| /* |
| * Copyright 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "jit_code_cache.h" |
| |
| #include <sstream> |
| |
| #include <android-base/logging.h> |
| #include <android-base/unique_fd.h> |
| |
| #include "arch/context.h" |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "base/histogram-inl.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/membarrier.h" |
| #include "base/memfd.h" |
| #include "base/mem_map.h" |
| #include "base/quasi_atomic.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "base/utils.h" |
| #include "cha.h" |
| #include "debugger_interface.h" |
| #include "dex/dex_file_loader.h" |
| #include "dex/method_reference.h" |
| #include "entrypoints/runtime_asm_entrypoints.h" |
| #include "gc/accounting/bitmap-inl.h" |
| #include "gc/allocator/dlmalloc.h" |
| #include "gc/scoped_gc_critical_section.h" |
| #include "handle.h" |
| #include "instrumentation.h" |
| #include "intern_table.h" |
| #include "jit/jit.h" |
| #include "jit/profiling_info.h" |
| #include "linear_alloc.h" |
| #include "oat_file-inl.h" |
| #include "oat_quick_method_header.h" |
| #include "object_callbacks.h" |
| #include "profile/profile_compilation_info.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "stack.h" |
| #include "thread-current-inl.h" |
| #include "thread_list.h" |
| |
| using android::base::unique_fd; |
| |
| namespace art { |
| namespace jit { |
| |
| static constexpr size_t kCodeSizeLogThreshold = 50 * KB; |
| static constexpr size_t kStackMapSizeLogThreshold = 50 * KB; |
| |
| // Data cache will be half of the capacity |
| // Code cache will be the other half of the capacity. |
| // TODO: Make this variable? |
| static constexpr size_t kCodeAndDataCapacityDivider = 2; |
| |
| static constexpr int kProtR = PROT_READ; |
| static constexpr int kProtRW = PROT_READ | PROT_WRITE; |
| static constexpr int kProtRWX = PROT_READ | PROT_WRITE | PROT_EXEC; |
| static constexpr int kProtRX = PROT_READ | PROT_EXEC; |
| |
| namespace { |
| |
| // Translate an address belonging to one memory map into an address in a second. This is useful |
| // when there are two virtual memory ranges for the same physical memory range. |
| template <typename T> |
| T* TranslateAddress(T* src_ptr, const MemMap& src, const MemMap& dst) { |
| CHECK(src.HasAddress(src_ptr)); |
| uint8_t* const raw_src_ptr = reinterpret_cast<uint8_t*>(src_ptr); |
| return reinterpret_cast<T*>(raw_src_ptr - src.Begin() + dst.Begin()); |
| } |
| |
| } // namespace |
| |
| class JitCodeCache::JniStubKey { |
| public: |
| explicit JniStubKey(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) |
| : shorty_(method->GetShorty()), |
| is_static_(method->IsStatic()), |
| is_fast_native_(method->IsFastNative()), |
| is_critical_native_(method->IsCriticalNative()), |
| is_synchronized_(method->IsSynchronized()) { |
| DCHECK(!(is_fast_native_ && is_critical_native_)); |
| } |
| |
| bool operator<(const JniStubKey& rhs) const { |
| if (is_static_ != rhs.is_static_) { |
| return rhs.is_static_; |
| } |
| if (is_synchronized_ != rhs.is_synchronized_) { |
| return rhs.is_synchronized_; |
| } |
| if (is_fast_native_ != rhs.is_fast_native_) { |
| return rhs.is_fast_native_; |
| } |
| if (is_critical_native_ != rhs.is_critical_native_) { |
| return rhs.is_critical_native_; |
| } |
| return strcmp(shorty_, rhs.shorty_) < 0; |
| } |
| |
| // Update the shorty to point to another method's shorty. Call this function when removing |
| // the method that references the old shorty from JniCodeData and not removing the entire |
| // JniCodeData; the old shorty may become a dangling pointer when that method is unloaded. |
| void UpdateShorty(ArtMethod* method) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| const char* shorty = method->GetShorty(); |
