| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "heap.h" |
| |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| |
| #include <limits> |
| #include <vector> |
| |
| #include "debugger.h" |
| #include "gc/atomic_stack.h" |
| #include "gc/card_table.h" |
| #include "gc/heap_bitmap.h" |
| #include "gc/large_object_space.h" |
| #include "gc/mark_sweep.h" |
| #include "gc/mod_union_table.h" |
| #include "gc/space.h" |
| #include "image.h" |
| #include "object.h" |
| #include "object_utils.h" |
| #include "os.h" |
| #include "ScopedLocalRef.h" |
| #include "scoped_thread_state_change.h" |
| #include "sirt_ref.h" |
| #include "stl_util.h" |
| #include "thread_list.h" |
| #include "timing_logger.h" |
| #include "UniquePtr.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| const double Heap::kDefaultTargetUtilization = 0.5; |
| |
| static bool GenerateImage(const std::string& image_file_name) { |
| const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString()); |
| std::vector<std::string> boot_class_path; |
| Split(boot_class_path_string, ':', boot_class_path); |
| if (boot_class_path.empty()) { |
| LOG(FATAL) << "Failed to generate image because no boot class path specified"; |
| } |
| |
| std::vector<char*> arg_vector; |
| |
| std::string dex2oat_string(GetAndroidRoot()); |
| dex2oat_string += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat"); |
| const char* dex2oat = dex2oat_string.c_str(); |
| arg_vector.push_back(strdup(dex2oat)); |
| |
| std::string image_option_string("--image="); |
| image_option_string += image_file_name; |
| const char* image_option = image_option_string.c_str(); |
| arg_vector.push_back(strdup(image_option)); |
| |
| arg_vector.push_back(strdup("--runtime-arg")); |
| arg_vector.push_back(strdup("-Xms64m")); |
| |
| arg_vector.push_back(strdup("--runtime-arg")); |
| arg_vector.push_back(strdup("-Xmx64m")); |
| |
| for (size_t i = 0; i < boot_class_path.size(); i++) { |
| std::string dex_file_option_string("--dex-file="); |
| dex_file_option_string += boot_class_path[i]; |
| const char* dex_file_option = dex_file_option_string.c_str(); |
| arg_vector.push_back(strdup(dex_file_option)); |
| } |
| |
| std::string oat_file_option_string("--oat-file="); |
| oat_file_option_string += image_file_name; |
| oat_file_option_string.erase(oat_file_option_string.size() - 3); |
| oat_file_option_string += "oat"; |
| const char* oat_file_option = oat_file_option_string.c_str(); |
| arg_vector.push_back(strdup(oat_file_option)); |
| |
| arg_vector.push_back(strdup("--base=0x60000000")); |
| |
| std::string command_line(Join(arg_vector, ' ')); |
| LOG(INFO) << command_line; |
| |
| arg_vector.push_back(NULL); |
| char** argv = &arg_vector[0]; |
| |
| // fork and exec dex2oat |
| pid_t pid = fork(); |
| if (pid == 0) { |
| // no allocation allowed between fork and exec |
| |
| // change process groups, so we don't get reaped by ProcessManager |
| setpgid(0, 0); |
| |
| execv(dex2oat, argv); |
| |
| PLOG(FATAL) << "execv(" << dex2oat << ") failed"; |
| return false; |
| } else { |
| STLDeleteElements(&arg_vector); |
| |
| // wait for dex2oat to finish |
| int status; |
| pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); |
| if (got_pid != pid) { |
| PLOG(ERROR) << "waitpid failed: wanted " << pid << ", got " << got_pid; |
| return false; |
| } |
| if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { |
| LOG(ERROR) << dex2oat << " failed: " << command_line; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void Heap::UnReserveOatFileAddressRange() { |
| oat_file_map_.reset(NULL); |
| } |
| |
| Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free, |
| double target_utilization, size_t capacity, |
| const std::string& original_image_file_name, bool concurrent_gc) |
| : alloc_space_(NULL), |
| card_table_(NULL), |
| concurrent_gc_(concurrent_gc), |
| have_zygote_space_(false), |
| card_marking_disabled_(false), |
| is_gc_running_(false), |
| last_gc_type_(kGcTypeNone), |
| enforce_heap_growth_rate_(false), |
| growth_limit_(growth_limit), |
| max_allowed_footprint_(initial_size), |
| concurrent_start_size_(128 * KB), |
| concurrent_min_free_(256 * KB), |
| concurrent_start_bytes_(initial_size - concurrent_start_size_), |
| sticky_gc_count_(0), |
| total_bytes_freed_(0), |
| total_objects_freed_(0), |
| large_object_threshold_(3 * kPageSize), |
| num_bytes_allocated_(0), |
| verify_missing_card_marks_(false), |
| verify_system_weaks_(false), |
| verify_pre_gc_heap_(false), |
| verify_post_gc_heap_(false), |
| verify_mod_union_table_(false), |
| partial_gc_frequency_(10), |
| min_alloc_space_size_for_sticky_gc_(2 * MB), |
| min_remaining_space_for_sticky_gc_(1 * MB), |
| last_trim_time_(0), |
| requesting_gc_(false), |
| max_allocation_stack_size_(MB), |
| reference_referent_offset_(0), |
| reference_queue_offset_(0), |
| reference_queueNext_offset_(0), |
| reference_pendingNext_offset_(0), |
| finalizer_reference_zombie_offset_(0), |
| min_free_(min_free), |
| max_free_(max_free), |
| target_utilization_(target_utilization), |
| total_paused_time_(0), |
| total_wait_time_(0), |
| measure_allocation_time_(false), |
| total_allocation_time_(0), |
| verify_objects_(false) { |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Heap() entering"; |
| } |
| |
| live_bitmap_.reset(new HeapBitmap(this)); |
| mark_bitmap_.reset(new HeapBitmap(this)); |
| |
| // Requested begin for the alloc space, to follow the mapped image and oat files |
| byte* requested_begin = NULL; |
| std::string image_file_name(original_image_file_name); |
| if (!image_file_name.empty()) { |
| ImageSpace* image_space = NULL; |
| |
| if (OS::FileExists(image_file_name.c_str())) { |
| // If the /system file exists, it should be up-to-date, don't try to generate |
| image_space = ImageSpace::Create(image_file_name); |
| } else { |
| // If the /system file didn't exist, we need to use one from the art-cache. |
| // If the cache file exists, try to open, but if it fails, regenerate. |
| // If it does not exist, generate. |
| image_file_name = GetArtCacheFilenameOrDie(image_file_name); |
| if (OS::FileExists(image_file_name.c_str())) { |
| image_space = ImageSpace::Create(image_file_name); |
| } |
| if (image_space == NULL) { |
| CHECK(GenerateImage(image_file_name)) << "Failed to generate image: " << image_file_name; |
| image_space = ImageSpace::Create(image_file_name); |
| } |
| } |
| |
| CHECK(image_space != NULL) << "Failed to create space from " << image_file_name; |
| AddSpace(image_space); |
| // Oat files referenced by image files immediately follow them in memory, ensure alloc space |
| // isn't going to get in the middle |
| byte* oat_end_addr = image_space->GetImageHeader().GetOatEnd(); |
| CHECK_GT(oat_end_addr, image_space->End()); |
| |
| // Reserve address range from image_space->End() to image_space->GetImageHeader().GetOatEnd() |
| uintptr_t reserve_begin = RoundUp(reinterpret_cast<uintptr_t>(image_space->End()), kPageSize); |
| uintptr_t reserve_end = RoundUp(reinterpret_cast<uintptr_t>(oat_end_addr), kPageSize); |
| oat_file_map_.reset(MemMap::MapAnonymous("oat file reserve", |
| reinterpret_cast<byte*>(reserve_begin), |
| reserve_end - reserve_begin, PROT_READ)); |
| |
| if (oat_end_addr > requested_begin) { |
| requested_begin = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_end_addr), |
| kPageSize)); |
| } |
| } |
| |
| // Allocate the large object space. |
| large_object_space_.reset(FreeListSpace::Create("large object space", NULL, capacity)); |
| live_bitmap_->SetLargeObjects(large_object_space_->GetLiveObjects()); |
| mark_bitmap_->SetLargeObjects(large_object_space_->GetMarkObjects()); |
| |
| UniquePtr<DlMallocSpace> alloc_space(DlMallocSpace::Create("alloc space", initial_size, |
| growth_limit, capacity, |
| requested_begin)); |
| alloc_space_ = alloc_space.release(); |
| alloc_space_->SetFootprintLimit(alloc_space_->Capacity()); |
| CHECK(alloc_space_ != NULL) << "Failed to create alloc space"; |
| AddSpace(alloc_space_); |
| |
| // Spaces are sorted in order of Begin(). |
| byte* heap_begin = spaces_.front()->Begin(); |
| size_t heap_capacity = spaces_.back()->End() - spaces_.front()->Begin(); |
| if (spaces_.back()->IsAllocSpace()) { |
| heap_capacity += spaces_.back()->AsAllocSpace()->NonGrowthLimitCapacity(); |
| } |
| |
| // Mark image objects in the live bitmap |
| // TODO: C++0x |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| Space* space = *it; |
| if (space->IsImageSpace()) { |
| ImageSpace* image_space = space->AsImageSpace(); |
| image_space->RecordImageAllocations(image_space->GetLiveBitmap()); |
| } |
| } |
| |
| // Allocate the card table. |
| card_table_.reset(CardTable::Create(heap_begin, heap_capacity)); |
| CHECK(card_table_.get() != NULL) << "Failed to create card table"; |
| |
| mod_union_table_.reset(new ModUnionTableToZygoteAllocspace<ModUnionTableReferenceCache>(this)); |
| CHECK(mod_union_table_.get() != NULL) << "Failed to create mod-union table"; |
| |
| zygote_mod_union_table_.reset(new ModUnionTableCardCache(this)); |
| CHECK(zygote_mod_union_table_.get() != NULL) << "Failed to create Zygote mod-union table"; |
| |
| // TODO: Count objects in the image space here. |
| num_bytes_allocated_ = 0; |
| |
