blob: 8aaec6804d747b5914b97aa1db984c6e54ac1aef [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "induction_var_analysis.h"
namespace art {
/**
* Returns true if instruction is invariant within the given loop.
*/
static bool IsLoopInvariant(HLoopInformation* loop, HInstruction* instruction) {
HLoopInformation* other_loop = instruction->GetBlock()->GetLoopInformation();
if (other_loop != loop) {
// If instruction does not occur in same loop, it is invariant
// if it appears in an outer loop (including no loop at all).
return other_loop == nullptr || loop->IsIn(*other_loop);
}
return false;
}
/**
* Returns true if instruction is proper entry-phi-operation for given loop
* (referred to as mu-operation in Gerlek's paper).
*/
static bool IsEntryPhi(HLoopInformation* loop, HInstruction* instruction) {
return
instruction->IsPhi() &&
instruction->InputCount() == 2 &&
instruction->GetBlock() == loop->GetHeader();
}
//
// Class methods.
//
HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph)
: HOptimization(graph, kInductionPassName),
global_depth_(0),
stack_(graph->GetArena()->Adapter()),
scc_(graph->GetArena()->Adapter()),
map_(std::less<int>(), graph->GetArena()->Adapter()),
cycle_(std::less<int>(), graph->GetArena()->Adapter()),
induction_(std::less<int>(), graph->GetArena()->Adapter()) {
}
void HInductionVarAnalysis::Run() {
// Detects sequence variables (generalized induction variables) during an
// inner-loop-first traversal of all loops using Gerlek's algorithm.
for (HPostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) {
HBasicBlock* graph_block = it_graph.Current();
if (graph_block->IsLoopHeader()) {
VisitLoop(graph_block->GetLoopInformation());
}
}
}
void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) {
// Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's
// algorithm. Due to the descendant-first nature, classification happens "on-demand".
global_depth_ = 0;
CHECK(stack_.empty());
map_.clear();
for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) {
HBasicBlock* loop_block = it_loop.Current();
CHECK(loop_block->IsInLoop());
if (loop_block->GetLoopInformation() != loop) {
continue; // Inner loops already visited.
}
// Visit phi-operations and instructions.
for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
if (!IsVisitedNode(instruction->GetId())) {
VisitNode(loop, instruction);
}
}
for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
if (!IsVisitedNode(instruction->GetId())) {
VisitNode(loop, instruction);
}
}
}
CHECK(stack_.empty());
map_.clear();
}
void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) {
const int id = instruction->GetId();
const uint32_t d1 = ++global_depth_;
map_.Put(id, NodeInfo(d1));
stack_.push_back(instruction);
// Visit all descendants.
uint32_t low = d1;
for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) {
low = std::min(low, VisitDescendant(loop, instruction->InputAt(i)));
}
// Lower or found SCC?
if (low < d1) {
map_.find(id)->second.depth = low;
} else {
scc_.clear();
cycle_.clear();
// Pop the stack to build the SCC for classification.
while (!stack_.empty()) {
HInstruction* x = stack_.back();
scc_.push_back(x);
stack_.pop_back();
map_.find(x->GetId())->second.done = true;
if (x == instruction) {
break;
}
}
// Classify the SCC.
if (scc_.size() == 1 && !IsEntryPhi(loop, scc_[0])) {
ClassifyTrivial(loop, scc_[0]);
} else {
ClassifyNonTrivial(loop);
}
scc_.clear();
cycle_.clear();
}
}
uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) {
// If the definition is either outside the loop (loop invariant entry value)
// or assigned in inner loop (inner exit value), the traversal stops.
HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation();
if (otherLoop != loop) {
return global_depth_;
}
// Inspect descendant node.
const int id = instruction->GetId();
if (!IsVisitedNode(id)) {
VisitNode(loop, instruction);
return map_.find(id)->second.depth;
} else {
auto it = map_.find(id);
return it->second.done ? global_depth_ : it->second.depth;
}
}
void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) {
InductionInfo* info = nullptr;
if (instruction->IsPhi()) {
for (size_t i = 1, count = instruction->InputCount(); i < count; i++) {
info = TransferPhi(LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(i)));
}
} else if (instruction->IsAdd()) {
info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)), kAdd);
} else if (instruction->IsSub()) {
info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)), kSub);
} else if (instruction->IsMul()) {
info = TransferMul(LookupInfo(loop, instruction->InputAt(0)),
LookupInfo(loop, instruction->InputAt(1)));
} else if (instruction->IsNeg()) {
info = TransferNeg(LookupInfo(loop, instruction->InputAt(0)));
}
// Successfully classified?
