blob: a06f272b55bf6dd5d023edcf705c71c164b8a7db [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_HEAP_INL_H_
#define ART_RUNTIME_GC_HEAP_INL_H_
#include "heap.h"
#include "debugger.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/collector/semi_space.h"
#include "gc/space/bump_pointer_space-inl.h"
#include "gc/space/dlmalloc_space-inl.h"
#include "gc/space/large_object_space.h"
#include "gc/space/rosalloc_space-inl.h"
#include "runtime.h"
#include "sirt_ref-inl.h"
#include "thread.h"
#include "thread-inl.h"
#include "verify_object-inl.h"
namespace art {
namespace gc {
template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self, mirror::Class* klass,
size_t byte_count, AllocatorType allocator,
const PreFenceVisitor& pre_fence_visitor) {
if (kIsDebugBuild) {
CheckPreconditionsForAllocObject(klass, byte_count);
}
// Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
// done in the runnable state where suspension is expected.
DCHECK_EQ(self->GetState(), kRunnable);
self->AssertThreadSuspensionIsAllowable();
// Need to check that we arent the large object allocator since the large object allocation code
// path this function. If we didn't check we would have an infinite loop.
if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
return AllocLargeObject<kInstrumented, PreFenceVisitor>(self, klass, byte_count,
pre_fence_visitor);
}
mirror::Object* obj;
AllocationTimer alloc_timer(this, &obj);
size_t bytes_allocated, usable_size;
obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
&usable_size);
if (UNLIKELY(obj == nullptr)) {
bool is_current_allocator = allocator == GetCurrentAllocator();
obj = AllocateInternalWithGc(self, allocator, byte_count, &bytes_allocated, &usable_size,
&klass);
if (obj == nullptr) {
bool after_is_current_allocator = allocator == GetCurrentAllocator();
if (is_current_allocator && !after_is_current_allocator) {
// If the allocator changed, we need to restart the allocation.
return AllocObject<kInstrumented>(self, klass, byte_count, pre_fence_visitor);
}
return nullptr;
}
}
DCHECK_GT(bytes_allocated, 0u);
DCHECK_GT(usable_size, 0u);
obj->SetClass(klass);
if (kUseBakerOrBrooksReadBarrier) {
if (kUseBrooksReadBarrier) {
obj->SetReadBarrierPointer(obj);
}
obj->AssertReadBarrierPointer();
}
if (collector::SemiSpace::kUseRememberedSet && UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
// (Note this if statement will be constant folded away for the
// fast-path quick entry points.) Because SetClass() has no write
// barrier, if a non-moving space allocation, we need a write
// barrier as the class pointer may point to the bump pointer
// space (where the class pointer is an "old-to-young" reference,
// though rare) under the GSS collector with the remembered set
// enabled. We don't need this for kAllocatorTypeRosAlloc/DlMalloc
// cases because we don't directly allocate into the main alloc
// space (besides promotions) under the SS/GSS collector.
WriteBarrierField(obj, mirror::Object::ClassOffset(), klass);
}
pre_fence_visitor(obj, usable_size);
if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
CHECK_LE(obj->SizeOf(), usable_size);
}
const size_t new_num_bytes_allocated =
static_cast<size_t>(num_bytes_allocated_.FetchAndAdd(bytes_allocated)) + bytes_allocated;
// TODO: Deprecate.
if (kInstrumented) {
if (Runtime::Current()->HasStatsEnabled()) {
RuntimeStats* thread_stats = self->GetStats();
++thread_stats->allocated_objects;
thread_stats->allocated_bytes += bytes_allocated;
RuntimeStats* global_stats = Runtime::Current()->GetStats();
++global_stats->allocated_objects;
global_stats->allocated_bytes += bytes_allocated;
}
} else {
DCHECK(!Runtime::Current()->HasStatsEnabled());
}
if (AllocatorHasAllocationStack(allocator)) {
PushOnAllocationStack(self, &obj);
}
if (kInstrumented) {
if (Dbg::IsAllocTrackingEnabled()) {
Dbg::RecordAllocation(klass, bytes_allocated);
}
} else {
DCHECK(!Dbg::IsAllocTrackingEnabled());
}
// IsConcurrentGc() isn't known at compile time so we can optimize by not checking it for
// the BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
// optimized out. And for the other allocators, AllocatorMayHaveConcurrentGC is a constant since
// the allocator_type should be constant propagated.
if (AllocatorMayHaveConcurrentGC(allocator) && IsGcConcurrent()) {
CheckConcurrentGC(self, new_num_bytes_allocated, &obj);
}
VerifyObject(obj);
self->VerifyStack();
return obj;
}
// The size of a thread-local allocation stack in the number of references.
static constexpr size_t kThreadLocalAllocationStackSize = 128;
inline void Heap::PushOnAllocationStack(Thread* self, mirror::Object** obj) {
if (kUseThreadLocalAllocationStack) {
bool success = self->PushOnThreadLocalAllocationStack(*obj);
if (UNLIKELY(!success)) {
// Slow path. Allocate a new thread-local allocation stack.
mirror::Object** start_address;
mirror::Object** end_address;
while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize,
&start_address, &end_address)) {
// Disable verify object in SirtRef as obj isn't on the alloc stack yet.
