| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_UTILS_H_ |
| #define ART_RUNTIME_UTILS_H_ |
| |
| #include <pthread.h> |
| |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include "arch/instruction_set.h" |
| #include "base/logging.h" |
| #include "base/mutex.h" |
| #include "globals.h" |
| #include "primitive.h" |
| |
| namespace art { |
| |
| class DexFile; |
| |
| namespace mirror { |
| class ArtField; |
| class ArtMethod; |
| class Class; |
| class Object; |
| class String; |
| } // namespace mirror |
| |
| enum TimeUnit { |
| kTimeUnitNanosecond, |
| kTimeUnitMicrosecond, |
| kTimeUnitMillisecond, |
| kTimeUnitSecond, |
| }; |
| |
| template <typename T> |
| bool ParseUint(const char *in, T* out) { |
| char* end; |
| unsigned long long int result = strtoull(in, &end, 0); // NOLINT(runtime/int) |
| if (in == end || *end != '\0') { |
| return false; |
| } |
| if (std::numeric_limits<T>::max() < result) { |
| return false; |
| } |
| *out = static_cast<T>(result); |
| return true; |
| } |
| |
| template <typename T> |
| bool ParseInt(const char* in, T* out) { |
| char* end; |
| long long int result = strtoll(in, &end, 0); // NOLINT(runtime/int) |
| if (in == end || *end != '\0') { |
| return false; |
| } |
| if (result < std::numeric_limits<T>::min() || std::numeric_limits<T>::max() < result) { |
| return false; |
| } |
| *out = static_cast<T>(result); |
| return true; |
| } |
| |
| template<typename T> |
| static constexpr bool IsPowerOfTwo(T x) { |
| return (x & (x - 1)) == 0; |
| } |
| |
| template<int n, typename T> |
| static inline bool IsAligned(T x) { |
| static_assert((n & (n - 1)) == 0, "n is not a power of two"); |
| return (x & (n - 1)) == 0; |
| } |
| |
| template<int n, typename T> |
| static inline bool IsAligned(T* x) { |
| return IsAligned<n>(reinterpret_cast<const uintptr_t>(x)); |
| } |
| |
| template<typename T> |
| static inline bool IsAlignedParam(T x, int n) { |
| return (x & (n - 1)) == 0; |
| } |
| |
| #define CHECK_ALIGNED(value, alignment) \ |
| CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) |
| |
| #define DCHECK_ALIGNED(value, alignment) \ |
| DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) |
| |
| #define DCHECK_ALIGNED_PARAM(value, alignment) \ |
| DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) |
| |
| // Check whether an N-bit two's-complement representation can hold value. |
| static inline bool IsInt(int N, intptr_t value) { |
| CHECK_LT(0, N); |
| CHECK_LT(N, kBitsPerIntPtrT); |
| intptr_t limit = static_cast<intptr_t>(1) << (N - 1); |
| return (-limit <= value) && (value < limit); |
| } |
| |
| static inline bool IsInt32(int N, int32_t value) { |
| CHECK_LT(0, N); |
| CHECK_LT(static_cast<size_t>(N), 8 * sizeof(int32_t)); |
| int32_t limit = static_cast<int32_t>(1) << (N - 1); |
| return (-limit <= value) && (value < limit); |
| } |
| |
| static inline bool IsInt64(int N, int64_t value) { |
| CHECK_LT(0, N); |
| CHECK_LT(static_cast<size_t>(N), 8 * sizeof(int64_t)); |
| int64_t limit = static_cast<int64_t>(1) << (N - 1); |
| return (-limit <= value) && (value < limit); |
| } |
| |
| static inline bool IsUint(int N, intptr_t value) { |
| CHECK_LT(0, N); |
| CHECK_LT(N, kBitsPerIntPtrT); |
| intptr_t limit = static_cast<intptr_t>(1) << N; |
| return (0 <= value) && (value < limit); |
| } |
| |
| static inline bool IsAbsoluteUint(int N, intptr_t value) { |
| CHECK_LT(0, N); |
| CHECK_LT(N, kBitsPerIntPtrT); |
| if (value < 0) value = -value; |
| return IsUint(N, value); |
| } |
| |
| static inline uint16_t Low16Bits(uint32_t value) { |
| return static_cast<uint16_t>(value); |
| } |
| |
| static inline uint16_t High16Bits(uint32_t value) { |
| return static_cast<uint16_t>(value >> 16); |
| } |
| |
| static inline uint32_t Low32Bits(uint64_t value) { |
| return static_cast<uint32_t>(value); |
| } |
| |
| static inline uint32_t High32Bits(uint64_t value) { |
