| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "space.h" |
| |
| #include "common_test.h" |
| #include "dlmalloc.h" |
| #include "globals.h" |
| #include "UniquePtr.h" |
| |
| #include <stdint.h> |
| |
| namespace art { |
| |
| class SpaceTest : public CommonTest { |
| public: |
| void SizeFootPrintGrowthLimitAndTrimBody(AllocSpace* space, intptr_t object_size, |
| int round, size_t growth_limit); |
| void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size); |
| }; |
| |
| TEST_F(SpaceTest, Init) { |
| { |
| // Init < max == growth |
| UniquePtr<Space> space(Space::CreateAllocSpace("test", 16 * MB, 32 * MB, 32 * MB, NULL)); |
| EXPECT_TRUE(space.get() != NULL); |
| } |
| { |
| // Init == max == growth |
| UniquePtr<Space> space(Space::CreateAllocSpace("test", 16 * MB, 16 * MB, 16 * MB, NULL)); |
| EXPECT_TRUE(space.get() != NULL); |
| } |
| { |
| // Init > max == growth |
| UniquePtr<Space> space(Space::CreateAllocSpace("test", 32 * MB, 16 * MB, 16 * MB, NULL)); |
| EXPECT_TRUE(space.get() == NULL); |
| } |
| { |
| // Growth == init < max |
| UniquePtr<Space> space(Space::CreateAllocSpace("test", 16 * MB, 16 * MB, 32 * MB, NULL)); |
| EXPECT_TRUE(space.get() != NULL); |
| } |
| { |
| // Growth < init < max |
| UniquePtr<Space> space(Space::CreateAllocSpace("test", 16 * MB, 8 * MB, 32 * MB, NULL)); |
| EXPECT_TRUE(space.get() == NULL); |
| } |
| { |
| // Init < growth < max |
| UniquePtr<Space> space(Space::CreateAllocSpace("test", 8 * MB, 16 * MB, 32 * MB, NULL)); |
| EXPECT_TRUE(space.get() != NULL); |
| } |
| { |
| // Init < max < growth |
| UniquePtr<Space> space(Space::CreateAllocSpace("test", 8 * MB, 32 * MB, 16 * MB, NULL)); |
| EXPECT_TRUE(space.get() == NULL); |
| } |
| } |
| |
| TEST_F(SpaceTest, AllocAndFree) { |
| AllocSpace* space(Space::CreateAllocSpace("test", 4 * MB, 16 * MB, 16 * MB, NULL)); |
| ASSERT_TRUE(space != NULL); |
| |
| // Make space findable to the heap, will also delete space when runtime is cleaned up |
| Heap::AddSpace(space); |
| |
| // Succeeds, fits without adjusting the footprint limit. |
| Object* ptr1 = space->AllocWithoutGrowth(1 * MB); |
| EXPECT_TRUE(ptr1 != NULL); |
| |
| // Fails, requires a higher footprint limit. |
| Object* ptr2 = space->AllocWithoutGrowth(8 * MB); |
| EXPECT_TRUE(ptr2 == NULL); |
| |
| // Succeeds, adjusts the footprint. |
| Object* ptr3 = space->AllocWithGrowth(8 * MB); |
| EXPECT_TRUE(ptr3 != NULL); |
| |
| // Fails, requires a higher footprint limit. |
| Object* ptr4 = space->AllocWithoutGrowth(8 * MB); |
| EXPECT_TRUE(ptr4 == NULL); |
| |
| // Also fails, requires a higher allowed footprint. |
| Object* ptr5 = space->AllocWithGrowth(8 * MB); |
| EXPECT_TRUE(ptr5 == NULL); |
| |
| // Release some memory. |
| size_t free3 = space->AllocationSize(ptr3); |
| space->Free(ptr3); |
| EXPECT_LE(8U * MB, free3); |
| |
| // Succeeds, now that memory has been freed. |
| void* ptr6 = space->AllocWithGrowth(9 * MB); |
| EXPECT_TRUE(ptr6 != NULL); |
| |
| // Final clean up. |
| size_t free1 = space->AllocationSize(ptr1); |
| space->Free(ptr1); |
| EXPECT_LE(1U * MB, free1); |
| } |
| |
| TEST_F(SpaceTest, AllocAndFreeList) { |
| AllocSpace* space(Space::CreateAllocSpace("test", 4 * MB, 16 * MB, 16 * MB, NULL)); |
| ASSERT_TRUE(space != NULL); |
| |
| // Make space findable to the heap, will also delete space when runtime is cleaned up |
| Heap::AddSpace(space); |
| |
| // Succeeds, fits without adjusting the max allowed footprint. |
| Object* lots_of_objects[1024]; |
| for(size_t i = 0; i < arraysize(lots_of_objects); i++) { |
| lots_of_objects[i] = space->AllocWithoutGrowth(16); |
| EXPECT_TRUE(lots_of_objects[i] != NULL); |
| } |
| |
| // Release memory and check pointers are NULL |
| space->FreeList(arraysize(lots_of_objects), lots_of_objects); |
| for(size_t i = 0; i < arraysize(lots_of_objects); i++) { |