SirtRefNoVerify<mirror::Object> ref(self, *obj);
CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
*obj = ref.get();
}
self->SetThreadLocalAllocationStack(start_address, end_address);
// Retry on the new thread-local allocation stack.
success = self->PushOnThreadLocalAllocationStack(*obj);
// Must succeed.
CHECK(success);
}
} else {
// This is safe to do since the GC will never free objects which are neither in the allocation
// stack or the live bitmap.
while (!allocation_stack_->AtomicPushBack(*obj)) {
// Disable verify object in SirtRef as obj isn't on the alloc stack yet.
SirtRefNoVerify<mirror::Object> ref(self, *obj);
CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
*obj = ref.get();
}
}
}
template <bool kInstrumented, typename PreFenceVisitor>
inline mirror::Object* Heap::AllocLargeObject(Thread* self, mirror::Class* klass,
size_t byte_count,
const PreFenceVisitor& pre_fence_visitor) {
return AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>(self, klass, byte_count,
kAllocatorTypeLOS,
pre_fence_visitor);
}
template <const bool kInstrumented, const bool kGrow>
inline mirror::Object* Heap::TryToAllocate(Thread* self, AllocatorType allocator_type,
size_t alloc_size, size_t* bytes_allocated,
size_t* usable_size) {
if (UNLIKELY(IsOutOfMemoryOnAllocation<kGrow>(allocator_type, alloc_size))) {
return nullptr;
}
mirror::Object* ret;
switch (allocator_type) {
case kAllocatorTypeBumpPointer: {
DCHECK(bump_pointer_space_ != nullptr);
alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
if (LIKELY(ret != nullptr)) {
*bytes_allocated = alloc_size;
*usable_size = alloc_size;
}
break;
}
case kAllocatorTypeRosAlloc: {
if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
// If running on valgrind, we should be using the instrumented path.
ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
} else {
DCHECK(!running_on_valgrind_);
ret = rosalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
}
break;
}
case kAllocatorTypeDlMalloc: {
if (kInstrumented && UNLIKELY(running_on_valgrind_)) {
// If running on valgrind, we should be using the instrumented path.
ret = dlmalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
} else {
DCHECK(!running_on_valgrind_);
ret = dlmalloc_space_->AllocNonvirtual(self, alloc_size, bytes_allocated, usable_size);
}
break;
}
case kAllocatorTypeNonMoving: {
ret = non_moving_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
break;
}
case kAllocatorTypeLOS: {
ret = large_object_space_->Alloc(self, alloc_size, bytes_allocated, usable_size);
// Note that the bump pointer spaces aren't necessarily next to
// the other continuous spaces like the non-moving alloc space or
// the zygote space.
DCHECK(ret == nullptr || large_object_space_->Contains(ret));
break;
}
case kAllocatorTypeTLAB: {
alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
if (UNLIKELY(self->TlabSize() < alloc_size)) {
// Try allocating a new thread local buffer, if the allocaiton fails the space must be
// full so return nullptr.
if (!bump_pointer_space_->AllocNewTlab(self, alloc_size + kDefaultTLABSize)) {
return nullptr;
}
}
// The allocation can't fail.
ret = self->AllocTlab(alloc_size);
DCHECK(ret != nullptr);
*bytes_allocated = alloc_size;
*usable_size = alloc_size;
break;
}
default: {
LOG(FATAL) << "Invalid allocator type";
ret = nullptr;
}
}
return ret;
}
inline Heap::AllocationTimer::AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr)
: heap_(heap), allocated_obj_ptr_(allocated_obj_ptr) {
if (kMeasureAllocationTime) {
allocation_start_time_ = NanoTime() / kTimeAdjust;
}
}
inline Heap::AllocationTimer::~AllocationTimer() {
if (kMeasureAllocationTime) {
mirror::Object* allocated_obj = *allocated_obj_ptr_;
// Only if the allocation succeeded, record the time.
if (allocated_obj != nullptr) {
uint64_t allocation_end_time = NanoTime() / kTimeAdjust;
heap_->total_allocation_time_.FetchAndAdd(allocation_end_time - allocation_start_time_);
}
}
};
inline bool Heap::ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const {
// We need to have a zygote space or else our newly allocated large object can end up in the
// Zygote resulting in it being prematurely freed.
// We can only do this for primitive objects since large objects will not be within the card table
// range. This also means that we rely on SetClass not dirtying the object's card.
return byte_count >= large_object_threshold_ && c->IsPrimitiveArray();
}
template <bool kGrow>
inline bool Heap::IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size) {
size_t new_footprint = num_bytes_allocated_ + alloc_size;
if (UNLIKELY(new_footprint > max_allowed_footprint_)) {
if (UNLIKELY(new_footprint > growth_limit_)) {
return true;
}
if (!AllocatorMayHaveConcurrentGC(allocator_type) || !IsGcConcurrent()) {
if (!kGrow) {
return true;
}
// TODO: Grow for allocation is racy, fix it.
VLOG(heap) << "Growing heap from " << PrettySize(max_allowed_footprint_) << " to "
<< PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
max_allowed_footprint_ = new_footprint;
}
}
return false;
}
inline void Heap::CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated,
mirror::Object** obj) {
if (UNLIKELY(new_num_bytes_allocated >= concurrent_start_bytes_)) {
// The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint.
SirtRef<mirror::Object> ref(self, *obj);
RequestConcurrentGC(self);
// Restore obj in case it moved.
*obj = ref.get();
}
}
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_HEAP_INL_H_