| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "elf_writer_debug.h" |
| |
| #include <algorithm> |
| #include <unordered_set> |
| #include <vector> |
| #include <cstdio> |
| |
| #include "base/casts.h" |
| #include "base/stl_util.h" |
| #include "linear_alloc.h" |
| #include "compiled_method.h" |
| #include "dex_file-inl.h" |
| #include "driver/compiler_driver.h" |
| #include "dwarf/dedup_vector.h" |
| #include "dwarf/expression.h" |
| #include "dwarf/headers.h" |
| #include "dwarf/method_debug_info.h" |
| #include "dwarf/register.h" |
| #include "elf_builder.h" |
| #include "linker/vector_output_stream.h" |
| #include "mirror/array.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class.h" |
| #include "oat_writer.h" |
| #include "stack_map.h" |
| #include "utils.h" |
| |
| // liblzma. |
| #include "XzEnc.h" |
| #include "7zCrc.h" |
| #include "XzCrc64.h" |
| |
| namespace art { |
| namespace dwarf { |
| |
| // The ARM specification defines three special mapping symbols |
| // $a, $t and $d which mark ARM, Thumb and data ranges respectively. |
| // These symbols can be used by tools, for example, to pretty |
| // print instructions correctly. Objdump will use them if they |
| // exist, but it will still work well without them. |
| // However, these extra symbols take space, so let's just generate |
| // one symbol which marks the whole .text section as code. |
| constexpr bool kGenerateSingleArmMappingSymbol = true; |
| |
| static Reg GetDwarfCoreReg(InstructionSet isa, int machine_reg) { |
| switch (isa) { |
| case kArm: |
| case kThumb2: |
| return Reg::ArmCore(machine_reg); |
| case kArm64: |
| return Reg::Arm64Core(machine_reg); |
| case kX86: |
| return Reg::X86Core(machine_reg); |
| case kX86_64: |
| return Reg::X86_64Core(machine_reg); |
| case kMips: |
| return Reg::MipsCore(machine_reg); |
| case kMips64: |
| return Reg::Mips64Core(machine_reg); |
| default: |
| LOG(FATAL) << "Unknown instruction set: " << isa; |
| UNREACHABLE(); |
| } |
| } |
| |
| static Reg GetDwarfFpReg(InstructionSet isa, int machine_reg) { |
| switch (isa) { |
| case kArm: |
| case kThumb2: |
| return Reg::ArmFp(machine_reg); |
| case kArm64: |
| return Reg::Arm64Fp(machine_reg); |
| case kX86: |
| return Reg::X86Fp(machine_reg); |
| case kX86_64: |
| return Reg::X86_64Fp(machine_reg); |
| default: |
| LOG(FATAL) << "Unknown instruction set: " << isa; |
| UNREACHABLE(); |
| } |
| } |
| |
| static void WriteCIE(InstructionSet isa, |
| CFIFormat format, |
| std::vector<uint8_t>* buffer) { |
| // Scratch registers should be marked as undefined. This tells the |
| // debugger that its value in the previous frame is not recoverable. |
| bool is64bit = Is64BitInstructionSet(isa); |
| switch (isa) { |
| case kArm: |
| case kThumb2: { |
| DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP). |
| // core registers. |
| for (int reg = 0; reg < 13; reg++) { |
| if (reg < 4 || reg == 12) { |
| opcodes.Undefined(Reg::ArmCore(reg)); |
| } else { |
| opcodes.SameValue(Reg::ArmCore(reg)); |
| } |
| } |
| // fp registers. |
| for (int reg = 0; reg < 32; reg++) { |
| if (reg < 16) { |
| opcodes.Undefined(Reg::ArmFp(reg)); |
| } else { |
| opcodes.SameValue(Reg::ArmFp(reg)); |
| } |
| } |
| auto return_reg = Reg::ArmCore(14); // R14(LR). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kArm64: { |
| DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP). |
| // core registers. |
| for (int reg = 0; reg < 30; reg++) { |
| if (reg < 8 || reg == 16 || reg == 17) { |
| opcodes.Undefined(Reg::Arm64Core(reg)); |
| } else { |
| opcodes.SameValue(Reg::Arm64Core(reg)); |
| } |
| } |
| // fp registers. |
| for (int reg = 0; reg < 32; reg++) { |
| if (reg < 8 || reg >= 16) { |
| opcodes.Undefined(Reg::Arm64Fp(reg)); |
| } else { |
| opcodes.SameValue(Reg::Arm64Fp(reg)); |
| } |
| } |
| auto return_reg = Reg::Arm64Core(30); // R30(LR). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kMips: |
| case kMips64: { |
| DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::MipsCore(29), 0); // R29(SP). |
| // core registers. |
| for (int reg = 1; reg < 26; reg++) { |
| if (reg < 16 || reg == 24 || reg == 25) { // AT, V*, A*, T*. |
| opcodes.Undefined(Reg::MipsCore(reg)); |
| } else { |
| opcodes.SameValue(Reg::MipsCore(reg)); |
| } |
| } |
| auto return_reg = Reg::MipsCore(31); // R31(RA). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kX86: { |
| // FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296 |
| constexpr bool generate_opcodes_for_x86_fp = false; |
| DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP). |
| opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP). |
| // core registers. |
| for (int reg = 0; reg < 8; reg++) { |
| if (reg <= 3) { |
| opcodes.Undefined(Reg::X86Core(reg)); |
| } else if (reg == 4) { |
| // Stack pointer. |
| } else { |
| opcodes.SameValue(Reg::X86Core(reg)); |
| } |
| } |
| // fp registers. |
| if (generate_opcodes_for_x86_fp) { |
| for (int reg = 0; reg < 8; reg++) { |
| opcodes.Undefined(Reg::X86Fp(reg)); |
| } |
| } |
| auto return_reg = Reg::X86Core(8); // R8(EIP). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kX86_64: { |
| DebugFrameOpCodeWriter<> opcodes; |
| opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP). |
| opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP). |
| // core registers. |
| for (int reg = 0; reg < 16; reg++) { |
| if (reg == 4) { |
| // Stack pointer. |
| } else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP. |
| opcodes.Undefined(Reg::X86_64Core(reg)); |
| } else { |
| opcodes.SameValue(Reg::X86_64Core(reg)); |
| } |
| } |
| // fp registers. |
| for (int reg = 0; reg < 16; reg++) { |
| if (reg < 12) { |
| opcodes.Undefined(Reg::X86_64Fp(reg)); |
| } else { |
| opcodes.SameValue(Reg::X86_64Fp(reg)); |
| } |
| } |
| auto return_reg = Reg::X86_64Core(16); // R16(RIP). |
| WriteCIE(is64bit, return_reg, opcodes, format, buffer); |
| return; |
| } |
| case kNone: |
| break; |
| } |
| LOG(FATAL) << "Cannot write CIE frame for ISA " << isa; |
| UNREACHABLE(); |
| } |
| |
| template<typename ElfTypes> |
| void WriteCFISection(ElfBuilder<ElfTypes>* builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos, |
| CFIFormat format, |
| bool write_oat_patches) { |
| CHECK(format == DW_DEBUG_FRAME_FORMAT || format == DW_EH_FRAME_FORMAT); |
| typedef typename ElfTypes::Addr Elf_Addr; |
| |
| if (method_infos.empty()) { |
| return; |
| } |
| |
| std::vector<uint32_t> binary_search_table; |
| std::vector<uintptr_t> patch_locations; |
| if (format == DW_EH_FRAME_FORMAT) { |
| binary_search_table.reserve(2 * method_infos.size()); |
| } else { |
| patch_locations.reserve(method_infos.size()); |
| } |
| |
| // The methods can be written any order. |
| // Let's therefore sort them in the lexicographical order of the opcodes. |
| // This has no effect on its own. However, if the final .debug_frame section is |
| // compressed it reduces the size since similar opcodes sequences are grouped. |
| std::vector<const MethodDebugInfo*> sorted_method_infos; |
| sorted_method_infos.reserve(method_infos.size()); |
| for (size_t i = 0; i < method_infos.size(); i++) { |
| sorted_method_infos.push_back(&method_infos[i]); |
| } |
| std::sort( |
| sorted_method_infos.begin(), |
| sorted_method_infos.end(), |
| [](const MethodDebugInfo* lhs, const MethodDebugInfo* rhs) { |
| ArrayRef<const uint8_t> l = lhs->compiled_method_->GetCFIInfo(); |
| ArrayRef<const uint8_t> r = rhs->compiled_method_->GetCFIInfo(); |