| // Max stack size in bytes. |
| static const size_t default_mark_stack_size = 64 * KB; |
| mark_stack_.reset(ObjectStack::Create("dalvik-mark-stack", default_mark_stack_size)); |
| allocation_stack_.reset(ObjectStack::Create("dalvik-allocation-stack", |
| max_allocation_stack_size_)); |
| live_stack_.reset(ObjectStack::Create("dalvik-live-stack", |
| max_allocation_stack_size_)); |
| |
| // It's still too early to take a lock because there are no threads yet, |
| // but we can create the heap lock now. We don't create it earlier to |
| // make it clear that you can't use locks during heap initialization. |
| gc_complete_lock_ = new Mutex("GC complete lock"); |
| gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable", |
| *gc_complete_lock_)); |
| |
| // Set up the cumulative timing loggers. |
| for (size_t i = static_cast<size_t>(kGcTypeSticky); i < static_cast<size_t>(kGcTypeMax); |
| ++i) { |
| std::ostringstream name; |
| name << static_cast<GcType>(i); |
| cumulative_timings_.Put(static_cast<GcType>(i), |
| new CumulativeLogger(name.str().c_str(), true)); |
| } |
| |
| if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Heap() exiting"; |
| } |
| } |
| |
| // Sort spaces based on begin address |
| struct SpaceSorter { |
| bool operator ()(const ContinuousSpace* a, const ContinuousSpace* b) const { |
| return a->Begin() < b->Begin(); |
| } |
| }; |
| |
| void Heap::AddSpace(ContinuousSpace* space) { |
| WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| DCHECK(space != NULL); |
| DCHECK(space->GetLiveBitmap() != NULL); |
| live_bitmap_->AddSpaceBitmap(space->GetLiveBitmap()); |
| DCHECK(space->GetMarkBitmap() != NULL); |
| mark_bitmap_->AddSpaceBitmap(space->GetMarkBitmap()); |
| spaces_.push_back(space); |
| if (space->IsAllocSpace()) { |
| alloc_space_ = space->AsAllocSpace(); |
| } |
| |
| // Ensure that spaces remain sorted in increasing order of start address (required for CMS finger) |
| std::sort(spaces_.begin(), spaces_.end(), SpaceSorter()); |
| |
| // Ensure that ImageSpaces < ZygoteSpaces < AllocSpaces so that we can do address based checks to |
| // avoid redundant marking. |
| bool seen_zygote = false, seen_alloc = false; |
| for (Spaces::const_iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| Space* space = *it; |
| if (space->IsImageSpace()) { |
| DCHECK(!seen_zygote); |
| DCHECK(!seen_alloc); |
| } else if (space->IsZygoteSpace()) { |
| DCHECK(!seen_alloc); |
| seen_zygote = true; |
| } else if (space->IsAllocSpace()) { |
| seen_alloc = true; |
| } |
| } |
| } |
| |
| void Heap::DumpGcPerformanceInfo() { |
| // Dump cumulative timings. |
| LOG(INFO) << "Dumping cumulative Gc timings"; |
| uint64_t total_duration = 0; |
| for (CumulativeTimings::iterator it = cumulative_timings_.begin(); |
| it != cumulative_timings_.end(); ++it) { |
| CumulativeLogger* logger = it->second; |
| if (logger->GetTotalNs() != 0) { |
| logger->Dump(); |
| total_duration += logger->GetTotalNs(); |
| } |
| } |
| uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust; |
| size_t total_objects_allocated = GetTotalObjectsAllocated(); |
| size_t total_bytes_allocated = GetTotalBytesAllocated(); |
| if (total_duration != 0) { |
| const double total_seconds = double(total_duration / 1000) / 1000000.0; |
| LOG(INFO) << "Total time spent in GC: " << PrettyDuration(total_duration); |
| LOG(INFO) << "Mean GC size throughput: " |
| << PrettySize(GetTotalBytesFreed() / total_seconds) << "/s"; |
| LOG(INFO) << "Mean GC object throughput: " << GetTotalObjectsFreed() / total_seconds << "/s"; |
| } |
| LOG(INFO) << "Total number of allocations: " << total_objects_allocated; |
| LOG(INFO) << "Total bytes allocated " << PrettySize(total_bytes_allocated); |
| if (measure_allocation_time_) { |
| LOG(INFO) << "Total time spent allocating: " << PrettyDuration(allocation_time); |
| LOG(INFO) << "Mean allocation time: " |
| << PrettyDuration(allocation_time / total_objects_allocated); |
| } |
| LOG(INFO) << "Total mutator paused time: " << PrettyDuration(total_paused_time_); |
| LOG(INFO) << "Total waiting for Gc to complete time: " << PrettyDuration(total_wait_time_); |
| } |
| |
| Heap::~Heap() { |
| // If we don't reset then the mark stack complains in it's destructor. |
| allocation_stack_->Reset(); |
| live_stack_->Reset(); |
| |
| VLOG(heap) << "~Heap()"; |
| // We can't take the heap lock here because there might be a daemon thread suspended with the |
| // heap lock held. We know though that no non-daemon threads are executing, and we know that |
| // all daemon threads are suspended, and we also know that the threads list have been deleted, so |
| // those threads can't resume. We're the only running thread, and we can do whatever we like... |
| STLDeleteElements(&spaces_); |
| delete gc_complete_lock_; |
| STLDeleteValues(&cumulative_timings_); |
| } |
| |
| ContinuousSpace* Heap::FindSpaceFromObject(const Object* obj) const { |
| // TODO: C++0x auto |
| for (Spaces::const_iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| if ((*it)->Contains(obj)) { |
| return *it; |
| } |
| } |
| LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!"; |
| return NULL; |
| } |
| |
| ImageSpace* Heap::GetImageSpace() { |
| // TODO: C++0x auto |
| for (Spaces::const_iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| if ((*it)->IsImageSpace()) { |
| return (*it)->AsImageSpace(); |
| } |
| } |
| return NULL; |
| } |
| |
| DlMallocSpace* Heap::GetAllocSpace() { |
| return alloc_space_; |
| } |
| |
| static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) { |
| size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start); |
| if (used_bytes < chunk_size) { |
| size_t chunk_free_bytes = chunk_size - used_bytes; |
| size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg); |
| max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes); |
| } |
| } |
| |
| Object* Heap::AllocObject(Thread* self, Class* c, size_t byte_count) { |
| DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(Class)) || |
| (c->IsVariableSize() || c->GetObjectSize() == byte_count) || |
| strlen(ClassHelper(c).GetDescriptor()) == 0); |
| DCHECK_GE(byte_count, sizeof(Object)); |
| |
| Object* obj = NULL; |
| size_t size = 0; |
| uint64_t allocation_start = 0; |
| if (measure_allocation_time_) { |
| allocation_start = NanoTime(); |
| } |
| |
| // We need to have a zygote space or else our newly allocated large object can end up in the |
| // Zygote resulting in it being prematurely freed. |
| // We can only do this for primive objects since large objects will not be within the card table |
| // range. This also means that we rely on SetClass not dirtying the object's card. |
| if (byte_count >= large_object_threshold_ && have_zygote_space_ && c->IsPrimitiveArray()) { |
| size = RoundUp(byte_count, kPageSize); |
| obj = Allocate(self, large_object_space_.get(), size); |
| // Make sure that our large object didn't get placed anywhere within the space interval or else |
| // it breaks the immune range. |
| DCHECK(obj == NULL || |
| reinterpret_cast<byte*>(obj) < spaces_.front()->Begin() || |
| reinterpret_cast<byte*>(obj) >= spaces_.back()->End()); |
| } else { |
| obj = Allocate(self, alloc_space_, byte_count); |
| |
| // Ensure that we did not allocate into a zygote space. |
| DCHECK(obj == NULL || !have_zygote_space_ || !FindSpaceFromObject(obj)->IsZygoteSpace()); |
| size = alloc_space_->AllocationSize(obj); |
| } |
| |
| if (LIKELY(obj != NULL)) { |
| obj->SetClass(c); |
| |
| // Record allocation after since we want to use the atomic add for the atomic fence to guard |
| // the SetClass since we do not want the class to appear NULL in another thread. |
| RecordAllocation(size, obj); |
| |
| if (Dbg::IsAllocTrackingEnabled()) { |
| Dbg::RecordAllocation(c, byte_count); |
| } |
| if (static_cast<size_t>(num_bytes_allocated_) >= concurrent_start_bytes_) { |
| // We already have a request pending, no reason to start more until we update |
| // concurrent_start_bytes_. |
| concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); |
| // The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint. |
| SirtRef<Object> ref(self, obj); |
| RequestConcurrentGC(self); |
| } |
| VerifyObject(obj); |
| |
| if (measure_allocation_time_) { |
| total_allocation_time_ += (NanoTime() - allocation_start) / kTimeAdjust; |
| } |
| |
| return obj; |
| } |
| int64_t total_bytes_free = GetFreeMemory(); |
| size_t max_contiguous_allocation = 0; |
| // TODO: C++0x auto |
| for (Spaces::const_iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| if ((*it)->IsAllocSpace()) { |
| (*it)->AsAllocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation); |
| } |
| } |
| |
| std::string msg(StringPrintf("Failed to allocate a %zd-byte %s (%lld total bytes free; largest possible contiguous allocation %zd bytes)", |
| byte_count, PrettyDescriptor(c).c_str(), total_bytes_free, max_contiguous_allocation)); |
| self->ThrowOutOfMemoryError(msg.c_str()); |
| return NULL; |
| } |
| |
| bool Heap::IsHeapAddress(const Object* obj) { |
| // Note: we deliberately don't take the lock here, and mustn't test anything that would |
| // require taking the lock. |
| if (obj == NULL) { |
| return true; |
| } |
| if (!IsAligned<kObjectAlignment>(obj)) { |
