blob: c657fda34fb0cf549706b71ae718d4996cb3f86a [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the X86 ISA */
#include "codegen_x86.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "mirror/array.h"
#include "x86_lir.h"
namespace art {
/*
* Perform register memory operation.
*/
LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
int reg1, int base, int offset, ThrowKind kind) {
LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
current_dalvik_offset_, reg1, base, offset);
OpRegMem(kOpCmp, reg1, base, offset);
LIR* branch = OpCondBranch(c_code, tgt);
// Remember branch target - will process later
throw_launchpads_.Insert(tgt);
return branch;
}
/*
* Perform a compare of memory to immediate value
*/
LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
int base, int offset, int check_value, ThrowKind kind) {
LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
current_dalvik_offset_, base, check_value, 0);
NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
LIR* branch = OpCondBranch(c_code, tgt);
// Remember branch target - will process later
throw_launchpads_.Insert(tgt);
return branch;
}
/*
* Compare two 64-bit values
* x = y return 0
* x < y return -1
* x > y return 1
*/
void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) {
FlushAllRegs();
LockCallTemps(); // Prepare for explicit register usage
LoadValueDirectWideFixed(rl_src1, r0, r1);
LoadValueDirectWideFixed(rl_src2, r2, r3);
// Compute (r1:r0) = (r1:r0) - (r3:r2)
OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
NewLIR2(kX86Movzx8RR, r2, r2);
OpReg(kOpNeg, r2); // r2 = -r2
OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
NewLIR2(kX86Movzx8RR, r0, r0);
OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
RegLocation rl_result = LocCReturn();
StoreValue(rl_dest, rl_result);
}
X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
switch (cond) {
case kCondEq: return kX86CondEq;
case kCondNe: return kX86CondNe;
case kCondCs: return kX86CondC;
case kCondCc: return kX86CondNc;
case kCondUlt: return kX86CondC;
case kCondUge: return kX86CondNc;
case kCondMi: return kX86CondS;
case kCondPl: return kX86CondNs;
case kCondVs: return kX86CondO;
case kCondVc: return kX86CondNo;
case kCondHi: return kX86CondA;
case kCondLs: return kX86CondBe;
case kCondGe: return kX86CondGe;
case kCondLt: return kX86CondL;
case kCondGt: return kX86CondG;
case kCondLe: return kX86CondLe;
case kCondAl:
case kCondNv: LOG(FATAL) << "Should not reach here";
}
return kX86CondO;
}
LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
LIR* target) {
NewLIR2(kX86Cmp32RR, src1, src2);
X86ConditionCode cc = X86ConditionEncoding(cond);
LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
cc);
branch->target = target;
return branch;
}
LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
int check_value, LIR* target) {
if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
// TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
NewLIR2(kX86Test32RR, reg, reg);
} else {
NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
}
X86ConditionCode cc = X86ConditionEncoding(cond);
LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
branch->target = target;
return branch;
}
LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
if (X86_FPREG(r_dest) || X86_FPREG(r_src))
return OpFpRegCopy(r_dest, r_src);
LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
r_dest, r_src);
if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
res->flags.is_nop = true;
}
return res;
}
LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
LIR *res = OpRegCopyNoInsert(r_dest, r_src);
AppendLIR(res);
return res;
}
void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
int src_lo, int src_hi) {
bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
if (dest_fp) {
if (src_fp) {
OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
} else {
// TODO: Prevent this from happening in the code. The result is often
// unused or could have been loaded more easily from memory.
NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
dest_hi = AllocTempDouble();
NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
FreeTemp(dest_hi);
}
} else {
if (src_fp) {
NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
NewLIR2(kX86PsrlqRI, src_lo, 32);
NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
} else {
// Handle overlap
if (src_hi == dest_lo) {
OpRegCopy(dest_hi, src_hi);
OpRegCopy(dest_lo, src_lo);
} else {
OpRegCopy(dest_lo, src_lo);
OpRegCopy(dest_hi, src_hi);
}
}
}
}
void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
RegLocation rl_result;
RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
RegLocation rl_dest = mir_graph_->GetDest(mir);
rl_src = LoadValue(rl_src, kCoreReg);
// The kMirOpSelect has two variants, one for constants and one for moves.
const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
if (is_constant_case) {
int true_val = mir->dalvikInsn.vB;
int false_val = mir->dalvikInsn.vC;
rl_result = EvalLoc(rl_dest, kCoreReg, true);
/*
* 1) When the true case is zero and result_reg is not same as src_reg:
* xor result_reg, result_reg
* cmp $0, src_reg
* mov t1, $false_case
* cmovnz result_reg, t1
* 2) When the false case is zero and result_reg is not same as src_reg:
* xor result_reg, result_reg
* cmp $0, src_reg
* mov t1, $true_case
* cmovz result_reg, t1
* 3) All other cases (we do compare first to set eflags):
* cmp $0, src_reg
* mov result_reg, $true_case
* mov t1, $false_case
* cmovnz result_reg, t1
*/
const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
const bool catch_all_case = !(true_zero_case || false_zero_case);
if (true_zero_case || false_zero_case) {
OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
}
if (true_zero_case || false_zero_case || catch_all_case) {
OpRegImm(kOpCmp, rl_src.low_reg, 0);
}
if (catch_all_case) {
OpRegImm(kOpMov, rl_result.low_reg, true_val);
}
if (true_zero_case || false_zero_case || catch_all_case) {
int immediateForTemp = false_zero_case ? true_val : false_val;
int temp1_reg = AllocTemp();
OpRegImm(kOpMov, temp1_reg, immediateForTemp);
ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
FreeTemp(temp1_reg);
}
} else {
RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
rl_true = LoadValue(rl_true, kCoreReg);
rl_false = LoadValue(rl_false, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
/*
* 1) When true case is already in place:
* cmp $0, src_reg
* cmovnz result_reg, false_reg
* 2) When false case is already in place:
* cmp $0, src_reg
* cmovz result_reg, true_reg
* 3) When neither cases are in place:
* cmp $0, src_reg
* mov result_reg, true_reg
* cmovnz result_reg, false_reg
*/
// kMirOpSelect is generated just for conditional cases when comparison is done with zero.
