| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_GC_HEAP_INL_H_ |
| #define ART_RUNTIME_GC_HEAP_INL_H_ |
| |
| #include "heap.h" |
| |
| #include "debugger.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/collector/semi_space.h" |
| #include "gc/space/bump_pointer_space-inl.h" |
| #include "gc/space/dlmalloc_space-inl.h" |
| #include "gc/space/large_object_space.h" |
| #include "gc/space/rosalloc_space-inl.h" |
| #include "runtime.h" |
| #include "sirt_ref-inl.h" |
| #include "thread.h" |
| #include "thread-inl.h" |
| #include "verify_object-inl.h" |
| |
| namespace art { |
| namespace gc { |
| |
| template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor> |
| inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass, |
| size_t byte_count, AllocatorType allocator, |
| const PreFenceVisitor& pre_fence_visitor) { |
| if (kIsDebugBuild) { |
| CheckPreconditionsForAllocObject(klass, byte_count); |
| } |
| // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are |
| // done in the runnable state where suspension is expected. |
| DCHECK_EQ(self->GetState(), kRunnable); |
| self->AssertThreadSuspensionIsAllowable(); |
| // Need to check that we arent the large object allocator since the large object allocation code |
| // path this function. If we didn't check we would have an infinite loop. |
| if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) { |
| return AllocLargeObject<kInstrumented, PreFenceVisitor>(self, klass, byte_count, |
| pre_fence_visitor); |
| } |
| mirror::Object* obj; |
| AllocationTimer alloc_timer(this, &obj); |
| size_t bytes_allocated, usable_size; |
| obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated, |
| &usable_size); |
| if (UNLIKELY(obj == nullptr)) { |
| bool is_current_allocator = allocator == GetCurrentAllocator(); |
| obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated, &usable_size, |
| &klass); |
| if (obj == nullptr) { |
| bool after_is_current_allocator = allocator == GetCurrentAllocator(); |
| if (is_current_allocator && !after_is_current_allocator) { |
| // If the allocator changed, we need to restart the allocation. |
| return AllocObject<kInstrumented>(self, klass, byte_count, pre_fence_visitor); |
| } |
| return nullptr; |
| } |
| } |
| DCHECK_GT(bytes_allocated, 0u); |
| DCHECK_GT(usable_size, 0u); |
| obj->SetClass(klass); |
| if (kUseBakerOrBrooksReadBarrier) { |
| if (kUseBrooksReadBarrier) { |
| obj->SetReadBarrierPointer(obj); |
| } |
| obj->AssertReadBarrierPointer(); |
| } |
| if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) { |
| // (Note this if statement will be constant folded away for the |
| // fast-path quick entry points.) Because SetClass() has no write |
| // barrier, if a non-moving space allocation, we need a write |
| // barrier as the class pointer may point to the bump pointer |
| // space (where the class pointer is an "old-to-young" reference, |
| // though rare) under the GSS collector with the remembered set |
| // enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc |
| // cases because we don't directly allocate into the main alloc |
| // space (besides promotions) under the SS/GSS collector. |
| WriteBarrierField(obj, mirror::Object::ClassOffset(), klass); |
| } |
| pre_fence_visitor(obj, usable_size); |
| if (kIsDebugBuild && Runtime::Current()->IsStarted()) { |
| CHECK_LE(obj->SizeOf(), usable_size); |
| } |
| const size_t new_num_bytes_allocated = |
| static_cast<size_t>(num_bytes_allocated_.FetchAndAdd(bytes_allocated)) + bytes_allocated; |
| // TODO: Deprecate. |
| if (kInstrumented) { |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* thread_stats = self->GetStats(); |
| ++thread_stats->allocated_objects; |
| thread_stats->allocated_bytes += bytes_allocated; |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| ++global_stats->allocated_objects; |
| global_stats->allocated_bytes += bytes_allocated; |
| } |
| } else { |
| DCHECK(!Runtime::Current()->HasStatsEnabled()); |
| } |
| if (AllocatorHasAllocationStack(allocator)) { |
| PushOnAllocationStack(self, &obj); |
| } |
| if (kInstrumented) { |
| if (Dbg::IsAllocTrackingEnabled()) { |
| Dbg::RecordAllocation(klass, bytes_allocated); |
| } |
| } else { |
| DCHECK(!Dbg::IsAllocTrackingEnabled()); |
| } |
| // IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for |
| // the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be |
| // optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since |
| // the allocator_type should be constant propagated. |
| if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) { |
| CheckConcurrentGC(self, new_num_bytes_allocated, &obj); |
| } |
| VerifyObject(obj); |
| self->VerifyStack(); |
| return obj; |
| } |
| |
| // The size of a thread-local allocation stack in the number of references. |
| static constexpr size_t kThreadLocalAllocationStackSize = 128; |
| |
| inline void Heap::PushOnAllocationStack(Thread* self, mirror::Object** obj) { |
| if (kUseThreadLocalAllocationStack) { |
| bool success = self->PushOnThreadLocalAllocationStack(*obj); |
| if (UNLIKELY(!success)) { |
| // Slow path. Allocate a new thread-local allocation stack. |
| mirror::Object** start_address; |
| mirror::Object** end_address; |
| while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, |
| &start_address, &end_address)) { |
| // Disable verify object in SirtRef as obj isn't on the alloc stack yet. |
| SirtRefNoVerify<mirror::Object> ref(self, *obj); |
| CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); |
| *obj = ref.get(); |
| } |
| self->SetThreadLocalAllocationStack(start_address, end_address); |
| // Retry on the new thread-local allocation stack. |