| return false; |
| } |
| for (size_t i = 0; i < spaces_.size(); ++i) { |
| if (spaces_[i]->Contains(obj)) { |
| return true; |
| } |
| } |
| // Note: Doing this only works for the free list version of the large object space since the |
| // multiple memory map version uses a lock to do the contains check. |
| return large_object_space_->Contains(obj); |
| } |
| |
| bool Heap::IsLiveObjectLocked(const Object* obj) { |
| Locks::heap_bitmap_lock_->AssertReaderHeld(Thread::Current()); |
| return IsHeapAddress(obj) && GetLiveBitmap()->Test(obj); |
| } |
| |
| #if VERIFY_OBJECT_ENABLED |
| void Heap::VerifyObject(const Object* obj) { |
| if (obj == NULL || this == NULL || !verify_objects_ || Runtime::Current()->IsShuttingDown() || |
| Thread::Current() == NULL || |
| Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) { |
| return; |
| } |
| VerifyObjectBody(obj); |
| } |
| #endif |
| |
| void Heap::DumpSpaces() { |
| // TODO: C++0x auto |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| ContinuousSpace* space = *it; |
| SpaceBitmap* live_bitmap = space->GetLiveBitmap(); |
| SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); |
| LOG(INFO) << space << " " << *space << "\n" |
| << live_bitmap << " " << *live_bitmap << "\n" |
| << mark_bitmap << " " << *mark_bitmap; |
| } |
| // TODO: Dump large object space? |
| } |
| |
| void Heap::VerifyObjectBody(const Object* obj) { |
| if (!IsAligned<kObjectAlignment>(obj)) { |
| LOG(FATAL) << "Object isn't aligned: " << obj; |
| } |
| |
| // TODO: the bitmap tests below are racy if VerifyObjectBody is called without the |
| // heap_bitmap_lock_. |
| if (!GetLiveBitmap()->Test(obj)) { |
| // Check the allocation stack / live stack. |
| if (!std::binary_search(live_stack_->Begin(), live_stack_->End(), obj) && |
| std::find(allocation_stack_->Begin(), allocation_stack_->End(), obj) == |
| allocation_stack_->End()) { |
| if (large_object_space_->GetLiveObjects()->Test(obj)) { |
| DumpSpaces(); |
| LOG(FATAL) << "Object is dead: " << obj; |
| } |
| } |
| } |
| |
| // Ignore early dawn of the universe verifications |
| if (!VERIFY_OBJECT_FAST && GetObjectsAllocated() > 10) { |
| const byte* raw_addr = reinterpret_cast<const byte*>(obj) + |
| Object::ClassOffset().Int32Value(); |
| const Class* c = *reinterpret_cast<Class* const *>(raw_addr); |
| if (c == NULL) { |
| LOG(FATAL) << "Null class in object: " << obj; |
| } else if (!IsAligned<kObjectAlignment>(c)) { |
| LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj; |
| } else if (!GetLiveBitmap()->Test(c)) { |
| LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj; |
| } |
| // Check obj.getClass().getClass() == obj.getClass().getClass().getClass() |
| // Note: we don't use the accessors here as they have internal sanity checks |
| // that we don't want to run |
| raw_addr = reinterpret_cast<const byte*>(c) + Object::ClassOffset().Int32Value(); |
| const Class* c_c = *reinterpret_cast<Class* const *>(raw_addr); |
| raw_addr = reinterpret_cast<const byte*>(c_c) + Object::ClassOffset().Int32Value(); |
| const Class* c_c_c = *reinterpret_cast<Class* const *>(raw_addr); |
| CHECK_EQ(c_c, c_c_c); |
| } |
| } |
| |
| void Heap::VerificationCallback(Object* obj, void* arg) { |
| DCHECK(obj != NULL); |
| reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj); |
| } |
| |
| void Heap::VerifyHeap() { |
| ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| GetLiveBitmap()->Walk(Heap::VerificationCallback, this); |
| } |
| |
| void Heap::RecordAllocation(size_t size, Object* obj) { |
| DCHECK(obj != NULL); |
| DCHECK_GT(size, 0u); |
| num_bytes_allocated_ += size; |
| |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* thread_stats = Thread::Current()->GetStats(); |
| ++thread_stats->allocated_objects; |
| thread_stats->allocated_bytes += size; |
| |
| // TODO: Update these atomically. |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| ++global_stats->allocated_objects; |
| global_stats->allocated_bytes += size; |
| } |
| |
| // This is safe to do since the GC will never free objects which are neither in the allocation |
| // stack or the live bitmap. |
| while (!allocation_stack_->AtomicPushBack(obj)) { |
| Thread* self = Thread::Current(); |
| self->TransitionFromRunnableToSuspended(kWaitingPerformingGc); |
| // If we actually ran a different type of Gc than requested, we can skip the index forwards. |
| CollectGarbageInternal(kGcTypeSticky, kGcCauseForAlloc, false); |
| self->TransitionFromSuspendedToRunnable(); |
| } |
| } |
| |
| void Heap::RecordFree(size_t freed_objects, size_t freed_bytes) { |
| DCHECK_LE(freed_bytes, static_cast<size_t>(num_bytes_allocated_)); |
| num_bytes_allocated_ -= freed_bytes; |
| |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* thread_stats = Thread::Current()->GetStats(); |
| thread_stats->freed_objects += freed_objects; |
| thread_stats->freed_bytes += freed_bytes; |
| |
| // TODO: Do this concurrently. |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| global_stats->freed_objects += freed_objects; |
| global_stats->freed_bytes += freed_bytes; |
| } |
| } |
| |
| Object* Heap::TryToAllocate(Thread* self, AllocSpace* space, size_t alloc_size, bool grow) { |
| // Should we try to use a CAS here and fix up num_bytes_allocated_ later with AllocationSize? |
| if (enforce_heap_growth_rate_ && num_bytes_allocated_ + alloc_size > max_allowed_footprint_) { |
| if (grow) { |
| // Grow the heap by alloc_size extra bytes. |
| max_allowed_footprint_ = std::min(max_allowed_footprint_ + alloc_size, growth_limit_); |
| VLOG(gc) << "Grow heap to " << PrettySize(max_allowed_footprint_) |
| << " for a " << PrettySize(alloc_size) << " allocation"; |
| } else { |
| return NULL; |
| } |
| } |
| |
| if (num_bytes_allocated_ + alloc_size > growth_limit_) { |
| // Completely out of memory. |
| return NULL; |
| } |
| |
| return space->Alloc(self, alloc_size); |
| } |
| |
| Object* Heap::Allocate(Thread* self, AllocSpace* space, size_t alloc_size) { |
| // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are |
| // done in the runnable state where suspension is expected. |
| DCHECK_EQ(self->GetState(), kRunnable); |
| self->AssertThreadSuspensionIsAllowable(); |
| |
| Object* ptr = TryToAllocate(self, space, alloc_size, false); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| // The allocation failed. If the GC is running, block until it completes, and then retry the |
| // allocation. |
| GcType last_gc = WaitForConcurrentGcToComplete(self); |
| if (last_gc != kGcTypeNone) { |
| // A GC was in progress and we blocked, retry allocation now that memory has been freed. |
| ptr = TryToAllocate(self, space, alloc_size, false); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| } |
| |
| // Loop through our different Gc types and try to Gc until we get enough free memory. |
| for (size_t i = static_cast<size_t>(last_gc) + 1; i < static_cast<size_t>(kGcTypeMax); ++i) { |
| bool run_gc = false; |
| GcType gc_type = static_cast<GcType>(i); |
| switch (gc_type) { |
| case kGcTypeSticky: { |
| const size_t alloc_space_size = alloc_space_->Size(); |
| run_gc = alloc_space_size > min_alloc_space_size_for_sticky_gc_ && |
| alloc_space_->Capacity() - alloc_space_size >= min_remaining_space_for_sticky_gc_; |
| break; |
| } |
| case kGcTypePartial: |
| run_gc = have_zygote_space_; |
| break; |
| case kGcTypeFull: |
| run_gc = true; |
| break; |
| default: |
| break; |
| } |
| |
| if (run_gc) { |
| self->TransitionFromRunnableToSuspended(kWaitingPerformingGc); |
| |
| // If we actually ran a different type of Gc than requested, we can skip the index forwards. |
| GcType gc_type_ran = CollectGarbageInternal(gc_type, kGcCauseForAlloc, false); |
| DCHECK(static_cast<size_t>(gc_type_ran) >= i); |
| i = static_cast<size_t>(gc_type_ran); |
| self->TransitionFromSuspendedToRunnable(); |
| |
| // Did we free sufficient memory for the allocation to succeed? |
| ptr = TryToAllocate(self, space, alloc_size, false); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| } |
| } |
| |
| // Allocations have failed after GCs; this is an exceptional state. |
| // Try harder, growing the heap if necessary. |
| ptr = TryToAllocate(self, space, alloc_size, true); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| // Most allocations should have succeeded by now, so the heap is really full, really fragmented, |
| // or the requested size is really big. Do another GC, collecting SoftReferences this time. The |
| // VM spec requires that all SoftReferences have been collected and cleared before throwing OOME. |
| |
| // OLD-TODO: wait for the finalizers from the previous GC to finish |
| VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) |
| << " allocation"; |
| |
| // We don't need a WaitForConcurrentGcToComplete here either. |
| self->TransitionFromRunnableToSuspended(kWaitingPerformingGc); |
| CollectGarbageInternal(kGcTypeFull, kGcCauseForAlloc, true); |
| self->TransitionFromSuspendedToRunnable(); |
| return TryToAllocate(self, space, alloc_size, true); |
| } |
| |
| void Heap::SetTargetHeapUtilization(float target) { |
| DCHECK_GT(target, 0.0f); // asserted in Java code |
| DCHECK_LT(target, 1.0f); |
| target_utilization_ = target; |
| } |
| |
| int64_t Heap::GetMaxMemory() const { |