OpRegImm(kOpCmp, rl_src.low_reg, 0);
if (rl_result.low_reg == rl_true.low_reg) {
OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
} else if (rl_result.low_reg == rl_false.low_reg) {
OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
} else {
OpRegCopy(rl_result.low_reg, rl_true.low_reg);
OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
}
}
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
LIR* taken = &block_label_list_[bb->taken];
RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
ConditionCode ccode = mir->meta.ccode;
if (rl_src1.is_const) {
std::swap(rl_src1, rl_src2);
ccode = FlipComparisonOrder(ccode);
}
if (rl_src2.is_const) {
// Do special compare/branch against simple const operand
int64_t val = mir_graph_->ConstantValueWide(rl_src2);
GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
return;
}
FlushAllRegs();
LockCallTemps(); // Prepare for explicit register usage
LoadValueDirectWideFixed(rl_src1, r0, r1);
LoadValueDirectWideFixed(rl_src2, r2, r3);
// Swap operands and condition code to prevent use of zero flag.
if (ccode == kCondLe || ccode == kCondGt) {
// Compute (r3:r2) = (r3:r2) - (r1:r0)
OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
} else {
// Compute (r1:r0) = (r1:r0) - (r3:r2)
OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
}
switch (ccode) {
case kCondEq:
case kCondNe:
OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
break;
case kCondLe:
ccode = kCondGe;
break;
case kCondGt:
ccode = kCondLt;
break;
case kCondLt:
case kCondGe:
break;
default:
LOG(FATAL) << "Unexpected ccode: " << ccode;
}
OpCondBranch(ccode, taken);
}
void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
int64_t val, ConditionCode ccode) {
int32_t val_lo = Low32Bits(val);
int32_t val_hi = High32Bits(val);
LIR* taken = &block_label_list_[bb->taken];
LIR* not_taken = &block_label_list_[bb->fall_through];
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
int32_t low_reg = rl_src1.low_reg;
int32_t high_reg = rl_src1.high_reg;
if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
int t_reg = AllocTemp();
OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
FreeTemp(t_reg);
OpCondBranch(ccode, taken);
return;
}
OpRegImm(kOpCmp, high_reg, val_hi);
switch (ccode) {
case kCondEq:
case kCondNe:
OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
break;
case kCondLt:
OpCondBranch(kCondLt, taken);
OpCondBranch(kCondGt, not_taken);
ccode = kCondUlt;
break;
case kCondLe:
OpCondBranch(kCondLt, taken);
OpCondBranch(kCondGt, not_taken);
ccode = kCondLs;
break;
case kCondGt:
OpCondBranch(kCondGt, taken);
OpCondBranch(kCondLt, not_taken);
ccode = kCondHi;
break;
case kCondGe:
OpCondBranch(kCondGt, taken);
OpCondBranch(kCondLt, not_taken);
ccode = kCondUge;
break;
default:
LOG(FATAL) << "Unexpected ccode: " << ccode;
}
OpCmpImmBranch(ccode, low_reg, val_lo, taken);
}
void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
// It does not make sense to calculate magic and shift for zero divisor.
DCHECK_NE(divisor, 0);
/* According to H.S.Warren's Hacker's Delight Chapter 10 and
* T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
* The magic number M and shift S can be calculated in the following way:
* Let nc be the most positive value of numerator(n) such that nc = kd - 1,
* where divisor(d) >=2.
* Let nc be the most negative value of numerator(n) such that nc = kd + 1,
* where divisor(d) <= -2.
* Thus nc can be calculated like:
* nc = 2^31 + 2^31 % d - 1, where d >= 2
* nc = -2^31 + (2^31 + 1) % d, where d >= 2.
*
* So the shift p is the smallest p satisfying
* 2^p > nc * (d - 2^p % d), where d >= 2
* 2^p > nc * (d + 2^p % d), where d <= -2.
*
* the magic number M is calcuated by
* M = (2^p + d - 2^p % d) / d, where d >= 2
* M = (2^p - d - 2^p % d) / d, where d <= -2.
*
* Notice that p is always bigger than or equal to 32, so we just return 32-p as
* the shift number S.
*/
int32_t p = 31;
const uint32_t two31 = 0x80000000U;
// Initialize the computations.
uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
uint32_t abs_nc = tmp - 1 - tmp % abs_d;
uint32_t quotient1 = two31 / abs_nc;
uint32_t remainder1 = two31 % abs_nc;
uint32_t quotient2 = two31 / abs_d;
uint32_t remainder2 = two31 % abs_d;
/*
* To avoid handling both positive and negative divisor, Hacker's Delight
* introduces a method to handle these 2 cases together to avoid duplication.
*/
uint32_t delta;
do {
p++;
quotient1 = 2 * quotient1;
remainder1 = 2 * remainder1;
if (remainder1 >= abs_nc) {
quotient1++;
remainder1 = remainder1 - abs_nc;
}
quotient2 = 2 * quotient2;
remainder2 = 2 * remainder2;
if (remainder2 >= abs_d) {
quotient2++;
remainder2 = remainder2 - abs_d;
}
delta = abs_d - remainder2;
} while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
shift = p - 32;
}
RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
int lit, bool is_div) {
LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
return rl_dest;
}
RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
int imm, bool is_div) {
// Use a multiply (and fixup) to perform an int div/rem by a constant.
// We have to use fixed registers, so flush all the temps.
FlushAllRegs();
LockCallTemps(); // Prepare for explicit register usage.
// Assume that the result will be in EDX.
RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
// handle 0x80000000 / -1 special case.
LIR *minint_branch = 0;
if (imm == -1) {
if (is_div) {
LoadValueDirectFixed(rl_src, r0);
OpRegImm(kOpCmp, r0, 0x80000000);
minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
// for x != MIN_INT, x / -1 == -x.
