| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "induction_var_analysis.h" |
| |
| namespace art { |
| |
| /** |
| * Returns true if instruction is invariant within the given loop. |
| */ |
| static bool IsLoopInvariant(HLoopInformation* loop, HInstruction* instruction) { |
| HLoopInformation* other_loop = instruction->GetBlock()->GetLoopInformation(); |
| if (other_loop != loop) { |
| // If instruction does not occur in same loop, it is invariant |
| // if it appears in an outer loop (including no loop at all). |
| return other_loop == nullptr || loop->IsIn(*other_loop); |
| } |
| return false; |
| } |
| |
| /** |
| * Returns true if instruction is proper entry-phi-operation for given loop |
| * (referred to as mu-operation in Gerlek's paper). |
| */ |
| static bool IsEntryPhi(HLoopInformation* loop, HInstruction* instruction) { |
| return |
| instruction->IsPhi() && |
| instruction->InputCount() == 2 && |
| instruction->GetBlock() == loop->GetHeader(); |
| } |
| |
| // |
| // Class methods. |
| // |
| |
| HInductionVarAnalysis::HInductionVarAnalysis(HGraph* graph) |
| : HOptimization(graph, kInductionPassName), |
| global_depth_(0), |
| stack_(graph->GetArena()->Adapter()), |
| scc_(graph->GetArena()->Adapter()), |
| map_(std::less<int>(), graph->GetArena()->Adapter()), |
| cycle_(std::less<int>(), graph->GetArena()->Adapter()), |
| induction_(std::less<int>(), graph->GetArena()->Adapter()) { |
| } |
| |
| void HInductionVarAnalysis::Run() { |
| // Detects sequence variables (generalized induction variables) during an |
| // inner-loop-first traversal of all loops using Gerlek's algorithm. |
| for (HPostOrderIterator it_graph(*graph_); !it_graph.Done(); it_graph.Advance()) { |
| HBasicBlock* graph_block = it_graph.Current(); |
| if (graph_block->IsLoopHeader()) { |
| VisitLoop(graph_block->GetLoopInformation()); |
| } |
| } |
| } |
| |
| void HInductionVarAnalysis::VisitLoop(HLoopInformation* loop) { |
| // Find strongly connected components (SSCs) in the SSA graph of this loop using Tarjan's |
| // algorithm. Due to the descendant-first nature, classification happens "on-demand". |
| global_depth_ = 0; |
| CHECK(stack_.empty()); |
| map_.clear(); |
| |
| for (HBlocksInLoopIterator it_loop(*loop); !it_loop.Done(); it_loop.Advance()) { |
| HBasicBlock* loop_block = it_loop.Current(); |
| CHECK(loop_block->IsInLoop()); |
| if (loop_block->GetLoopInformation() != loop) { |
| continue; // Inner loops already visited. |
| } |
| // Visit phi-operations and instructions. |
| for (HInstructionIterator it(loop_block->GetPhis()); !it.Done(); it.Advance()) { |
| HInstruction* instruction = it.Current(); |
| if (!IsVisitedNode(instruction->GetId())) { |
| VisitNode(loop, instruction); |
| } |
| } |
| for (HInstructionIterator it(loop_block->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* instruction = it.Current(); |
| if (!IsVisitedNode(instruction->GetId())) { |
| VisitNode(loop, instruction); |
| } |
| } |
| } |
| |
| CHECK(stack_.empty()); |
| map_.clear(); |
| } |
| |
| void HInductionVarAnalysis::VisitNode(HLoopInformation* loop, HInstruction* instruction) { |
| const int id = instruction->GetId(); |
| const uint32_t d1 = ++global_depth_; |
| map_.Put(id, NodeInfo(d1)); |
| stack_.push_back(instruction); |
| |
| // Visit all descendants. |
| uint32_t low = d1; |
| for (size_t i = 0, count = instruction->InputCount(); i < count; ++i) { |
| low = std::min(low, VisitDescendant(loop, instruction->InputAt(i))); |
| } |
| |
| // Lower or found SCC? |
| if (low < d1) { |
| map_.find(id)->second.depth = low; |
| } else { |
| scc_.clear(); |
| cycle_.clear(); |
| |
| // Pop the stack to build the SCC for classification. |
| while (!stack_.empty()) { |
| HInstruction* x = stack_.back(); |
| scc_.push_back(x); |
| stack_.pop_back(); |
| map_.find(x->GetId())->second.done = true; |
| if (x == instruction) { |
| break; |
| } |
| } |
| |
| // Classify the SCC. |
| if (scc_.size() == 1 && !IsEntryPhi(loop, scc_[0])) { |