| return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end()); |
| }); |
| |
| // Write .eh_frame/.debug_frame section. |
| auto* cfi_section = (format == DW_DEBUG_FRAME_FORMAT |
| ? builder->GetDebugFrame() |
| : builder->GetEhFrame()); |
| { |
| cfi_section->Start(); |
| const bool is64bit = Is64BitInstructionSet(builder->GetIsa()); |
| const Elf_Addr text_address = builder->GetText()->Exists() |
| ? builder->GetText()->GetAddress() |
| : 0; |
| const Elf_Addr cfi_address = cfi_section->GetAddress(); |
| const Elf_Addr cie_address = cfi_address; |
| Elf_Addr buffer_address = cfi_address; |
| std::vector<uint8_t> buffer; // Small temporary buffer. |
| WriteCIE(builder->GetIsa(), format, &buffer); |
| cfi_section->WriteFully(buffer.data(), buffer.size()); |
| buffer_address += buffer.size(); |
| buffer.clear(); |
| for (const MethodDebugInfo* mi : sorted_method_infos) { |
| if (!mi->deduped_) { // Only one FDE per unique address. |
| ArrayRef<const uint8_t> opcodes = mi->compiled_method_->GetCFIInfo(); |
| if (!opcodes.empty()) { |
| const Elf_Addr code_address = text_address + mi->low_pc_; |
| if (format == DW_EH_FRAME_FORMAT) { |
| binary_search_table.push_back( |
| dchecked_integral_cast<uint32_t>(code_address)); |
| binary_search_table.push_back( |
| dchecked_integral_cast<uint32_t>(buffer_address)); |
| } |
| WriteFDE(is64bit, cfi_address, cie_address, |
| code_address, mi->high_pc_ - mi->low_pc_, |
| opcodes, format, buffer_address, &buffer, |
| &patch_locations); |
| cfi_section->WriteFully(buffer.data(), buffer.size()); |
| buffer_address += buffer.size(); |
| buffer.clear(); |
| } |
| } |
| } |
| cfi_section->End(); |
| } |
| |
| if (format == DW_EH_FRAME_FORMAT) { |
| auto* header_section = builder->GetEhFrameHdr(); |
| header_section->Start(); |
| uint32_t header_address = dchecked_integral_cast<int32_t>(header_section->GetAddress()); |
| // Write .eh_frame_hdr section. |
| std::vector<uint8_t> buffer; |
| Writer<> header(&buffer); |
| header.PushUint8(1); // Version. |
| // Encoding of .eh_frame pointer - libunwind does not honor datarel here, |
| // so we have to use pcrel which means relative to the pointer's location. |
| header.PushUint8(DW_EH_PE_pcrel | DW_EH_PE_sdata4); |
| // Encoding of binary search table size. |
| header.PushUint8(DW_EH_PE_udata4); |
| // Encoding of binary search table addresses - libunwind supports only this |
| // specific combination, which means relative to the start of .eh_frame_hdr. |
| header.PushUint8(DW_EH_PE_datarel | DW_EH_PE_sdata4); |
| // .eh_frame pointer |
| header.PushInt32(cfi_section->GetAddress() - (header_address + 4u)); |
| // Binary search table size (number of entries). |
| header.PushUint32(dchecked_integral_cast<uint32_t>(binary_search_table.size()/2)); |
| header_section->WriteFully(buffer.data(), buffer.size()); |
| // Binary search table. |
| for (size_t i = 0; i < binary_search_table.size(); i++) { |
| // Make addresses section-relative since we know the header address now. |
| binary_search_table[i] -= header_address; |
| } |
| header_section->WriteFully(binary_search_table.data(), binary_search_table.size()); |
| header_section->End(); |
| } else { |
| if (write_oat_patches) { |
| builder->WritePatches(".debug_frame.oat_patches", |
| ArrayRef<const uintptr_t>(patch_locations)); |
| } |
| } |
| } |
| |
| namespace { |
| struct CompilationUnit { |
| std::vector<const MethodDebugInfo*> methods_; |
| size_t debug_line_offset_ = 0; |
| uintptr_t low_pc_ = std::numeric_limits<uintptr_t>::max(); |
| uintptr_t high_pc_ = 0; |
| }; |
| |
| typedef std::vector<DexFile::LocalInfo> LocalInfos; |
| |
| void LocalInfoCallback(void* ctx, const DexFile::LocalInfo& entry) { |
| static_cast<LocalInfos*>(ctx)->push_back(entry); |
| } |
| |
| typedef std::vector<DexFile::PositionInfo> PositionInfos; |
| |
| bool PositionInfoCallback(void* ctx, const DexFile::PositionInfo& entry) { |
| static_cast<PositionInfos*>(ctx)->push_back(entry); |
| return false; |
| } |
| |
| std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) { |
| std::vector<const char*> names; |
| if (mi->code_item_ != nullptr) { |
| const uint8_t* stream = mi->dex_file_->GetDebugInfoStream(mi->code_item_); |
| if (stream != nullptr) { |
| DecodeUnsignedLeb128(&stream); // line. |
| uint32_t parameters_size = DecodeUnsignedLeb128(&stream); |
| for (uint32_t i = 0; i < parameters_size; ++i) { |
| uint32_t id = DecodeUnsignedLeb128P1(&stream); |
| names.push_back(mi->dex_file_->StringDataByIdx(id)); |
| } |
| } |
| } |
| return names; |
| } |
| |
| struct VariableLocation { |
| uint32_t low_pc; |
| uint32_t high_pc; |
| DexRegisterLocation reg_lo; // May be None if the location is unknown. |
| DexRegisterLocation reg_hi; // Most significant bits of 64-bit value. |
| }; |
| |
| // Get the location of given dex register (e.g. stack or machine register). |
| // Note that the location might be different based on the current pc. |
| // The result will cover all ranges where the variable is in scope. |
| std::vector<VariableLocation> GetVariableLocations(const MethodDebugInfo* method_info, |
| uint16_t vreg, |
| bool is64bitValue, |
| uint32_t dex_pc_low, |
| uint32_t dex_pc_high) { |
| std::vector<VariableLocation> variable_locations; |
| |
| // Get stack maps sorted by pc (they might not be sorted internally). |
| const CodeInfo code_info(method_info->compiled_method_->GetVmapTable().data()); |
| const StackMapEncoding encoding = code_info.ExtractEncoding(); |
| std::map<uint32_t, StackMap> stack_maps; |
| for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(); s++) { |
| StackMap stack_map = code_info.GetStackMapAt(s, encoding); |
| DCHECK(stack_map.IsValid()); |
| const uint32_t low_pc = method_info->low_pc_ + stack_map.GetNativePcOffset(encoding); |
| DCHECK_LE(low_pc, method_info->high_pc_); |
| stack_maps.emplace(low_pc, stack_map); |
| } |
| |
| // Create entries for the requested register based on stack map data. |
| for (auto it = stack_maps.begin(); it != stack_maps.end(); it++) { |
| const StackMap& stack_map = it->second; |
| const uint32_t low_pc = it->first; |
| auto next_it = it; |
| next_it++; |
| const uint32_t high_pc = next_it != stack_maps.end() ? next_it->first |
| : method_info->high_pc_; |
| DCHECK_LE(low_pc, high_pc); |
| if (low_pc == high_pc) { |
| continue; // Ignore if the address range is empty. |
| } |
| |
| // Check that the stack map is in the requested range. |
| uint32_t dex_pc = stack_map.GetDexPc(encoding); |
| if (!(dex_pc_low <= dex_pc && dex_pc < dex_pc_high)) { |
| continue; |
| } |
| |
| // Find the location of the dex register. |
| DexRegisterLocation reg_lo = DexRegisterLocation::None(); |
| DexRegisterLocation reg_hi = DexRegisterLocation::None(); |
| if (stack_map.HasDexRegisterMap(encoding)) { |
| DexRegisterMap dex_register_map = code_info.GetDexRegisterMapOf( |
| stack_map, encoding, method_info->code_item_->registers_size_); |
| reg_lo = dex_register_map.GetDexRegisterLocation( |
| vreg, method_info->code_item_->registers_size_, code_info, encoding); |
| if (is64bitValue) { |
| reg_hi = dex_register_map.GetDexRegisterLocation( |
| vreg + 1, method_info->code_item_->registers_size_, code_info, encoding); |
| } |
| } |
| |
| // Add location entry for this address range. |
| if (!variable_locations.empty() && |
| variable_locations.back().reg_lo == reg_lo && |
| variable_locations.back().reg_hi == reg_hi && |
| variable_locations.back().high_pc == low_pc) { |