| EXPECT_TRUE(lots_of_objects[i] == NULL); |
| } |
| |
| // Succeeds, fits by adjusting the max allowed footprint. |
| for(size_t i = 0; i < arraysize(lots_of_objects); i++) { |
| lots_of_objects[i] = space->AllocWithGrowth(1024); |
| EXPECT_TRUE(lots_of_objects[i] != NULL); |
| } |
| |
| // Release memory and check pointers are NULL |
| space->FreeList(arraysize(lots_of_objects), lots_of_objects); |
| for(size_t i = 0; i < arraysize(lots_of_objects); i++) { |
| EXPECT_TRUE(lots_of_objects[i] == NULL); |
| } |
| } |
| |
| static size_t test_rand() { |
| // TODO: replace this with something random yet deterministic |
| return rand(); |
| } |
| |
| void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(AllocSpace* space, intptr_t object_size, |
| int round, size_t growth_limit) { |
| if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) || |
| ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) { |
| // No allocation can succeed |
| return; |
| } |
| // Mspace for raw dlmalloc operations |
| void* mspace = space->GetMspace(); |
| |
| // mspace's footprint equals amount of resources requested from system |
| size_t footprint = mspace_footprint(mspace); |
| |
| // mspace must at least have its book keeping allocated |
| EXPECT_GT(footprint, 0u); |
| |
| // mspace but it shouldn't exceed the initial size |
| EXPECT_LE(footprint, growth_limit); |
| |
| // space's size shouldn't exceed the initial size |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| // this invariant should always hold or else the mspace has grown to be larger than what the |
| // space believes its size is (which will break invariants) |
| EXPECT_GE(space->Size(), footprint); |
| |
| // Fill the space with lots of small objects up to the growth limit |
| size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1; |
| UniquePtr<Object*> lots_of_objects(new Object*[max_objects]); |
| size_t last_object = 0; // last object for which allocation succeeded |
| size_t amount_allocated = 0; // amount of space allocated |
| for(size_t i = 0; i < max_objects; i++) { |
| size_t alloc_fails = 0; // number of failed allocations |
| size_t max_fails = 30; // number of times we fail allocation before giving up |
| for (; alloc_fails < max_fails; alloc_fails++) { |
| size_t alloc_size; |
| if (object_size > 0) { |
| alloc_size = object_size; |
| } else { |
| alloc_size = test_rand() % static_cast<size_t>(-object_size); |
| if (alloc_size < 8) { |
| alloc_size = 8; |
| } |
| } |
| Object* object; |
| if (round <= 1) { |
| object = space->AllocWithoutGrowth(alloc_size); |
| } else { |
| object = space->AllocWithGrowth(alloc_size); |
| } |
| footprint = mspace_footprint(mspace); |
| EXPECT_GE(space->Size(), footprint); // invariant |
| if(object != NULL) { // allocation succeeded |
| lots_of_objects.get()[i] = object; |
| size_t allocation_size = space->AllocationSize(object); |
| if (object_size > 0) { |
| EXPECT_GE(allocation_size, static_cast<size_t>(object_size)); |
| } else { |
| EXPECT_GE(allocation_size, 8u); |
| } |
| amount_allocated += allocation_size; |
| break; |
| } |
| } |
| if (alloc_fails == max_fails) { |
| last_object = i; |
| break; |
| } |
| } |
| CHECK_NE(last_object, 0u); // we should have filled the space |
| EXPECT_GT(amount_allocated, 0u); |
| |
| // We shouldn't have gone past the growth_limit |
| EXPECT_LE(amount_allocated, growth_limit); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| // footprint and size should agree with amount allocated |
| EXPECT_GE(footprint, amount_allocated); |
| EXPECT_GE(space->Size(), amount_allocated); |
| |
| // Release storage in a semi-adhoc manner |
| size_t free_increment = 96; |
| while(true) { |
| // Give the space a haircut |
| space->Trim(); |
| |
| // Bounds sanity |
| footprint = mspace_footprint(mspace); |
| EXPECT_LE(amount_allocated, growth_limit); |