NewLIR1(kX86Neg32R, r0);
LIR* branch_around = NewLIR1(kX86Jmp8, 0);
// The target for cmp/jmp above.
minint_branch->target = NewLIR0(kPseudoTargetLabel);
// EAX already contains the right value (0x80000000),
branch_around->target = NewLIR0(kPseudoTargetLabel);
} else {
// x % -1 == 0.
LoadConstantNoClobber(r0, 0);
}
// For this case, return the result in EAX.
rl_result.low_reg = r0;
} else {
DCHECK(imm <= -2 || imm >= 2);
// Use H.S.Warren's Hacker's Delight Chapter 10 and
// T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
int magic, shift;
CalculateMagicAndShift(imm, magic, shift);
/*
* For imm >= 2,
* int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
* int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
* For imm <= -2,
* int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
* int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
* We implement this algorithm in the following way:
* 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
* 2. if imm > 0 and magic < 0, add numerator to EDX
* if imm < 0 and magic > 0, sub numerator from EDX
* 3. if S !=0, SAR S bits for EDX
* 4. add 1 to EDX if EDX < 0
* 5. Thus, EDX is the quotient
*/
// Numerator into EAX.
int numerator_reg = -1;
if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
// We will need the value later.
if (rl_src.location == kLocPhysReg) {
// We can use it directly.
DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
numerator_reg = rl_src.low_reg;
} else {
LoadValueDirectFixed(rl_src, r1);
numerator_reg = r1;
}
OpRegCopy(r0, numerator_reg);
} else {
// Only need this once. Just put it into EAX.
LoadValueDirectFixed(rl_src, r0);
}
// EDX = magic.
LoadConstantNoClobber(r2, magic);
// EDX:EAX = magic & dividend.
NewLIR1(kX86Imul32DaR, r2);
if (imm > 0 && magic < 0) {
// Add numerator to EDX.
DCHECK_NE(numerator_reg, -1);
NewLIR2(kX86Add32RR, r2, numerator_reg);
} else if (imm < 0 && magic > 0) {
DCHECK_NE(numerator_reg, -1);
NewLIR2(kX86Sub32RR, r2, numerator_reg);
}
// Do we need the shift?
if (shift != 0) {
// Shift EDX by 'shift' bits.
NewLIR2(kX86Sar32RI, r2, shift);
}
// Add 1 to EDX if EDX < 0.
// Move EDX to EAX.
OpRegCopy(r0, r2);
// Move sign bit to bit 0, zeroing the rest.
NewLIR2(kX86Shr32RI, r2, 31);
// EDX = EDX + EAX.
NewLIR2(kX86Add32RR, r2, r0);
// Quotient is in EDX.
if (!is_div) {
// We need to compute the remainder.
// Remainder is divisor - (quotient * imm).
DCHECK_NE(numerator_reg, -1);
OpRegCopy(r0, numerator_reg);
// EAX = numerator * imm.
OpRegRegImm(kOpMul, r2, r2, imm);
// EDX -= EAX.
NewLIR2(kX86Sub32RR, r0, r2);
// For this case, return the result in EAX.
rl_result.low_reg = r0;
}
}
return rl_result;
}
RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
int reg_hi, bool is_div) {
LOG(FATAL) << "Unexpected use of GenDivRem for x86";
return rl_dest;
}
RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, bool is_div, bool check_zero) {
// We have to use fixed registers, so flush all the temps.
FlushAllRegs();
LockCallTemps(); // Prepare for explicit register usage.
// Load LHS into EAX.
LoadValueDirectFixed(rl_src1, r0);
// Load RHS into EBX.
LoadValueDirectFixed(rl_src2, r1);
// Copy LHS sign bit into EDX.
NewLIR0(kx86Cdq32Da);
if (check_zero) {
// Handle division by zero case.
GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
}
// Have to catch 0x80000000/-1 case, or we will get an exception!
OpRegImm(kOpCmp, r1, -1);
LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
// RHS is -1.
OpRegImm(kOpCmp, r0, 0x80000000);
LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
// In 0x80000000/-1 case.
if (!is_div) {
// For DIV, EAX is already right. For REM, we need EDX 0.
LoadConstantNoClobber(r2, 0);
}
LIR* done = NewLIR1(kX86Jmp8, 0);
// Expected case.
minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
minint_branch->target = minus_one_branch->target;
NewLIR1(kX86Idivmod32DaR, r1);
done->target = NewLIR0(kPseudoTargetLabel);
// Result is in EAX for div and EDX for rem.
RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
if (!is_div) {
rl_result.low_reg = r2;
}
return rl_result;
}
bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
DCHECK_EQ(cu_->instruction_set, kX86);
// Get the two arguments to the invoke and place them in GP registers.
RegLocation rl_src1 = info->args[0];
RegLocation rl_src2 = info->args[1];
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
RegLocation rl_dest = InlineTarget(info);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
/*
* If the result register is the same as the second element, then we need to be careful.
* The reason is that the first copy will inadvertently clobber the second element with
* the first one thus yielding the wrong result. Thus we do a swap in that case.
*/
if (rl_result.low_reg == rl_src2.low_reg) {
std::swap(rl_src1, rl_src2);
}
// Pick the first integer as min/max.
OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
// If the integers are both in the same register, then there is nothing else to do
// because they are equal and we have already moved one into the result.
if (rl_src1.low_reg != rl_src2.low_reg) {
// It is possible we didn't pick correctly so do the actual comparison now.
OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
// Conditionally move the other integer into the destination register.
ConditionCode condition_code = is_min ? kCondGt : kCondLt;
OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
}
StoreValue(rl_dest, rl_result);
return true;
}
bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
RegLocation rl_src_address = info->args[0]; // long address
rl_src_address.wide = 0; // ignore high half in info->args[1]
RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (size == kLong) {
// Unaligned access is allowed on x86.
LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
StoreValueWide(rl_dest, rl_result);
} else {
DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
// Unaligned access is allowed on x86.
LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
StoreValue(rl_dest, rl_result);
}
return true;
}
bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
RegLocation rl_src_address = info->args[0]; // long address
rl_src_address.wide = 0; // ignore high half in info->args[1]
RegLocation rl_src_value = info->args[2]; // [size] value
RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
if (size == kLong) {
// Unaligned access is allowed on x86.
RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
} else {
DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
// Unaligned access is allowed on x86.
RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
}
return true;
}
void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
}
void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
}
bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
DCHECK_EQ(cu_->instruction_set, kX86);
// Unused - RegLocation rl_src_unsafe = info->args[0];
RegLocation rl_src_obj = info->args[1]; // Object - known non-null
RegLocation rl_src_offset = info->args[2]; // long low
rl_src_offset.wide = 0; // ignore high half in info->args[3]
RegLocation rl_src_expected = info->args[4]; // int, long or Object
// If is_long, high half is in info->args[5]
RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
// If is_long, high half is in info->args[7]
if (is_long) {
FlushAllRegs();
LockCallTemps();
LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
NewLIR1(kX86Push32R, rDI);
MarkTemp(rDI);
LockTemp(rDI);
NewLIR1(kX86Push32R, rSI);
MarkTemp(rSI);
LockTemp(rSI);
const int push_offset = 4 /* push edi */ + 4 /* push esi */;
LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
FreeTemp(rSI);
UnmarkTemp(rSI);
NewLIR1(kX86Pop32R, rSI);
FreeTemp(rDI);
UnmarkTemp(rDI);
NewLIR1(kX86Pop32R, rDI);
FreeCallTemps();
} else {
// EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
FlushReg(r0);
LockTemp(r0);
// Release store semantics, get the barrier out of the way. TODO: revisit
GenMemBarrier(kStoreLoad);
RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
// Mark card for object assuming new value is stored.
FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
LockTemp(r0);
}
RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
LoadValueDirect(rl_src_expected, r0);
NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
FreeTemp(r0);
}
// Convert ZF to boolean
RegLocation rl_dest = InlineTarget(info); // boolean place for result
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
StoreValue(rl_dest, rl_result);
return true;
}
LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
CHECK(base_of_code_ != nullptr);
// Address the start of the method
RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
LoadValueDirectFixed(rl_method, reg);
store_method_addr_used_ = true;
// Load the proper value from the literal area.
// We don't know the proper offset for the value, so pick one that will force
// 4 byte offset. We will fix this up in the assembler later to have the right
// value.
LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
res->target = target;
res->flags.fixup = kFixupLoad;
SetMemRefType(res, true, kLiteral);
store_method_addr_used_ = true;
return res;
}
LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
LOG(FATAL) << "Unexpected use of OpVldm for x86";
return NULL;
}
LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
LOG(FATAL) << "Unexpected use of OpVstm for x86";
return NULL;
}
void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
RegLocation rl_result, int lit,
int first_bit, int second_bit) {
int t_reg = AllocTemp();
OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
FreeTemp(t_reg);
if (first_bit != 0) {
OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
}
}
void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
// We are not supposed to clobber either of the provided registers, so allocate
// a temporary to use for the check.
int t_reg = AllocTemp();
// Doing an OR is a quick way to check if both registers are zero. This will set the flags.
OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
// In case of zero, throw ArithmeticException.
GenCheck(kCondEq, kThrowDivZero);
// The temp is no longer needed so free it at this time.
FreeTemp(t_reg);
}
// Test suspend flag, return target of taken suspend branch
LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
}
// Decrement register and branch on condition
LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
OpRegImm(kOpSub, reg, 1);
return OpCondBranch(c_code, target);
}
bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit) {
LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
return false;
}
LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
LOG(FATAL) << "Unexpected use of OpIT in x86";
return NULL;
}
void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
switch (val) {
case 0:
NewLIR2(kX86Xor32RR, dest, dest);
break;
case 1:
OpRegCopy(dest, src);
break;
default:
OpRegRegImm(kOpMul, dest, src, val);
break;
}
}
void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
LIR *m;
switch (val) {
case 0:
NewLIR2(kX86Xor32RR, dest, dest);
break;
case 1:
LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
break;
default:
m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
displacement, val);
AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
break;
}
}
void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2) {
if (rl_src1.is_const) {
std::swap(rl_src1, rl_src2);
}
// Are we multiplying by a constant?
if (rl_src2.is_const) {
// Do special compare/branch against simple const operand
int64_t val = mir_graph_->ConstantValueWide(rl_src2);
if (val == 0) {
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
StoreValueWide(rl_dest, rl_result);
return;
} else if (val == 1) {
rl_src1 = EvalLocWide(rl_src1, kCoreReg, true);
StoreValueWide(rl_dest, rl_src1);
return;
} else if (val == 2) {
GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
return;
} else if (IsPowerOfTwo(val)) {
int shift_amount = LowestSetBit(val);
if (!BadOverlap(rl_src1, rl_dest)) {
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
rl_src1, shift_amount);
StoreValueWide(rl_dest, rl_result);
return;
}
}
// Okay, just bite the bullet and do it.
int32_t val_lo = Low32Bits(val);
int32_t val_hi = High32Bits(val);
FlushAllRegs();
LockCallTemps(); // Prepare for explicit register usage.
rl_src1 = UpdateLocWide(rl_src1);
bool src1_in_reg = rl_src1.location == kLocPhysReg;
int displacement = SRegOffset(rl_src1.s_reg_low);
// ECX <- 1H * 2L
// EAX <- 1L * 2H
if (src1_in_reg) {
GenImulRegImm(r1, rl_src1.high_reg, val_lo);
GenImulRegImm(r0, rl_src1.low_reg, val_hi);
} else {
GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
}
// ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
NewLIR2(kX86Add32RR, r1, r0);
// EAX <- 2L
LoadConstantNoClobber(r0, val_lo);
// EDX:EAX <- 2L * 1L (double precision)
if (src1_in_reg) {
NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
} else {
LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is_64bit */);
}
// EDX <- EDX + ECX (add high words)
NewLIR2(kX86Add32RR, r2, r1);
// Result is EDX:EAX
RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
INVALID_SREG, INVALID_SREG};
StoreValueWide(rl_dest, rl_result);
return;
}
// Nope. Do it the hard way
FlushAllRegs();
LockCallTemps(); // Prepare for explicit register usage.