| return growth_limit_; |
| } |
| |
| int64_t Heap::GetTotalMemory() const { |
| return GetMaxMemory(); |
| } |
| |
| int64_t Heap::GetFreeMemory() const { |
| return GetMaxMemory() - num_bytes_allocated_; |
| } |
| |
| size_t Heap::GetTotalBytesFreed() const { |
| return total_bytes_freed_; |
| } |
| |
| size_t Heap::GetTotalObjectsFreed() const { |
| return total_objects_freed_; |
| } |
| |
| size_t Heap::GetTotalObjectsAllocated() const { |
| size_t total = large_object_space_->GetTotalObjectsAllocated(); |
| for (Spaces::const_iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| Space* space = *it; |
| if (space->IsAllocSpace()) { |
| total += space->AsAllocSpace()->GetTotalObjectsAllocated(); |
| } |
| } |
| return total; |
| } |
| |
| size_t Heap::GetTotalBytesAllocated() const { |
| size_t total = large_object_space_->GetTotalBytesAllocated(); |
| for (Spaces::const_iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| Space* space = *it; |
| if (space->IsAllocSpace()) { |
| total += space->AsAllocSpace()->GetTotalBytesAllocated(); |
| } |
| } |
| return total; |
| } |
| |
| class InstanceCounter { |
| public: |
| InstanceCounter(Class* c, bool count_assignable, size_t* const count) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) |
| : class_(c), count_assignable_(count_assignable), count_(count) { |
| |
| } |
| |
| void operator()(const Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { |
| const Class* instance_class = o->GetClass(); |
| if (count_assignable_) { |
| if (instance_class == class_) { |
| ++*count_; |
| } |
| } else { |
| if (instance_class != NULL && class_->IsAssignableFrom(instance_class)) { |
| ++*count_; |
| } |
| } |
| } |
| |
| private: |
| Class* class_; |
| bool count_assignable_; |
| size_t* const count_; |
| }; |
| |
| int64_t Heap::CountInstances(Class* c, bool count_assignable) { |
| size_t count = 0; |
| InstanceCounter counter(c, count_assignable, &count); |
| ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_); |
| GetLiveBitmap()->Visit(counter); |
| return count; |
| } |
| |
| void Heap::CollectGarbage(bool clear_soft_references) { |
| // Even if we waited for a GC we still need to do another GC since weaks allocated during the |
| // last GC will not have necessarily been cleared. |
| Thread* self = Thread::Current(); |
| WaitForConcurrentGcToComplete(self); |
| ScopedThreadStateChange tsc(self, kWaitingPerformingGc); |
| // CollectGarbageInternal(have_zygote_space_ ? kGcTypePartial : kGcTypeFull, clear_soft_references); |
| CollectGarbageInternal(kGcTypeFull, kGcCauseExplicit, clear_soft_references); |
| } |
| |
| void Heap::PreZygoteFork() { |
| static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock); |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, zygote_creation_lock_); |
| |
| // Try to see if we have any Zygote spaces. |
| if (have_zygote_space_) { |
| return; |
| } |
| |
| VLOG(heap) << "Starting PreZygoteFork with alloc space size " << PrettySize(alloc_space_->Size()); |
| |
| { |
| // Flush the alloc stack. |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| FlushAllocStack(); |
| } |
| |
| // Replace the first alloc space we find with a zygote space. |
| // TODO: C++0x auto |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| if ((*it)->IsAllocSpace()) { |
| DlMallocSpace* zygote_space = (*it)->AsAllocSpace(); |
| |
| // Turns the current alloc space into a Zygote space and obtain the new alloc space composed |
| // of the remaining available heap memory. |
| alloc_space_ = zygote_space->CreateZygoteSpace(); |
| alloc_space_->SetFootprintLimit(alloc_space_->Capacity()); |
| |
| // Change the GC retention policy of the zygote space to only collect when full. |
| zygote_space->SetGcRetentionPolicy(kGcRetentionPolicyFullCollect); |
| AddSpace(alloc_space_); |
| have_zygote_space_ = true; |
| break; |
| } |
| } |
| |
| // Reset the cumulative loggers since we now have a few additional timing phases. |
| // TODO: C++0x |
| for (CumulativeTimings::iterator it = cumulative_timings_.begin(); |
| it != cumulative_timings_.end(); ++it) { |
| it->second->Reset(); |
| } |
| } |
| |
| void Heap::FlushAllocStack() { |
| MarkAllocStack(alloc_space_->GetLiveBitmap(), large_object_space_->GetLiveObjects(), |
| allocation_stack_.get()); |
| allocation_stack_->Reset(); |
| } |
| |
| size_t Heap::GetUsedMemorySize() const { |
| return num_bytes_allocated_; |
| } |
| |
| void Heap::MarkAllocStack(SpaceBitmap* bitmap, SpaceSetMap* large_objects, ObjectStack* stack) { |
| Object** limit = stack->End(); |
| for (Object** it = stack->Begin(); it != limit; ++it) { |
| const Object* obj = *it; |
| DCHECK(obj != NULL); |
| if (LIKELY(bitmap->HasAddress(obj))) { |
| bitmap->Set(obj); |
| } else { |
| large_objects->Set(obj); |
| } |
| } |
| } |
| |
| void Heap::UnMarkAllocStack(SpaceBitmap* bitmap, SpaceSetMap* large_objects, ObjectStack* stack) { |
| Object** limit = stack->End(); |
| for (Object** it = stack->Begin(); it != limit; ++it) { |
| const Object* obj = *it; |
| DCHECK(obj != NULL); |
| if (LIKELY(bitmap->HasAddress(obj))) { |
| bitmap->Clear(obj); |
| } else { |
| large_objects->Clear(obj); |
| } |
| } |
| } |
| |
| GcType Heap::CollectGarbageInternal(GcType gc_type, GcCause gc_cause, bool clear_soft_references) { |
| Thread* self = Thread::Current(); |
| Locks::mutator_lock_->AssertNotHeld(self); |
| DCHECK_EQ(self->GetState(), kWaitingPerformingGc); |
| |
| if (self->IsHandlingStackOverflow()) { |
| LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow."; |
| } |
| |
| // Ensure there is only one GC at a time. |
| bool start_collect = false; |
| while (!start_collect) { |
| { |
| MutexLock mu(self, *gc_complete_lock_); |
| if (!is_gc_running_) { |
| is_gc_running_ = true; |
| start_collect = true; |
| } |
| } |
| if (!start_collect) { |
| WaitForConcurrentGcToComplete(self); |
| // TODO: if another thread beat this one to do the GC, perhaps we should just return here? |
| // Not doing at the moment to ensure soft references are cleared. |
| } |
| } |
| gc_complete_lock_->AssertNotHeld(self); |
| |
| if (gc_cause == kGcCauseForAlloc && Runtime::Current()->HasStatsEnabled()) { |
| ++Runtime::Current()->GetStats()->gc_for_alloc_count; |
| ++Thread::Current()->GetStats()->gc_for_alloc_count; |
| } |
| |
| // We need to do partial GCs every now and then to avoid the heap growing too much and |
| // fragmenting. |
| if (gc_type == kGcTypeSticky && ++sticky_gc_count_ > partial_gc_frequency_) { |
| gc_type = kGcTypePartial; |
| } |
| if (gc_type != kGcTypeSticky) { |
| sticky_gc_count_ = 0; |
| } |
| |
| if (concurrent_gc_) { |
| CollectGarbageConcurrentMarkSweepPlan(self, gc_type, gc_cause, clear_soft_references); |
| } else { |
| CollectGarbageMarkSweepPlan(self, gc_type, gc_cause, clear_soft_references); |
| } |
| bytes_since_last_gc_ = 0; |
| |
| { |
| MutexLock mu(self, *gc_complete_lock_); |
| is_gc_running_ = false; |
| last_gc_type_ = gc_type; |
| // Wake anyone who may have been waiting for the GC to complete. |
| gc_complete_cond_->Broadcast(self); |
| } |
| // Inform DDMS that a GC completed. |
| Dbg::GcDidFinish(); |
| return gc_type; |
| } |
| |
| void Heap::CollectGarbageMarkSweepPlan(Thread* self, GcType gc_type, GcCause gc_cause, |
| bool clear_soft_references) { |
| TimingLogger timings("CollectGarbageInternal", true); |
| |
| std::stringstream gc_type_str; |
| gc_type_str << gc_type << " "; |
| |
| // Suspend all threads are get exclusive access to the heap. |
| uint64_t start_time = NanoTime(); |
| ThreadList* thread_list = Runtime::Current()->GetThreadList(); |
| thread_list->SuspendAll(); |
| timings.AddSplit("SuspendAll"); |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| |
| size_t bytes_freed = 0; |
| Object* cleared_references = NULL; |
| { |
| MarkSweep mark_sweep(mark_stack_.get()); |
| mark_sweep.Init(); |
| timings.AddSplit("Init"); |
| |
| if (verify_pre_gc_heap_) { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| if (!VerifyHeapReferences()) { |
| LOG(FATAL) << "Pre " << gc_type_str.str() << "Gc verification failed"; |
| } |
| timings.AddSplit("VerifyHeapReferencesPreGC"); |
| } |
| |
| // Swap allocation stack and live stack, enabling us to have new allocations during this GC. |
| SwapStacks(); |
| |
| // We will need to know which cards were dirty for doing concurrent processing of dirty cards. |
| // TODO: Investigate using a mark stack instead of a vector. |
| std::vector<byte*> dirty_cards; |
| if (gc_type == kGcTypeSticky) { |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| card_table_->GetDirtyCards(*it, dirty_cards); |
| } |
| } |
| |
| // Clear image space cards and keep track of cards we cleared in the mod-union table. |
| ClearCards(timings); |
| |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| if (gc_type == kGcTypePartial) { |
| // Copy the mark bits over from the live bits, do this as early as possible or else we can |
| // accidentally un-mark roots. |
| // Needed for scanning dirty objects. |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| if ((*it)->GetGcRetentionPolicy() == kGcRetentionPolicyFullCollect) { |
| mark_sweep.BindLiveToMarkBitmap(*it); |
| } |
| } |
| timings.AddSplit("BindLiveToMarked"); |
| |
