blob: d6a07f6226e515c56a3c277036abcc5b3ae45f46 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_COMPILED_METHOD_H_
#define ART_COMPILER_COMPILED_METHOD_H_
#include <memory>
#include <string>
#include <vector>
#include "arch/instruction_set.h"
#include "method_reference.h"
#include "utils.h"
#include "utils/array_ref.h"
#include "utils/swap_space.h"
namespace art {
class CompilerDriver;
class CompiledCode {
public:
// For Quick to supply an code blob
CompiledCode(CompilerDriver* compiler_driver, InstructionSet instruction_set,
const ArrayRef<const uint8_t>& quick_code, bool owns_code_array);
virtual ~CompiledCode();
InstructionSet GetInstructionSet() const {
return instruction_set_;
}
const SwapVector<uint8_t>* GetQuickCode() const {
return quick_code_;
}
void SetCode(const ArrayRef<const uint8_t>* quick_code);
bool operator==(const CompiledCode& rhs) const;
// To align an offset from a page-aligned value to make it suitable
// for code storage. For example on ARM, to ensure that PC relative
// valu computations work out as expected.
size_t AlignCode(size_t offset) const;
static size_t AlignCode(size_t offset, InstructionSet instruction_set);
// returns the difference between the code address and a usable PC.
// mainly to cope with kThumb2 where the lower bit must be set.
size_t CodeDelta() const;
static size_t CodeDelta(InstructionSet instruction_set);
// Returns a pointer suitable for invoking the code at the argument
// code_pointer address. Mainly to cope with kThumb2 where the
// lower bit must be set to indicate Thumb mode.
static const void* CodePointer(const void* code_pointer,
InstructionSet instruction_set);
const std::vector<uint32_t>& GetOatdataOffsetsToCompliledCodeOffset() const;
void AddOatdataOffsetToCompliledCodeOffset(uint32_t offset);
private:
CompilerDriver* const compiler_driver_;
const InstructionSet instruction_set_;
// If we own the code array (means that we free in destructor).
const bool owns_code_array_;
// Used to store the PIC code for Quick.
SwapVector<uint8_t>* quick_code_;
// There are offsets from the oatdata symbol to where the offset to
// the compiled method will be found. These are computed by the
// OatWriter and then used by the ElfWriter to add relocations so
// that MCLinker can update the values to the location in the linked .so.
std::vector<uint32_t> oatdata_offsets_to_compiled_code_offset_;
};
class SrcMapElem {
public:
uint32_t from_;
int32_t to_;
explicit operator int64_t() const {
return (static_cast<int64_t>(to_) << 32) | from_;
}
bool operator<(const SrcMapElem& sme) const {
return int64_t(*this) < int64_t(sme);
}
bool operator==(const SrcMapElem& sme) const {
return int64_t(*this) == int64_t(sme);
}
explicit operator uint8_t() const {
return static_cast<uint8_t>(from_ + to_);
}
};
template <class Allocator>
class SrcMap FINAL : public std::vector<SrcMapElem, Allocator> {
public:
using std::vector<SrcMapElem, Allocator>::begin;
using typename std::vector<SrcMapElem, Allocator>::const_iterator;
using std::vector<SrcMapElem, Allocator>::empty;
using std::vector<SrcMapElem, Allocator>::end;
using std::vector<SrcMapElem, Allocator>::resize;
using std::vector<SrcMapElem, Allocator>::shrink_to_fit;
using std::vector<SrcMapElem, Allocator>::size;
explicit SrcMap() {}
explicit SrcMap(const Allocator& alloc) : std::vector<SrcMapElem, Allocator>(alloc) {}
template <class InputIt>
SrcMap(InputIt first, InputIt last, const Allocator& alloc)
: std::vector<SrcMapElem, Allocator>(first, last, alloc) {}
void SortByFrom() {
std::sort(begin(), end(), [] (const SrcMapElem& lhs, const SrcMapElem& rhs) -> bool {
return lhs.from_ < rhs.from_;
});
}
const_iterator FindByTo(int32_t to) const {
return std::lower_bound(begin(), end(), SrcMapElem({0, to}));
}
SrcMap& Arrange() {
if (!empty()) {
std::sort(begin(), end());
resize(std::unique(begin(), end()) - begin());
shrink_to_fit();
}
return *this;
}
void DeltaFormat(const SrcMapElem& start, uint32_t highest_pc) {
// Convert from abs values to deltas.
if (!empty()) {
SortByFrom();
// TODO: one PC can be mapped to several Java src lines.