rl_src1 = UpdateLocWide(rl_src1);
rl_src2 = UpdateLocWide(rl_src2);
// At this point, the VRs are in their home locations.
bool src1_in_reg = rl_src1.location == kLocPhysReg;
bool src2_in_reg = rl_src2.location == kLocPhysReg;
// ECX <- 1H
if (src1_in_reg) {
NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
} else {
LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
kWord, GetSRegHi(rl_src1.s_reg_low));
}
// EAX <- 2H
if (src2_in_reg) {
NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
} else {
LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
kWord, GetSRegHi(rl_src2.s_reg_low));
}
// EAX <- EAX * 1L (2H * 1L)
if (src1_in_reg) {
NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
} else {
int displacement = SRegOffset(rl_src1.s_reg_low);
LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is_64bit */);
}
// ECX <- ECX * 2L (1H * 2L)
if (src2_in_reg) {
NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
} else {
int displacement = SRegOffset(rl_src2.s_reg_low);
LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is_64bit */);
}
// ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
NewLIR2(kX86Add32RR, r1, r0);
// EAX <- 2L
if (src2_in_reg) {
NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
} else {
LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
kWord, rl_src2.s_reg_low);
}
// EDX:EAX <- 2L * 1L (double precision)
if (src1_in_reg) {
NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
} else {
int displacement = SRegOffset(rl_src1.s_reg_low);
LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is_64bit */);
}
// EDX <- EDX + ECX (add high words)
NewLIR2(kX86Add32RR, r2, r1);
// Result is EDX:EAX
RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
INVALID_SREG, INVALID_SREG};
StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
Instruction::Code op) {
DCHECK_EQ(rl_dest.location, kLocPhysReg);
X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
if (rl_src.location == kLocPhysReg) {
// Both operands are in registers.
if (rl_dest.low_reg == rl_src.high_reg) {
// The registers are the same, so we would clobber it before the use.
int temp_reg = AllocTemp();
OpRegCopy(temp_reg, rl_dest.low_reg);
rl_src.high_reg = temp_reg;
}
NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
x86op = GetOpcode(op, rl_dest, rl_src, true);
NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
FreeTemp(rl_src.low_reg);
FreeTemp(rl_src.high_reg);
return;
}
// RHS is in memory.
DCHECK((rl_src.location == kLocDalvikFrame) ||
(rl_src.location == kLocCompilerTemp));
int rBase = TargetReg(kSp);
int displacement = SRegOffset(rl_src.s_reg_low);
LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
x86op = GetOpcode(op, rl_dest, rl_src, true);
lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
true /* is_load */, true /* is64bit */);
}
void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
rl_dest = UpdateLocWide(rl_dest);
if (rl_dest.location == kLocPhysReg) {
// Ensure we are in a register pair
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
rl_src = UpdateLocWide(rl_src);
GenLongRegOrMemOp(rl_result, rl_src, op);
StoreFinalValueWide(rl_dest, rl_result);
return;
}
// It wasn't in registers, so it better be in memory.
DCHECK((rl_dest.location == kLocDalvikFrame) ||
(rl_dest.location == kLocCompilerTemp));
rl_src = LoadValueWide(rl_src, kCoreReg);
// Operate directly into memory.
X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
int rBase = TargetReg(kSp);
int displacement = SRegOffset(rl_dest.s_reg_low);
LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
x86op = GetOpcode(op, rl_dest, rl_src, true);
lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
FreeTemp(rl_src.low_reg);
FreeTemp(rl_src.high_reg);
}
void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, Instruction::Code op,
bool is_commutative) {
// Is this really a 2 operand operation?
switch (op) {
case Instruction::ADD_LONG_2ADDR:
case Instruction::SUB_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
GenLongArith(rl_dest, rl_src2, op);
return;
default:
break;
}
if (rl_dest.location == kLocPhysReg) {
RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
// We are about to clobber the LHS, so it needs to be a temp.
rl_result = ForceTempWide(rl_result);
// Perform the operation using the RHS.
rl_src2 = UpdateLocWide(rl_src2);
GenLongRegOrMemOp(rl_result, rl_src2, op);
// And now record that the result is in the temp.
StoreFinalValueWide(rl_dest, rl_result);
return;
}
// It wasn't in registers, so it better be in memory.
DCHECK((rl_dest.location == kLocDalvikFrame) ||
(rl_dest.location == kLocCompilerTemp));
rl_src1 = UpdateLocWide(rl_src1);
rl_src2 = UpdateLocWide(rl_src2);
// Get one of the source operands into temporary register.
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
GenLongRegOrMemOp(rl_src1, rl_src2, op);
} else if (is_commutative) {
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
// We need at least one of them to be a temporary.
if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
rl_src1 = ForceTempWide(rl_src1);
}
GenLongRegOrMemOp(rl_src1, rl_src2, op);
} else {
// Need LHS to be the temp.
rl_src1 = ForceTempWide(rl_src1);
GenLongRegOrMemOp(rl_src1, rl_src2, op);
}
StoreFinalValueWide(rl_dest, rl_src1);
}
void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
}
void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
}
void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
}
void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
}
void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
}
void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result = ForceTempWide(rl_src);
if (rl_dest.low_reg == rl_src.high_reg) {
// The registers are the same, so we would clobber it before the use.