| ClassifyTrivial(loop, scc_[0]); |
| } else { |
| ClassifyNonTrivial(loop); |
| } |
| |
| scc_.clear(); |
| cycle_.clear(); |
| } |
| } |
| |
| uint32_t HInductionVarAnalysis::VisitDescendant(HLoopInformation* loop, HInstruction* instruction) { |
| // If the definition is either outside the loop (loop invariant entry value) |
| // or assigned in inner loop (inner exit value), the traversal stops. |
| HLoopInformation* otherLoop = instruction->GetBlock()->GetLoopInformation(); |
| if (otherLoop != loop) { |
| return global_depth_; |
| } |
| |
| // Inspect descendant node. |
| const int id = instruction->GetId(); |
| if (!IsVisitedNode(id)) { |
| VisitNode(loop, instruction); |
| return map_.find(id)->second.depth; |
| } else { |
| auto it = map_.find(id); |
| return it->second.done ? global_depth_ : it->second.depth; |
| } |
| } |
| |
| void HInductionVarAnalysis::ClassifyTrivial(HLoopInformation* loop, HInstruction* instruction) { |
| InductionInfo* info = nullptr; |
| if (instruction->IsPhi()) { |
| for (size_t i = 1, count = instruction->InputCount(); i < count; i++) { |
| info = TransferPhi(LookupInfo(loop, instruction->InputAt(0)), |
| LookupInfo(loop, instruction->InputAt(i))); |
| } |
| } else if (instruction->IsAdd()) { |
| info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)), |
| LookupInfo(loop, instruction->InputAt(1)), kAdd); |
| } else if (instruction->IsSub()) { |
| info = TransferAddSub(LookupInfo(loop, instruction->InputAt(0)), |
| LookupInfo(loop, instruction->InputAt(1)), kSub); |
| } else if (instruction->IsMul()) { |
| info = TransferMul(LookupInfo(loop, instruction->InputAt(0)), |
| LookupInfo(loop, instruction->InputAt(1))); |
| } else if (instruction->IsNeg()) { |
| info = TransferNeg(LookupInfo(loop, instruction->InputAt(0))); |
| } |
| |
| // Successfully classified? |
| if (info != nullptr) { |
| AssignInfo(loop, instruction, info); |
| } |
| } |
| |
| void HInductionVarAnalysis::ClassifyNonTrivial(HLoopInformation* loop) { |
| const size_t size = scc_.size(); |
| CHECK_GE(size, 1u); |
| HInstruction* phi = scc_[size - 1]; |
| if (!IsEntryPhi(loop, phi)) { |
| return; |
| } |
| HInstruction* external = phi->InputAt(0); |
| HInstruction* internal = phi->InputAt(1); |
| InductionInfo* initial = LookupInfo(loop, external); |
| if (initial == nullptr || initial->induction_class != kInvariant) { |
| return; |
| } |
| |
| // Singleton entry-phi-operation may be a wrap-around induction. |
| if (size == 1) { |
| InductionInfo* update = LookupInfo(loop, internal); |
| if (update != nullptr) { |
| AssignInfo(loop, phi, NewInductionInfo(kWrapAround, kNop, initial, update, nullptr)); |
| } |
| return; |
| } |
| |
| // Inspect remainder of the cycle that resides in scc_. The cycle_ mapping assigns |
| // temporary meaning to its nodes. |
| cycle_.Overwrite(phi->GetId(), nullptr); |
| for (size_t i = 0; i < size - 1; i++) { |
| HInstruction* operation = scc_[i]; |
| InductionInfo* update = nullptr; |
| if (operation->IsPhi()) { |
| update = TransferCycleOverPhi(operation); |
| } else if (operation->IsAdd()) { |
| update = TransferCycleOverAddSub(loop, operation->InputAt(0), operation->InputAt(1), kAdd, true); |
| } else if (operation->IsSub()) { |
| update = TransferCycleOverAddSub(loop, operation->InputAt(0), operation->InputAt(1), kSub, true); |
| } |
| if (update == nullptr) { |
| return; |
| } |
| cycle_.Overwrite(operation->GetId(), update); |
| } |
| |
| // Success if the internal link received accumulated nonzero update. |
| auto it = cycle_.find(internal->GetId()); |
| if (it != cycle_.end() && it->second != nullptr) { |
| // Classify header phi and feed the cycle "on-demand". |
| AssignInfo(loop, phi, NewInductionInfo(kLinear, kNop, it->second, initial, nullptr)); |
| for (size_t i = 0; i < size - 1; i++) { |
| ClassifyTrivial(loop, scc_[i]); |
| } |
| } |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferPhi(InductionInfo* a, |
| InductionInfo* b) { |