| DCHECK_STREQ(shorty_, shorty); |
| shorty_ = shorty; |
| } |
| |
| private: |
| // The shorty points to a DexFile data and may need to change |
| // to point to the same shorty in a different DexFile. |
| mutable const char* shorty_; |
| |
| const bool is_static_; |
| const bool is_fast_native_; |
| const bool is_critical_native_; |
| const bool is_synchronized_; |
| }; |
| |
| class JitCodeCache::JniStubData { |
| public: |
| JniStubData() : code_(nullptr), methods_() {} |
| |
| void SetCode(const void* code) { |
| DCHECK(code != nullptr); |
| code_ = code; |
| } |
| |
| const void* GetCode() const { |
| return code_; |
| } |
| |
| bool IsCompiled() const { |
| return GetCode() != nullptr; |
| } |
| |
| void AddMethod(ArtMethod* method) { |
| if (!ContainsElement(methods_, method)) { |
| methods_.push_back(method); |
| } |
| } |
| |
| const std::vector<ArtMethod*>& GetMethods() const { |
| return methods_; |
| } |
| |
| void RemoveMethodsIn(const LinearAlloc& alloc) { |
| auto kept_end = std::remove_if( |
| methods_.begin(), |
| methods_.end(), |
| [&alloc](ArtMethod* method) { return alloc.ContainsUnsafe(method); }); |
| methods_.erase(kept_end, methods_.end()); |
| } |
| |
| bool RemoveMethod(ArtMethod* method) { |
| auto it = std::find(methods_.begin(), methods_.end(), method); |
| if (it != methods_.end()) { |
| methods_.erase(it); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| void MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) { |
| std::replace(methods_.begin(), methods_.end(), old_method, new_method); |
| } |
| |
| private: |
| const void* code_; |
| std::vector<ArtMethod*> methods_; |
| }; |
| |
| bool JitCodeCache::InitializeMappings(bool rwx_memory_allowed, |
| bool is_zygote, |
| std::string* error_msg) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| |
| const size_t capacity = max_capacity_; |
| const size_t data_capacity = capacity / kCodeAndDataCapacityDivider; |
| const size_t exec_capacity = capacity - data_capacity; |
| |
| // File descriptor enabling dual-view mapping of code section. |
| unique_fd mem_fd; |
| |
| // Zygote shouldn't create a shared mapping for JIT, so we cannot use dual view |
| // for it. |
| if (!is_zygote) { |
| // Bionic supports memfd_create, but the call may fail on older kernels. |
| mem_fd = unique_fd(art::memfd_create("/jit-cache", /* flags= */ 0)); |
| if (mem_fd.get() < 0) { |
| std::ostringstream oss; |
| oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno); |
| if (!rwx_memory_allowed) { |
| // Without using RWX page permissions, the JIT can not fallback to single mapping as it |
| // requires tranitioning the code pages to RWX for updates. |
| *error_msg = oss.str(); |
| return false; |
| } |
| VLOG(jit) << oss.str(); |
| } |
| } |
| |
| if (mem_fd.get() >= 0 && ftruncate(mem_fd, capacity) != 0) { |
| std::ostringstream oss; |
| oss << "Failed to initialize memory file: " << strerror(errno); |
| *error_msg = oss.str(); |
| return false; |
| } |
| |
| std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache"; |
| std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache"; |
| |
| std::string error_str; |
| // Map name specific for android_os_Debug.cpp accounting. |
| // Map in low 4gb to simplify accessing root tables for x86_64. |
| // We could do PC-relative addressing to avoid this problem, but that |
| // would require reserving code and data area before submitting, which |
| // means more windows for the code memory to be RWX. |
| int base_flags; |
| MemMap data_pages; |
| if (mem_fd.get() >= 0) { |
| // Dual view of JIT code cache case. Create an initial mapping of data pages large enough |
| // for data and non-writable view of JIT code pages. We use the memory file descriptor to |