| return static_cast<uint32_t>(value >> 32); |
| } |
| |
| // Type identity. |
| template <typename T> |
| struct TypeIdentity { |
| typedef T type; |
| }; |
| |
| // Like sizeof, but count how many bits a type takes. Pass type explicitly. |
| template <typename T> |
| static constexpr size_t BitSizeOf() { |
| return sizeof(T) * CHAR_BIT; |
| } |
| |
| // Like sizeof, but count how many bits a type takes. Infers type from parameter. |
| template <typename T> |
| static constexpr size_t BitSizeOf(T /*x*/) { |
| return sizeof(T) * CHAR_BIT; |
| } |
| |
| // For rounding integers. |
| template<typename T> |
| static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) WARN_UNUSED; |
| |
| template<typename T> |
| static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) { |
| return |
| DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0)) |
| (x & -n); |
| } |
| |
| template<typename T> |
| static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) WARN_UNUSED; |
| |
| template<typename T> |
| static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) { |
| return RoundDown(x + n - 1, n); |
| } |
| |
| // For aligning pointers. |
| template<typename T> |
| static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; |
| |
| template<typename T> |
| static inline T* AlignDown(T* x, uintptr_t n) { |
| return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n)); |
| } |
| |
| template<typename T> |
| static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; |
| |
| template<typename T> |
| static inline T* AlignUp(T* x, uintptr_t n) { |
| return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n)); |
| } |
| |
| namespace utils { |
| namespace detail { // Private, implementation-specific namespace. Do not poke outside of this file. |
| template <typename T> |
| static constexpr inline T RoundUpToPowerOfTwoRecursive(T x, size_t bit) { |
| return bit == (BitSizeOf<T>()) ? x: RoundUpToPowerOfTwoRecursive(x | x >> bit, bit << 1); |
| } |
| } // namespace detail |
| } // namespace utils |
| |
| // Recursive implementation is from "Hacker's Delight" by Henry S. Warren, Jr., |
| // figure 3-3, page 48, where the function is called clp2. |
| template <typename T> |
| static constexpr inline T RoundUpToPowerOfTwo(T x) { |
| return art::utils::detail::RoundUpToPowerOfTwoRecursive(x - 1, 1) + 1; |
| } |
| |
| // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set. |
| template <typename T> |
| static constexpr ssize_t MostSignificantBit(T value) { |
| return (value == 0) ? -1 : (MostSignificantBit(value >> 1) + 1); |
| } |
| |
| // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc. |
| template <typename T> |
| static constexpr size_t MinimumBitsToStore(T value) { |
| return static_cast<size_t>(MostSignificantBit(value) + 1); |
| } |
| |
| template<typename T> |
| static constexpr int CLZ(T x) { |
| static_assert(sizeof(T) <= sizeof(long long), "T too large, must be smaller than long long"); // NOLINT [runtime/int] [4] |
| return (sizeof(T) == sizeof(uint32_t)) |
| ? __builtin_clz(x) // TODO: __builtin_clz[ll] has undefined behavior for x=0 |
| : __builtin_clzll(x); |
| } |
| |
| template<typename T> |
| static constexpr int CTZ(T x) { |
| return (sizeof(T) == sizeof(uint32_t)) |
| ? __builtin_ctz(x) |
| : __builtin_ctzll(x); |
| } |
| |
| template<typename T> |
| static constexpr int POPCOUNT(T x) { |
| return (sizeof(T) == sizeof(uint32_t)) |
| ? __builtin_popcount(x) |
| : __builtin_popcountll(x); |
| } |
| |
| static inline uint32_t PointerToLowMemUInt32(const void* p) { |
| uintptr_t intp = reinterpret_cast<uintptr_t>(p); |
| DCHECK_LE(intp, 0xFFFFFFFFU); |
| return intp & 0xFFFFFFFFU; |
| } |
| |
| static inline bool NeedsEscaping(uint16_t ch) { |
| return (ch < ' ' || ch > '~'); |
| } |
| |
| // Interpret the bit pattern of input (type U) as type V. Requires the size |
| // of V >= size of U (compile-time checked). |