| // Merge with the previous entry (extend its range). |
| variable_locations.back().high_pc = high_pc; |
| } else { |
| variable_locations.push_back({low_pc, high_pc, reg_lo, reg_hi}); |
| } |
| } |
| |
| return variable_locations; |
| } |
| |
| bool IsFromOptimizingCompiler(const MethodDebugInfo* method_info) { |
| return method_info->compiled_method_->GetQuickCode().size() > 0 && |
| method_info->compiled_method_->GetVmapTable().size() > 0 && |
| method_info->compiled_method_->GetGcMap().size() == 0 && |
| method_info->code_item_ != nullptr; |
| } |
| } // namespace |
| |
| // Helper class to write .debug_info and its supporting sections. |
| template<typename ElfTypes> |
| class DebugInfoWriter { |
| typedef typename ElfTypes::Addr Elf_Addr; |
| |
| // Helper class to write one compilation unit. |
| // It holds helper methods and temporary state. |
| class CompilationUnitWriter { |
| public: |
| explicit CompilationUnitWriter(DebugInfoWriter* owner) |
| : owner_(owner), |
| info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &debug_abbrev_) { |
| } |
| |
| void Write(const CompilationUnit& compilation_unit) { |
| CHECK(!compilation_unit.methods_.empty()); |
| const Elf_Addr text_address = owner_->builder_->GetText()->Exists() |
| ? owner_->builder_->GetText()->GetAddress() |
| : 0; |
| const uintptr_t cu_size = compilation_unit.high_pc_ - compilation_unit.low_pc_; |
| |
| info_.StartTag(DW_TAG_compile_unit); |
| info_.WriteStrp(DW_AT_producer, owner_->WriteString("Android dex2oat")); |
| info_.WriteData1(DW_AT_language, DW_LANG_Java); |
| info_.WriteStrp(DW_AT_comp_dir, owner_->WriteString("$JAVA_SRC_ROOT")); |
| info_.WriteAddr(DW_AT_low_pc, text_address + compilation_unit.low_pc_); |
| info_.WriteUdata(DW_AT_high_pc, dchecked_integral_cast<uint32_t>(cu_size)); |
| info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset_); |
| |
| const char* last_dex_class_desc = nullptr; |
| for (auto mi : compilation_unit.methods_) { |
| const DexFile* dex = mi->dex_file_; |
| const DexFile::CodeItem* dex_code = mi->code_item_; |
| const DexFile::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index_); |
| const DexFile::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method); |
| const DexFile::TypeList* dex_params = dex->GetProtoParameters(dex_proto); |
| const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method); |
| const bool is_static = (mi->access_flags_ & kAccStatic) != 0; |
| |
| // Enclose the method in correct class definition. |
| if (last_dex_class_desc != dex_class_desc) { |
| if (last_dex_class_desc != nullptr) { |
| EndClassTag(); |
| } |
| // Write reference tag for the class we are about to declare. |
| size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type); |
| type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset); |
| size_t type_attrib_offset = info_.size(); |
| info_.WriteRef4(DW_AT_type, 0); |
| info_.EndTag(); |
| // Declare the class that owns this method. |
| size_t class_offset = StartClassTag(dex_class_desc); |
| info_.UpdateUint32(type_attrib_offset, class_offset); |
| info_.WriteFlagPresent(DW_AT_declaration); |
| // Check that each class is defined only once. |
| bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second; |
| CHECK(unique) << "Redefinition of " << dex_class_desc; |
| last_dex_class_desc = dex_class_desc; |
| } |
| |
| int start_depth = info_.Depth(); |
| info_.StartTag(DW_TAG_subprogram); |
| WriteName(dex->GetMethodName(dex_method)); |
| info_.WriteAddr(DW_AT_low_pc, text_address + mi->low_pc_); |
| info_.WriteUdata(DW_AT_high_pc, dchecked_integral_cast<uint32_t>(mi->high_pc_-mi->low_pc_)); |
| std::vector<uint8_t> expr_buffer; |
| Expression expr(&expr_buffer); |
| expr.WriteOpCallFrameCfa(); |
| info_.WriteExprLoc(DW_AT_frame_base, expr); |
| WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto)); |
| |
| // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not |
| // guarantee order or uniqueness so it is safer to iterate over them manually. |
| // DecodeDebugLocalInfo might not also be available if there is no debug info. |
| std::vector<const char*> param_names = GetParamNames(mi); |
| uint32_t arg_reg = 0; |
| if (!is_static) { |
| info_.StartTag(DW_TAG_formal_parameter); |
| WriteName("this"); |
| info_.WriteFlagPresent(DW_AT_artificial); |
| WriteLazyType(dex_class_desc); |
| if (dex_code != nullptr) { |
| // Write the stack location of the parameter. |
| const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg; |
| const bool is64bitValue = false; |
| WriteRegLocation(mi, vreg, is64bitValue, compilation_unit.low_pc_); |
| } |
| arg_reg++; |
| info_.EndTag(); |
| } |
| if (dex_params != nullptr) { |
| for (uint32_t i = 0; i < dex_params->Size(); ++i) { |
| info_.StartTag(DW_TAG_formal_parameter); |
| // Parameter names may not be always available. |
| if (i < param_names.size()) { |
| WriteName(param_names[i]); |
| } |
| // Write the type. |
| const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_); |
| WriteLazyType(type_desc); |
| const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J'; |
| if (dex_code != nullptr) { |
| // Write the stack location of the parameter. |
| const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg; |
| WriteRegLocation(mi, vreg, is64bitValue, compilation_unit.low_pc_); |
| } |
| arg_reg += is64bitValue ? 2 : 1; |
| info_.EndTag(); |
| } |
| if (dex_code != nullptr) { |
| DCHECK_EQ(arg_reg, dex_code->ins_size_); |
| } |
| } |
| |
| // Write local variables. |
| LocalInfos local_infos; |
| if (dex->DecodeDebugLocalInfo(dex_code, |
| is_static, |
| mi->dex_method_index_, |
| LocalInfoCallback, |
| &local_infos)) { |
| for (const DexFile::LocalInfo& var : local_infos) { |
| if (var.reg_ < dex_code->registers_size_ - dex_code->ins_size_) { |
| info_.StartTag(DW_TAG_variable); |
| WriteName(var.name_); |
| WriteLazyType(var.descriptor_); |
| bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J'; |
| WriteRegLocation(mi, var.reg_, is64bitValue, compilation_unit.low_pc_, |
| var.start_address_, var.end_address_); |
| info_.EndTag(); |
| } |
| } |
| } |
| |
| info_.EndTag(); |
| CHECK_EQ(info_.Depth(), start_depth); // Balanced start/end. |
| } |
| if (last_dex_class_desc != nullptr) { |
| EndClassTag(); |
| } |
| FinishLazyTypes(); |
| CloseNamespacesAboveDepth(0); |
| info_.EndTag(); // DW_TAG_compile_unit |
| CHECK_EQ(info_.Depth(), 0); |
| std::vector<uint8_t> buffer; |
| buffer.reserve(info_.data()->size() + KB); |
| const size_t offset = owner_->builder_->GetDebugInfo()->GetSize(); |
| const size_t debug_abbrev_offset = |
| owner_->debug_abbrev_.Insert(debug_abbrev_.data(), debug_abbrev_.size()); |
| WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_); |
| owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size()); |
| } |
| |
| void Write(const ArrayRef<mirror::Class*>& types) SHARED_REQUIRES(Locks::mutator_lock_) { |
| info_.StartTag(DW_TAG_compile_unit); |
| info_.WriteStrp(DW_AT_producer, owner_->WriteString("Android dex2oat")); |
| info_.WriteData1(DW_AT_language, DW_LANG_Java); |
| |
| std::vector<uint8_t> expr_buffer; |
| for (mirror::Class* type : types) { |
| if (type->IsPrimitive()) { |
| // For primitive types the definition and the declaration is the same. |
| if (type->GetPrimitiveType() != Primitive::kPrimVoid) { |
| WriteTypeDeclaration(type->GetDescriptor(nullptr)); |
| } |
| } else if (type->IsArrayClass()) { |
| mirror::Class* element_type = type->GetComponentType(); |