| // We can assume that everything from the start of the first space to the alloc space is marked. |
| mark_sweep.SetImmuneRange(reinterpret_cast<Object*>(spaces_[0]->Begin()), |
| reinterpret_cast<Object*>(alloc_space_->Begin())); |
| } else if (gc_type == kGcTypeSticky) { |
| for (Spaces::iterator it = spaces_.begin();it != spaces_.end(); ++it) { |
| if ((*it)->GetGcRetentionPolicy() != kGcRetentionPolicyNeverCollect) { |
| mark_sweep.BindLiveToMarkBitmap(*it); |
| } |
| } |
| timings.AddSplit("BindLiveToMarkBitmap"); |
| large_object_space_->CopyLiveToMarked(); |
| timings.AddSplit("CopyLiveToMarked"); |
| mark_sweep.SetImmuneRange(reinterpret_cast<Object*>(spaces_[0]->Begin()), |
| reinterpret_cast<Object*>(alloc_space_->Begin())); |
| } |
| mark_sweep.FindDefaultMarkBitmap(); |
| |
| mark_sweep.MarkRoots(); |
| timings.AddSplit("MarkRoots"); |
| |
| // Roots are marked on the bitmap and the mark_stack is empty. |
| DCHECK(mark_stack_->IsEmpty()); |
| |
| UpdateAndMarkModUnion(&mark_sweep, timings, gc_type); |
| |
| if (gc_type != kGcTypeSticky) { |
| MarkAllocStack(alloc_space_->GetLiveBitmap(), large_object_space_->GetLiveObjects(), |
| live_stack_.get()); |
| timings.AddSplit("MarkStackAsLive"); |
| } |
| |
| if (verify_mod_union_table_) { |
| zygote_mod_union_table_->Update(); |
| zygote_mod_union_table_->Verify(); |
| mod_union_table_->Update(); |
| mod_union_table_->Verify(); |
| } |
| |
| // Recursively mark all the non-image bits set in the mark bitmap. |
| if (gc_type != kGcTypeSticky) { |
| mark_sweep.RecursiveMark(gc_type == kGcTypePartial, timings); |
| } else { |
| mark_sweep.RecursiveMarkCards(card_table_.get(), dirty_cards, timings); |
| } |
| mark_sweep.DisableFinger(); |
| |
| // Need to process references before the swap since it uses IsMarked. |
| mark_sweep.ProcessReferences(clear_soft_references); |
| timings.AddSplit("ProcessReferences"); |
| |
| #ifndef NDEBUG |
| // Verify that we only reach marked objects from the image space |
| mark_sweep.VerifyImageRoots(); |
| timings.AddSplit("VerifyImageRoots"); |
| #endif |
| |
| if (gc_type != kGcTypeSticky) { |
| mark_sweep.Sweep(gc_type == kGcTypePartial, false); |
| timings.AddSplit("Sweep"); |
| mark_sweep.SweepLargeObjects(false); |
| timings.AddSplit("SweepLargeObjects"); |
| } else { |
| mark_sweep.SweepArray(timings, live_stack_.get(), false); |
| timings.AddSplit("SweepArray"); |
| } |
| live_stack_->Reset(); |
| |
| // Unbind the live and mark bitmaps. |
| mark_sweep.UnBindBitmaps(); |
| |
| const bool swap = true; |
| if (swap) { |
| if (gc_type == kGcTypeSticky) { |
| SwapLargeObjects(); |
| } else { |
| SwapBitmaps(gc_type); |
| } |
| } |
| |
| if (verify_system_weaks_) { |
| mark_sweep.VerifySystemWeaks(); |
| timings.AddSplit("VerifySystemWeaks"); |
| } |
| |
| cleared_references = mark_sweep.GetClearedReferences(); |
| bytes_freed = mark_sweep.GetFreedBytes(); |
| total_bytes_freed_ += bytes_freed; |
| total_objects_freed_ += mark_sweep.GetFreedObjects(); |
| } |
| |
| if (verify_post_gc_heap_) { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| if (!VerifyHeapReferences()) { |
| LOG(FATAL) << "Post " + gc_type_str.str() + "Gc verification failed"; |
| } |
| timings.AddSplit("VerifyHeapReferencesPostGC"); |
| } |
| |
| GrowForUtilization(); |
| timings.AddSplit("GrowForUtilization"); |
| |
| thread_list->ResumeAll(); |
| timings.AddSplit("ResumeAll"); |
| |
| EnqueueClearedReferences(&cleared_references); |
| RequestHeapTrim(); |
| timings.AddSplit("Finish"); |
| |
| // If the GC was slow, then print timings in the log. |
| uint64_t duration = (NanoTime() - start_time) / 1000 * 1000; |
| total_paused_time_ += duration; |
| if (duration > MsToNs(50)) { |
| const size_t percent_free = GetPercentFree(); |
| const size_t current_heap_size = GetUsedMemorySize(); |
| const size_t total_memory = GetTotalMemory(); |
| LOG(INFO) << gc_cause << " " << gc_type_str.str() |
| << "GC freed " << PrettySize(bytes_freed) << ", " << percent_free << "% free, " |
| << PrettySize(current_heap_size) << "/" << PrettySize(total_memory) << ", " |
| << "paused " << PrettyDuration(duration); |
| if (VLOG_IS_ON(heap)) { |
| timings.Dump(); |
| } |
| } |
| |
| CumulativeLogger* logger = cumulative_timings_.Get(gc_type); |
| logger->Start(); |
| logger->AddLogger(timings); |
| logger->End(); // Next iteration. |
| } |
| |
| void Heap::UpdateAndMarkModUnion(MarkSweep* mark_sweep, TimingLogger& timings, GcType gc_type) { |
| if (gc_type == kGcTypeSticky) { |
| // Don't need to do anything for mod union table in this case since we are only scanning dirty |
| // cards. |
| return; |
| } |
| |
| // Update zygote mod union table. |
| if (gc_type == kGcTypePartial) { |
| zygote_mod_union_table_->Update(); |
| timings.AddSplit("UpdateZygoteModUnionTable"); |
| |
| zygote_mod_union_table_->MarkReferences(mark_sweep); |
| timings.AddSplit("ZygoteMarkReferences"); |
| } |
| |
| // Processes the cards we cleared earlier and adds their objects into the mod-union table. |
| mod_union_table_->Update(); |
| timings.AddSplit("UpdateModUnionTable"); |
| |
| // Scans all objects in the mod-union table. |
| mod_union_table_->MarkReferences(mark_sweep); |
| timings.AddSplit("MarkImageToAllocSpaceReferences"); |
| } |
| |
| void Heap::RootMatchesObjectVisitor(const Object* root, void* arg) { |
| Object* obj = reinterpret_cast<Object*>(arg); |
| if (root == obj) { |
| LOG(INFO) << "Object " << obj << " is a root"; |
| } |
| } |
| |
| class ScanVisitor { |
| public: |
| void operator ()(const Object* obj) const { |
| LOG(INFO) << "Would have rescanned object " << obj; |
| } |
| }; |
| |
| class VerifyReferenceVisitor { |
| public: |
| VerifyReferenceVisitor(Heap* heap, bool* failed) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, |
| Locks::heap_bitmap_lock_) |
| : heap_(heap), |
| failed_(failed) { |
| } |
| |
| // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter |
| // analysis. |
| void operator ()(const Object* obj, const Object* ref, const MemberOffset& /* offset */, |
| bool /* is_static */) const NO_THREAD_SAFETY_ANALYSIS { |
| // Verify that the reference is live. |
| if (ref != NULL && !IsLive(ref)) { |
| CardTable* card_table = heap_->GetCardTable(); |
| ObjectStack* alloc_stack = heap_->allocation_stack_.get(); |
| ObjectStack* live_stack = heap_->live_stack_.get(); |
| |
| byte* card_addr = card_table->CardFromAddr(obj); |
| LOG(ERROR) << "Object " << obj << " references dead object " << ref << "\n" |
| << "IsDirty = " << (*card_addr == CardTable::kCardDirty) << "\n" |
| << "Obj type " << PrettyTypeOf(obj) << "\n" |
| << "Ref type " << PrettyTypeOf(ref); |
| card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj)); |
| void* cover_begin = card_table->AddrFromCard(card_addr); |
| void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) + |
| CardTable::kCardSize); |
| LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin |
| << "-" << cover_end; |
| SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetSpaceBitmap(obj); |
| |
| // Print out how the object is live. |
| if (bitmap->Test(obj)) { |
| LOG(ERROR) << "Object " << obj << " found in live bitmap"; |
| } |
| if (std::binary_search(alloc_stack->Begin(), alloc_stack->End(), obj)) { |
| LOG(ERROR) << "Object " << obj << " found in allocation stack"; |
| } |
| if (std::binary_search(live_stack->Begin(), live_stack->End(), obj)) { |
| LOG(ERROR) << "Object " << obj << " found in live stack"; |
| } |
| if (std::binary_search(live_stack->Begin(), live_stack->End(), ref)) { |
| LOG(ERROR) << "Reference " << ref << " found in live stack!"; |
| } |
| |
| // Attempt to see if the card table missed the reference. |
| ScanVisitor scan_visitor; |
| byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr)); |
| card_table->Scan(bitmap, byte_cover_begin, byte_cover_begin + CardTable::kCardSize, |
| scan_visitor, IdentityFunctor()); |
| |
| // Try and see if a mark sweep collector scans the reference. |
| ObjectStack* mark_stack = heap_->mark_stack_.get(); |
| MarkSweep ms(mark_stack); |
| ms.Init(); |
| mark_stack->Reset(); |
| ms.DisableFinger(); |
| |
| // All the references should end up in the mark stack. |
| ms.ScanRoot(obj); |
| if (std::find(mark_stack->Begin(), mark_stack->End(), ref)) { |
| LOG(ERROR) << "Ref found in the mark_stack when rescanning the object!"; |
| } else { |
| LOG(ERROR) << "Dumping mark stack contents"; |
| for (Object** it = mark_stack->Begin(); it != mark_stack->End(); ++it) { |
| LOG(ERROR) << *it; |
| } |
| } |
| mark_stack->Reset(); |
| |
| // Search to see if any of the roots reference our object. |
| void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj)); |
| Runtime::Current()->VisitRoots(&Heap::RootMatchesObjectVisitor, arg); |
| *failed_ = true; |
| } |
| } |
| |
| bool IsLive(const Object* obj) const NO_THREAD_SAFETY_ANALYSIS { |
| SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetSpaceBitmap(obj); |
| if (bitmap != NULL) { |
| if (bitmap->Test(obj)) { |
| return true; |
| } |
| } else if (heap_->GetLargeObjectsSpace()->Contains(obj)) { |
| return true; |
| } else { |
| heap_->DumpSpaces(); |
| LOG(ERROR) << "Object " << obj << " not found in any spaces"; |
| } |
| ObjectStack* alloc_stack = heap_->allocation_stack_.get(); |
