.
blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
HBasicBlock* GetHeader() const {
return header_;
}
HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
void AddBackEdge(HBasicBlock* back_edge) {
back_edges_.Add(back_edge);
}
void RemoveBackEdge(HBasicBlock* back_edge) {
back_edges_.Delete(back_edge);
}
bool IsBackEdge(HBasicBlock* block) {
for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
if (back_edges_.Get(i) == block) return true;
}
return false;
}
int NumberOfBackEdges() const {
return back_edges_.Size();
}
HBasicBlock* GetPreHeader() const;
const GrowableArray<HBasicBlock*>& GetBackEdges() const {
return back_edges_;
}
void ClearBackEdges() {
back_edges_.Reset();
}
// Find blocks that are part of this loop. Returns whether the loop is a natural loop,
// that is the header dominates the back edge.
bool Populate();
// Returns whether this loop information contains `block`.
// Note that this loop information *must* be populated before entering this function.
bool Contains(const HBasicBlock& block) const;
// Returns whether this loop information is an inner loop of `other`.
// Note that `other` *must* be populated before entering this function.
bool IsIn(const HLoopInformation& other) const;
const ArenaBitVector& GetBlocks() const { return blocks_; }
private:
// Internal recursive implementation of `Populate`.
void PopulateRecursive(HBasicBlock* block);
HBasicBlock* header_;
HSuspendCheck* suspend_check_;
GrowableArray<HBasicBlock*> back_edges_;
ArenaBitVector blocks_;
DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
};
static constexpr size_t kNoLifetime = -1;
static constexpr uint32_t kNoDexPc = -1;
// A block in a method. Contains the list of instructions represented
// as a double linked list. Each block knows its predecessors and
// successors.
class HBasicBlock : public ArenaObject {
public:
explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
: graph_(graph),
predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
loop_information_(nullptr),
dominator_(nullptr),
dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
block_id_(-1),
dex_pc_(dex_pc),
lifetime_start_(kNoLifetime),
lifetime_end_(kNoLifetime) {}
const GrowableArray<HBasicBlock*>& GetPredecessors() const {
return predecessors_;
}
const GrowableArray<HBasicBlock*>& GetSuccessors() const {
return successors_;
}
const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
return dominated_blocks_;
}
bool IsEntryBlock() const {
return graph_->GetEntryBlock() == this;
}
bool IsExitBlock() const {
return graph_->GetExitBlock() == this;
}
void AddBackEdge(HBasicBlock* back_edge) {
if (loop_information_ == nullptr) {
loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
}
DCHECK_EQ(loop_information_->GetHeader(), this);
loop_information_->AddBackEdge(back_edge);
}
HGraph* GetGraph() const { return graph_; }
int GetBlockId() const { return block_id_; }
void SetBlockId(int id) { block_id_ = id; }
HBasicBlock* GetDominator() const { return dominator_; }
void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
int NumberOfBackEdges() const {
return loop_information_ == nullptr
? 0
: loop_information_->NumberOfBackEdges();
}
HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
const HInstructionList& GetInstructions() const { return instructions_; }
const HInstructionList& GetPhis() const { return phis_; }
HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
void AddSuccessor(HBasicBlock* block) {
successors_.Add(block);
block->predecessors_.Add(this);
}
void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
size_t successor_index = GetSuccessorIndexOf(existing);
DCHECK_NE(successor_index, static_cast<size_t>(-1));
existing->RemovePredecessor(this);
new_block->predecessors_.Add(this);
successors_.Put(successor_index, new_block);
}
void RemovePredecessor(HBasicBlock* block) {
predecessors_.Delete(block);
}
void ClearAllPredecessors() {
predecessors_.Reset();
}
void AddPredecessor(HBasicBlock* block) {
predecessors_.Add(block);
block->successors_.Add(this);
}
void SwapPredecessors() {
DCHECK_EQ(predecessors_.Size(), 2u);
HBasicBlock* temp = predecessors_.Get(0);
predecessors_.Put(0, predecessors_.Get(1));
predecessors_.Put(1, temp);
}
size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
if (predecessors_.Get(i) == predecessor) {
return i;
}
}
return -1;
}
size_t GetSuccessorIndexOf(HBasicBlock* successor) {
for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
if (successors_.Get(i) == successor) {
return i;
}
}
return -1;
}
void AddInstruction(HInstruction* instruction);
void RemoveInstruction(HInstruction* instruction);
void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
// Replace instruction `initial` with `replacement` within this block.
void ReplaceAndRemoveInstructionWith(HInstruction* initial,
HInstruction* replacement);
void AddPhi(HPhi* phi);
void RemovePhi(HPhi* phi);
bool IsLoopHeader() const {
return (loop_information_ != nullptr) && (loop_information_->GetHeader() == this);
}
bool IsLoopPreHeaderFirstPredecessor() const {
DCHECK(IsLoopHeader());
DCHECK(!GetPredecessors().IsEmpty());
return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
}
HLoopInformation* GetLoopInformation() const {
return loop_information_;
}
// Set the loop_information_ on this block. This method overrides the current
// loop_information if it is an outer loop of the passed loop information.
void SetInLoop(HLoopInformation* info) {
if (IsLoopHeader()) {
// Nothing to do. This just means `info` is an outer loop.
} else if (loop_information_ == nullptr) {
loop_information_ = info;
} else if (loop_information_->Contains(*info->GetHeader())) {
// Block is currently part of an outer loop. Make it part of this inner loop.