| uint32_t component_size = type->GetComponentSize(); |
| uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value(); |
| uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| |
| CloseNamespacesAboveDepth(0); // Declare in root namespace. |
| info_.StartTag(DW_TAG_array_type); |
| std::string descriptor_string; |
| WriteLazyType(element_type->GetDescriptor(&descriptor_string)); |
| WriteLinkageName(type); |
| info_.WriteUdata(DW_AT_data_member_location, data_offset); |
| info_.StartTag(DW_TAG_subrange_type); |
| Expression count_expr(&expr_buffer); |
| count_expr.WriteOpPushObjectAddress(); |
| count_expr.WriteOpPlusUconst(length_offset); |
| count_expr.WriteOpDerefSize(4); // Array length is always 32-bit wide. |
| info_.WriteExprLoc(DW_AT_count, count_expr); |
| info_.EndTag(); // DW_TAG_subrange_type. |
| info_.EndTag(); // DW_TAG_array_type. |
| } else if (type->IsInterface()) { |
| // Skip. Variables cannot have an interface as a dynamic type. |
| // We do not expose the interface information to the debugger in any way. |
| } else { |
| // Declare base class. We can not use the standard WriteLazyType |
| // since we want to avoid the DW_TAG_reference_tag wrapping. |
| mirror::Class* base_class = type->GetSuperClass(); |
| size_t base_class_declaration_offset = 0; |
| if (base_class != nullptr) { |
| std::string tmp_storage; |
| const char* base_class_desc = base_class->GetDescriptor(&tmp_storage); |
| base_class_declaration_offset = StartClassTag(base_class_desc); |
| info_.WriteFlagPresent(DW_AT_declaration); |
| WriteLinkageName(base_class); |
| EndClassTag(); |
| } |
| |
| std::string descriptor_string; |
| const char* desc = type->GetDescriptor(&descriptor_string); |
| StartClassTag(desc); |
| |
| if (!type->IsVariableSize()) { |
| info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize()); |
| } |
| |
| WriteLinkageName(type); |
| |
| if (type->IsObjectClass()) { |
| // Generate artificial member which is used to get the dynamic type of variable. |
| // The run-time value of this field will correspond to linkage name of some type. |
| // We need to do it only once in j.l.Object since all other types inherit it. |
| info_.StartTag(DW_TAG_member); |
| WriteName(".dynamic_type"); |
| WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I"); |
| info_.WriteFlagPresent(DW_AT_artificial); |
| // Create DWARF expression to get the value of the methods_ field. |
| Expression expr(&expr_buffer); |
| // The address of the object has been implicitly pushed on the stack. |
| // Dereference the klass_ field of Object (32-bit; possibly poisoned). |
| DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u); |
| DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u); |
| expr.WriteOpDerefSize(4); |
| if (kPoisonHeapReferences) { |
| expr.WriteOpNeg(); |
| // DWARF stack is pointer sized. Ensure that the high bits are clear. |
| expr.WriteOpConstu(0xFFFFFFFF); |
| expr.WriteOpAnd(); |
| } |
| // Add offset to the methods_ field. |
| expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value()); |
| // Top of stack holds the location of the field now. |
| info_.WriteExprLoc(DW_AT_data_member_location, expr); |
| info_.EndTag(); // DW_TAG_member. |
| } |
| |
| // Base class. |
| if (base_class != nullptr) { |
| info_.StartTag(DW_TAG_inheritance); |
| info_.WriteRef4(DW_AT_type, base_class_declaration_offset); |
| info_.WriteUdata(DW_AT_data_member_location, 0); |
| info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public); |
| info_.EndTag(); // DW_TAG_inheritance. |
| } |
| |
| // Member variables. |
| for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) { |
| ArtField* field = type->GetInstanceField(i); |
| info_.StartTag(DW_TAG_member); |
| WriteName(field->GetName()); |
| WriteLazyType(field->GetTypeDescriptor()); |
| info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value()); |
| uint32_t access_flags = field->GetAccessFlags(); |
| if (access_flags & kAccPublic) { |
| info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public); |
| } else if (access_flags & kAccProtected) { |
| info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected); |
| } else if (access_flags & kAccPrivate) { |
| info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private); |
| } |
| info_.EndTag(); // DW_TAG_member. |
| } |
| |
| if (type->IsStringClass()) { |
| // Emit debug info about an artifical class member for java.lang.String which represents |
| // the first element of the data stored in a string instance. Consumers of the debug |
| // info will be able to read the content of java.lang.String based on the count (real |
| // field) and based on the location of this data member. |
| info_.StartTag(DW_TAG_member); |
| WriteName("value"); |
| // We don't support fields with C like array types so we just say its type is java char. |
| WriteLazyType("C"); // char. |
| info_.WriteUdata(DW_AT_data_member_location, |
| mirror::String::ValueOffset().Uint32Value()); |
| info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private); |
| info_.EndTag(); // DW_TAG_member. |
| } |
| |
| EndClassTag(); |
| } |
| } |
| |
| FinishLazyTypes(); |
| CloseNamespacesAboveDepth(0); |
| info_.EndTag(); // DW_TAG_compile_unit. |
| CHECK_EQ(info_.Depth(), 0); |
| std::vector<uint8_t> buffer; |
| buffer.reserve(info_.data()->size() + KB); |
| const size_t offset = owner_->builder_->GetDebugInfo()->GetSize(); |
| const size_t debug_abbrev_offset = |
| owner_->debug_abbrev_.Insert(debug_abbrev_.data(), debug_abbrev_.size()); |
| WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_); |
| owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size()); |
| } |
| |
| // Linkage name uniquely identifies type. |
| // It is used to determine the dynamic type of objects. |
| // We use the methods_ field of class since it is unique and it is not moved by the GC. |
| void WriteLinkageName(mirror::Class* type) SHARED_REQUIRES(Locks::mutator_lock_) { |
| auto* methods_ptr = type->GetMethodsPtr(); |
| if (methods_ptr == nullptr) { |
| // Some types might have no methods. Allocate empty array instead. |
| LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc(); |
| void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>)); |
| methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0); |
| type->SetMethodsPtr(methods_ptr, 0, 0); |
| DCHECK(type->GetMethodsPtr() != nullptr); |
| } |
| char name[32]; |
| snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr)); |
| info_.WriteString(DW_AT_linkage_name, name); |
| } |
| |
| // Write table into .debug_loc which describes location of dex register. |
| // The dex register might be valid only at some points and it might |
| // move between machine registers and stack. |
| void WriteRegLocation(const MethodDebugInfo* method_info, |
| uint16_t vreg, |
| bool is64bitValue, |
| uint32_t compilation_unit_low_pc, |
| uint32_t dex_pc_low = 0, |
| uint32_t dex_pc_high = 0xFFFFFFFF) { |
| using Kind = DexRegisterLocation::Kind; |
| if (!IsFromOptimizingCompiler(method_info)) { |
| return; |
| } |
| |
| Writer<> debug_loc(&owner_->debug_loc_); |
| Writer<> debug_ranges(&owner_->debug_ranges_); |
| info_.WriteSecOffset(DW_AT_location, debug_loc.size()); |
| info_.WriteSecOffset(DW_AT_start_scope, debug_ranges.size()); |
| |
| std::vector<VariableLocation> variable_locations = GetVariableLocations( |
| method_info, |
| vreg, |
| is64bitValue, |
| dex_pc_low, |
| dex_pc_high); |
| |
| // Write .debug_loc entries. |