| // At this point we need to search the allocation since things in the live stack may get swept. |
| if (std::binary_search(alloc_stack->Begin(), alloc_stack->End(), const_cast<Object*>(obj))) { |
| return true; |
| } |
| // Not either in the live bitmap or allocation stack, so the object must be dead. |
| return false; |
| } |
| |
| private: |
| Heap* heap_; |
| bool* failed_; |
| }; |
| |
| class VerifyObjectVisitor { |
| public: |
| VerifyObjectVisitor(Heap* heap) |
| : heap_(heap), |
| failed_(false) { |
| |
| } |
| |
| void operator ()(const Object* obj) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| VerifyReferenceVisitor visitor(heap_, const_cast<bool*>(&failed_)); |
| MarkSweep::VisitObjectReferences(obj, visitor); |
| } |
| |
| bool Failed() const { |
| return failed_; |
| } |
| |
| private: |
| Heap* heap_; |
| bool failed_; |
| }; |
| |
| // Must do this with mutators suspended since we are directly accessing the allocation stacks. |
| bool Heap::VerifyHeapReferences() { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| // Lets sort our allocation stacks so that we can efficiently binary search them. |
| std::sort(allocation_stack_->Begin(), allocation_stack_->End()); |
| std::sort(live_stack_->Begin(), live_stack_->End()); |
| // Perform the verification. |
| VerifyObjectVisitor visitor(this); |
| GetLiveBitmap()->Visit(visitor); |
| // We don't want to verify the objects in the allocation stack since they themselves may be |
| // pointing to dead objects if they are not reachable. |
| if (visitor.Failed()) { |
| DumpSpaces(); |
| return false; |
| } |
| return true; |
| } |
| |
| class VerifyReferenceCardVisitor { |
| public: |
| VerifyReferenceCardVisitor(Heap* heap, bool* failed) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, |
| Locks::heap_bitmap_lock_) |
| : heap_(heap), |
| failed_(failed) { |
| } |
| |
| // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter |
| // analysis. |
| void operator ()(const Object* obj, const Object* ref, const MemberOffset& offset, |
| bool is_static) const NO_THREAD_SAFETY_ANALYSIS { |
| if (ref != NULL && !obj->GetClass()->IsPrimitiveArray()) { |
| CardTable* card_table = heap_->GetCardTable(); |
| // If the object is not dirty and it is referencing something in the live stack other than |
| // class, then it must be on a dirty card. |
| if (!card_table->AddrIsInCardTable(obj)) { |
| LOG(ERROR) << "Object " << obj << " is not in the address range of the card table"; |
| *failed_ = true; |
| } else if (!card_table->IsDirty(obj)) { |
| ObjectStack* live_stack = heap_->live_stack_.get(); |
| if (std::binary_search(live_stack->Begin(), live_stack->End(), ref) && !ref->IsClass()) { |
| if (std::binary_search(live_stack->Begin(), live_stack->End(), obj)) { |
| LOG(ERROR) << "Object " << obj << " found in live stack"; |
| } |
| if (heap_->GetLiveBitmap()->Test(obj)) { |
| LOG(ERROR) << "Object " << obj << " found in live bitmap"; |
| } |
| LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj) |
| << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack"; |
| |
| // Print which field of the object is dead. |
| if (!obj->IsObjectArray()) { |
| const Class* klass = is_static ? obj->AsClass() : obj->GetClass(); |
| CHECK(klass != NULL); |
| const ObjectArray<Field>* fields = is_static ? klass->GetSFields() : klass->GetIFields(); |
| CHECK(fields != NULL); |
| for (int32_t i = 0; i < fields->GetLength(); ++i) { |
| const Field* cur = fields->Get(i); |
| if (cur->GetOffset().Int32Value() == offset.Int32Value()) { |
| LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is " |
| << PrettyField(cur); |
| break; |
| } |
| } |
| } else { |
| const ObjectArray<Object>* object_array = obj->AsObjectArray<Object>(); |
| for (int32_t i = 0; i < object_array->GetLength(); ++i) { |
| if (object_array->Get(i) == ref) { |
| LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref"; |
| } |
| } |
| } |
| |
| *failed_ = true; |
| } |
| } |
| } |
| } |
| |
| private: |
| Heap* heap_; |
| bool* failed_; |
| }; |
| |
| class VerifyLiveStackReferences { |
| public: |
| VerifyLiveStackReferences(Heap* heap) |
| : heap_(heap), |
| failed_(false) { |
| |
| } |
| |
| void operator ()(const Object* obj) const |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) { |
| VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_)); |
| MarkSweep::VisitObjectReferences(obj, visitor); |
| } |
| |
| bool Failed() const { |
| return failed_; |
| } |
| |
| private: |
| Heap* heap_; |
| bool failed_; |
| }; |
| |
| bool Heap::VerifyMissingCardMarks() { |
| Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current()); |
| |
| VerifyLiveStackReferences visitor(this); |
| GetLiveBitmap()->Visit(visitor); |
| |
| // We can verify objects in the live stack since none of these should reference dead objects. |
| for (Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) { |
| visitor(*it); |
| } |
| |
| if (visitor.Failed()) { |
| DumpSpaces(); |
| return false; |
| } |
| return true; |
| } |
| |
| void Heap::SwapBitmaps(GcType gc_type) { |
| // Swap the live and mark bitmaps for each alloc space. This is needed since sweep re-swaps |
| // these bitmaps. The bitmap swapping is an optimization so that we do not need to clear the live |
| // bits of dead objects in the live bitmap. |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| ContinuousSpace* space = *it; |
| // We never allocate into zygote spaces. |
| if (space->GetGcRetentionPolicy() == kGcRetentionPolicyAlwaysCollect || |
| (gc_type == kGcTypeFull && |
| space->GetGcRetentionPolicy() == kGcRetentionPolicyFullCollect)) { |
| live_bitmap_->ReplaceBitmap(space->GetLiveBitmap(), space->GetMarkBitmap()); |
| mark_bitmap_->ReplaceBitmap(space->GetMarkBitmap(), space->GetLiveBitmap()); |
| space->AsAllocSpace()->SwapBitmaps(); |
| } |
| } |
| SwapLargeObjects(); |
| } |
| |
| void Heap::SwapLargeObjects() { |
| large_object_space_->SwapBitmaps(); |
| live_bitmap_->SetLargeObjects(large_object_space_->GetLiveObjects()); |
| mark_bitmap_->SetLargeObjects(large_object_space_->GetMarkObjects()); |
| } |
| |
| void Heap::SwapStacks() { |
| ObjectStack* temp = allocation_stack_.release(); |
| allocation_stack_.reset(live_stack_.release()); |
| live_stack_.reset(temp); |
| |
| // Sort the live stack so that we can quickly binary search it later. |
| if (VERIFY_OBJECT_ENABLED) { |
| std::sort(live_stack_->Begin(), live_stack_->End()); |
| } |
| } |
| |
| void Heap::ClearCards(TimingLogger& timings) { |
| // Clear image space cards and keep track of cards we cleared in the mod-union table. |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| ContinuousSpace* space = *it; |
| if (space->IsImageSpace()) { |
| mod_union_table_->ClearCards(*it); |
| timings.AddSplit("ModUnionClearCards"); |
| } else if (space->GetGcRetentionPolicy() == kGcRetentionPolicyFullCollect) { |
| zygote_mod_union_table_->ClearCards(space); |
| timings.AddSplit("ZygoteModUnionClearCards"); |
| } else { |
| card_table_->ClearSpaceCards(space); |
| timings.AddSplit("ClearCards"); |
| } |
| } |
| } |
| |
| void Heap::CollectGarbageConcurrentMarkSweepPlan(Thread* self, GcType gc_type, GcCause gc_cause, |
| bool clear_soft_references) { |
| TimingLogger timings("ConcurrentCollectGarbageInternal", true); |
| uint64_t root_begin = NanoTime(), root_end = 0, dirty_begin = 0, dirty_end = 0; |
| std::stringstream gc_type_str; |
| gc_type_str << gc_type << " "; |
| |
| // Suspend all threads are get exclusive access to the heap. |
| ThreadList* thread_list = Runtime::Current()->GetThreadList(); |
| thread_list->SuspendAll(); |
| timings.AddSplit("SuspendAll"); |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| |
| size_t bytes_freed = 0; |
| Object* cleared_references = NULL; |
| { |
| MarkSweep mark_sweep(mark_stack_.get()); |
| timings.AddSplit("ctor"); |
| |
| mark_sweep.Init(); |
| timings.AddSplit("Init"); |
| |
| if (verify_pre_gc_heap_) { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| if (!VerifyHeapReferences()) { |
| LOG(FATAL) << "Pre " << gc_type_str.str() << "Gc verification failed"; |
| } |
| timings.AddSplit("VerifyHeapReferencesPreGC"); |
| } |
| |
| // Swap the stacks, this is safe since all the mutators are suspended at this point. |
| SwapStacks(); |
| |
| // Check that all objects which reference things in the live stack are on dirty cards. |
| if (verify_missing_card_marks_) { |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| // Sort the live stack so that we can quickly binary search it later. |
| std::sort(live_stack_->Begin(), live_stack_->End()); |
| if (!VerifyMissingCardMarks()) { |
| LOG(FATAL) << "Pre GC verification of missing card marks failed"; |
| } |
| } |
| |
| // We will need to know which cards were dirty for doing concurrent processing of dirty cards. |
| // TODO: Investigate using a mark stack instead of a vector. |
| std::vector<byte*> dirty_cards; |
| if (gc_type == kGcTypeSticky) { |
| dirty_cards.reserve(4 * KB); |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| card_table_->GetDirtyCards(*it, dirty_cards); |
| } |
| timings.AddSplit("GetDirtyCards"); |
| } |
| |
| // Clear image space cards and keep track of cards we cleared in the mod-union table. |
| ClearCards(timings); |