// Note that a non loop header having a loop information means this loop information
// has already been populated
loop_information_ = info;
} else {
// Block is part of an inner loop. Do not update the loop information.
// Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
// at this point, because this method is being called while populating `info`.
}
}
bool IsInLoop() const { return loop_information_ != nullptr; }
// Returns wheter this block dominates the blocked passed as parameter.
bool Dominates(HBasicBlock* block) const;
size_t GetLifetimeStart() const { return lifetime_start_; }
size_t GetLifetimeEnd() const { return lifetime_end_; }
void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
uint32_t GetDexPc() const { return dex_pc_; }
private:
HGraph* const graph_;
GrowableArray<HBasicBlock*> predecessors_;
GrowableArray<HBasicBlock*> successors_;
HInstructionList instructions_;
HInstructionList phis_;
HLoopInformation* loop_information_;
HBasicBlock* dominator_;
GrowableArray<HBasicBlock*> dominated_blocks_;
int block_id_;
// The dex program counter of the first instruction of this block.
const uint32_t dex_pc_;
size_t lifetime_start_;
size_t lifetime_end_;
DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
};
#define FOR_EACH_CONCRETE_INSTRUCTION(M) \
M(Add) \
M(Condition) \
M(Equal) \
M(NotEqual) \
M(LessThan) \
M(LessThanOrEqual) \
M(GreaterThan) \
M(GreaterThanOrEqual) \
M(Exit) \
M(Goto) \
M(If) \
M(IntConstant) \
M(InvokeStatic) \
M(InvokeVirtual) \
M(LoadLocal) \
M(Local) \
M(LongConstant) \
M(NewInstance) \
M(Not) \
M(ParameterValue) \
M(ParallelMove) \
M(Phi) \
M(Return) \
M(ReturnVoid) \
M(StoreLocal) \
M(Sub) \
M(Compare) \
M(InstanceFieldGet) \
M(InstanceFieldSet) \
M(ArrayGet) \
M(ArraySet) \
M(ArrayLength) \
M(BoundsCheck) \
M(NullCheck) \
M(Temporary) \
M(SuspendCheck) \
#define FOR_EACH_INSTRUCTION(M) \
FOR_EACH_CONCRETE_INSTRUCTION(M) \
M(Constant) \
M(BinaryOperation)
#define FORWARD_DECLARATION(type) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
#undef FORWARD_DECLARATION
#define DECLARE_INSTRUCTION(type) \
virtual InstructionKind GetKind() const { return k##type; } \
virtual const char* DebugName() const { return #type; } \
virtual const H##type* As##type() const OVERRIDE { return this; } \
virtual H##type* As##type() OVERRIDE { return this; } \
virtual bool InstructionTypeEquals(HInstruction* other) const { \
return other->Is##type(); \
} \
virtual void Accept(HGraphVisitor* visitor)
template <typename T>
class HUseListNode : public ArenaObject {
public:
HUseListNode(T* user, size_t index, HUseListNode* tail)
: user_(user), index_(index), tail_(tail) {}
HUseListNode* GetTail() const { return tail_; }
T* GetUser() const { return user_; }
size_t GetIndex() const { return index_; }
void SetTail(HUseListNode<T>* node) { tail_ = node; }
private:
T* const user_;
const size_t index_;
HUseListNode<T>* tail_;
DISALLOW_COPY_AND_ASSIGN(HUseListNode);
};
// Represents the side effects an instruction may have.
class SideEffects : public ValueObject {
public:
SideEffects() : flags_(0) {}
static SideEffects None() {
return SideEffects(0);
}
static SideEffects All() {
return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
}
static SideEffects ChangesSomething() {
return SideEffects((1 << kFlagChangesCount) - 1);
}
static SideEffects DependsOnSomething() {
int count = kFlagDependsOnCount - kFlagChangesCount;
return SideEffects(((1 << count) - 1) << kFlagChangesCount);
}
SideEffects Union(SideEffects other) const {
return SideEffects(flags_ | other.flags_);
}
bool HasSideEffects() const {
size_t all_bits_set = (1 << kFlagChangesCount) - 1;
return (flags_ & all_bits_set) != 0;
}
bool HasAllSideEffects() const {
size_t all_bits_set = (1 << kFlagChangesCount) - 1;
return all_bits_set == (flags_ & all_bits_set);
}
bool DependsOn(SideEffects other) const {
size_t depends_flags = other.ComputeDependsFlags();
return (flags_ & depends_flags) != 0;
}
bool HasDependencies() const {
int count = kFlagDependsOnCount - kFlagChangesCount;
size_t all_bits_set = (1 << count) - 1;
return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
}
private:
static constexpr int kFlagChangesSomething = 0;
static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
explicit SideEffects(size_t flags) : flags_(flags) {}
size_t ComputeDependsFlags() const {
return flags_ << kFlagChangesCount;
}
size_t flags_;
};
class HInstruction : public ArenaObject {
public:
explicit HInstruction(SideEffects side_effects)
: previous_(nullptr),
next_(nullptr),
block_(nullptr),
id_(-1),
ssa_index_(-1),
uses_(nullptr),
env_uses_(nullptr),
environment_(nullptr),
locations_(nullptr),
live_interval_(nullptr),
lifetime_position_(kNoLifetime),
side_effects_(side_effects) {}
virtual ~HInstruction() {}
#define DECLARE_KIND(type) k##type,
enum InstructionKind {
FOR_EACH_INSTRUCTION(DECLARE_KIND)
};
#undef DECLARE_KIND
HInstruction* GetNext() const { return next_; }
HInstruction* GetPrevious() const { return previous_; }
HBasicBlock* GetBlock() const { return block_; }
void SetBlock(HBasicBlock* block) { block_ = block; }