// do we want such a one-to-many correspondence?
// get rid of the highest values
size_t i = size() - 1;
for (; i > 0 ; i--) {
if ((*this)[i].from_ < highest_pc) {
break;
}
}
this->resize(i + 1);
for (i = size(); --i >= 1; ) {
(*this)[i].from_ -= (*this)[i-1].from_;
(*this)[i].to_ -= (*this)[i-1].to_;
}
DCHECK((*this)[0].from_ >= start.from_);
(*this)[0].from_ -= start.from_;
(*this)[0].to_ -= start.to_;
}
}
};
using DefaultSrcMap = SrcMap<std::allocator<SrcMapElem>>;
using SwapSrcMap = SrcMap<SwapAllocator<SrcMapElem>>;
enum LinkerPatchType {
kLinkerPatchMethod,
kLinkerPatchCall,
kLinkerPatchCallRelative, // NOTE: Actual patching is instruction_set-dependent.
kLinkerPatchType,
};
class LinkerPatch {
public:
static LinkerPatch MethodPatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t target_method_idx) {
return LinkerPatch(literal_offset, kLinkerPatchMethod,
target_method_idx, target_dex_file);
}
static LinkerPatch CodePatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t target_method_idx) {
return LinkerPatch(literal_offset, kLinkerPatchCall,
target_method_idx, target_dex_file);
}
static LinkerPatch RelativeCodePatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t target_method_idx) {
return LinkerPatch(literal_offset, kLinkerPatchCallRelative,
target_method_idx, target_dex_file);
}
static LinkerPatch TypePatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t target_type_idx) {
return LinkerPatch(literal_offset, kLinkerPatchType, target_type_idx, target_dex_file);
}
LinkerPatch(const LinkerPatch& other) = default;
LinkerPatch& operator=(const LinkerPatch& other) = default;
size_t LiteralOffset() const {
return literal_offset_;
}
LinkerPatchType Type() const {
return patch_type_;
}
MethodReference TargetMethod() const {
DCHECK(patch_type_ == kLinkerPatchMethod ||
patch_type_ == kLinkerPatchCall || patch_type_ == kLinkerPatchCallRelative);
return MethodReference(target_dex_file_, target_idx_);
}
const DexFile* TargetTypeDexFile() const {
DCHECK(patch_type_ == kLinkerPatchType);
return target_dex_file_;
}
uint32_t TargetTypeIndex() const {
DCHECK(patch_type_ == kLinkerPatchType);
return target_idx_;
}
private:
LinkerPatch(size_t literal_offset, LinkerPatchType patch_type,
uint32_t target_idx, const DexFile* target_dex_file)
: literal_offset_(literal_offset),
patch_type_(patch_type),
target_idx_(target_idx),
target_dex_file_(target_dex_file) {
}
size_t literal_offset_;
LinkerPatchType patch_type_;
uint32_t target_idx_; // Method index (Call/Method patches) or type index (Type patches).
const DexFile* target_dex_file_;
friend bool operator==(const LinkerPatch& lhs, const LinkerPatch& rhs);
friend bool operator<(const LinkerPatch& lhs, const LinkerPatch& rhs);
};
inline bool operator==(const LinkerPatch& lhs, const LinkerPatch& rhs) {
return lhs.literal_offset_ == rhs.literal_offset_ &&
lhs.patch_type_ == rhs.patch_type_ &&
lhs.target_idx_ == rhs.target_idx_ &&
lhs.target_dex_file_ == rhs.target_dex_file_;
}
inline bool operator<(const LinkerPatch& lhs, const LinkerPatch& rhs) {
return (lhs.literal_offset_ != rhs.literal_offset_) ? lhs.literal_offset_ < rhs.literal_offset_
: (lhs.patch_type_ != rhs.patch_type_) ? lhs.patch_type_ < rhs.patch_type_
: (lhs.target_idx_ != rhs.target_idx_) ? lhs.target_idx_ < rhs.target_idx_
: lhs.target_dex_file_ < rhs.target_dex_file_;
}
class CompiledMethod FINAL : public CompiledCode {
public:
// Constructs a CompiledMethod.
// Note: Consider using the static allocation methods below that will allocate the CompiledMethod
// in the swap space.