| |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| |
| for (Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) { |
| DCHECK(!GetLiveBitmap()->Test(*it)); |
| } |
| |
| if (gc_type == kGcTypePartial) { |
| // Copy the mark bits over from the live bits, do this as early as possible or else we can |
| // accidentally un-mark roots. |
| // Needed for scanning dirty objects. |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| if ((*it)->GetGcRetentionPolicy() == kGcRetentionPolicyFullCollect) { |
| mark_sweep.BindLiveToMarkBitmap(*it); |
| } |
| } |
| timings.AddSplit("BindLiveToMark"); |
| mark_sweep.SetImmuneRange(reinterpret_cast<Object*>(spaces_.front()->Begin()), |
| reinterpret_cast<Object*>(alloc_space_->Begin())); |
| } else if (gc_type == kGcTypeSticky) { |
| for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| if ((*it)->GetGcRetentionPolicy() != kGcRetentionPolicyNeverCollect) { |
| mark_sweep.BindLiveToMarkBitmap(*it); |
| } |
| } |
| timings.AddSplit("BindLiveToMark"); |
| large_object_space_->CopyLiveToMarked(); |
| timings.AddSplit("CopyLiveToMarked"); |
| mark_sweep.SetImmuneRange(reinterpret_cast<Object*>(spaces_.front()->Begin()), |
| reinterpret_cast<Object*>(alloc_space_->Begin())); |
| } |
| mark_sweep.FindDefaultMarkBitmap(); |
| |
| // Marking roots is not necessary for sticky mark bits since we only actually require the |
| // remarking of roots. |
| if (gc_type != kGcTypeSticky) { |
| mark_sweep.MarkRoots(); |
| timings.AddSplit("MarkRoots"); |
| } |
| |
| if (verify_mod_union_table_) { |
| zygote_mod_union_table_->Update(); |
| zygote_mod_union_table_->Verify(); |
| mod_union_table_->Update(); |
| mod_union_table_->Verify(); |
| } |
| } |
| |
| // Roots are marked on the bitmap and the mark_stack is empty. |
| DCHECK(mark_stack_->IsEmpty()); |
| |
| // Allow mutators to go again, acquire share on mutator_lock_ to continue. |
| thread_list->ResumeAll(); |
| { |
| ReaderMutexLock reader_lock(self, *Locks::mutator_lock_); |
| root_end = NanoTime(); |
| timings.AddSplit("RootEnd"); |
| |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| UpdateAndMarkModUnion(&mark_sweep, timings, gc_type); |
| |
| if (gc_type != kGcTypeSticky) { |
| // Mark everything allocated since the last as GC live so that we can sweep concurrently, |
| // knowing that new allocations won't be marked as live. |
| MarkAllocStack(alloc_space_->GetLiveBitmap(), large_object_space_->GetLiveObjects(), |
| live_stack_.get()); |
| timings.AddSplit("MarkStackAsLive"); |
| } |
| |
| if (gc_type != kGcTypeSticky) { |
| // Recursively mark all the non-image bits set in the mark bitmap. |
| mark_sweep.RecursiveMark(gc_type == kGcTypePartial, timings); |
| } else { |
| mark_sweep.RecursiveMarkCards(card_table_.get(), dirty_cards, timings); |
| } |
| mark_sweep.DisableFinger(); |
| } |
| // Release share on mutator_lock_ and then get exclusive access. |
| dirty_begin = NanoTime(); |
| thread_list->SuspendAll(); |
| timings.AddSplit("ReSuspend"); |
| Locks::mutator_lock_->AssertExclusiveHeld(self); |
| |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| |
| // Re-mark root set. |
| mark_sweep.ReMarkRoots(); |
| timings.AddSplit("ReMarkRoots"); |
| |
| // Scan dirty objects, this is only required if we are not doing concurrent GC. |
| mark_sweep.RecursiveMarkDirtyObjects(false); |
| timings.AddSplit("RecursiveMarkDirtyObjects"); |
| } |
| |
| { |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| |
| mark_sweep.ProcessReferences(clear_soft_references); |
| timings.AddSplit("ProcessReferences"); |
| } |
| |
| // Only need to do this if we have the card mark verification on, and only during concurrent GC. |
| if (verify_missing_card_marks_) { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| mark_sweep.SweepArray(timings, allocation_stack_.get(), false); |
| } else { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| // We only sweep over the live stack, and the live stack should not intersect with the |
| // allocation stack, so it should be safe to UnMark anything in the allocation stack as live. |
| UnMarkAllocStack(alloc_space_->GetMarkBitmap(), large_object_space_->GetMarkObjects(), |
| allocation_stack_.get()); |
| timings.AddSplit("UnMarkAllocStack"); |
| #ifndef NDEBUG |
| if (gc_type == kGcTypeSticky) { |
| // Make sure everything in the live stack isn't something we unmarked. |
| std::sort(allocation_stack_->Begin(), allocation_stack_->End()); |
| for (Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) { |
| DCHECK(!std::binary_search(allocation_stack_->Begin(), allocation_stack_->End(), *it)) |
| << "Unmarked object " << *it << " in the live stack"; |
| } |
| } else { |
| for (Object** it = allocation_stack_->Begin(); it != allocation_stack_->End(); ++it) { |
| DCHECK(!GetLiveBitmap()->Test(*it)) << "Object " << *it << " is marked as live"; |
| } |
| } |
| #endif |
| } |
| |
| if (kIsDebugBuild) { |
| // Verify that we only reach marked objects from the image space. |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| mark_sweep.VerifyImageRoots(); |
| timings.AddSplit("VerifyImageRoots"); |
| } |
| |
| if (verify_post_gc_heap_) { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| SwapBitmaps(gc_type); |
| if (!VerifyHeapReferences()) { |
| LOG(FATAL) << "Post " << gc_type_str.str() << "Gc verification failed"; |
| } |
| SwapBitmaps(gc_type); |
| timings.AddSplit("VerifyHeapReferencesPostGC"); |
| } |
| |
| thread_list->ResumeAll(); |
| dirty_end = NanoTime(); |
| Locks::mutator_lock_->AssertNotHeld(self); |
| |
| { |
| // TODO: this lock shouldn't be necessary (it's why we did the bitmap flip above). |
| if (gc_type != kGcTypeSticky) { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| mark_sweep.Sweep(gc_type == kGcTypePartial, false); |
| timings.AddSplit("Sweep"); |
| mark_sweep.SweepLargeObjects(false); |
| timings.AddSplit("SweepLargeObjects"); |
| } else { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| mark_sweep.SweepArray(timings, live_stack_.get(), false); |
| timings.AddSplit("SweepArray"); |
| } |
| live_stack_->Reset(); |
| } |
| |
| { |
| WriterMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| // Unbind the live and mark bitmaps. |
| mark_sweep.UnBindBitmaps(); |
| |
| // Swap the live and mark bitmaps for each space which we modified space. This is an |
| // optimization that enables us to not clear live bits inside of the sweep. |
| const bool swap = true; |
| if (swap) { |
| if (gc_type == kGcTypeSticky) { |
| SwapLargeObjects(); |
| } else { |
| SwapBitmaps(gc_type); |
| } |
| } |
| } |
| |
| if (verify_system_weaks_) { |
| ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_); |
| mark_sweep.VerifySystemWeaks(); |
| timings.AddSplit("VerifySystemWeaks"); |
| } |
| |
| cleared_references = mark_sweep.GetClearedReferences(); |
| bytes_freed = mark_sweep.GetFreedBytes(); |
| total_bytes_freed_ += bytes_freed; |
| total_objects_freed_ += mark_sweep.GetFreedObjects(); |
| } |
| |
| GrowForUtilization(); |
| timings.AddSplit("GrowForUtilization"); |
| |
| EnqueueClearedReferences(&cleared_references); |
| timings.AddSplit("EnqueueClearedReferences"); |
| |
| RequestHeapTrim(); |
| timings.AddSplit("Finish"); |
| |
| // If the GC was slow, then print timings in the log. |
| uint64_t pause_roots = (root_end - root_begin) / 1000 * 1000; |
| uint64_t pause_dirty = (dirty_end - dirty_begin) / 1000 * 1000; |
| uint64_t duration = (NanoTime() - root_begin) / 1000 * 1000; |
| total_paused_time_ += pause_roots + pause_dirty; |
| if (pause_roots > MsToNs(5) || pause_dirty > MsToNs(5) || |
| (gc_cause == kGcCauseForAlloc && duration > MsToNs(20))) { |
| const size_t percent_free = GetPercentFree(); |
| const size_t current_heap_size = GetUsedMemorySize(); |
| const size_t total_memory = GetTotalMemory(); |
| LOG(INFO) << gc_cause << " " << gc_type_str.str() |
| << "Concurrent GC freed " << PrettySize(bytes_freed) << ", " << percent_free |
| << "% free, " << PrettySize(current_heap_size) << "/" |
| << PrettySize(total_memory) << ", " << "paused " << PrettyDuration(pause_roots) |
| << "+" << PrettyDuration(pause_dirty) << " total " << PrettyDuration(duration); |
| if (VLOG_IS_ON(heap)) { |
| timings.Dump(); |
| } |
| } |
| |
| CumulativeLogger* logger = cumulative_timings_.Get(gc_type); |
| logger->Start(); |
| logger->AddLogger(timings); |
| logger->End(); // Next iteration. |
| } |
| |
| GcType Heap::WaitForConcurrentGcToComplete(Thread* self) { |
| GcType last_gc_type = kGcTypeNone; |
| if (concurrent_gc_) { |
| bool do_wait; |
| uint64_t wait_start = NanoTime(); |
| { |
| // Check if GC is running holding gc_complete_lock_. |
| MutexLock mu(self, *gc_complete_lock_); |
| do_wait = is_gc_running_; |
| } |
| if (do_wait) { |
| uint64_t wait_time; |
| // We must wait, change thread state then sleep on gc_complete_cond_; |
| ScopedThreadStateChange tsc(Thread::Current(), kWaitingForGcToComplete); |
| { |
| MutexLock mu(self, *gc_complete_lock_); |
| while (is_gc_running_) { |
| gc_complete_cond_->Wait(self); |
| } |
| last_gc_type = last_gc_type_; |
| wait_time = NanoTime() - wait_start;; |
| total_wait_time_ += wait_time; |
| } |
| if (wait_time > MsToNs(5)) { |
| LOG(INFO) << "WaitForConcurrentGcToComplete blocked for " << PrettyDuration(wait_time); |