| const InstructionSet isa = owner_->builder_->GetIsa(); |
| const bool is64bit = Is64BitInstructionSet(isa); |
| std::vector<uint8_t> expr_buffer; |
| for (const VariableLocation& variable_location : variable_locations) { |
| // Translate dex register location to DWARF expression. |
| // Note that 64-bit value might be split to two distinct locations. |
| // (for example, two 32-bit machine registers, or even stack and register) |
| Expression expr(&expr_buffer); |
| DexRegisterLocation reg_lo = variable_location.reg_lo; |
| DexRegisterLocation reg_hi = variable_location.reg_hi; |
| for (int piece = 0; piece < (is64bitValue ? 2 : 1); piece++) { |
| DexRegisterLocation reg_loc = (piece == 0 ? reg_lo : reg_hi); |
| const Kind kind = reg_loc.GetKind(); |
| const int32_t value = reg_loc.GetValue(); |
| if (kind == Kind::kInStack) { |
| const size_t frame_size = method_info->compiled_method_->GetFrameSizeInBytes(); |
| // The stack offset is relative to SP. Make it relative to CFA. |
| expr.WriteOpFbreg(value - frame_size); |
| if (piece == 0 && reg_hi.GetKind() == Kind::kInStack && |
| reg_hi.GetValue() == value + 4) { |
| break; // the high word is correctly implied by the low word. |
| } |
| } else if (kind == Kind::kInRegister) { |
| expr.WriteOpReg(GetDwarfCoreReg(isa, value).num()); |
| if (piece == 0 && reg_hi.GetKind() == Kind::kInRegisterHigh && |
| reg_hi.GetValue() == value) { |
| break; // the high word is correctly implied by the low word. |
| } |
| } else if (kind == Kind::kInFpuRegister) { |
| if ((isa == kArm || isa == kThumb2) && |
| piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegister && |
| reg_hi.GetValue() == value + 1 && value % 2 == 0) { |
| // Translate S register pair to D register (e.g. S4+S5 to D2). |
| expr.WriteOpReg(Reg::ArmDp(value / 2).num()); |
| break; |
| } |
| if (isa == kMips || isa == kMips64) { |
| // TODO: Find what the DWARF floating point register numbers are on MIPS. |
| break; |
| } |
| expr.WriteOpReg(GetDwarfFpReg(isa, value).num()); |
| if (piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegisterHigh && |
| reg_hi.GetValue() == reg_lo.GetValue()) { |
| break; // the high word is correctly implied by the low word. |
| } |
| } else if (kind == Kind::kConstant) { |
| expr.WriteOpConsts(value); |
| expr.WriteOpStackValue(); |
| } else if (kind == Kind::kNone) { |
| break; |
| } else { |
| // kInStackLargeOffset and kConstantLargeValue are hidden by GetKind(). |
| // kInRegisterHigh and kInFpuRegisterHigh should be handled by |
| // the special cases above and they should not occur alone. |
| LOG(ERROR) << "Unexpected register location kind: " |
| << DexRegisterLocation::PrettyDescriptor(kind); |
| break; |
| } |
| if (is64bitValue) { |
| // Write the marker which is needed by split 64-bit values. |
| // This code is skipped by the special cases. |
| expr.WriteOpPiece(4); |
| } |
| } |
| |
| if (expr.size() > 0) { |
| if (is64bit) { |
| debug_loc.PushUint64(variable_location.low_pc - compilation_unit_low_pc); |
| debug_loc.PushUint64(variable_location.high_pc - compilation_unit_low_pc); |
| } else { |
| debug_loc.PushUint32(variable_location.low_pc - compilation_unit_low_pc); |
| debug_loc.PushUint32(variable_location.high_pc - compilation_unit_low_pc); |
| } |
| // Write the expression. |
| debug_loc.PushUint16(expr.size()); |
| debug_loc.PushData(expr.data()); |
| } else { |
| // Do not generate .debug_loc if the location is not known. |
| } |
| } |
| // Write end-of-list entry. |
| if (is64bit) { |
| debug_loc.PushUint64(0); |
| debug_loc.PushUint64(0); |
| } else { |
| debug_loc.PushUint32(0); |
| debug_loc.PushUint32(0); |
| } |
| |
| // Write .debug_ranges entries. |
| // This includes ranges where the variable is in scope but the location is not known. |
| for (size_t i = 0; i < variable_locations.size(); i++) { |
| uint32_t low_pc = variable_locations[i].low_pc; |
| uint32_t high_pc = variable_locations[i].high_pc; |
| while (i + 1 < variable_locations.size() && variable_locations[i+1].low_pc == high_pc) { |
| // Merge address range with the next entry. |
| high_pc = variable_locations[++i].high_pc; |
| } |
| if (is64bit) { |
| debug_ranges.PushUint64(low_pc - compilation_unit_low_pc); |
| debug_ranges.PushUint64(high_pc - compilation_unit_low_pc); |
| } else { |
| debug_ranges.PushUint32(low_pc - compilation_unit_low_pc); |
| debug_ranges.PushUint32(high_pc - compilation_unit_low_pc); |
| } |
| } |
| // Write end-of-list entry. |
| if (is64bit) { |
| debug_ranges.PushUint64(0); |
| debug_ranges.PushUint64(0); |
| } else { |
| debug_ranges.PushUint32(0); |
| debug_ranges.PushUint32(0); |
| } |
| } |
| |
| // Some types are difficult to define as we go since they need |
| // to be enclosed in the right set of namespaces. Therefore we |
| // just define all types lazily at the end of compilation unit. |
| void WriteLazyType(const char* type_descriptor) { |
| if (type_descriptor != nullptr && type_descriptor[0] != 'V') { |
| lazy_types_.emplace(std::string(type_descriptor), info_.size()); |
| info_.WriteRef4(DW_AT_type, 0); |
| } |
| } |
| |
| void FinishLazyTypes() { |
| for (const auto& lazy_type : lazy_types_) { |
| info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first)); |
| } |
| lazy_types_.clear(); |
| } |
| |
| private: |
| void WriteName(const char* name) { |
| if (name != nullptr) { |
| info_.WriteStrp(DW_AT_name, owner_->WriteString(name)); |
| } |
| } |
| |
| // Convert dex type descriptor to DWARF. |
| // Returns offset in the compilation unit. |
| size_t WriteTypeDeclaration(const std::string& desc) { |
| DCHECK(!desc.empty()); |
| const auto& it = type_cache_.find(desc); |
| if (it != type_cache_.end()) { |
| return it->second; |
| } |
| |
| size_t offset; |
| if (desc[0] == 'L') { |
| // Class type. For example: Lpackage/name; |
| size_t class_offset = StartClassTag(desc.c_str()); |
| info_.WriteFlagPresent(DW_AT_declaration); |
| EndClassTag(); |
| // Reference to the class type. |
| offset = info_.StartTag(DW_TAG_reference_type); |
| info_.WriteRef(DW_AT_type, class_offset); |
| info_.EndTag(); |
| } else if (desc[0] == '[') { |
| // Array type. |
| size_t element_type = WriteTypeDeclaration(desc.substr(1)); |
| CloseNamespacesAboveDepth(0); // Declare in root namespace. |
| size_t array_type = info_.StartTag(DW_TAG_array_type); |
| info_.WriteFlagPresent(DW_AT_declaration); |
| info_.WriteRef(DW_AT_type, element_type); |
| info_.EndTag(); |
| offset = info_.StartTag(DW_TAG_reference_type); |
| info_.WriteRef4(DW_AT_type, array_type); |
| info_.EndTag(); |
| } else { |
| // Primitive types. |
| DCHECK_EQ(desc.size(), 1u); |
| |
| const char* name; |
| uint32_t encoding; |
| uint32_t byte_size; |
| switch (desc[0]) { |
| case 'B': |
| name = "byte"; |
| encoding = DW_ATE_signed; |
| byte_size = 1; |
| break; |
| case 'C': |
| name = "char"; |
| encoding = DW_ATE_UTF; |
| byte_size = 2; |
| break; |
| case 'D': |
| name = "double"; |
| encoding = DW_ATE_float; |
| byte_size = 8; |
| break; |
| case 'F': |
| name = "float"; |
| encoding = DW_ATE_float; |
| byte_size = 4; |
| break; |
| case 'I': |
| name = "int"; |
| encoding = DW_ATE_signed; |
| byte_size = 4; |
| break; |
| case 'J': |
| name = "long"; |
| encoding = DW_ATE_signed; |
| byte_size = 8; |
| break; |
| case 'S': |
| name = "short"; |
| encoding = DW_ATE_signed; |
| byte_size = 2; |
| break; |
| case 'Z': |
| name = "boolean"; |
| encoding = DW_ATE_boolean; |
| byte_size = 1; |