bool IsInBlock() const { return block_ != nullptr; }
bool IsInLoop() const { return block_->IsInLoop(); }
bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
virtual size_t InputCount() const = 0;
virtual HInstruction* InputAt(size_t i) const = 0;
virtual void Accept(HGraphVisitor* visitor) = 0;
virtual const char* DebugName() const = 0;
virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
virtual void SetRawInputAt(size_t index, HInstruction* input) = 0;
virtual bool NeedsEnvironment() const { return false; }
virtual bool IsControlFlow() const { return false; }
bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
void AddUseAt(HInstruction* user, size_t index) {
uses_ = new (block_->GetGraph()->GetArena()) HUseListNode<HInstruction>(user, index, uses_);
}
void AddEnvUseAt(HEnvironment* user, size_t index) {
DCHECK(user != nullptr);
env_uses_ = new (block_->GetGraph()->GetArena()) HUseListNode<HEnvironment>(
user, index, env_uses_);
}
void RemoveUser(HInstruction* user, size_t index);
void RemoveEnvironmentUser(HEnvironment* user, size_t index);
HUseListNode<HInstruction>* GetUses() const { return uses_; }
HUseListNode<HEnvironment>* GetEnvUses() const { return env_uses_; }
bool HasUses() const { return uses_ != nullptr || env_uses_ != nullptr; }
bool HasEnvironmentUses() const { return env_uses_ != nullptr; }
size_t NumberOfUses() const {
// TODO: Optimize this method if it is used outside of the HGraphVisualizer.
size_t result = 0;
HUseListNode<HInstruction>* current = uses_;
while (current != nullptr) {
current = current->GetTail();
++result;
}
return result;
}
// Does this instruction dominate `other_instruction`? Aborts if
// this instruction and `other_instruction` are both phis.
bool Dominates(HInstruction* other_instruction) const;
int GetId() const { return id_; }
void SetId(int id) { id_ = id; }
int GetSsaIndex() const { return ssa_index_; }
void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
bool HasSsaIndex() const { return ssa_index_ != -1; }
bool HasEnvironment() const { return environment_ != nullptr; }
HEnvironment* GetEnvironment() const { return environment_; }
void SetEnvironment(HEnvironment* environment) { environment_ = environment; }
// Returns the number of entries in the environment. Typically, that is the
// number of dex registers in a method. It could be more in case of inlining.
size_t EnvironmentSize() const;
LocationSummary* GetLocations() const { return locations_; }
void SetLocations(LocationSummary* locations) { locations_ = locations; }
void ReplaceWith(HInstruction* instruction);
bool HasOnlyOneUse() const {
return uses_ != nullptr && uses_->GetTail() == nullptr;
}
#define INSTRUCTION_TYPE_CHECK(type) \
bool Is##type() const { return (As##type() != nullptr); } \
virtual const H##type* As##type() const { return nullptr; } \
virtual H##type* As##type() { return nullptr; }
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
#undef INSTRUCTION_TYPE_CHECK
// Returns whether the instruction can be moved within the graph.
virtual bool CanBeMoved() const { return false; }
// Returns whether the two instructions are of the same kind.
virtual bool InstructionTypeEquals(HInstruction* other) const { return false; }
// Returns whether any data encoded in the two instructions is equal.
// This method does not look at the inputs. Both instructions must be
// of the same type, otherwise the method has undefined behavior.
virtual bool InstructionDataEquals(HInstruction* other) const { return false; }
// Returns whether two instructions are equal, that is:
// 1) They have the same type and contain the same data,
// 2) Their inputs are identical.
bool Equals(HInstruction* other) const;
virtual InstructionKind GetKind() const = 0;
virtual size_t ComputeHashCode() const {
size_t result = GetKind();
for (size_t i = 0, e = InputCount(); i < e; ++i) {
result = (result * 31) + InputAt(i)->GetId();
}
return result;
}
SideEffects GetSideEffects() const { return side_effects_; }
size_t GetLifetimePosition() const { return lifetime_position_; }
void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
LiveInterval* GetLiveInterval() const { return live_interval_; }
void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
bool HasLiveInterval() const { return live_interval_ != nullptr; }
private:
HInstruction* previous_;
HInstruction* next_;
HBasicBlock* block_;
// An instruction gets an id when it is added to the graph.
// It reflects creation order. A negative id means the instruction
// has not been added to the graph.
int id_;
// When doing liveness analysis, instructions that have uses get an SSA index.
int ssa_index_;
// List of instructions that have this instruction as input.
HUseListNode<HInstruction>* uses_;
// List of environments that contain this instruction.
HUseListNode<HEnvironment>* env_uses_;
// The environment associated with this instruction. Not null if the instruction
// might jump out of the method.
HEnvironment* environment_;
// Set by the code generator.
LocationSummary* locations_;
// Set by the liveness analysis.