| } |
| } |
| } |
| return last_gc_type; |
| } |
| |
| void Heap::DumpForSigQuit(std::ostream& os) { |
| os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetUsedMemorySize()) << "/" |
| << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n"; |
| DumpGcPerformanceInfo(); |
| } |
| |
| size_t Heap::GetPercentFree() { |
| return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory()); |
| } |
| |
| void Heap::SetIdealFootprint(size_t max_allowed_footprint) { |
| if (max_allowed_footprint > GetMaxMemory()) { |
| VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to " |
| << PrettySize(GetMaxMemory()); |
| max_allowed_footprint = GetMaxMemory(); |
| } |
| max_allowed_footprint_ = max_allowed_footprint; |
| } |
| |
| void Heap::GrowForUtilization() { |
| // We know what our utilization is at this moment. |
| // This doesn't actually resize any memory. It just lets the heap grow more when necessary. |
| size_t target_size = num_bytes_allocated_ / Heap::GetTargetHeapUtilization(); |
| if (target_size > num_bytes_allocated_ + max_free_) { |
| target_size = num_bytes_allocated_ + max_free_; |
| } else if (target_size < num_bytes_allocated_ + min_free_) { |
| target_size = num_bytes_allocated_ + min_free_; |
| } |
| |
| // Calculate when to perform the next ConcurrentGC. |
| if (GetFreeMemory() < concurrent_min_free_) { |
| // Not enough free memory to perform concurrent GC. |
| concurrent_start_bytes_ = std::numeric_limits<size_t>::max(); |
| } else { |
| // Start a concurrent Gc when we get close to the target size. |
| concurrent_start_bytes_ = target_size - concurrent_start_size_; |
| } |
| |
| SetIdealFootprint(target_size); |
| } |
| |
| void Heap::ClearGrowthLimit() { |
| WaitForConcurrentGcToComplete(Thread::Current()); |
| alloc_space_->ClearGrowthLimit(); |
| } |
| |
| void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset, |
| MemberOffset reference_queue_offset, |
| MemberOffset reference_queueNext_offset, |
| MemberOffset reference_pendingNext_offset, |
| MemberOffset finalizer_reference_zombie_offset) { |
| reference_referent_offset_ = reference_referent_offset; |
| reference_queue_offset_ = reference_queue_offset; |
| reference_queueNext_offset_ = reference_queueNext_offset; |
| reference_pendingNext_offset_ = reference_pendingNext_offset; |
| finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset; |
| CHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_queue_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U); |
| CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U); |
| } |
| |
| Object* Heap::GetReferenceReferent(Object* reference) { |
| DCHECK(reference != NULL); |
| DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| return reference->GetFieldObject<Object*>(reference_referent_offset_, true); |
| } |
| |
| void Heap::ClearReferenceReferent(Object* reference) { |
| DCHECK(reference != NULL); |
| DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| reference->SetFieldObject(reference_referent_offset_, NULL, true); |
| } |
| |
| // Returns true if the reference object has not yet been enqueued. |
| bool Heap::IsEnqueuable(const Object* ref) { |
| DCHECK(ref != NULL); |
| const Object* queue = ref->GetFieldObject<Object*>(reference_queue_offset_, false); |
| const Object* queue_next = ref->GetFieldObject<Object*>(reference_queueNext_offset_, false); |
| return (queue != NULL) && (queue_next == NULL); |
| } |
| |
| void Heap::EnqueueReference(Object* ref, Object** cleared_reference_list) { |
| DCHECK(ref != NULL); |
| CHECK(ref->GetFieldObject<Object*>(reference_queue_offset_, false) != NULL); |
| CHECK(ref->GetFieldObject<Object*>(reference_queueNext_offset_, false) == NULL); |
| EnqueuePendingReference(ref, cleared_reference_list); |
| } |
| |
| void Heap::EnqueuePendingReference(Object* ref, Object** list) { |
| DCHECK(ref != NULL); |
| DCHECK(list != NULL); |
| |
| if (*list == NULL) { |
| ref->SetFieldObject(reference_pendingNext_offset_, ref, false); |
| *list = ref; |
| } else { |
| Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false); |
| ref->SetFieldObject(reference_pendingNext_offset_, head, false); |
| (*list)->SetFieldObject(reference_pendingNext_offset_, ref, false); |
| } |
| } |
| |
| Object* Heap::DequeuePendingReference(Object** list) { |
| DCHECK(list != NULL); |
| DCHECK(*list != NULL); |
| Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false); |
| Object* ref; |
| if (*list == head) { |
| ref = *list; |
| *list = NULL; |
| } else { |
| Object* next = head->GetFieldObject<Object*>(reference_pendingNext_offset_, false); |
| (*list)->SetFieldObject(reference_pendingNext_offset_, next, false); |
| ref = head; |
| } |
| ref->SetFieldObject(reference_pendingNext_offset_, NULL, false); |
| return ref; |
| } |
| |
| void Heap::AddFinalizerReference(Thread* self, Object* object) { |
| ScopedObjectAccess soa(self); |
| JValue args[1]; |
| args[0].SetL(object); |
| soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self, NULL, args, |
| NULL); |
| } |
| |
| size_t Heap::GetBytesAllocated() const { |
| return num_bytes_allocated_; |
| } |
| |
| size_t Heap::GetObjectsAllocated() const { |
| size_t total = 0; |
| // TODO: C++0x |
| for (Spaces::const_iterator it = spaces_.begin(); it != spaces_.end(); ++it) { |
| Space* space = *it; |
| if (space->IsAllocSpace()) { |
| total += space->AsAllocSpace()->GetNumObjectsAllocated(); |
| } |
| } |
| return total; |
| } |
| |
| size_t Heap::GetConcurrentStartSize() const { |
| return concurrent_start_size_; |
| } |
| |
| size_t Heap::GetConcurrentMinFree() const { |
| return concurrent_min_free_; |
| } |
| |
| void Heap::EnqueueClearedReferences(Object** cleared) { |
| DCHECK(cleared != NULL); |
| if (*cleared != NULL) { |
| ScopedObjectAccess soa(Thread::Current()); |
| JValue args[1]; |
| args[0].SetL(*cleared); |
| soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(), NULL, |
| args, NULL); |
| *cleared = NULL; |
| } |
| } |
| |
| void Heap::RequestConcurrentGC(Thread* self) { |
| // Make sure that we can do a concurrent GC. |
| Runtime* runtime = Runtime::Current(); |
| if (requesting_gc_ || runtime == NULL || !runtime->IsFinishedStarting() || |
| !runtime->IsConcurrentGcEnabled()) { |
| return; |
| } |
| { |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| if (runtime->IsShuttingDown()) { |
| return; |
| } |
| } |
| if (self->IsHandlingStackOverflow()) { |
| return; |
| } |
| |
| requesting_gc_ = true; |
| JNIEnv* env = self->GetJniEnv(); |
| DCHECK(WellKnownClasses::java_lang_Daemons != NULL); |
| DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != NULL); |
| env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, |
| WellKnownClasses::java_lang_Daemons_requestGC); |
| CHECK(!env->ExceptionCheck()); |
| requesting_gc_ = false; |
| } |
| |
| void Heap::ConcurrentGC(Thread* self) { |
| { |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| if (Runtime::Current()->IsShuttingDown() || !concurrent_gc_) { |
| return; |
| } |
| } |
| |
| if (WaitForConcurrentGcToComplete(self) == kGcTypeNone) { |
| // Start a concurrent GC as one wasn't in progress |
| ScopedThreadStateChange tsc(self, kWaitingPerformingGc); |
| if (alloc_space_->Size() > min_alloc_space_size_for_sticky_gc_) { |
| CollectGarbageInternal(kGcTypeSticky, kGcCauseBackground, false); |
| } else { |
| CollectGarbageInternal(kGcTypePartial, kGcCauseBackground, false); |
| } |
| } |
| } |
| |
| void Heap::Trim(Thread* self) { |
| WaitForConcurrentGcToComplete(self); |
| alloc_space_->Trim(); |
| } |
| |
| void Heap::RequestHeapTrim() { |
| // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap |
| // because that only marks object heads, so a large array looks like lots of empty space. We |
| // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional |
| // to utilization (which is probably inversely proportional to how much benefit we can expect). |
| // We could try mincore(2) but that's only a measure of how many pages we haven't given away, |
| // not how much use we're making of those pages. |
| uint64_t ms_time = NsToMs(NanoTime()); |
| float utilization = |
| static_cast<float>(alloc_space_->GetNumBytesAllocated()) / alloc_space_->Size(); |
| if ((utilization > 0.75f) || ((ms_time - last_trim_time_) < 2 * 1000)) { |
| // Don't bother trimming the alloc space if it's more than 75% utilized, or if a |
| // heap trim occurred in the last two seconds. |
| return; |
| } |
| |
| Thread* self = Thread::Current(); |
| { |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| Runtime* runtime = Runtime::Current(); |
| if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown()) { |
| // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time) |
| // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check |
| // as we don't hold the lock while requesting the trim). |
| return; |
| } |
| } |
| last_trim_time_ = ms_time; |
| JNIEnv* env = self->GetJniEnv(); |
| DCHECK(WellKnownClasses::java_lang_Daemons != NULL); |
| DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL); |
| env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, |
| WellKnownClasses::java_lang_Daemons_requestHeapTrim); |
| CHECK(!env->ExceptionCheck()); |
| } |
| |
| } // namespace art |