if (info != nullptr) {
AssignInfo(loop, instruction, info);
}
}
void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) {
const size_t size = scc_.size();
CHECK_GE(size, 1u);
HInstruction* phi = scc_[size - 1];
if (!IsEntryPhi(loop, phi)) {
return;
}
HInstruction* external = phi->InputAt(0);
HInstruction* internal = phi->InputAt(1);
InductionInfo* initial = LookupInfo(loop, external);
if (initial == nullptr || initial->induction_class != kInvariant) {
return;
}
// Singleton entry-phi-operation may be a wrap-around induction.
if (size == 1) {
InductionInfo* update = LookupInfo(loop, internal);
if (update != nullptr) {
AssignInfo(loop, phi, NewInductionInfo(kWrapAround, kNop, initial, update, nullptr));
}
return;
}
// Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns
// temporary meaning to its nodes.
cycle_.Overwrite(phi->GetId(), nullptr);
for (size_t i = 0; i < size - 1; i++) {
HInstruction* operation = scc_[i];
InductionInfo* update = nullptr;
if (operation->IsPhi()) {
update = TransferCycleOverPhi(operation);
} else if (operation->IsAdd()) {
update = TransferCycleOverAddSub(loop, operation->InputAt(0), operation->InputAt(1), kAdd, true);
} else if (operation->IsSub()) {
update = TransferCycleOverAddSub(loop, operation->InputAt(0), operation->InputAt(1), kSub, true);
}
if (update == nullptr) {
return;
}
cycle_.Overwrite(operation->GetId(), update);
}
// Success if the internal link received accumulated nonzero update.
auto it = cycle_.find(internal->GetId());
if (it != cycle_.end() && it->second != nullptr) {
// Classify header phi and feed the cycle "on-demand".
AssignInfo(loop, phi, NewInductionInfo(kLinear, kNop, it->second, initial, nullptr));
for (size_t i = 0; i < size - 1; i++) {
ClassifyTrivial(loop, scc_[i]);
}
}
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(InductionInfo* a,
InductionInfo* b) {
// Transfer over a phi: if both inputs are identical, result is input.
if (InductionEqual(a, b)) {
return a;
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a,
InductionInfo* b,
InductionOp op) {
// Transfer over an addition or subtraction: invariant or linear
// inputs combine into new invariant or linear result.
if (a != nullptr && b != nullptr) {
if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
return NewInductionInfo(kInvariant, op, a, b, nullptr);
} else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
return NewInductionInfo(
kLinear,
kNop,
a->op_a,
NewInductionInfo(kInvariant, op, a->op_b, b, nullptr),
nullptr);
} else if (a->induction_class == kInvariant && b->induction_class == kLinear) {
InductionInfo* ba = b->op_a;
if (op == kSub) { // negation required
ba = NewInductionInfo(kInvariant, kNeg, nullptr, ba, nullptr);
}
return NewInductionInfo(
kLinear,
kNop,
ba,
NewInductionInfo(kInvariant, op, a, b->op_b, nullptr),
nullptr);
} else if (a->induction_class == kLinear && b->induction_class == kLinear) {
return NewInductionInfo(
kLinear,
kNop,
NewInductionInfo(kInvariant, op, a->op_a, b->op_a, nullptr),
NewInductionInfo(kInvariant, op, a->op_b, b->op_b, nullptr),
nullptr);
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a,
InductionInfo* b) {
// Transfer over a multiplication: invariant or linear
// inputs combine into new invariant or linear result.
// Two linear inputs would become quadratic.
if (a != nullptr && b != nullptr) {
if (a->induction_class == kInvariant && b->induction_class == kInvariant) {
return NewInductionInfo(kInvariant, kMul, a, b, nullptr);
} else if (a->induction_class == kLinear && b->induction_class == kInvariant) {
return NewInductionInfo(
kLinear,
kNop,
NewInductionInfo(kInvariant, kMul, a->op_a, b, nullptr),
NewInductionInfo(kInvariant, kMul, a->op_b, b, nullptr),
nullptr);
} else if (a->induction_class == kInvariant && b->induction_class == kLinear) {
return NewInductionInfo(
kLinear,
kNop,
NewInductionInfo(kInvariant, kMul, a, b->op_a, nullptr),
NewInductionInfo(kInvariant, kMul, a, b->op_b, nullptr),
nullptr);
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) {
// Transfer over a unary negation: invariant or linear input
// yields a similar, but negated result.
if (a != nullptr) {
if (a->induction_class == kInvariant) {
return NewInductionInfo(kInvariant, kNeg, nullptr, a, nullptr);
} else if (a->induction_class == kLinear) {
return NewInductionInfo(
kLinear,
kNop,
NewInductionInfo(kInvariant, kNeg, nullptr, a->op_a, nullptr),
NewInductionInfo(kInvariant, kNeg, nullptr, a->op_b, nullptr),
nullptr);
}
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCycleOverPhi(HInstruction* phi) {
// Transfer within a cycle over a phi: only identical inputs
// can be combined into that input as result.