CompiledMethod(CompilerDriver* driver,
InstructionSet instruction_set,
const ArrayRef<const uint8_t>& quick_code,
const size_t frame_size_in_bytes,
const uint32_t core_spill_mask,
const uint32_t fp_spill_mask,
DefaultSrcMap* src_mapping_table,
const ArrayRef<const uint8_t>& mapping_table,
const ArrayRef<const uint8_t>& vmap_table,
const ArrayRef<const uint8_t>& native_gc_map,
const ArrayRef<const uint8_t>& cfi_info,
const ArrayRef<LinkerPatch>& patches = ArrayRef<LinkerPatch>());
virtual ~CompiledMethod();
static CompiledMethod* SwapAllocCompiledMethod(
CompilerDriver* driver,
InstructionSet instruction_set,
const ArrayRef<const uint8_t>& quick_code,
const size_t frame_size_in_bytes,
const uint32_t core_spill_mask,
const uint32_t fp_spill_mask,
DefaultSrcMap* src_mapping_table,
const ArrayRef<const uint8_t>& mapping_table,
const ArrayRef<const uint8_t>& vmap_table,
const ArrayRef<const uint8_t>& native_gc_map,
const ArrayRef<const uint8_t>& cfi_info,
const ArrayRef<LinkerPatch>& patches = ArrayRef<LinkerPatch>());
static CompiledMethod* SwapAllocCompiledMethodStackMap(
CompilerDriver* driver,
InstructionSet instruction_set,
const ArrayRef<const uint8_t>& quick_code,
const size_t frame_size_in_bytes,
const uint32_t core_spill_mask,
const uint32_t fp_spill_mask,
const ArrayRef<const uint8_t>& stack_map);
static CompiledMethod* SwapAllocCompiledMethodCFI(CompilerDriver* driver,
InstructionSet instruction_set,
const ArrayRef<const uint8_t>& quick_code,
const size_t frame_size_in_bytes,
const uint32_t core_spill_mask,
const uint32_t fp_spill_mask,
const ArrayRef<const uint8_t>& cfi_info);
static void ReleaseSwapAllocatedCompiledMethod(CompilerDriver* driver, CompiledMethod* m);
size_t GetFrameSizeInBytes() const {
return frame_size_in_bytes_;
}
uint32_t GetCoreSpillMask() const {
return core_spill_mask_;
}
uint32_t GetFpSpillMask() const {
return fp_spill_mask_;
}
const SwapSrcMap& GetSrcMappingTable() const {
DCHECK(src_mapping_table_ != nullptr);
return *src_mapping_table_;
}
SwapVector<uint8_t> const* GetMappingTable() const {
return mapping_table_;
}
const SwapVector<uint8_t>* GetVmapTable() const {
DCHECK(vmap_table_ != nullptr);
return vmap_table_;
}
SwapVector<uint8_t> const* GetGcMap() const {
return gc_map_;
}
const SwapVector<uint8_t>* GetCFIInfo() const {
return cfi_info_;
}
const SwapVector<LinkerPatch>& GetPatches() const {
return patches_;
}
private:
// Whether or not the arrays are owned by the compiled method or dedupe sets.
const bool owns_arrays_;
// For quick code, the size of the activation used by the code.
const size_t frame_size_in_bytes_;
// For quick code, a bit mask describing spilled GPR callee-save registers.
const uint32_t core_spill_mask_;
// For quick code, a bit mask describing spilled FPR callee-save registers.
const uint32_t fp_spill_mask_;
// For quick code, a set of pairs (PC, Line) mapping from native PC offset to Java line
SwapSrcMap* src_mapping_table_;
// For quick code, a uleb128 encoded map from native PC offset to dex PC aswell as dex PC to
// native PC offset. Size prefixed.
SwapVector<uint8_t>* mapping_table_;
// For quick code, a uleb128 encoded map from GPR/FPR register to dex register. Size prefixed.
SwapVector<uint8_t>* vmap_table_;
// For quick code, a map keyed by native PC indices to bitmaps describing what dalvik registers
// are live.
SwapVector<uint8_t>* gc_map_;
// For quick code, a FDE entry for the debug_frame section.
SwapVector<uint8_t>* cfi_info_;
// For quick code, linker patches needed by the method.
SwapVector<LinkerPatch> patches_;
};
} // namespace art
#endif // ART_COMPILER_COMPILED_METHOD_H_