| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "dex_to_dex_compiler.h" |
| |
| #include "android-base/stringprintf.h" |
| |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/logging.h" |
| #include "base/mutex.h" |
| #include "bytecode_utils.h" |
| #include "compiled_method.h" |
| #include "dex_file-inl.h" |
| #include "dex_instruction-inl.h" |
| #include "driver/compiler_driver.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "mirror/dex_cache.h" |
| #include "quicken_info.h" |
| #include "thread-current-inl.h" |
| |
| namespace art { |
| namespace optimizer { |
| |
| using android::base::StringPrintf; |
| |
| // Controls quickening activation. |
| const bool kEnableQuickening = true; |
| // Control check-cast elision. |
| const bool kEnableCheckCastEllision = true; |
| |
| struct QuickenedInfo { |
| QuickenedInfo(uint32_t pc, uint16_t index) : dex_pc(pc), dex_member_index(index) {} |
| |
| uint32_t dex_pc; |
| uint16_t dex_member_index; |
| }; |
| |
| class DexCompiler { |
| public: |
| DexCompiler(art::CompilerDriver& compiler, |
| const DexCompilationUnit& unit, |
| DexToDexCompilationLevel dex_to_dex_compilation_level) |
| : driver_(compiler), |
| unit_(unit), |
| dex_to_dex_compilation_level_(dex_to_dex_compilation_level) {} |
| |
| ~DexCompiler() {} |
| |
| void Compile(); |
| |
| const std::vector<QuickenedInfo>& GetQuickenedInfo() const { |
| return quickened_info_; |
| } |
| |
| private: |
| const DexFile& GetDexFile() const { |
| return *unit_.GetDexFile(); |
| } |
| |
| // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where |
| // a barrier is required. |
| void CompileReturnVoid(Instruction* inst, uint32_t dex_pc); |
| |
| // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In |
| // this case, returns the second NOP instruction pointer. Otherwise, returns |
| // the given "inst". |
| Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc); |
| |
| // Compiles a field access into a quick field access. |
| // The field index is replaced by an offset within an Object where we can read |
| // from / write to this field. Therefore, this does not involve any resolution |
| // at runtime. |
| // Since the field index is encoded with 16 bits, we can replace it only if the |
| // field offset can be encoded with 16 bits too. |
| void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc, |
| Instruction::Code new_opcode, bool is_put); |
| |
| // Compiles a virtual method invocation into a quick virtual method invocation. |
| // The method index is replaced by the vtable index where the corresponding |
| // Executable can be found. Therefore, this does not involve any resolution |
| // at runtime. |
| // Since the method index is encoded with 16 bits, we can replace it only if the |
| // vtable index can be encoded with 16 bits too. |
| void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc, |
| Instruction::Code new_opcode, bool is_range); |
| |
| CompilerDriver& driver_; |
| const DexCompilationUnit& unit_; |
| const DexToDexCompilationLevel dex_to_dex_compilation_level_; |
| |
| // Filled by the compiler when quickening, in order to encode that information |
| // in the .oat file. The runtime will use that information to get to the original |
| // opcodes. |
| std::vector<QuickenedInfo> quickened_info_; |
| |
| DISALLOW_COPY_AND_ASSIGN(DexCompiler); |
| }; |
| |
| void DexCompiler::Compile() { |
| DCHECK_EQ(dex_to_dex_compilation_level_, DexToDexCompilationLevel::kOptimize); |
| for (CodeItemIterator it(*unit_.GetCodeItem()); !it.Done(); it.Advance()) { |
| Instruction* inst = const_cast<Instruction*>(&it.CurrentInstruction()); |
| const uint32_t dex_pc = it.CurrentDexPc(); |
| switch (inst->Opcode()) { |
| case Instruction::RETURN_VOID: |
| CompileReturnVoid(inst, dex_pc); |
| break; |
| |
| case Instruction::CHECK_CAST: |
| inst = CompileCheckCast(inst, dex_pc); |
| if (inst->Opcode() == Instruction::NOP) { |
| // We turned the CHECK_CAST into two NOPs, avoid visiting the second NOP twice since this |
| // would add 2 quickening info entries. |
| it.Advance(); |
| } |
| break; |
| |
| case Instruction::IGET: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false); |
| break; |
| |
| case Instruction::IGET_WIDE: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false); |
| break; |
| |
| case Instruction::IGET_OBJECT: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false); |
| break; |
| |
| case Instruction::IGET_BOOLEAN: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BOOLEAN_QUICK, false); |
| break; |
| |
| case Instruction::IGET_BYTE: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BYTE_QUICK, false); |
| break; |
| |