| template<typename U, typename V> |
| static inline V bit_cast(U in) { |
| static_assert(sizeof(U) <= sizeof(V), "Size of U not <= size of V"); |
| union { |
| U u; |
| V v; |
| } tmp; |
| tmp.u = in; |
| return tmp.v; |
| } |
| |
| std::string PrintableChar(uint16_t ch); |
| |
| // Returns an ASCII string corresponding to the given UTF-8 string. |
| // Java escapes are used for non-ASCII characters. |
| std::string PrintableString(const char* utf8); |
| |
| // Tests whether 's' starts with 'prefix'. |
| bool StartsWith(const std::string& s, const char* prefix); |
| |
| // Tests whether 's' starts with 'suffix'. |
| bool EndsWith(const std::string& s, const char* suffix); |
| |
| // Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf, |
| // one of which is probably more useful to you. |
| // Returns a human-readable equivalent of 'descriptor'. So "I" would be "int", |
| // "[[I" would be "int[][]", "[Ljava/lang/String;" would be |
| // "java.lang.String[]", and so forth. |
| std::string PrettyDescriptor(mirror::String* descriptor) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| std::string PrettyDescriptor(const char* descriptor); |
| std::string PrettyDescriptor(mirror::Class* klass) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| std::string PrettyDescriptor(Primitive::Type type); |
| |
| // Returns a human-readable signature for 'f'. Something like "a.b.C.f" or |
| // "int a.b.C.f" (depending on the value of 'with_type'). |
| std::string PrettyField(mirror::ArtField* f, bool with_type = true) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true); |
| |
| // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or |
| // "a.b.C.m(II)V" (depending on the value of 'with_signature'). |
| std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true); |
| |
| // Returns a human-readable form of the name of the *class* of the given object. |
| // So given an instance of java.lang.String, the output would |
| // be "java.lang.String". Given an array of int, the output would be "int[]". |
| // Given String.class, the output would be "java.lang.Class<java.lang.String>". |
| std::string PrettyTypeOf(mirror::Object* obj) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Returns a human-readable form of the type at an index in the specified dex file. |
| // Example outputs: char[], java.lang.String. |
| std::string PrettyType(uint32_t type_idx, const DexFile& dex_file); |
| |
| // Returns a human-readable form of the name of the given class. |
| // Given String.class, the output would be "java.lang.Class<java.lang.String>". |
| std::string PrettyClass(mirror::Class* c) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Returns a human-readable form of the name of the given class with its class loader. |
| std::string PrettyClassAndClassLoader(mirror::Class* c) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| // Returns a human-readable version of the Java part of the access flags, e.g., "private static " |
| // (note the trailing whitespace). |
| std::string PrettyJavaAccessFlags(uint32_t access_flags); |
| |
| // Returns a human-readable size string such as "1MB". |
| std::string PrettySize(int64_t size_in_bytes); |
| |
| // Returns a human-readable time string which prints every nanosecond while trying to limit the |
| // number of trailing zeros. Prints using the largest human readable unit up to a second. |
| // e.g. "1ms", "1.000000001s", "1.001us" |
| std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3); |
| |
| // Format a nanosecond time to specified units. |
| std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit, |
| size_t max_fraction_digits); |
| |
| // Get the appropriate unit for a nanosecond duration. |
| TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration); |
| |
| // Get the divisor to convert from a nanoseconds to a time unit. |
| uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit); |
| |