| // Transfer over a phi: if both inputs are identical, result is input. |
| if (InductionEqual(a, b)) { |
| return a; |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferAddSub(InductionInfo* a, |
| InductionInfo* b, |
| InductionOp op) { |
| // Transfer over an addition or subtraction: invariant or linear |
| // inputs combine into new invariant or linear result. |
| if (a != nullptr && b != nullptr) { |
| if (a->induction_class == kInvariant && b->induction_class == kInvariant) { |
| return NewInductionInfo(kInvariant, op, a, b, nullptr); |
| } else if (a->induction_class == kLinear && b->induction_class == kInvariant) { |
| return NewInductionInfo( |
| kLinear, |
| kNop, |
| a->op_a, |
| NewInductionInfo(kInvariant, op, a->op_b, b, nullptr), |
| nullptr); |
| } else if (a->induction_class == kInvariant && b->induction_class == kLinear) { |
| InductionInfo* ba = b->op_a; |
| if (op == kSub) { // negation required |
| ba = NewInductionInfo(kInvariant, kNeg, nullptr, ba, nullptr); |
| } |
| return NewInductionInfo( |
| kLinear, |
| kNop, |
| ba, |
| NewInductionInfo(kInvariant, op, a, b->op_b, nullptr), |
| nullptr); |
| } else if (a->induction_class == kLinear && b->induction_class == kLinear) { |
| return NewInductionInfo( |
| kLinear, |
| kNop, |
| NewInductionInfo(kInvariant, op, a->op_a, b->op_a, nullptr), |
| NewInductionInfo(kInvariant, op, a->op_b, b->op_b, nullptr), |
| nullptr); |
| } |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferMul(InductionInfo* a, |
| InductionInfo* b) { |
| // Transfer over a multiplication: invariant or linear |
| // inputs combine into new invariant or linear result. |
| // Two linear inputs would become quadratic. |
| if (a != nullptr && b != nullptr) { |
| if (a->induction_class == kInvariant && b->induction_class == kInvariant) { |
| return NewInductionInfo(kInvariant, kMul, a, b, nullptr); |
| } else if (a->induction_class == kLinear && b->induction_class == kInvariant) { |
| return NewInductionInfo( |
| kLinear, |
| kNop, |
| NewInductionInfo(kInvariant, kMul, a->op_a, b, nullptr), |
| NewInductionInfo(kInvariant, kMul, a->op_b, b, nullptr), |
| nullptr); |
| } else if (a->induction_class == kInvariant && b->induction_class == kLinear) { |
| return NewInductionInfo( |
| kLinear, |
| kNop, |
| NewInductionInfo(kInvariant, kMul, a, b->op_a, nullptr), |
| NewInductionInfo(kInvariant, kMul, a, b->op_b, nullptr), |
| nullptr); |
| } |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferNeg(InductionInfo* a) { |
| // Transfer over a unary negation: invariant or linear input |
| // yields a similar, but negated result. |
| if (a != nullptr) { |
| if (a->induction_class == kInvariant) { |
| return NewInductionInfo(kInvariant, kNeg, nullptr, a, nullptr); |
| } else if (a->induction_class == kLinear) { |
| return NewInductionInfo( |
| kLinear, |
| kNop, |
| NewInductionInfo(kInvariant, kNeg, nullptr, a->op_a, nullptr), |
| NewInductionInfo(kInvariant, kNeg, nullptr, a->op_b, nullptr), |
| nullptr); |
| } |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCycleOverPhi(HInstruction* phi) { |
| // Transfer within a cycle over a phi: only identical inputs |
| // can be combined into that input as result. |
| const size_t count = phi->InputCount(); |
| CHECK_GT(count, 0u); |
| auto ita = cycle_.find(phi->InputAt(0)->GetId()); |
| if (ita != cycle_.end()) { |
| InductionInfo* a = ita->second; |
| for (size_t i = 1; i < count; i++) { |
| auto itb = cycle_.find(phi->InputAt(i)->GetId()); |
| if (itb == cycle_.end() ||!HInductionVarAnalysis::InductionEqual(a, itb->second)) { |
| return nullptr; |
| } |
| } |
| return a; |
| } |
| return nullptr; |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::TransferCycleOverAddSub( |
| HLoopInformation* loop, |
| HInstruction* x, |
| HInstruction* y, |
| InductionOp op, |
| bool first) { |
| // Transfer within a cycle over an addition or subtraction: adding or |
| // subtracting an invariant value adds to the stride of the induction, |