| break; |
| case 'V': |
| LOG(FATAL) << "Void type should not be encoded"; |
| UNREACHABLE(); |
| default: |
| LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\""; |
| UNREACHABLE(); |
| } |
| CloseNamespacesAboveDepth(0); // Declare in root namespace. |
| offset = info_.StartTag(DW_TAG_base_type); |
| WriteName(name); |
| info_.WriteData1(DW_AT_encoding, encoding); |
| info_.WriteData1(DW_AT_byte_size, byte_size); |
| info_.EndTag(); |
| } |
| |
| type_cache_.emplace(desc, offset); |
| return offset; |
| } |
| |
| // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags. |
| // Returns offset of the class tag in the compilation unit. |
| size_t StartClassTag(const char* desc) { |
| std::string name = SetNamespaceForClass(desc); |
| size_t offset = info_.StartTag(DW_TAG_class_type); |
| WriteName(name.c_str()); |
| return offset; |
| } |
| |
| void EndClassTag() { |
| info_.EndTag(); |
| } |
| |
| // Set the current namespace nesting to one required by the given class. |
| // Returns the class name with namespaces, 'L', and ';' stripped. |
| std::string SetNamespaceForClass(const char* desc) { |
| DCHECK(desc != nullptr && desc[0] == 'L'); |
| desc++; // Skip the initial 'L'. |
| size_t depth = 0; |
| for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) { |
| // Check whether the name at this depth is already what we need. |
| if (depth < current_namespace_.size()) { |
| const std::string& name = current_namespace_[depth]; |
| if (name.compare(0, name.size(), desc, end - desc) == 0) { |
| continue; |
| } |
| } |
| // Otherwise we need to open a new namespace tag at this depth. |
| CloseNamespacesAboveDepth(depth); |
| info_.StartTag(DW_TAG_namespace); |
| std::string name(desc, end - desc); |
| WriteName(name.c_str()); |
| current_namespace_.push_back(std::move(name)); |
| } |
| CloseNamespacesAboveDepth(depth); |
| return std::string(desc, strchr(desc, ';') - desc); |
| } |
| |
| // Close namespace tags to reach the given nesting depth. |
| void CloseNamespacesAboveDepth(size_t depth) { |
| DCHECK_LE(depth, current_namespace_.size()); |
| while (current_namespace_.size() > depth) { |
| info_.EndTag(); |
| current_namespace_.pop_back(); |
| } |
| } |
| |
| // For access to the ELF sections. |
| DebugInfoWriter<ElfTypes>* owner_; |
| // Debug abbrevs for this compilation unit only. |
| std::vector<uint8_t> debug_abbrev_; |
| // Temporary buffer to create and store the entries. |
| DebugInfoEntryWriter<> info_; |
| // Cache of already translated type descriptors. |
| std::map<std::string, size_t> type_cache_; // type_desc -> definition_offset. |
| // 32-bit references which need to be resolved to a type later. |
| // Given type may be used multiple times. Therefore we need a multimap. |
| std::multimap<std::string, size_t> lazy_types_; // type_desc -> patch_offset. |
| // The current set of open namespace tags which are active and not closed yet. |
| std::vector<std::string> current_namespace_; |
| }; |
| |
| public: |
| explicit DebugInfoWriter(ElfBuilder<ElfTypes>* builder) : builder_(builder) { |
| } |
| |
| void Start() { |
| builder_->GetDebugInfo()->Start(); |
| } |
| |
| void WriteCompilationUnit(const CompilationUnit& compilation_unit) { |
| CompilationUnitWriter writer(this); |
| writer.Write(compilation_unit); |
| } |
| |
| void WriteTypes(const ArrayRef<mirror::Class*>& types) SHARED_REQUIRES(Locks::mutator_lock_) { |
| CompilationUnitWriter writer(this); |
| writer.Write(types); |
| } |
| |
| void End() { |
| builder_->GetDebugInfo()->End(); |
| builder_->WritePatches(".debug_info.oat_patches", |
| ArrayRef<const uintptr_t>(debug_info_patches_)); |
| builder_->WriteSection(".debug_abbrev", &debug_abbrev_.Data()); |
| builder_->WriteSection(".debug_str", &debug_str_.Data()); |
| builder_->WriteSection(".debug_loc", &debug_loc_); |
| builder_->WriteSection(".debug_ranges", &debug_ranges_); |
| } |
| |
| private: |
| size_t WriteString(const char* str) { |
| return debug_str_.Insert(reinterpret_cast<const uint8_t*>(str), strlen(str) + 1); |
| } |
| |
| ElfBuilder<ElfTypes>* builder_; |
| std::vector<uintptr_t> debug_info_patches_; |
| DedupVector debug_abbrev_; |
| DedupVector debug_str_; |
| std::vector<uint8_t> debug_loc_; |
| std::vector<uint8_t> debug_ranges_; |
| |
| std::unordered_set<const char*> defined_dex_classes_; // For CHECKs only. |
| }; |
| |
| template<typename ElfTypes> |
| class DebugLineWriter { |
| typedef typename ElfTypes::Addr Elf_Addr; |
| |
| public: |
| explicit DebugLineWriter(ElfBuilder<ElfTypes>* builder) : builder_(builder) { |
| } |
| |
| void Start() { |
| builder_->GetDebugLine()->Start(); |
| } |
| |
| // Write line table for given set of methods. |
| // Returns the number of bytes written. |
| size_t WriteCompilationUnit(CompilationUnit& compilation_unit) { |
| const bool is64bit = Is64BitInstructionSet(builder_->GetIsa()); |
| const Elf_Addr text_address = builder_->GetText()->Exists() |
| ? builder_->GetText()->GetAddress() |
| : 0; |
| |
| compilation_unit.debug_line_offset_ = builder_->GetDebugLine()->GetSize(); |
| |
| std::vector<FileEntry> files; |
| std::unordered_map<std::string, size_t> files_map; |
| std::vector<std::string> directories; |
| std::unordered_map<std::string, size_t> directories_map; |
| int code_factor_bits_ = 0; |
| int dwarf_isa = -1; |
| switch (builder_->GetIsa()) { |
| case kArm: // arm actually means thumb2. |
| case kThumb2: |
| code_factor_bits_ = 1; // 16-bit instuctions |
| dwarf_isa = 1; // DW_ISA_ARM_thumb. |
| break; |
| case kArm64: |
| case kMips: |
| case kMips64: |
| code_factor_bits_ = 2; // 32-bit instructions |
| break; |
| case kNone: |
| case kX86: |
| case kX86_64: |
| break; |
| } |
| DebugLineOpCodeWriter<> opcodes(is64bit, code_factor_bits_); |
| for (const MethodDebugInfo* mi : compilation_unit.methods_) { |
| // Ignore function if we have already generated line table for the same address. |
| // It would confuse the debugger and the DWARF specification forbids it. |
| if (mi->deduped_) { |
| continue; |
| } |
| |
| ArrayRef<const SrcMapElem> src_mapping_table; |
| std::vector<SrcMapElem> src_mapping_table_from_stack_maps; |
| if (IsFromOptimizingCompiler(mi)) { |
| // Use stack maps to create mapping table from pc to dex. |
| const CodeInfo code_info(mi->compiled_method_->GetVmapTable().data()); |
| const StackMapEncoding encoding = code_info.ExtractEncoding(); |
| for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(); s++) { |
| StackMap stack_map = code_info.GetStackMapAt(s, encoding); |
| DCHECK(stack_map.IsValid()); |
| // Emit only locations where we have local-variable information. |
| // In particular, skip mappings inside the prologue. |
| if (stack_map.HasDexRegisterMap(encoding)) { |
| const uint32_t pc = stack_map.GetNativePcOffset(encoding); |
| const int32_t dex = stack_map.GetDexPc(encoding); |
| src_mapping_table_from_stack_maps.push_back({pc, dex}); |
| } |
| } |
| std::sort(src_mapping_table_from_stack_maps.begin(), |
| src_mapping_table_from_stack_maps.end()); |
| src_mapping_table = ArrayRef<const SrcMapElem>(src_mapping_table_from_stack_maps); |
| } else { |
| // Use the mapping table provided by the quick compiler. |
| src_mapping_table = mi->compiled_method_->GetSrcMappingTable(); |
| } |
| |
| if (src_mapping_table.empty()) { |
| continue; |
| } |
| |
| Elf_Addr method_address = text_address + mi->low_pc_; |
| |
| PositionInfos position_infos; |
| const DexFile* dex = mi->dex_file_; |