| // Performs JNI name mangling as described in section 11.3 "Linking Native Methods" |
| // of the JNI spec. |
| std::string MangleForJni(const std::string& s); |
| |
| // Turn "java.lang.String" into "Ljava/lang/String;". |
| std::string DotToDescriptor(const char* class_name); |
| |
| // Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of |
| // java.lang.Class.getName(). |
| std::string DescriptorToDot(const char* descriptor); |
| |
| // Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of |
| // java.lang.Class.getName(). |
| std::string DescriptorToName(const char* descriptor); |
| |
| // Tests for whether 's' is a valid class name in the three common forms: |
| bool IsValidBinaryClassName(const char* s); // "java.lang.String" |
| bool IsValidJniClassName(const char* s); // "java/lang/String" |
| bool IsValidDescriptor(const char* s); // "Ljava/lang/String;" |
| |
| // Returns whether the given string is a valid field or method name, |
| // additionally allowing names that begin with '<' and end with '>'. |
| bool IsValidMemberName(const char* s); |
| |
| // Returns the JNI native function name for the non-overloaded method 'm'. |
| std::string JniShortName(mirror::ArtMethod* m) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| // Returns the JNI native function name for the overloaded method 'm'. |
| std::string JniLongName(mirror::ArtMethod* m) |
| SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); |
| |
| bool ReadFileToString(const std::string& file_name, std::string* result); |
| |
| // Returns the current date in ISO yyyy-mm-dd hh:mm:ss format. |
| std::string GetIsoDate(); |
| |
| // Returns the monotonic time since some unspecified starting point in milliseconds. |
| uint64_t MilliTime(); |
| |
| // Returns the monotonic time since some unspecified starting point in microseconds. |
| uint64_t MicroTime(); |
| |
| // Returns the monotonic time since some unspecified starting point in nanoseconds. |
| uint64_t NanoTime(); |
| |
| // Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable. |
| uint64_t ThreadCpuNanoTime(); |
| |
| // Converts the given number of nanoseconds to milliseconds. |
| static constexpr inline uint64_t NsToMs(uint64_t ns) { |
| return ns / 1000 / 1000; |
| } |
| |
| // Converts the given number of milliseconds to nanoseconds |
| static constexpr inline uint64_t MsToNs(uint64_t ns) { |
| return ns * 1000 * 1000; |
| } |
| |
| #if defined(__APPLE__) |
| // No clocks to specify on OS/X, fake value to pass to routines that require a clock. |
| #define CLOCK_REALTIME 0xebadf00d |
| #endif |
| |
| // Sleep for the given number of nanoseconds, a bad way to handle contention. |
| void NanoSleep(uint64_t ns); |
| |
| // Initialize a timespec to either a relative time (ms,ns), or to the absolute |
| // time corresponding to the indicated clock value plus the supplied offset. |
| void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts); |
| |
| // Splits a string using the given separator character into a vector of |
| // strings. Empty strings will be omitted. |
| void Split(const std::string& s, char separator, std::vector<std::string>* result); |
| |
| // Trims whitespace off both ends of the given string. |
| std::string Trim(const std::string& s); |
| |
| // Joins a vector of strings into a single string, using the given separator. |
| template <typename StringT> std::string Join(const std::vector<StringT>& strings, char separator); |
| |
| // Returns the calling thread's tid. (The C libraries don't expose this.) |
| pid_t GetTid(); |
| |
| // Returns the given thread's name. |
| std::string GetThreadName(pid_t tid); |
| |
| // Returns details of the given thread's stack. |
| void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size); |
| |
| // Reads data from "/proc/self/task/${tid}/stat". |
| void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu); |
| |