LiveInterval* live_interval_;
// Set by the liveness analysis, this is the position in a linear
// order of blocks where this instruction's live interval start.
size_t lifetime_position_;
const SideEffects side_effects_;
friend class HBasicBlock;
friend class HInstructionList;
DISALLOW_COPY_AND_ASSIGN(HInstruction);
};
template<typename T>
class HUseIterator : public ValueObject {
public:
explicit HUseIterator(HUseListNode<T>* uses) : current_(uses) {}
bool Done() const { return current_ == nullptr; }
void Advance() {
DCHECK(!Done());
current_ = current_->GetTail();
}
HUseListNode<T>* Current() const {
DCHECK(!Done());
return current_;
}
private:
HUseListNode<T>* current_;
friend class HValue;
};
// A HEnvironment object contains the values of virtual registers at a given location.
class HEnvironment : public ArenaObject {
public:
HEnvironment(ArenaAllocator* arena, size_t number_of_vregs) : vregs_(arena, number_of_vregs) {
vregs_.SetSize(number_of_vregs);
for (size_t i = 0; i < number_of_vregs; i++) {
vregs_.Put(i, nullptr);
}
}
void Populate(const GrowableArray<HInstruction*>& env) {
for (size_t i = 0; i < env.Size(); i++) {
HInstruction* instruction = env.Get(i);
vregs_.Put(i, instruction);
if (instruction != nullptr) {
instruction->AddEnvUseAt(this, i);
}
}
}
void SetRawEnvAt(size_t index, HInstruction* instruction) {
vregs_.Put(index, instruction);
}
HInstruction* GetInstructionAt(size_t index) const {
return vregs_.Get(index);
}
GrowableArray<HInstruction*>* GetVRegs() {
return &vregs_;
}
size_t Size() const { return vregs_.Size(); }
private:
GrowableArray<HInstruction*> vregs_;
DISALLOW_COPY_AND_ASSIGN(HEnvironment);
};
class HInputIterator : public ValueObject {
public:
explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
bool Done() const { return index_ == instruction_->InputCount(); }
HInstruction* Current() const { return instruction_->InputAt(index_); }
void Advance() { index_++; }
private:
HInstruction* instruction_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HInputIterator);
};
class HInstructionIterator : public ValueObject {
public:
explicit HInstructionIterator(const HInstructionList& instructions)
: instruction_(instructions.first_instruction_) {
next_ = Done() ? nullptr : instruction_->GetNext();
}
bool Done() const { return instruction_ == nullptr; }
HInstruction* Current() const { return instruction_; }
void Advance() {
instruction_ = next_;
next_ = Done() ? nullptr : instruction_->GetNext();
}
private:
HInstruction* instruction_;
HInstruction* next_;
DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
};
class HBackwardInstructionIterator : public ValueObject {
public:
explicit HBackwardInstructionIterator(const HInstructionList& instructions)
: instruction_(instructions.last_instruction_) {
next_ = Done() ? nullptr : instruction_->GetPrevious();
}
bool Done() const { return instruction_ == nullptr; }
HInstruction* Current() const { return instruction_; }
void Advance() {
instruction_ = next_;
next_ = Done() ? nullptr : instruction_->GetPrevious();
}
private:
HInstruction* instruction_;
HInstruction* next_;
DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
};
// An embedded container with N elements of type T. Used (with partial
// specialization for N=0) because embedded arrays cannot have size 0.
template<typename T, intptr_t N>
class EmbeddedArray {
public:
EmbeddedArray() : elements_() {}
intptr_t GetLength() const { return N; }
const T& operator[](intptr_t i) const {
DCHECK_LT(i, GetLength());
return elements_[i];
}
T& operator[](intptr_t i) {
DCHECK_LT(i, GetLength());
return elements_[i];
}
const T& At(intptr_t i) const {
return (*this)[i];
}
void SetAt(intptr_t i, const T& val) {
(*this)[i] = val;
}
private:
T elements_[N];
};
template<typename T>
class EmbeddedArray<T, 0> {
public:
intptr_t length() const { return 0; }
const T& operator[](intptr_t i) const {
LOG(FATAL) << "Unreachable";
static T sentinel = 0;
return sentinel;
}
T& operator[](intptr_t i) {
LOG(FATAL) << "Unreachable";
static T sentinel = 0;
return sentinel;
}
};
template<intptr_t N>
class HTemplateInstruction: public HInstruction {
public:
HTemplateInstruction<N>(SideEffects side_effects)
: HInstruction(side_effects), inputs_() {}
virtual ~HTemplateInstruction() {}
virtual size_t InputCount() const { return N; }
virtual HInstruction* InputAt(size_t i) const { return inputs_[i]; }
protected:
virtual void SetRawInputAt(size_t i, HInstruction* instruction) {
inputs_[i] = instruction;
}
private:
EmbeddedArray<HInstruction*, N> inputs_;
friend class SsaBuilder;
};
template<intptr_t N>
class HExpression : public HTemplateInstruction<N> {
public:
HExpression<N>(Primitive::Type type, SideEffects side_effects)
: HTemplateInstruction<N>(side_effects), type_(type) {}
virtual ~HExpression() {}
virtual Primitive::Type GetType() const { return type_; }
private:
const Primitive::Type type_;
};
// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
// instruction that branches to the exit block.
class HReturnVoid : public HTemplateInstruction<0> {
public:
HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
virtual bool IsControlFlow() const { return true; }
DECLARE_INSTRUCTION(ReturnVoid);
private:
DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
};
// Represents dex's RETURN opcodes. A HReturn is a control flow
// instruction that branches to the exit block.
class HReturn : public HTemplateInstruction<1> {
public:
explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
SetRawInputAt(0, value);
}
virtual bool IsControlFlow() const { return true; }
DECLARE_INSTRUCTION(Return);
private:
DISALLOW_COPY_AND_ASSIGN(HReturn);
};
// The exit instruction is the only instruction of the exit block.