| if (!dex->DecodeDebugPositionInfo(mi->code_item_, PositionInfoCallback, &position_infos)) { |
| continue; |
| } |
| |
| if (position_infos.empty()) { |
| continue; |
| } |
| |
| opcodes.SetAddress(method_address); |
| if (dwarf_isa != -1) { |
| opcodes.SetISA(dwarf_isa); |
| } |
| |
| // Get and deduplicate directory and filename. |
| int file_index = 0; // 0 - primary source file of the compilation. |
| auto& dex_class_def = dex->GetClassDef(mi->class_def_index_); |
| const char* source_file = dex->GetSourceFile(dex_class_def); |
| if (source_file != nullptr) { |
| std::string file_name(source_file); |
| size_t file_name_slash = file_name.find_last_of('/'); |
| std::string class_name(dex->GetClassDescriptor(dex_class_def)); |
| size_t class_name_slash = class_name.find_last_of('/'); |
| std::string full_path(file_name); |
| |
| // Guess directory from package name. |
| int directory_index = 0; // 0 - current directory of the compilation. |
| if (file_name_slash == std::string::npos && // Just filename. |
| class_name.front() == 'L' && // Type descriptor for a class. |
| class_name_slash != std::string::npos) { // Has package name. |
| std::string package_name = class_name.substr(1, class_name_slash - 1); |
| auto it = directories_map.find(package_name); |
| if (it == directories_map.end()) { |
| directory_index = 1 + directories.size(); |
| directories_map.emplace(package_name, directory_index); |
| directories.push_back(package_name); |
| } else { |
| directory_index = it->second; |
| } |
| full_path = package_name + "/" + file_name; |
| } |
| |
| // Add file entry. |
| auto it2 = files_map.find(full_path); |
| if (it2 == files_map.end()) { |
| file_index = 1 + files.size(); |
| files_map.emplace(full_path, file_index); |
| files.push_back(FileEntry { |
| file_name, |
| directory_index, |
| 0, // Modification time - NA. |
| 0, // File size - NA. |
| }); |
| } else { |
| file_index = it2->second; |
| } |
| } |
| opcodes.SetFile(file_index); |
| |
| // Generate mapping opcodes from PC to Java lines. |
| if (file_index != 0) { |
| bool first = true; |
| for (SrcMapElem pc2dex : src_mapping_table) { |
| uint32_t pc = pc2dex.from_; |
| int dex_pc = pc2dex.to_; |
| // Find mapping with address with is greater than our dex pc; then go back one step. |
| auto ub = std::upper_bound(position_infos.begin(), position_infos.end(), dex_pc, |
| [](uint32_t address, const DexFile::PositionInfo& entry) { |
| return address < entry.address_; |
| }); |
| if (ub != position_infos.begin()) { |
| int line = (--ub)->line_; |
| if (first) { |
| first = false; |
| if (pc > 0) { |
| // Assume that any preceding code is prologue. |
| int first_line = position_infos.front().line_; |
| // Prologue is not a sensible place for a breakpoint. |
| opcodes.NegateStmt(); |
| opcodes.AddRow(method_address, first_line); |
| opcodes.NegateStmt(); |
| opcodes.SetPrologueEnd(); |
| } |
| opcodes.AddRow(method_address + pc, line); |
| } else if (line != opcodes.CurrentLine()) { |
| opcodes.AddRow(method_address + pc, line); |
| } |
| } |
| } |
| } else { |
| // line 0 - instruction cannot be attributed to any source line. |
| opcodes.AddRow(method_address, 0); |
| } |
| |
| opcodes.AdvancePC(text_address + mi->high_pc_); |
| opcodes.EndSequence(); |
| } |
| std::vector<uint8_t> buffer; |
| buffer.reserve(opcodes.data()->size() + KB); |
| size_t offset = builder_->GetDebugLine()->GetSize(); |
| WriteDebugLineTable(directories, files, opcodes, offset, &buffer, &debug_line_patches); |
| builder_->GetDebugLine()->WriteFully(buffer.data(), buffer.size()); |
| return buffer.size(); |
| } |
| |
| void End() { |
| builder_->GetDebugLine()->End(); |
| builder_->WritePatches(".debug_line.oat_patches", |
| ArrayRef<const uintptr_t>(debug_line_patches)); |
| } |
| |
| private: |
| ElfBuilder<ElfTypes>* builder_; |
| std::vector<uintptr_t> debug_line_patches; |
| }; |
| |
| template<typename ElfTypes> |
| static void WriteDebugSections(ElfBuilder<ElfTypes>* builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos) { |
| // Group the methods into compilation units based on source file. |
| std::vector<CompilationUnit> compilation_units; |
| const char* last_source_file = nullptr; |
| for (const MethodDebugInfo& mi : method_infos) { |
| auto& dex_class_def = mi.dex_file_->GetClassDef(mi.class_def_index_); |
| const char* source_file = mi.dex_file_->GetSourceFile(dex_class_def); |
| if (compilation_units.empty() || source_file != last_source_file) { |
| compilation_units.push_back(CompilationUnit()); |
| } |
| CompilationUnit& cu = compilation_units.back(); |
| cu.methods_.push_back(&mi); |
| cu.low_pc_ = std::min(cu.low_pc_, mi.low_pc_); |
| cu.high_pc_ = std::max(cu.high_pc_, mi.high_pc_); |
| last_source_file = source_file; |
| } |
| |
| // Write .debug_line section. |
| if (!compilation_units.empty()) { |
| DebugLineWriter<ElfTypes> line_writer(builder); |
| line_writer.Start(); |
| for (auto& compilation_unit : compilation_units) { |
| line_writer.WriteCompilationUnit(compilation_unit); |
| } |
| line_writer.End(); |
| } |
| |
| // Write .debug_info section. |
| if (!compilation_units.empty()) { |
| DebugInfoWriter<ElfTypes> info_writer(builder); |
| info_writer.Start(); |
| for (const auto& compilation_unit : compilation_units) { |
| info_writer.WriteCompilationUnit(compilation_unit); |
| } |
| info_writer.End(); |
| } |
| } |
| |
| template <typename ElfTypes> |
| static void WriteDebugSymbols(ElfBuilder<ElfTypes>* builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos, |
| bool with_signature) { |
| bool generated_mapping_symbol = false; |
| auto* strtab = builder->GetStrTab(); |
| auto* symtab = builder->GetSymTab(); |
| |
| if (method_infos.empty()) { |
| return; |
| } |
| |
| // Find all addresses (low_pc) which contain deduped methods. |
| // The first instance of method is not marked deduped_, but the rest is. |
| std::unordered_set<uint32_t> deduped_addresses; |
| for (const MethodDebugInfo& info : method_infos) { |
| if (info.deduped_) { |
| deduped_addresses.insert(info.low_pc_); |
| } |
| } |
| |
| strtab->Start(); |
| strtab->Write(""); // strtab should start with empty string. |
| std::string last_name; |
| size_t last_name_offset = 0; |
| for (const MethodDebugInfo& info : method_infos) { |
| if (info.deduped_) { |
| continue; // Add symbol only for the first instance. |
| } |
| std::string name = PrettyMethod(info.dex_method_index_, *info.dex_file_, with_signature); |
| if (deduped_addresses.find(info.low_pc_) != deduped_addresses.end()) { |
| name += " [DEDUPED]"; |
| } |
| // If we write method names without signature, we might see the same name multiple times. |
| size_t name_offset = (name == last_name ? last_name_offset : strtab->Write(name)); |
| |
| const auto* text = builder->GetText()->Exists() ? builder->GetText() : nullptr; |
| const bool is_relative = (text != nullptr); |
| uint32_t low_pc = info.low_pc_; |
| // Add in code delta, e.g., thumb bit 0 for Thumb2 code. |
| low_pc += info.compiled_method_->CodeDelta(); |
| symtab->Add(name_offset, |
| text, |
| low_pc, |
| is_relative, |
| info.high_pc_ - info.low_pc_, |
| STB_GLOBAL, |
| STT_FUNC); |
| |
| // Conforming to aaelf, add $t mapping symbol to indicate start of a sequence of thumb2 |
| // instructions, so that disassembler tools can correctly disassemble. |
| // Note that even if we generate just a single mapping symbol, ARM's Streamline |
| // requires it to match function symbol. Just address 0 does not work. |