const size_t count = phi->InputCount();
CHECK_GT(count, 0u);
auto ita = cycle_.find(phi->InputAt(0)->GetId());
if (ita != cycle_.end()) {
InductionInfo* a = ita->second;
for (size_t i = 1; i < count; i++) {
auto itb = cycle_.find(phi->InputAt(i)->GetId());
if (itb == cycle_.end() ||!HInductionVarAnalysis::InductionEqual(a, itb->second)) {
return nullptr;
}
}
return a;
}
return nullptr;
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCycleOverAddSub(
HLoopInformation* loop,
HInstruction* x,
HInstruction* y,
InductionOp op,
bool first) {
// Transfer within a cycle over an addition or subtraction: adding or
// subtracting an invariant value adds to the stride of the induction,
// starting with the phi value denoted by the unusual nullptr value.
auto it = cycle_.find(x->GetId());
if (it != cycle_.end()) {
InductionInfo* a = it->second;
InductionInfo* b = LookupInfo(loop, y);
if (b != nullptr && b->induction_class == kInvariant) {
if (a == nullptr) {
if (op == kSub) { // negation required
return NewInductionInfo(kInvariant, kNeg, nullptr, b, nullptr);
}
return b;
} else if (a->induction_class == kInvariant) {
return NewInductionInfo(kInvariant, op, a, b, nullptr);
}
}
}
// On failure, try alternatives.
if (op == kAdd) {
// Try the other way around for an addition.
if (first) {
return TransferCycleOverAddSub(loop, y, x, op, false);
}
}
return nullptr;
}
void HInductionVarAnalysis::PutInfo(int loop_id, int id, InductionInfo* info) {
auto it = induction_.find(loop_id);
if (it == induction_.end()) {
it = induction_.Put(
loop_id, ArenaSafeMap<int, InductionInfo*>(std::less<int>(), graph_->GetArena()->Adapter()));
}
it->second.Overwrite(id, info);
}
HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::GetInfo(int loop_id, int id) {
auto it = induction_.find(loop_id);
if (it != induction_.end()) {
auto loop_it = it->second.find(id);
if (loop_it != it->second.end()) {
return loop_it->second;
}
}
return nullptr;
}
void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop,
HInstruction* instruction,
InductionInfo* info) {
const int loopId = loop->GetHeader()->GetBlockId();
const int id = instruction->GetId();
PutInfo(loopId, id, info);
}
HInductionVarAnalysis::InductionInfo*
HInductionVarAnalysis::LookupInfo(HLoopInformation* loop,
HInstruction* instruction) {
const int loop_id = loop->GetHeader()->GetBlockId();
const int id = instruction->GetId();
InductionInfo* info = GetInfo(loop_id, id);
if (info == nullptr && IsLoopInvariant(loop, instruction)) {
info = NewInductionInfo(kInvariant, kFetch, nullptr, nullptr, instruction);
PutInfo(loop_id, id, info);
}
return info;
}
bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1,
InductionInfo* info2) {
// Test structural equality only, without accounting for simplifications.
if (info1 != nullptr && info2 != nullptr) {
return
info1->induction_class == info2->induction_class &&
info1->operation == info2->operation &&
info1->fetch == info2->fetch &&
InductionEqual(info1->op_a, info2->op_a) &&
InductionEqual(info1->op_b, info2->op_b);
}
// Otherwise only two nullptrs are considered equal.
return info1 == info2;
}
std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) {
if (info != nullptr) {
if (info->induction_class == kInvariant) {
std::string inv = "(";
inv += InductionToString(info->op_a);
switch (info->operation) {
case kNop: inv += " ? "; break;
case kAdd: inv += " + "; break;
case kSub:
case kNeg: inv += " - "; break;
case kMul: inv += " * "; break;
case kDiv: inv += " / "; break;
case kFetch:
CHECK(info->fetch != nullptr);
inv += std::to_string(info->fetch->GetId()) + ":" + info->fetch->DebugName();
break;
}
inv += InductionToString(info->op_b);
return inv + ")";
} else {
CHECK(info->operation == kNop);
if (info->induction_class == kLinear) {
return "(" + InductionToString(info->op_a) + " * i + " +
InductionToString(info->op_b) + ")";
} else if (info->induction_class == kWrapAround) {
return "wrap(" + InductionToString(info->op_a) + ", " +
InductionToString(info->op_b) + ")";
} else if (info->induction_class == kPeriodic) {
return "periodic(" + InductionToString(info->op_a) + ", " +
InductionToString(info->op_b) + ")";
}
}
}
return "";
}
} // namespace art