| success = self->PushOnThreadLocalAllocationStack(*obj); |
| // Must succeed. |
| CHECK(success); |
| } |
| } else { |
| // This is safe to do since the GC will never free objects which are neither in the allocation |
| // stack or the live bitmap. |
| while (!allocation_stack_->AtomicPushBack(*obj)) { |
| // Disable verify object in SirtRef as obj isn't on the alloc stack yet. |
| SirtRefNoVerify<mirror::Object> ref(self, *obj); |
| CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false); |
| *obj = ref.get(); |
| } |
| } |
| } |
| |
| template <bool kInstrumented, typename PreFenceVisitor> |
| inline mirror::Object* Heap::AllocLargeObject(Thread* self, mirror::Class* klass, |
| size_t byte_count, |
| const PreFenceVisitor& pre_fence_visitor) { |
| return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, klass, byte_count, |
| kAllocatorTypeLOS, |
| pre_fence_visitor); |
| } |
| |
| template <const bool kInstrumented, const bool kGrow> |
| inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type, |
| size_t alloc_size, size_t* bytes_allocated, |
| size_t* usable_size) { |
| if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) { |
| return nullptr; |
| } |
| mirror::Object* ret; |
| switch (allocator_type) { |
| case kAllocatorTypeBumpPointer: { |
| DCHECK(bump_pointer_space_ != nullptr); |
| alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment); |
| ret = bump_pointer_space_->AllocNonvirtual(alloc_size); |
| if (LIKELY(ret != nullptr)) { |
| *bytes_allocated = alloc_size; |
| *usable_size = alloc_size; |
| } |
| break; |
| } |
| case kAllocatorTypeRosAlloc: { |
| if (kInstrumented && UNLIKELY(running_on_valgrind_)) { |
| // If running on valgrind, we should be using the instrumented path. |
| ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size); |
| } else { |
| DCHECK(!running_on_valgrind_); |
| ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size); |
| } |
| break; |
| } |
| case kAllocatorTypeDlMalloc: { |
| if (kInstrumented && UNLIKELY(running_on_valgrind_)) { |
| // If running on valgrind, we should be using the instrumented path. |
| ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size); |
| } else { |
| DCHECK(!running_on_valgrind_); |
| ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size); |
| } |
| break; |
| } |
| case kAllocatorTypeNonMoving: { |
| ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size); |
| break; |
| } |
| case kAllocatorTypeLOS: { |
| ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size); |
| // Note that the bump pointer spaces aren't necessarily next to |
| // the other continuous spaces like the non-moving alloc space or |
| // the zygote space. |
| DCHECK(ret == nullptr || large_object_space_->Contains(ret)); |
| break; |
| } |
| case kAllocatorTypeTLAB: { |
| alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment); |
| if (UNLIKELY(self->TlabSize() < alloc_size)) { |
| // Try allocating a new thread local buffer, if the allocaiton fails the space must be |
| // full so return nullptr. |
| if (!bump_pointer_space_->AllocNewTlab(self, alloc_size + kDefaultTLABSize)) { |
| return nullptr; |
| } |
| } |
| // The allocation can't fail. |
| ret = self->AllocTlab(alloc_size); |
| DCHECK(ret != nullptr); |
| *bytes_allocated = alloc_size; |
| *usable_size = alloc_size; |
| break; |
| } |
| default: { |
| LOG(FATAL) << "Invalid allocator type"; |
| ret = nullptr; |
| } |
| } |
| return ret; |
| } |
| |
| inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr) |
| : heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) { |
| if (kMeasureAllocationTime) { |
| allocation_start_time_ = NanoTime() / kTimeAdjust; |
| } |
| } |
| |
| inline Heap::AllocationTimer::~AllocationTimer() { |
| if (kMeasureAllocationTime) { |
| mirror::Object* allocated_obj = *allocated_obj_ptr_; |
| // Only if the allocation succeeded, record the time. |
| if (allocated_obj != nullptr) { |
| uint64_t allocation_end_time = NanoTime() / kTimeAdjust; |
| heap_->total_allocation_time_.FetchAndAdd(allocation_end_time - allocation_start_time_); |
| } |
| } |
| }; |
| |
| inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const { |
| // We need to have a zygote space or else our newly allocated large object can end up in the |
| // Zygote resulting in it being prematurely freed. |
| // We can only do this for primitive objects since large objects will not be within the card table |
| // range. This also means that we rely on SetClass not dirtying the object's card. |
| return byte_count >= large_object_threshold_ && c->IsPrimitiveArray(); |
| } |
| |
| template <bool kGrow> |
| inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size) { |
| size_t new_footprint = num_bytes_allocated_ + alloc_size; |
| if (UNLIKELY(new_footprint > max_allowed_footprint_)) { |
| if (UNLIKELY(new_footprint > growth_limit_)) { |
| return true; |
| } |
| if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) { |
| if (!kGrow) { |
| return true; |
| } |
| // TODO: Grow for allocation is racy, fix it. |
| VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to " |
| << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation"; |
| max_allowed_footprint_ = new_footprint; |
| } |
| } |
| return false; |
| } |
| |
| inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated, |
| mirror::Object** obj) { |
| if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) { |
| // The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint. |
| SirtRef<mirror::Object> ref(self, *obj); |
| RequestConcurrentGC(self); |
| // Restore obj in case it moved. |
| *obj = ref.get(); |
| } |
| } |
| |
| } // namespace gc |
| } // namespace art |
| |
| #endif // ART_RUNTIME_GC_HEAP_INL_H_ |