// Instructions aborting the method (HTrow and HReturn) must branch to the
// exit block.
class HExit : public HTemplateInstruction<0> {
public:
HExit() : HTemplateInstruction(SideEffects::None()) {}
virtual bool IsControlFlow() const { return true; }
DECLARE_INSTRUCTION(Exit);
private:
DISALLOW_COPY_AND_ASSIGN(HExit);
};
// Jumps from one block to another.
class HGoto : public HTemplateInstruction<0> {
public:
HGoto() : HTemplateInstruction(SideEffects::None()) {}
virtual bool IsControlFlow() const { return true; }
HBasicBlock* GetSuccessor() const {
return GetBlock()->GetSuccessors().Get(0);
}
DECLARE_INSTRUCTION(Goto);
private:
DISALLOW_COPY_AND_ASSIGN(HGoto);
};
// Conditional branch. A block ending with an HIf instruction must have
// two successors.
class HIf : public HTemplateInstruction<1> {
public:
explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
SetRawInputAt(0, input);
}
virtual bool IsControlFlow() const { return true; }
HBasicBlock* IfTrueSuccessor() const {
return GetBlock()->GetSuccessors().Get(0);
}
HBasicBlock* IfFalseSuccessor() const {
return GetBlock()->GetSuccessors().Get(1);
}
DECLARE_INSTRUCTION(If);
virtual bool IsIfInstruction() const { return true; }
private:
DISALLOW_COPY_AND_ASSIGN(HIf);
};
class HBinaryOperation : public HExpression<2> {
public:
HBinaryOperation(Primitive::Type result_type,
HInstruction* left,
HInstruction* right) : HExpression(result_type, SideEffects::None()) {
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
HInstruction* GetLeft() const { return InputAt(0); }
HInstruction* GetRight() const { return InputAt(1); }
Primitive::Type GetResultType() const { return GetType(); }
virtual bool IsCommutative() { return false; }
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const { return true; }
// Try to statically evaluate `operation` and return an HConstant
// containing the result of this evaluation. If `operation` cannot
// be evaluated as a constant, return nullptr.
HConstant* TryStaticEvaluation(ArenaAllocator* allocator) const;
// Apply this operation to `x` and `y`.
virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
DECLARE_INSTRUCTION(BinaryOperation);
private:
DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
};
class HCondition : public HBinaryOperation {
public:
HCondition(HInstruction* first, HInstruction* second)
: HBinaryOperation(Primitive::kPrimBoolean, first, second) {}
virtual bool IsCommutative() { return true; }
// For register allocation purposes, returns whether this instruction needs to be
// materialized (that is, not just be in the processor flags).
bool NeedsMaterialization() const;
// For code generation purposes, returns whether this instruction is just before
// `if_`, and disregard moves in between.
bool IsBeforeWhenDisregardMoves(HIf* if_) const;
DECLARE_INSTRUCTION(Condition);
virtual IfCondition GetCondition() const = 0;
private:
DISALLOW_COPY_AND_ASSIGN(HCondition);
};
// Instruction to check if two inputs are equal to each other.
class HEqual : public HCondition {
public:
HEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const { return x == y; }
virtual int64_t Evaluate(int64_t x, int64_t y) const { return x == y; }
DECLARE_INSTRUCTION(Equal);
virtual IfCondition GetCondition() const {
return kCondEQ;
}
private:
DISALLOW_COPY_AND_ASSIGN(HEqual);
};
class HNotEqual : public HCondition {
public:
HNotEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const { return x != y; }
virtual int64_t Evaluate(int64_t x, int64_t y) const { return x != y; }
DECLARE_INSTRUCTION(NotEqual);
virtual IfCondition GetCondition() const {
return kCondNE;
}
private:
DISALLOW_COPY_AND_ASSIGN(HNotEqual);
};
class HLessThan : public HCondition {
public:
HLessThan(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const { return x < y; }
virtual int64_t Evaluate(int64_t x, int64_t y) const { return x < y; }
DECLARE_INSTRUCTION(LessThan);
virtual IfCondition GetCondition() const {
return kCondLT;
}
private:
DISALLOW_COPY_AND_ASSIGN(HLessThan);
};
class HLessThanOrEqual : public HCondition {
public:
HLessThanOrEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const { return x <= y; }
virtual int64_t Evaluate(int64_t x, int64_t y) const { return x <= y; }
DECLARE_INSTRUCTION(LessThanOrEqual);
virtual IfCondition GetCondition() const {
return kCondLE;
}
private:
DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
};
class HGreaterThan : public HCondition {
public:
HGreaterThan(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const { return x > y; }
virtual int64_t Evaluate(int64_t x, int64_t y) const { return x > y; }
DECLARE_INSTRUCTION(GreaterThan);
virtual IfCondition GetCondition() const {
return kCondGT;
}
private:
DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
};
class HGreaterThanOrEqual : public HCondition {
public:
HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
: HCondition(first, second) {}
virtual int32_t Evaluate(int32_t x, int32_t y) const { return x >= y; }
virtual int64_t Evaluate(int64_t x, int64_t y) const { return x >= y; }
DECLARE_INSTRUCTION(GreaterThanOrEqual);
virtual IfCondition GetCondition() const {
return kCondGE;
}
private:
DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
};
// Instruction to check how two inputs compare to each other.
// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
class HCompare : public HBinaryOperation {
public:
HCompare(Primitive::Type type, HInstruction* first, HInstruction* second)
: HBinaryOperation(Primitive::kPrimInt, first, second) {
DCHECK_EQ(type, first->GetType());
DCHECK_EQ(type, second->GetType());
}
virtual int32_t Evaluate(int32_t x, int32_t y) const {
return
x == y ? 0 :
x > y ? 1 :
-1;
}
virtual int64_t Evaluate(int64_t x, int64_t y) const {
return
x == y ? 0 :
x > y ? 1 :
-1;
}
DECLARE_INSTRUCTION(Compare);
private:
DISALLOW_COPY_AND_ASSIGN(HCompare);
};
// A local in the graph. Corresponds to a Dex register.
class HLocal : public HTemplateInstruction<0> {
public:
explicit HLocal(uint16_t reg_number)
: HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
DECLARE_INSTRUCTION(Local);
uint16_t GetRegNumber() const { return reg_number_; }
private:
// The Dex register number.
const uint16_t reg_number_;
DISALLOW_COPY_AND_ASSIGN(HLocal);
};
// Load a given local. The local is an input of this instruction.
class HLoadLocal : public HExpression<1> {
public:
explicit HLoadLocal(HLocal* local, Primitive::Type type)
: HExpression(type, SideEffects::None()) {
SetRawInputAt(0, local);
}
HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
DECLARE_INSTRUCTION(LoadLocal);
private:
DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
};
// Store a value in a given local. This instruction has two inputs: the value
// and the local.
class HStoreLocal : public HTemplateInstruction<2> {
public:
HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
SetRawInputAt(0, local);
SetRawInputAt(1, value);
}
HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
DECLARE_INSTRUCTION(StoreLocal);
private:
DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
};
class HConstant : public HExpression<0> {
public:
explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
virtual bool CanBeMoved() const { return true; }
DECLARE_INSTRUCTION(Constant);
private:
DISALLOW_COPY_AND_ASSIGN(HConstant);
};
// Constants of the type int. Those can be from Dex instructions, or
// synthesized (for example with the if-eqz instruction).
class HIntConstant : public HConstant {
public:
explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
int32_t GetValue() const { return value_; }
virtual bool InstructionDataEquals(HInstruction* other) const {
return other->AsIntConstant()->value_ == value_;
}
virtual size_t ComputeHashCode() const { return GetValue(); }
DECLARE_INSTRUCTION(IntConstant);
private:
const int32_t value_;
DISALLOW_COPY_AND_ASSIGN(HIntConstant);
};
class HLongConstant : public HConstant {
public:
explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
int64_t GetValue() const { return value_; }
virtual bool InstructionDataEquals(HInstruction* other) const {
return other->AsLongConstant()->value_ == value_;
}
virtual size_t ComputeHashCode() const { return static_cast<size_t>(GetValue()); }
DECLARE_INSTRUCTION(LongConstant);
private:
const int64_t value_;
DISALLOW_COPY_AND_ASSIGN(HLongConstant);
};
class HInvoke : public HInstruction {
public:
HInvoke(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc)
: HInstruction(SideEffects::All()),
inputs_(arena, number_of_arguments),
return_type_(return_type),
dex_pc_(dex_pc) {
inputs_.SetSize(number_of_arguments);
}
virtual size_t InputCount() const { return inputs_.Size(); }
virtual HInstruction* InputAt(size_t i) const { return inputs_.Get(i); }
// Runtime needs to walk the stack, so Dex -> Dex calls need to
// know their environment.
virtual bool NeedsEnvironment() const { return true; }
void SetArgumentAt(size_t index, HInstruction* argument) {
SetRawInputAt(index, argument);
}
virtual void SetRawInputAt(size_t index, HInstruction* input) {
inputs_.Put(index, input);
}
virtual Primitive::Type GetType() const { return return_type_; }
uint32_t GetDexPc() const { return dex_pc_; }
protected:
GrowableArray<HInstruction*> inputs_;
const Primitive::Type return_type_;
const uint32_t dex_pc_;
private:
DISALLOW_COPY_AND_ASSIGN(HInvoke);
};
class HInvokeStatic : public HInvoke {
public:
HInvokeStatic(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t index_in_dex_cache)
: HInvoke(arena, number_of_arguments, return_type, dex_pc),
index_in_dex_cache_(index_in_dex_cache) {}
uint32_t GetIndexInDexCache() const { return index_in_dex_cache_; }
DECLARE_INSTRUCTION(InvokeStatic);
private:
const uint32_t index_in_dex_cache_;
DISALLOW_COPY_AND_ASSIGN(HInvokeStatic);
};
class HInvokeVirtual : public HInvoke {
public:
HInvokeVirtual(ArenaAllocator* arena,
uint32_t number_of_arguments,
Primitive::Type return_type,
uint32_t dex_pc,
uint32_t vtable_index)
: HInvoke(arena, number_of_arguments, return_type, dex_pc),
vtable_index_(vtable_index) {}
uint32_t GetVTableIndex() const { return vtable_index_; }
DECLARE_INSTRUCTION(InvokeVirtual);
private:
const uint32_t vtable_index_;
DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
};
class HNewInstance : public HExpression<0> {
public:
HNewInstance(uint32_t dex_pc, uint16_t type_index)
: HExpression(Primitive::kPrimNot, SideEffects::None()),
dex_pc_(dex_pc),
type_index_(type_index) {}
uint32_t GetDexPc() const { return dex_pc_; }
uint16_t GetTypeIndex() const { return type_index_; }
// Calls runtime so needs an environment.