| // starting with the phi value denoted by the unusual nullptr value. |
| auto it = cycle_.find(x->GetId()); |
| if (it != cycle_.end()) { |
| InductionInfo* a = it->second; |
| InductionInfo* b = LookupInfo(loop, y); |
| if (b != nullptr && b->induction_class == kInvariant) { |
| if (a == nullptr) { |
| if (op == kSub) { // negation required |
| return NewInductionInfo(kInvariant, kNeg, nullptr, b, nullptr); |
| } |
| return b; |
| } else if (a->induction_class == kInvariant) { |
| return NewInductionInfo(kInvariant, op, a, b, nullptr); |
| } |
| } |
| } |
| // On failure, try alternatives. |
| if (op == kAdd) { |
| // Try the other way around for an addition. |
| if (first) { |
| return TransferCycleOverAddSub(loop, y, x, op, false); |
| } |
| } |
| return nullptr; |
| } |
| |
| void HInductionVarAnalysis::PutInfo(int loop_id, int id, InductionInfo* info) { |
| auto it = induction_.find(loop_id); |
| if (it == induction_.end()) { |
| it = induction_.Put( |
| loop_id, ArenaSafeMap<int, InductionInfo*>(std::less<int>(), graph_->GetArena()->Adapter())); |
| } |
| it->second.Overwrite(id, info); |
| } |
| |
| HInductionVarAnalysis::InductionInfo* HInductionVarAnalysis::GetInfo(int loop_id, int id) { |
| auto it = induction_.find(loop_id); |
| if (it != induction_.end()) { |
| auto loop_it = it->second.find(id); |
| if (loop_it != it->second.end()) { |
| return loop_it->second; |
| } |
| } |
| return nullptr; |
| } |
| |
| void HInductionVarAnalysis::AssignInfo(HLoopInformation* loop, |
| HInstruction* instruction, |
| InductionInfo* info) { |
| const int loopId = loop->GetHeader()->GetBlockId(); |
| const int id = instruction->GetId(); |
| PutInfo(loopId, id, info); |
| } |
| |
| HInductionVarAnalysis::InductionInfo* |
| HInductionVarAnalysis::LookupInfo(HLoopInformation* loop, |
| HInstruction* instruction) { |
| const int loop_id = loop->GetHeader()->GetBlockId(); |
| const int id = instruction->GetId(); |
| InductionInfo* info = GetInfo(loop_id, id); |
| if (info == nullptr && IsLoopInvariant(loop, instruction)) { |
| info = NewInductionInfo(kInvariant, kFetch, nullptr, nullptr, instruction); |
| PutInfo(loop_id, id, info); |
| } |
| return info; |
| } |
| |
| bool HInductionVarAnalysis::InductionEqual(InductionInfo* info1, |
| InductionInfo* info2) { |
| // Test structural equality only, without accounting for simplifications. |
| if (info1 != nullptr && info2 != nullptr) { |
| return |
| info1->induction_class == info2->induction_class && |
| info1->operation == info2->operation && |
| info1->fetch == info2->fetch && |
| InductionEqual(info1->op_a, info2->op_a) && |
| InductionEqual(info1->op_b, info2->op_b); |
| } |
| // Otherwise only two nullptrs are considered equal. |
| return info1 == info2; |
| } |
| |
| std::string HInductionVarAnalysis::InductionToString(InductionInfo* info) { |
| if (info != nullptr) { |
| if (info->induction_class == kInvariant) { |
| std::string inv = "("; |
| inv += InductionToString(info->op_a); |
| switch (info->operation) { |
| case kNop: inv += " ? "; break; |
| case kAdd: inv += " + "; break; |
| case kSub: |
| case kNeg: inv += " - "; break; |
| case kMul: inv += " * "; break; |
| case kDiv: inv += " / "; break; |
| case kFetch: |
| CHECK(info->fetch != nullptr); |
| inv += std::to_string(info->fetch->GetId()) + ":" + info->fetch->DebugName(); |
| break; |
| } |
| inv += InductionToString(info->op_b); |
| return inv + ")"; |
| } else { |
| CHECK(info->operation == kNop); |
| if (info->induction_class == kLinear) { |
| return "(" + InductionToString(info->op_a) + " * i + " + |
| InductionToString(info->op_b) + ")"; |
| } else if (info->induction_class == kWrapAround) { |
| return "wrap(" + InductionToString(info->op_a) + ", " + |
| InductionToString(info->op_b) + ")"; |
| } else if (info->induction_class == kPeriodic) { |
| return "periodic(" + InductionToString(info->op_a) + ", " + |
| InductionToString(info->op_b) + ")"; |
| } |
| } |
| } |
| return ""; |
| } |
| |
| } // namespace art |