| // enable dual mapping - we'll create a second mapping using the descriptor below. The |
| // mappings will look like: |
| // |
| // VA PA |
| // |
| // +---------------+ |
| // | non exec code |\ |
| // +---------------+ \ |
| // : :\ \ |
| // +---------------+.\.+---------------+ |
| // | exec code | \| code | |
| // +---------------+...+---------------+ |
| // | data | | data | |
| // +---------------+...+---------------+ |
| // |
| // In this configuration code updates are written to the non-executable view of the code |
| // cache, and the executable view of the code cache has fixed RX memory protections. |
| // |
| // This memory needs to be mapped shared as the code portions will have two mappings. |
| base_flags = MAP_SHARED; |
| data_pages = MemMap::MapFile( |
| data_capacity + exec_capacity, |
| kProtRW, |
| base_flags, |
| mem_fd, |
| /* start= */ 0, |
| /* low_4gb= */ true, |
| data_cache_name.c_str(), |
| &error_str); |
| } else { |
| // Single view of JIT code cache case. Create an initial mapping of data pages large enough |
| // for data and JIT code pages. The mappings will look like: |
| // |
| // VA PA |
| // |
| // +---------------+...+---------------+ |
| // | exec code | | code | |
| // +---------------+...+---------------+ |
| // | data | | data | |
| // +---------------+...+---------------+ |
| // |
| // In this configuration code updates are written to the executable view of the code cache, |
| // and the executable view of the code cache transitions RX to RWX for the update and then |
| // back to RX after the update. |
| base_flags = MAP_PRIVATE | MAP_ANON; |
| data_pages = MemMap::MapAnonymous( |
| data_cache_name.c_str(), |
| data_capacity + exec_capacity, |
| kProtRW, |
| /* low_4gb= */ true, |
| &error_str); |
| } |
| |
| if (!data_pages.IsValid()) { |
| std::ostringstream oss; |
| oss << "Failed to create read write cache: " << error_str << " size=" << capacity; |
| *error_msg = oss.str(); |
| return false; |
| } |
| |
| MemMap exec_pages; |
| MemMap non_exec_pages; |
| if (exec_capacity > 0) { |
| uint8_t* const divider = data_pages.Begin() + data_capacity; |
| // Set initial permission for executable view to catch any SELinux permission problems early |
| // (for processes that cannot map WX pages). Otherwise, this region does not need to be |
| // executable as there is no code in the cache yet. |
| exec_pages = data_pages.RemapAtEnd(divider, |
| exec_cache_name.c_str(), |
| kProtRX, |
| base_flags | MAP_FIXED, |
| mem_fd.get(), |
| (mem_fd.get() >= 0) ? data_capacity : 0, |
| &error_str); |
| if (!exec_pages.IsValid()) { |
| std::ostringstream oss; |
| oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity; |
| *error_msg = oss.str(); |
| return false; |
| } |
| |
| if (mem_fd.get() >= 0) { |
| // For dual view, create the secondary view of code memory used for updating code. This view |
| // is never executable. |
| std::string name = exec_cache_name + "-rw"; |
| non_exec_pages = MemMap::MapFile(exec_capacity, |
| kProtR, |
| base_flags, |
| mem_fd, |
| /* start= */ data_capacity, |
| /* low_4GB= */ false, |
| name.c_str(), |
| &error_str); |
| if (!non_exec_pages.IsValid()) { |
| static const char* kFailedNxView = "Failed to map non-executable view of JIT code cache"; |
| if (rwx_memory_allowed) { |
| // Log and continue as single view JIT (requires RWX memory). |
| VLOG(jit) << kFailedNxView; |
| } else { |
| *error_msg = kFailedNxView; |
| return false; |
| } |
| } |
| } |
| } else { |
| // Profiling only. No memory for code required. |
| } |
| |
| data_pages_ = std::move(data_pages); |
| exec_pages_ = std::move(exec_pages); |
| non_exec_pages_ = std::move(non_exec_pages); |
| return true; |
| } |
| |
| JitCodeCache* JitCodeCache::Create(bool used_only_for_profile_data, |