int temp_reg = AllocTemp();
OpRegCopy(temp_reg, rl_result.low_reg);
rl_result.high_reg = temp_reg;
}
OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg); // rLow = -rLow
OpRegImm(kOpAdc, rl_result.high_reg, 0); // rHigh = rHigh + CF
OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg); // rHigh = -rHigh
StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
X86OpCode opcode = kX86Bkpt;
switch (op) {
case kOpCmp: opcode = kX86Cmp32RT; break;
case kOpMov: opcode = kX86Mov32RT; break;
default:
LOG(FATAL) << "Bad opcode: " << op;
break;
}
NewLIR2(opcode, r_dest, thread_offset.Int32Value());
}
/*
* Generate array load
*/
void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_dest, int scale) {
RegisterClass reg_class = oat_reg_class_by_size(size);
int len_offset = mirror::Array::LengthOffset().Int32Value();
RegLocation rl_result;
rl_array = LoadValue(rl_array, kCoreReg);
int data_offset;
if (size == kLong || size == kDouble) {
data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
} else {
data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
}
bool constant_index = rl_index.is_const;
int32_t constant_index_value = 0;
if (!constant_index) {
rl_index = LoadValue(rl_index, kCoreReg);
} else {
constant_index_value = mir_graph_->ConstantValue(rl_index);
// If index is constant, just fold it into the data offset
data_offset += constant_index_value << scale;
// treat as non array below
rl_index.low_reg = INVALID_REG;
}
/* null object? */
GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
if (constant_index) {
GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
constant_index_value, kThrowConstantArrayBounds);
} else {
GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
len_offset, kThrowArrayBounds);
}
}
rl_result = EvalLoc(rl_dest, reg_class, true);
if ((size == kLong) || (size == kDouble)) {
LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
rl_result.high_reg, size, INVALID_SREG);
StoreValueWide(rl_dest, rl_result);
} else {
LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
data_offset, rl_result.low_reg, INVALID_REG, size,
INVALID_SREG);
StoreValue(rl_dest, rl_result);
}
}
/*
* Generate array store
*
*/
void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
RegisterClass reg_class = oat_reg_class_by_size(size);
int len_offset = mirror::Array::LengthOffset().Int32Value();
int data_offset;
if (size == kLong || size == kDouble) {
data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
} else {
data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
}
rl_array = LoadValue(rl_array, kCoreReg);
bool constant_index = rl_index.is_const;
int32_t constant_index_value = 0;
if (!constant_index) {
rl_index = LoadValue(rl_index, kCoreReg);
} else {
// If index is constant, just fold it into the data offset
constant_index_value = mir_graph_->ConstantValue(rl_index);
data_offset += constant_index_value << scale;
// treat as non array below
rl_index.low_reg = INVALID_REG;
}
/* null object? */
GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
if (constant_index) {
GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
constant_index_value, kThrowConstantArrayBounds);
} else {
GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
len_offset, kThrowArrayBounds);
}
}
if ((size == kLong) || (size == kDouble)) {
rl_src = LoadValueWide(rl_src, reg_class);
} else {
rl_src = LoadValue(rl_src, reg_class);
}
// If the src reg can't be byte accessed, move it to a temp first.
if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
int temp = AllocTemp();
OpRegCopy(temp, rl_src.low_reg);
StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
INVALID_REG, size, INVALID_SREG);
} else {
StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
rl_src.high_reg, size, INVALID_SREG);
}
if (card_mark) {
// Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
if (!constant_index) {
FreeTemp(rl_index.low_reg);
}
MarkGCCard(rl_src.low_reg, rl_array.low_reg);
}
}
RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src, int shift_amount) {
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
switch (opcode) {
case Instruction::SHL_LONG:
case Instruction::SHL_LONG_2ADDR:
DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
if (shift_amount == 32) {
OpRegCopy(rl_result.high_reg, rl_src.low_reg);
LoadConstant(rl_result.low_reg, 0);
} else if (shift_amount > 31) {
OpRegCopy(rl_result.high_reg, rl_src.low_reg);
FreeTemp(rl_src.high_reg);
NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
LoadConstant(rl_result.low_reg, 0);
} else {
OpRegCopy(rl_result.low_reg, rl_src.low_reg);
OpRegCopy(rl_result.high_reg, rl_src.high_reg);
NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
}
break;
case Instruction::SHR_LONG:
case Instruction::SHR_LONG_2ADDR:
if (shift_amount == 32) {
OpRegCopy(rl_result.low_reg, rl_src.high_reg);
OpRegCopy(rl_result.high_reg, rl_src.high_reg);
NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
} else if (shift_amount > 31) {
OpRegCopy(rl_result.low_reg, rl_src.high_reg);
OpRegCopy(rl_result.high_reg, rl_src.high_reg);
NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
} else {
OpRegCopy(rl_result.low_reg, rl_src.low_reg);
OpRegCopy(rl_result.high_reg, rl_src.high_reg);
NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
}
break;
case Instruction::USHR_LONG:
case Instruction::USHR_LONG_2ADDR:
if (shift_amount == 32) {
OpRegCopy(rl_result.low_reg, rl_src.high_reg);
LoadConstant(rl_result.high_reg, 0);
} else if (shift_amount > 31) {
OpRegCopy(rl_result.low_reg, rl_src.high_reg);
NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
LoadConstant(rl_result.high_reg, 0);
} else {
OpRegCopy(rl_result.low_reg, rl_src.low_reg);
OpRegCopy(rl_result.high_reg, rl_src.high_reg);
NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
}
break;
default:
LOG(FATAL) << "Unexpected case";
}
return rl_result;
}
void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src, RegLocation rl_shift) {
// Per spec, we only care about low 6 bits of shift amount.
int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
if (shift_amount == 0) {
rl_src = LoadValueWide(rl_src, kCoreReg);
StoreValueWide(rl_dest, rl_src);
return;
} else if (shift_amount == 1 &&
(opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
// Need to handle this here to avoid calling StoreValueWide twice.
GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
return;
}
if (BadOverlap(rl_src, rl_dest)) {
GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
return;
}
rl_src = LoadValueWide(rl_src, kCoreReg);
RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
switch (opcode) {
case Instruction::ADD_LONG:
case Instruction::AND_LONG:
case Instruction::OR_LONG:
case Instruction::XOR_LONG:
if (rl_src2.is_const) {
GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
} else {
DCHECK(rl_src1.is_const);
GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
}
break;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
if (rl_src2.is_const) {
GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
} else {
GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
}
break;
case Instruction::ADD_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
if (rl_src2.is_const) {
GenLongImm(rl_dest, rl_src2, opcode);
} else {
DCHECK(rl_src1.is_const);
GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
}
break;
default:
// Default - bail to non-const handler.
GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
break;
}
}
bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
switch (op) {
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
return value == -1;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
return value == 0;
default:
return false;
}
}
X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
bool is_high_op) {
bool rhs_in_mem = rhs.location != kLocPhysReg;
bool dest_in_mem = dest.location != kLocPhysReg;
DCHECK(!rhs_in_mem || !dest_in_mem);
switch (op) {
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
if (dest_in_mem) {
return is_high_op ? kX86Adc32MR : kX86Add32MR;
} else if (rhs_in_mem) {
return is_high_op ? kX86Adc32RM : kX86Add32RM;
}
return is_high_op ? kX86Adc32RR : kX86Add32RR;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
if (dest_in_mem) {
return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
} else if (rhs_in_mem) {
return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
}
return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
if (dest_in_mem) {
return kX86And32MR;
}
return rhs_in_mem ? kX86And32RM : kX86And32RR;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
if (dest_in_mem) {
return kX86Or32MR;
}
return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
if (dest_in_mem) {
return kX86Xor32MR;
}
return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
default:
LOG(FATAL) << "Unexpected opcode: " << op;
return kX86Add32RR;
}
}
X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
int32_t value) {
bool in_mem = loc.location != kLocPhysReg;
bool byte_imm = IS_SIMM8(value);
DCHECK(in_mem || !IsFpReg(loc.low_reg));
switch (op) {
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
if (byte_imm) {
if (in_mem) {
return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
}
return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
}
if (in_mem) {
return is_high_op ? kX86Adc32MI : kX86Add32MI;
}
return is_high_op ? kX86Adc32RI : kX86Add32RI;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
if (byte_imm) {
if (in_mem) {
return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
}
return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
}
if (in_mem) {
return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
}
return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
if (byte_imm) {
return in_mem ? kX86And32MI8 : kX86And32RI8;
}
return in_mem ? kX86And32MI : kX86And32RI;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
if (byte_imm) {
return in_mem ? kX86Or32MI8 : kX86Or32RI8;
}
return in_mem ? kX86Or32MI : kX86Or32RI;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
if (byte_imm) {
return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
}
return in_mem ? kX86Xor32MI : kX86Xor32RI;
default:
LOG(FATAL) << "Unexpected opcode: " << op;
return kX86Add32MI;
}
}
void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
DCHECK(rl_src.is_const);
int64_t val = mir_graph_->ConstantValueWide(rl_src);
int32_t val_lo = Low32Bits(val);
int32_t val_hi = High32Bits(val);
rl_dest = UpdateLocWide(rl_dest);
// Can we just do this into memory?
if ((rl_dest.location == kLocDalvikFrame) ||
(rl_dest.location == kLocCompilerTemp)) {
int rBase = TargetReg(kSp);
int displacement = SRegOffset(rl_dest.s_reg_low);
if (!IsNoOp(op, val_lo)) {
X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
}
if (!IsNoOp(op, val_hi)) {
X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
false /* is_load */, true /* is64bit */);
}
return;
}
RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
DCHECK_EQ(rl_result.location, kLocPhysReg);
DCHECK(!IsFpReg(rl_result.low_reg));
if (!IsNoOp(op, val_lo)) {
X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
NewLIR2(x86op, rl_result.low_reg, val_lo);
}
if (!IsNoOp(op, val_hi)) {
X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
NewLIR2(x86op, rl_result.high_reg, val_hi);
}
StoreValueWide(rl_dest, rl_result);
}
void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
RegLocation rl_src2, Instruction::Code op) {
DCHECK(rl_src2.is_const);
int64_t val = mir_graph_->ConstantValueWide(rl_src2);
int32_t val_lo = Low32Bits(val);
int32_t val_hi = High32Bits(val);
rl_dest = UpdateLocWide(rl_dest);
rl_src1 = UpdateLocWide(rl_src1);
// Can we do this directly into the destination registers?
if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
!IsFpReg(rl_dest.low_reg)) {
if (!IsNoOp(op, val_lo)) {
X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
NewLIR2(x86op, rl_dest.low_reg, val_lo);
}
if (!IsNoOp(op, val_hi)) {
X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
NewLIR2(x86op, rl_dest.high_reg, val_hi);
}
return;
}
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
DCHECK_EQ(rl_src1.location, kLocPhysReg);
// We need the values to be in a temporary
RegLocation rl_result = ForceTempWide(rl_src1);
if (!IsNoOp(op, val_lo)) {
X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
NewLIR2(x86op, rl_result.low_reg, val_lo);
}
if (!IsNoOp(op, val_hi)) {
X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
NewLIR2(x86op, rl_result.high_reg, val_hi);
}
StoreFinalValueWide(rl_dest, rl_result);
}
// For final classes there are no sub-classes to check and so we can answer the instance-of
// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
RegLocation rl_dest, RegLocation rl_src) {
RegLocation object = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
int result_reg = rl_result.low_reg;
// SETcc only works with EAX..EDX.
if (result_reg == object.low_reg || result_reg >= 4) {
result_reg = AllocTypedTemp(false, kCoreReg);
DCHECK_LT(result_reg, 4);
}
// Assume that there is no match.
LoadConstant(result_reg, 0);
LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
int check_class = AllocTypedTemp(false, kCoreReg);
// If Method* is already in a register, we can save a copy.
RegLocation rl_method = mir_graph_->GetMethodLoc();
int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
(sizeof(mirror::Class*) * type_idx);
if (rl_method.location == kLocPhysReg) {
if (use_declaring_class) {
LoadWordDisp(rl_method.low_reg,
mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
check_class);
} else {
LoadWordDisp(rl_method.low_reg,
mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
check_class);
LoadWordDisp(check_class, offset_of_type, check_class);
}
} else {
LoadCurrMethodDirect(check_class);
if (use_declaring_class) {
LoadWordDisp(check_class,
mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
check_class);
} else {
LoadWordDisp(check_class,
mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
check_class);
LoadWordDisp(check_class, offset_of_type, check_class);
}
}
// Compare the computed class to the class in the object.