| EXPECT_GE(footprint, amount_allocated); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_GE(space->Size(), amount_allocated); |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| if (free_increment == 0) { |
| break; |
| } |
| |
| // Free some objects |
| for(size_t i = 0; i < last_object; i += free_increment) { |
| Object* object = lots_of_objects.get()[i]; |
| if (object == NULL) { |
| continue; |
| } |
| size_t allocation_size = space->AllocationSize(object); |
| if (object_size > 0) { |
| EXPECT_GE(allocation_size, static_cast<size_t>(object_size)); |
| } else { |
| EXPECT_GE(allocation_size, 8u); |
| } |
| space->Free(object); |
| lots_of_objects.get()[i] = NULL; |
| amount_allocated -= allocation_size; |
| footprint = mspace_footprint(mspace); |
| EXPECT_GE(space->Size(), footprint); // invariant |
| } |
| |
| free_increment >>= 1; |
| } |
| |
| // All memory was released, try a large allocation to check freed memory is being coalesced |
| Object* large_object; |
| size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4); |
| if (round <= 1) { |
| large_object = space->AllocWithoutGrowth(three_quarters_space); |
| } else { |
| large_object = space->AllocWithGrowth(three_quarters_space); |
| } |
| EXPECT_TRUE(large_object != NULL); |
| |
| // Sanity check footprint |
| footprint = mspace_footprint(mspace); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_GE(space->Size(), footprint); |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| // Clean up |
| space->Free(large_object); |
| |
| // Sanity check footprint |
| footprint = mspace_footprint(mspace); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_GE(space->Size(), footprint); |
| EXPECT_LE(space->Size(), growth_limit); |
| } |
| |
| void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size) { |
| size_t initial_size = 4 * MB; |
| size_t growth_limit = 8 * MB; |
| size_t capacity = 16 * MB; |
| AllocSpace* space(Space::CreateAllocSpace("test", initial_size, growth_limit, capacity, NULL)); |
| ASSERT_TRUE(space != NULL); |
| |
| // Basic sanity |
| EXPECT_EQ(space->Capacity(), growth_limit); |
| EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity); |
| |
| // Make space findable to the heap, will also delete space when runtime is cleaned up |
| Heap::AddSpace(space); |
| |
| // In this round we don't allocate with growth and therefore can't grow past the initial size. |
| // This effectively makes the growth_limit the initial_size, so assert this. |
| SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size); |
| SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit); |
| // Remove growth limit |
| space->ClearGrowthLimit(); |
| EXPECT_EQ(space->Capacity(), capacity); |
| SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity); |
| } |
| |
| #define TEST_SizeFootPrintGrowthLimitAndTrim(name, size) \ |
| TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \ |
| SizeFootPrintGrowthLimitAndTrimDriver(size); \ |
| } \ |
| TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \ |
| SizeFootPrintGrowthLimitAndTrimDriver(-size); \ |
| } |
| |
| // Each size test is its own test so that we get a fresh heap each time |
| TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_8B) { |
| SizeFootPrintGrowthLimitAndTrimDriver(8); |
| } |
| TEST_SizeFootPrintGrowthLimitAndTrim(16B, 16) |
| TEST_SizeFootPrintGrowthLimitAndTrim(24B, 24) |
| TEST_SizeFootPrintGrowthLimitAndTrim(32B, 32) |
| TEST_SizeFootPrintGrowthLimitAndTrim(64B, 64) |
| TEST_SizeFootPrintGrowthLimitAndTrim(128B, 128) |
| TEST_SizeFootPrintGrowthLimitAndTrim(1KB, 1 * KB) |
| TEST_SizeFootPrintGrowthLimitAndTrim(4KB, 4 * KB) |
| TEST_SizeFootPrintGrowthLimitAndTrim(1MB, 1 * MB) |
| TEST_SizeFootPrintGrowthLimitAndTrim(4MB, 4 * MB) |
| TEST_SizeFootPrintGrowthLimitAndTrim(8MB, 8 * MB) |
| |
| } // namespace art |