virtual bool NeedsEnvironment() const { return true; }
DECLARE_INSTRUCTION(NewInstance);
private:
const uint32_t dex_pc_;
const uint16_t type_index_;
DISALLOW_COPY_AND_ASSIGN(HNewInstance);
};
class HAdd : public HBinaryOperation {
public:
HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
virtual bool IsCommutative() { return true; }
virtual int32_t Evaluate(int32_t x, int32_t y) const { return x + y; }
virtual int64_t Evaluate(int64_t x, int64_t y) const { return x + y; }
DECLARE_INSTRUCTION(Add);
private:
DISALLOW_COPY_AND_ASSIGN(HAdd);
};
class HSub : public HBinaryOperation {
public:
HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
: HBinaryOperation(result_type, left, right) {}
virtual bool IsCommutative() { return false; }
virtual int32_t Evaluate(int32_t x, int32_t y) const { return x + y; }
virtual int64_t Evaluate(int64_t x, int64_t y) const { return x + y; }
DECLARE_INSTRUCTION(Sub);
private:
DISALLOW_COPY_AND_ASSIGN(HSub);
};
// The value of a parameter in this method. Its location depends on
// the calling convention.
class HParameterValue : public HExpression<0> {
public:
HParameterValue(uint8_t index, Primitive::Type parameter_type)
: HExpression(parameter_type, SideEffects::None()), index_(index) {}
uint8_t GetIndex() const { return index_; }
DECLARE_INSTRUCTION(ParameterValue);
private:
// The index of this parameter in the parameters list. Must be less
// than HGraph::number_of_in_vregs_;
const uint8_t index_;
DISALLOW_COPY_AND_ASSIGN(HParameterValue);
};
class HNot : public HExpression<1> {
public:
explicit HNot(HInstruction* input) : HExpression(Primitive::kPrimBoolean, SideEffects::None()) {
SetRawInputAt(0, input);
}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const { return true; }
DECLARE_INSTRUCTION(Not);
private:
DISALLOW_COPY_AND_ASSIGN(HNot);
};
class HPhi : public HInstruction {
public:
HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
: HInstruction(SideEffects::None()),
inputs_(arena, number_of_inputs),
reg_number_(reg_number),
type_(type),
is_live_(false) {
inputs_.SetSize(number_of_inputs);
}
virtual size_t InputCount() const { return inputs_.Size(); }
virtual HInstruction* InputAt(size_t i) const { return inputs_.Get(i); }
virtual void SetRawInputAt(size_t index, HInstruction* input) {
inputs_.Put(index, input);
}
void AddInput(HInstruction* input);
virtual Primitive::Type GetType() const { return type_; }
void SetType(Primitive::Type type) { type_ = type; }
uint32_t GetRegNumber() const { return reg_number_; }
void SetDead() { is_live_ = false; }
void SetLive() { is_live_ = true; }
bool IsDead() const { return !is_live_; }
bool IsLive() const { return is_live_; }
DECLARE_INSTRUCTION(Phi);
private:
GrowableArray<HInstruction*> inputs_;
const uint32_t reg_number_;
Primitive::Type type_;
bool is_live_;
DISALLOW_COPY_AND_ASSIGN(HPhi);
};
class HNullCheck : public HExpression<1> {
public:
HNullCheck(HInstruction* value, uint32_t dex_pc)
: HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
SetRawInputAt(0, value);
}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const { return true; }
virtual bool NeedsEnvironment() const { return true; }
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(NullCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HNullCheck);
};
class FieldInfo : public ValueObject {
public:
explicit FieldInfo(MemberOffset field_offset, Primitive::Type field_type)
: field_offset_(field_offset), field_type_(field_type) {}
MemberOffset GetFieldOffset() const { return field_offset_; }
Primitive::Type GetFieldType() const { return field_type_; }
private:
const MemberOffset field_offset_;
const Primitive::Type field_type_;
};
class HInstanceFieldGet : public HExpression<1> {
public:
HInstanceFieldGet(HInstruction* value,
Primitive::Type field_type,
MemberOffset field_offset)
: HExpression(field_type, SideEffects::DependsOnSomething()),
field_info_(field_offset, field_type) {
SetRawInputAt(0, value);
}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const {
size_t other_offset = other->AsInstanceFieldGet()->GetFieldOffset().SizeValue();
return other_offset == GetFieldOffset().SizeValue();
}
virtual size_t ComputeHashCode() const {
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
}
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
DECLARE_INSTRUCTION(InstanceFieldGet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
};
class HInstanceFieldSet : public HTemplateInstruction<2> {
public:
HInstanceFieldSet(HInstruction* object,
HInstruction* value,
Primitive::Type field_type,
MemberOffset field_offset)
: HTemplateInstruction(SideEffects::ChangesSomething()),
field_info_(field_offset, field_type) {
SetRawInputAt(0, object);
SetRawInputAt(1, value);
}
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
DECLARE_INSTRUCTION(InstanceFieldSet);
private:
const FieldInfo field_info_;
DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
};
class HArrayGet : public HExpression<2> {
public:
HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
: HExpression(type, SideEffects::DependsOnSomething()) {
SetRawInputAt(0, array);
SetRawInputAt(1, index);
}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const { return true; }
DECLARE_INSTRUCTION(ArrayGet);
private:
DISALLOW_COPY_AND_ASSIGN(HArrayGet);
};
class HArraySet : public HTemplateInstruction<3> {
public:
HArraySet(HInstruction* array,
HInstruction* index,
HInstruction* value,
Primitive::Type component_type,
uint32_t dex_pc)
: HTemplateInstruction(SideEffects::ChangesSomething()),
dex_pc_(dex_pc),
component_type_(component_type) {
SetRawInputAt(0, array);
SetRawInputAt(1, index);
SetRawInputAt(2, value);
}
virtual bool NeedsEnvironment() const {
// We currently always call a runtime method to catch array store
// exceptions.
return InputAt(2)->GetType() == Primitive::kPrimNot;
}
uint32_t GetDexPc() const { return dex_pc_; }
Primitive::Type GetComponentType() const { return component_type_; }
DECLARE_INSTRUCTION(ArraySet);
private:
const uint32_t dex_pc_;
const Primitive::Type component_type_;
DISALLOW_COPY_AND_ASSIGN(HArraySet);
};
class HArrayLength : public HExpression<1> {
public:
explicit HArrayLength(HInstruction* array)
: HExpression(Primitive::kPrimInt, SideEffects::None()) {
// Note that arrays do not change length, so the instruction does not
// depend on any write.