| case Instruction::IGET_CHAR: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_CHAR_QUICK, false); |
| break; |
| |
| case Instruction::IGET_SHORT: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_SHORT_QUICK, false); |
| break; |
| |
| case Instruction::IPUT: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_BOOLEAN: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BOOLEAN_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_BYTE: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BYTE_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_CHAR: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_CHAR_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_SHORT: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_SHORT_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_WIDE: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_OBJECT: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true); |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL: |
| CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false); |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true); |
| break; |
| |
| case Instruction::NOP: |
| // We need to differentiate between check cast inserted NOP and normal NOP, put an invalid |
| // index in the map for normal nops. This should be rare in real code. |
| quickened_info_.push_back(QuickenedInfo(dex_pc, DexFile::kDexNoIndex16)); |
| break; |
| |
| default: |
| DCHECK(!inst->IsQuickened()); |
| // Nothing to do. |
| break; |
| } |
| } |
| } |
| |
| void DexCompiler::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) { |
| DCHECK_EQ(inst->Opcode(), Instruction::RETURN_VOID); |
| if (unit_.IsConstructor()) { |
| // Are we compiling a non clinit constructor which needs a barrier ? |
| if (!unit_.IsStatic() && |
| driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(), |
| unit_.GetClassDefIndex())) { |
| return; |
| } |
| } |
| // Replace RETURN_VOID by RETURN_VOID_NO_BARRIER. |
| VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode()) |
| << " by " << Instruction::Name(Instruction::RETURN_VOID_NO_BARRIER) |
| << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " |
| << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); |
| inst->SetOpcode(Instruction::RETURN_VOID_NO_BARRIER); |
| } |
| |
| Instruction* DexCompiler::CompileCheckCast(Instruction* inst, uint32_t dex_pc) { |
| if (!kEnableCheckCastEllision) { |
| return inst; |
| } |
| if (!driver_.IsSafeCast(&unit_, dex_pc)) { |
| return inst; |
| } |
| // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code |
| // units and a "nop" instruction size is 1 code unit, we need to replace it by |
| // 2 consecutive NOP instructions. |
| // Because the caller loops over instructions by calling Instruction::Next onto |
| // the current instruction, we need to return the 2nd NOP instruction. Indeed, |
| // its next instruction is the former check-cast's next instruction. |
| VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode()) |
| << " by replacing it with 2 NOPs at dex pc " |
| << StringPrintf("0x%x", dex_pc) << " in method " |
| << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); |
| quickened_info_.push_back(QuickenedInfo(dex_pc, inst->VRegA_21c())); |
| quickened_info_.push_back(QuickenedInfo(dex_pc, inst->VRegB_21c())); |
| // We are modifying 4 consecutive bytes. |
| inst->SetOpcode(Instruction::NOP); |
| inst->SetVRegA_10x(0u); // keep compliant with verifier. |
| // Get to next instruction which is the second half of check-cast and replace |
| // it by a NOP. |
| inst = const_cast<Instruction*>(inst->Next()); |
| inst->SetOpcode(Instruction::NOP); |
| inst->SetVRegA_10x(0u); // keep compliant with verifier. |
| return inst; |
| } |
| |
| void DexCompiler::CompileInstanceFieldAccess(Instruction* inst, |
| uint32_t dex_pc, |
| Instruction::Code new_opcode, |
| bool is_put) { |
| if (!kEnableQuickening) { |
| return; |
| } |
| uint32_t field_idx = inst->VRegC_22c(); |
| MemberOffset field_offset(0u); |
| bool is_volatile; |
| bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, is_put, |
| &field_offset, &is_volatile); |
| if (fast_path && !is_volatile && IsUint<16>(field_offset.Int32Value())) { |
| VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) |
| << " to " << Instruction::Name(new_opcode) |
| << " by replacing field index " << field_idx |
| << " by field offset " << field_offset.Int32Value() |
| << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " |
| << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); |
| // We are modifying 4 consecutive bytes. |
| inst->SetOpcode(new_opcode); |
| // Replace field index by field offset. |
| inst->SetVRegC_22c(static_cast<uint16_t>(field_offset.Int32Value())); |