| // Returns the name of the scheduler group for the given thread the current process, or the empty string. |
| std::string GetSchedulerGroupName(pid_t tid); |
| |
| // Sets the name of the current thread. The name may be truncated to an |
| // implementation-defined limit. |
| void SetThreadName(const char* thread_name); |
| |
| // Dumps the native stack for thread 'tid' to 'os'. |
| void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "", |
| mirror::ArtMethod* current_method = nullptr) |
| NO_THREAD_SAFETY_ANALYSIS; |
| |
| // Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86. |
| void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true); |
| |
| // Find $ANDROID_ROOT, /system, or abort. |
| const char* GetAndroidRoot(); |
| |
| // Find $ANDROID_DATA, /data, or abort. |
| const char* GetAndroidData(); |
| // Find $ANDROID_DATA, /data, or return nullptr. |
| const char* GetAndroidDataSafe(std::string* error_msg); |
| |
| // Returns the dalvik-cache location, or dies trying. subdir will be |
| // appended to the cache location. |
| std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true); |
| // Return true if we found the dalvik cache and stored it in the dalvik_cache argument. |
| // have_android_data will be set to true if we have an ANDROID_DATA that exists, |
| // dalvik_cache_exists will be true if there is a dalvik-cache directory that is present. |
| // The flag is_global_cache tells whether this cache is /data/dalvik-cache. |
| void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache, |
| bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache); |
| |
| // Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be |
| // rooted at cache_location. |
| bool GetDalvikCacheFilename(const char* file_location, const char* cache_location, |
| std::string* filename, std::string* error_msg); |
| // Returns the absolute dalvik-cache path for a DexFile or OatFile, or |
| // dies trying. The path returned will be rooted at cache_location. |
| std::string GetDalvikCacheFilenameOrDie(const char* file_location, |
| const char* cache_location); |
| |
| // Returns the system location for an image |
| std::string GetSystemImageFilename(const char* location, InstructionSet isa); |
| |
| // Returns an .odex file name next adjacent to the dex location. |
| // For example, for "/foo/bar/baz.jar", return "/foo/bar/<isa>/baz.odex". |
| // Note: does not support multidex location strings. |
| std::string DexFilenameToOdexFilename(const std::string& location, InstructionSet isa); |
| |
| // Check whether the given magic matches a known file type. |
| bool IsZipMagic(uint32_t magic); |
| bool IsDexMagic(uint32_t magic); |
| bool IsOatMagic(uint32_t magic); |
| |
| // Wrapper on fork/execv to run a command in a subprocess. |
| bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg); |
| |
| class VoidFunctor { |
| public: |
| template <typename A> |
| inline void operator() (A a) const { |
| UNUSED(a); |
| } |
| |
| template <typename A, typename B> |
| inline void operator() (A a, B b) const { |
| UNUSED(a, b); |
| } |
| |
| template <typename A, typename B, typename C> |
| inline void operator() (A a, B b, C c) const { |
| UNUSED(a, b, c); |
| } |
| }; |
| |
| void PushWord(std::vector<uint8_t>* buf, int32_t data); |
| |
| void EncodeUnsignedLeb128(uint32_t data, std::vector<uint8_t>* buf); |
| void EncodeSignedLeb128(int32_t data, std::vector<uint8_t>* buf); |
| |
| // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. |
| struct FreeDelete { |
| // NOTE: Deleting a const object is valid but free() takes a non-const pointer. |
| void operator()(const void* ptr) const { |
| free(const_cast<void*>(ptr)); |
| } |
| }; |
| |
| // Alias for std::unique_ptr<> that uses the C function free() to delete objects. |
| template <typename T> |
| using UniqueCPtr = std::unique_ptr<T, FreeDelete>; |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_UTILS_H_ |