SetRawInputAt(0, array);
}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const { return true; }
DECLARE_INSTRUCTION(ArrayLength);
private:
DISALLOW_COPY_AND_ASSIGN(HArrayLength);
};
class HBoundsCheck : public HExpression<2> {
public:
HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
: HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
DCHECK(index->GetType() == Primitive::kPrimInt);
SetRawInputAt(0, index);
SetRawInputAt(1, length);
}
virtual bool CanBeMoved() const { return true; }
virtual bool InstructionDataEquals(HInstruction* other) const { return true; }
virtual bool NeedsEnvironment() const { return true; }
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(BoundsCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
};
/**
* Some DEX instructions are folded into multiple HInstructions that need
* to stay live until the last HInstruction. This class
* is used as a marker for the baseline compiler to ensure its preceding
* HInstruction stays live. `index` is the temporary number that is used
* for knowing the stack offset where to store the instruction.
*/
class HTemporary : public HTemplateInstruction<0> {
public:
explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
size_t GetIndex() const { return index_; }
DECLARE_INSTRUCTION(Temporary);
private:
const size_t index_;
DISALLOW_COPY_AND_ASSIGN(HTemporary);
};
class HSuspendCheck : public HTemplateInstruction<0> {
public:
explicit HSuspendCheck(uint32_t dex_pc)
: HTemplateInstruction(SideEffects::ChangesSomething()), dex_pc_(dex_pc) {}
virtual bool NeedsEnvironment() const {
return true;
}
uint32_t GetDexPc() const { return dex_pc_; }
DECLARE_INSTRUCTION(SuspendCheck);
private:
const uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
};
class MoveOperands : public ArenaObject {
public:
MoveOperands(Location source, Location destination)
: source_(source), destination_(destination) {}
Location GetSource() const { return source_; }
Location GetDestination() const { return destination_; }
void SetSource(Location value) { source_ = value; }
void SetDestination(Location value) { destination_ = value; }
// The parallel move resolver marks moves as "in-progress" by clearing the
// destination (but not the source).
Location MarkPending() {
DCHECK(!IsPending());
Location dest = destination_;
destination_ = Location::NoLocation();
return dest;
}
void ClearPending(Location dest) {
DCHECK(IsPending());
destination_ = dest;
}
bool IsPending() const {
DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
return destination_.IsInvalid() && !source_.IsInvalid();
}
// True if this blocks a move from the given location.
bool Blocks(Location loc) const {
return !IsEliminated() && source_.Equals(loc);
}
// A move is redundant if it's been eliminated, if its source and
// destination are the same, or if its destination is unneeded.
bool IsRedundant() const {
return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
}
// We clear both operands to indicate move that's been eliminated.
void Eliminate() {
source_ = destination_ = Location::NoLocation();
}
bool IsEliminated() const {
DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
return source_.IsInvalid();
}
private:
Location source_;
Location destination_;
DISALLOW_COPY_AND_ASSIGN(MoveOperands);
};
static constexpr size_t kDefaultNumberOfMoves = 4;
class HParallelMove : public HTemplateInstruction<0> {
public:
explicit HParallelMove(ArenaAllocator* arena)
: HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
void AddMove(MoveOperands* move) {
moves_.Add(move);
}
MoveOperands* MoveOperandsAt(size_t index) const {
return moves_.Get(index);
}
size_t NumMoves() const { return moves_.Size(); }
DECLARE_INSTRUCTION(ParallelMove);
private:
GrowableArray<MoveOperands*> moves_;
DISALLOW_COPY_AND_ASSIGN(HParallelMove);
};
class HGraphVisitor : public ValueObject {
public:
explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
virtual ~HGraphVisitor() {}
virtual void VisitInstruction(HInstruction* instruction) {}
virtual void VisitBasicBlock(HBasicBlock* block);
void VisitInsertionOrder();
HGraph* GetGraph() const { return graph_; }
// Visit functions for instruction classes.
#define DECLARE_VISIT_INSTRUCTION(name) \
virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
private:
HGraph* graph_;
DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
};
class HInsertionOrderIterator : public ValueObject {
public:
explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
bool Done() const { return index_ == graph_.GetBlocks().Size(); }
HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
void Advance() { ++index_; }
private:
const HGraph& graph_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
};
class HReversePostOrderIterator : public ValueObject {
public:
explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
void Advance() { ++index_; }
private:
const HGraph& graph_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
};
class HPostOrderIterator : public ValueObject {
public:
explicit HPostOrderIterator(const HGraph& graph)
: graph_(graph), index_(graph_.GetReversePostOrder().Size()) {}
bool Done() const { return index_ == 0; }
HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
void Advance() { --index_; }
private:
const HGraph& graph_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_NODES_H_