DCHECK_EQ(object.location, kLocPhysReg);
OpRegMem(kOpCmp, check_class, object.low_reg,
mirror::Object::ClassOffset().Int32Value());
// Set the low byte of the result to 0 or 1 from the compare condition code.
NewLIR2(kX86Set8R, result_reg, kX86CondEq);
LIR* target = NewLIR0(kPseudoTargetLabel);
null_branchover->target = target;
FreeTemp(check_class);
if (IsTemp(result_reg)) {
OpRegCopy(rl_result.low_reg, result_reg);
FreeTemp(result_reg);
}
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_lhs, RegLocation rl_rhs) {
OpKind op = kOpBkpt;
bool is_div_rem = false;
bool unary = false;
bool shift_op = false;
bool is_two_addr = false;
RegLocation rl_result;
switch (opcode) {
case Instruction::NEG_INT:
op = kOpNeg;
unary = true;
break;
case Instruction::NOT_INT:
op = kOpMvn;
unary = true;
break;
case Instruction::ADD_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::ADD_INT:
op = kOpAdd;
break;
case Instruction::SUB_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::SUB_INT:
op = kOpSub;
break;
case Instruction::MUL_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::MUL_INT:
op = kOpMul;
break;
case Instruction::DIV_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::DIV_INT:
op = kOpDiv;
is_div_rem = true;
break;
/* NOTE: returns in kArg1 */
case Instruction::REM_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::REM_INT:
op = kOpRem;
is_div_rem = true;
break;
case Instruction::AND_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::AND_INT:
op = kOpAnd;
break;
case Instruction::OR_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::OR_INT:
op = kOpOr;
break;
case Instruction::XOR_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::XOR_INT:
op = kOpXor;
break;
case Instruction::SHL_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::SHL_INT:
shift_op = true;
op = kOpLsl;
break;
case Instruction::SHR_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::SHR_INT:
shift_op = true;
op = kOpAsr;
break;
case Instruction::USHR_INT_2ADDR:
is_two_addr = true;
// Fallthrough
case Instruction::USHR_INT:
shift_op = true;
op = kOpLsr;
break;
default:
LOG(FATAL) << "Invalid word arith op: " << opcode;
}
// Can we convert to a two address instruction?
if (!is_two_addr &&
(mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
is_two_addr = true;
}
// Get the div/rem stuff out of the way.
if (is_div_rem) {
rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
StoreValue(rl_dest, rl_result);
return;
}
if (unary) {
rl_lhs = LoadValue(rl_lhs, kCoreReg);
rl_result = UpdateLoc(rl_dest);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg);
} else {
if (shift_op) {
// X86 doesn't require masking and must use ECX.
int t_reg = TargetReg(kCount); // rCX
LoadValueDirectFixed(rl_rhs, t_reg);
if (is_two_addr) {
// Can we do this directly into memory?
rl_result = UpdateLoc(rl_dest);
rl_rhs = LoadValue(rl_rhs, kCoreReg);
if (rl_result.location != kLocPhysReg) {
// Okay, we can do this into memory
OpMemReg(op, rl_result, t_reg);
FreeTemp(t_reg);
return;
} else if (!IsFpReg(rl_result.low_reg)) {
// Can do this directly into the result register
OpRegReg(op, rl_result.low_reg, t_reg);
FreeTemp(t_reg);
StoreFinalValue(rl_dest, rl_result);
return;
}
}
// Three address form, or we can't do directly.
rl_lhs = LoadValue(rl_lhs, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg);
FreeTemp(t_reg);
} else {
// Multiply is 3 operand only (sort of).
if (is_two_addr && op != kOpMul) {
// Can we do this directly into memory?
rl_result = UpdateLoc(rl_dest);
if (rl_result.location == kLocPhysReg) {
// Can we do this from memory directly?
rl_rhs = UpdateLoc(rl_rhs);
if (rl_rhs.location != kLocPhysReg) {
OpRegMem(op, rl_result.low_reg, rl_rhs);
StoreFinalValue(rl_dest, rl_result);
return;
} else if (!IsFpReg(rl_rhs.low_reg)) {
OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
StoreFinalValue(rl_dest, rl_result);
return;
}
}
rl_rhs = LoadValue(rl_rhs, kCoreReg);
if (rl_result.location != kLocPhysReg) {
// Okay, we can do this into memory.
OpMemReg(op, rl_result, rl_rhs.low_reg);
return;
} else if (!IsFpReg(rl_result.low_reg)) {
// Can do this directly into the result register.
OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
StoreFinalValue(rl_dest, rl_result);
return;
} else {
rl_lhs = LoadValue(rl_lhs, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
}
} else {
// Try to use reg/memory instructions.
rl_lhs = UpdateLoc(rl_lhs);
rl_rhs = UpdateLoc(rl_rhs);
// We can't optimize with FP registers.
if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
// Something is difficult, so fall back to the standard case.
rl_lhs = LoadValue(rl_lhs, kCoreReg);
rl_rhs = LoadValue(rl_rhs, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
} else {
// We can optimize by moving to result and using memory operands.
if (rl_rhs.location != kLocPhysReg) {
// Force LHS into result.
rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadValueDirect(rl_lhs, rl_result.low_reg);
OpRegMem(op, rl_result.low_reg, rl_rhs);
} else if (rl_lhs.location != kLocPhysReg) {
// RHS is in a register; LHS is in memory.
if (op != kOpSub) {
// Force RHS into result and operate on memory.
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegCopy(rl_result.low_reg, rl_rhs.low_reg);
OpRegMem(op, rl_result.low_reg, rl_lhs);
} else {
// Subtraction isn't commutative.
rl_lhs = LoadValue(rl_lhs, kCoreReg);
rl_rhs = LoadValue(rl_rhs, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
}
} else {
// Both are in registers.
rl_lhs = LoadValue(rl_lhs, kCoreReg);
rl_rhs = LoadValue(rl_rhs, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
}
}
}
}
}
StoreValue(rl_dest, rl_result);
}
bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
// If we have non-core registers, then we can't do good things.
if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) {
return false;
}
if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) {
return false;
}
// Everything will be fine :-).
return true;
}
} // namespace art