| if (info.compiled_method_->GetInstructionSet() == kThumb2) { |
| if (!generated_mapping_symbol || !kGenerateSingleArmMappingSymbol) { |
| symtab->Add(strtab->Write("$t"), text, info.low_pc_ & ~1, |
| is_relative, 0, STB_LOCAL, STT_NOTYPE); |
| generated_mapping_symbol = true; |
| } |
| } |
| |
| last_name = std::move(name); |
| last_name_offset = name_offset; |
| } |
| strtab->End(); |
| |
| // Symbols are buffered and written after names (because they are smaller). |
| // We could also do two passes in this function to avoid the buffering. |
| symtab->Start(); |
| symtab->Write(); |
| symtab->End(); |
| } |
| |
| template <typename ElfTypes> |
| void WriteDebugInfo(ElfBuilder<ElfTypes>* builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos, |
| CFIFormat cfi_format) { |
| // Add methods to .symtab. |
| WriteDebugSymbols(builder, method_infos, true /* with_signature */); |
| // Generate CFI (stack unwinding information). |
| WriteCFISection(builder, method_infos, cfi_format, true /* write_oat_patches */); |
| // Write DWARF .debug_* sections. |
| WriteDebugSections(builder, method_infos); |
| } |
| |
| static void XzCompress(const std::vector<uint8_t>* src, std::vector<uint8_t>* dst) { |
| // Configure the compression library. |
| CrcGenerateTable(); |
| Crc64GenerateTable(); |
| CLzma2EncProps lzma2Props; |
| Lzma2EncProps_Init(&lzma2Props); |
| lzma2Props.lzmaProps.level = 1; // Fast compression. |
| Lzma2EncProps_Normalize(&lzma2Props); |
| CXzProps props; |
| XzProps_Init(&props); |
| props.lzma2Props = &lzma2Props; |
| // Implement the required interface for communication (written in C so no virtual methods). |
| struct XzCallbacks : public ISeqInStream, public ISeqOutStream, public ICompressProgress { |
| static SRes ReadImpl(void* p, void* buf, size_t* size) { |
| auto* ctx = static_cast<XzCallbacks*>(reinterpret_cast<ISeqInStream*>(p)); |
| *size = std::min(*size, ctx->src_->size() - ctx->src_pos_); |
| memcpy(buf, ctx->src_->data() + ctx->src_pos_, *size); |
| ctx->src_pos_ += *size; |
| return SZ_OK; |
| } |
| static size_t WriteImpl(void* p, const void* buf, size_t size) { |
| auto* ctx = static_cast<XzCallbacks*>(reinterpret_cast<ISeqOutStream*>(p)); |
| const uint8_t* buffer = reinterpret_cast<const uint8_t*>(buf); |
| ctx->dst_->insert(ctx->dst_->end(), buffer, buffer + size); |
| return size; |
| } |
| static SRes ProgressImpl(void* , UInt64, UInt64) { |
| return SZ_OK; |
| } |
| size_t src_pos_; |
| const std::vector<uint8_t>* src_; |
| std::vector<uint8_t>* dst_; |
| }; |
| XzCallbacks callbacks; |
| callbacks.Read = XzCallbacks::ReadImpl; |
| callbacks.Write = XzCallbacks::WriteImpl; |
| callbacks.Progress = XzCallbacks::ProgressImpl; |
| callbacks.src_pos_ = 0; |
| callbacks.src_ = src; |
| callbacks.dst_ = dst; |
| // Compress. |
| SRes res = Xz_Encode(&callbacks, &callbacks, &props, &callbacks); |
| CHECK_EQ(res, SZ_OK); |
| } |
| |
| template <typename ElfTypes> |
| void WriteMiniDebugInfo(ElfBuilder<ElfTypes>* parent_builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos) { |
| const InstructionSet isa = parent_builder->GetIsa(); |
| std::vector<uint8_t> buffer; |
| buffer.reserve(KB); |
| VectorOutputStream out("Mini-debug-info ELF file", &buffer); |
| std::unique_ptr<ElfBuilder<ElfTypes>> builder(new ElfBuilder<ElfTypes>(isa, &out)); |
| builder->Start(); |
| // Write .rodata and .text as NOBITS sections. |
| // This allows tools to detect virtual address relocation of the parent ELF file. |
| builder->SetVirtualAddress(parent_builder->GetRoData()->GetAddress()); |
| builder->GetRoData()->WriteNoBitsSection(parent_builder->GetRoData()->GetSize()); |
| builder->SetVirtualAddress(parent_builder->GetText()->GetAddress()); |
| builder->GetText()->WriteNoBitsSection(parent_builder->GetText()->GetSize()); |
| WriteDebugSymbols(builder.get(), method_infos, false /* with_signature */); |
| WriteCFISection(builder.get(), method_infos, DW_DEBUG_FRAME_FORMAT, false /* write_oat_paches */); |
| builder->End(); |
| CHECK(builder->Good()); |
| std::vector<uint8_t> compressed_buffer; |
| compressed_buffer.reserve(buffer.size() / 4); |
| XzCompress(&buffer, &compressed_buffer); |
| parent_builder->WriteSection(".gnu_debugdata", &compressed_buffer); |
| } |
| |
| template <typename ElfTypes> |
| static ArrayRef<const uint8_t> WriteDebugElfFileForMethodInternal( |
| const dwarf::MethodDebugInfo& method_info) { |
| const InstructionSet isa = method_info.compiled_method_->GetInstructionSet(); |
| std::vector<uint8_t> buffer; |
| buffer.reserve(KB); |
| VectorOutputStream out("Debug ELF file", &buffer); |
| std::unique_ptr<ElfBuilder<ElfTypes>> builder(new ElfBuilder<ElfTypes>(isa, &out)); |
| builder->Start(); |
| WriteDebugInfo(builder.get(), |
| ArrayRef<const MethodDebugInfo>(&method_info, 1), |
| DW_DEBUG_FRAME_FORMAT); |
| builder->End(); |
| CHECK(builder->Good()); |
| // Make a copy of the buffer. We want to shrink it anyway. |
| uint8_t* result = new uint8_t[buffer.size()]; |
| CHECK(result != nullptr); |
| memcpy(result, buffer.data(), buffer.size()); |
| return ArrayRef<const uint8_t>(result, buffer.size()); |
| } |
| |
| ArrayRef<const uint8_t> WriteDebugElfFileForMethod(const dwarf::MethodDebugInfo& method_info) { |
| const InstructionSet isa = method_info.compiled_method_->GetInstructionSet(); |
| if (Is64BitInstructionSet(isa)) { |
| return WriteDebugElfFileForMethodInternal<ElfTypes64>(method_info); |
| } else { |
| return WriteDebugElfFileForMethodInternal<ElfTypes32>(method_info); |
| } |
| } |
| |
| template <typename ElfTypes> |
| static ArrayRef<const uint8_t> WriteDebugElfFileForClassesInternal( |
| const InstructionSet isa, const ArrayRef<mirror::Class*>& types) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| std::vector<uint8_t> buffer; |
| buffer.reserve(KB); |
| VectorOutputStream out("Debug ELF file", &buffer); |
| std::unique_ptr<ElfBuilder<ElfTypes>> builder(new ElfBuilder<ElfTypes>(isa, &out)); |
| builder->Start(); |
| |
| DebugInfoWriter<ElfTypes> info_writer(builder.get()); |
| info_writer.Start(); |
| info_writer.WriteTypes(types); |
| info_writer.End(); |
| |
| builder->End(); |
| CHECK(builder->Good()); |
| // Make a copy of the buffer. We want to shrink it anyway. |
| uint8_t* result = new uint8_t[buffer.size()]; |
| CHECK(result != nullptr); |
| memcpy(result, buffer.data(), buffer.size()); |
| return ArrayRef<const uint8_t>(result, buffer.size()); |
| } |
| |
| ArrayRef<const uint8_t> WriteDebugElfFileForClasses(const InstructionSet isa, |
| const ArrayRef<mirror::Class*>& types) { |
| if (Is64BitInstructionSet(isa)) { |
| return WriteDebugElfFileForClassesInternal<ElfTypes64>(isa, types); |
| } else { |
| return WriteDebugElfFileForClassesInternal<ElfTypes32>(isa, types); |
| } |
| } |
| |
| // Explicit instantiations |
| template void WriteDebugInfo<ElfTypes32>( |
| ElfBuilder<ElfTypes32>* builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos, |
| CFIFormat cfi_format); |
| template void WriteDebugInfo<ElfTypes64>( |
| ElfBuilder<ElfTypes64>* builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos, |
| CFIFormat cfi_format); |
| template void WriteMiniDebugInfo<ElfTypes32>( |
| ElfBuilder<ElfTypes32>* builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos); |
| template void WriteMiniDebugInfo<ElfTypes64>( |
| ElfBuilder<ElfTypes64>* builder, |
| const ArrayRef<const MethodDebugInfo>& method_infos); |
| |
| } // namespace dwarf |
| } // namespace art |