| quickened_info_.push_back(QuickenedInfo(dex_pc, field_idx)); |
| } |
| } |
| |
| void DexCompiler::CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc, |
| Instruction::Code new_opcode, bool is_range) { |
| if (!kEnableQuickening) { |
| return; |
| } |
| uint32_t method_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| ScopedObjectAccess soa(Thread::Current()); |
| |
| ClassLinker* class_linker = unit_.GetClassLinker(); |
| ArtMethod* resolved_method = |
| class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>( |
| GetDexFile(), |
| method_idx, |
| unit_.GetDexCache(), |
| unit_.GetClassLoader(), |
| /* referrer */ nullptr, |
| kVirtual); |
| |
| if (UNLIKELY(resolved_method == nullptr)) { |
| // Clean up any exception left by type resolution. |
| soa.Self()->ClearException(); |
| return; |
| } |
| |
| uint32_t vtable_idx = resolved_method->GetMethodIndex(); |
| DCHECK(IsUint<16>(vtable_idx)); |
| VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) |
| << "(" << GetDexFile().PrettyMethod(method_idx, true) << ")" |
| << " to " << Instruction::Name(new_opcode) |
| << " by replacing method index " << method_idx |
| << " by vtable index " << vtable_idx |
| << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " |
| << GetDexFile().PrettyMethod(unit_.GetDexMethodIndex(), true); |
| // We are modifying 4 consecutive bytes. |
| inst->SetOpcode(new_opcode); |
| // Replace method index by vtable index. |
| if (is_range) { |
| inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx)); |
| } else { |
| inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx)); |
| } |
| quickened_info_.push_back(QuickenedInfo(dex_pc, method_idx)); |
| } |
| |
| CompiledMethod* ArtCompileDEX( |
| CompilerDriver* driver, |
| const DexFile::CodeItem* code_item, |
| uint32_t access_flags, |
| InvokeType invoke_type ATTRIBUTE_UNUSED, |
| uint16_t class_def_idx, |
| uint32_t method_idx, |
| Handle<mirror::ClassLoader> class_loader, |
| const DexFile& dex_file, |
| DexToDexCompilationLevel dex_to_dex_compilation_level) { |
| DCHECK(driver != nullptr); |
| if (dex_to_dex_compilation_level != DexToDexCompilationLevel::kDontDexToDexCompile) { |
| ScopedObjectAccess soa(Thread::Current()); |
| StackHandleScope<1> hs(soa.Self()); |
| ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); |
| art::DexCompilationUnit unit( |
| class_loader, |
| class_linker, |
| dex_file, |
| code_item, |
| class_def_idx, |
| method_idx, |
| access_flags, |
| driver->GetVerifiedMethod(&dex_file, method_idx), |
| hs.NewHandle(class_linker->FindDexCache(soa.Self(), dex_file))); |
| art::optimizer::DexCompiler dex_compiler(*driver, unit, dex_to_dex_compilation_level); |
| dex_compiler.Compile(); |
| if (dex_compiler.GetQuickenedInfo().empty()) { |
| // No need to create a CompiledMethod if there are no quickened opcodes. |
| return nullptr; |
| } |
| |
| // Create a `CompiledMethod`, with the quickened information in the vmap table. |
| if (kIsDebugBuild) { |
| // Double check that the counts line up with the size of the quicken info. |
| size_t quicken_count = 0; |
| for (CodeItemIterator it(*code_item); !it.Done(); it.Advance()) { |
| if (QuickenInfoTable::NeedsIndexForInstruction(&it.CurrentInstruction())) { |
| ++quicken_count; |
| } |
| } |
| CHECK_EQ(quicken_count, dex_compiler.GetQuickenedInfo().size()); |
| } |
| std::vector<uint8_t> quicken_data; |
| for (QuickenedInfo info : dex_compiler.GetQuickenedInfo()) { |
| // Dex pc is not serialized, only used for checking the instructions. Since we access the |
| // array based on the index of the quickened instruction, the indexes must line up perfectly. |
| // The reader side uses the NeedsIndexForInstruction function too. |
| const Instruction* inst = Instruction::At(code_item->insns_ + info.dex_pc); |
| CHECK(QuickenInfoTable::NeedsIndexForInstruction(inst)) << inst->Opcode(); |
| // Add the index. |
| quicken_data.push_back(static_cast<uint8_t>(info.dex_member_index >> 0)); |
| quicken_data.push_back(static_cast<uint8_t>(info.dex_member_index >> 8)); |
| } |
| InstructionSet instruction_set = driver->GetInstructionSet(); |
| if (instruction_set == kThumb2) { |
| // Don't use the thumb2 instruction set to avoid the one off code delta. |
| instruction_set = kArm; |
| } |
| return CompiledMethod::SwapAllocCompiledMethod( |
| driver, |
| instruction_set, |
| ArrayRef<const uint8_t>(), // no code |
| 0, |
| 0, |
| 0, |
| ArrayRef<const uint8_t>(), // method_info |
| ArrayRef<const uint8_t>(quicken_data), // vmap_table |
| ArrayRef<const uint8_t>(), // cfi data |
| ArrayRef<const LinkerPatch>()); |
| } |
| return nullptr; |
| } |
| |
| } // namespace optimizer |
| |
| } // namespace art |