| bool rwx_memory_allowed, |
| bool is_zygote, |
| std::string* error_msg) { |
| // Register for membarrier expedited sync core if JIT will be generating code. |
| if (!used_only_for_profile_data) { |
| if (art::membarrier(art::MembarrierCommand::kRegisterPrivateExpeditedSyncCore) != 0) { |
| // MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE ensures that CPU instruction pipelines are |
| // flushed and it's used when adding code to the JIT. The memory used by the new code may |
| // have just been released and, in theory, the old code could still be in a pipeline. |
| VLOG(jit) << "Kernel does not support membarrier sync-core"; |
| } |
| } |
| |
| // Check whether the provided max capacity in options is below 1GB. |
| size_t max_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheMaxCapacity(); |
| // We need to have 32 bit offsets from method headers in code cache which point to things |
| // in the data cache. If the maps are more than 4G apart, having multiple maps wouldn't work. |
| // Ensure we're below 1 GB to be safe. |
| if (max_capacity > 1 * GB) { |
| std::ostringstream oss; |
| oss << "Maxium code cache capacity is limited to 1 GB, " |
| << PrettySize(max_capacity) << " is too big"; |
| *error_msg = oss.str(); |
| return nullptr; |
| } |
| |
| size_t initial_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheInitialCapacity(); |
| |
| std::unique_ptr<JitCodeCache> jit_code_cache(new JitCodeCache()); |
| |
| MutexLock mu(Thread::Current(), jit_code_cache->lock_); |
| jit_code_cache->InitializeState(initial_capacity, max_capacity); |
| |
| // Zygote should never collect code to share the memory with the children. |
| if (is_zygote) { |
| jit_code_cache->SetGarbageCollectCode(false); |
| } |
| |
| if (!jit_code_cache->InitializeMappings(rwx_memory_allowed, is_zygote, error_msg)) { |
| return nullptr; |
| } |
| |
| jit_code_cache->InitializeSpaces(); |
| |
| VLOG(jit) << "Created jit code cache: initial capacity=" |
| << PrettySize(initial_capacity) |
| << ", maximum capacity=" |
| << PrettySize(max_capacity); |
| |
| return jit_code_cache.release(); |
| } |
| |
| JitCodeCache::JitCodeCache() |
| : lock_("Jit code cache", kJitCodeCacheLock), |
| lock_cond_("Jit code cache condition variable", lock_), |
| collection_in_progress_(false), |
| last_collection_increased_code_cache_(false), |
| garbage_collect_code_(true), |
| used_memory_for_data_(0), |
| used_memory_for_code_(0), |
| number_of_compilations_(0), |
| number_of_osr_compilations_(0), |
| number_of_collections_(0), |
| histogram_stack_map_memory_use_("Memory used for stack maps", 16), |
| histogram_code_memory_use_("Memory used for compiled code", 16), |
| histogram_profiling_info_memory_use_("Memory used for profiling info", 16), |
| is_weak_access_enabled_(true), |
| inline_cache_cond_("Jit inline cache condition variable", lock_), |
| zygote_data_pages_(), |
| zygote_exec_pages_(), |
| zygote_data_mspace_(nullptr), |
| zygote_exec_mspace_(nullptr) { |
| } |
| |
| void JitCodeCache::InitializeState(size_t initial_capacity, size_t max_capacity) { |
| CHECK_GE(max_capacity, initial_capacity); |
| CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB"; |
| // Align both capacities to page size, as that's the unit mspaces use. |
| initial_capacity = RoundDown(initial_capacity, 2 * kPageSize); |
| max_capacity = RoundDown(max_capacity, 2 * kPageSize); |
| |
| used_memory_for_data_ = 0; |
| used_memory_for_code_ = 0; |
| number_of_compilations_ = 0; |
| number_of_osr_compilations_ = 0; |
| number_of_collections_ = 0; |
| |
| data_pages_ = MemMap(); |
| exec_pages_ = MemMap(); |
| non_exec_pages_ = MemMap(); |
| initial_capacity_ = initial_capacity; |
| max_capacity_ = max_capacity; |
| current_capacity_ = initial_capacity, |
| data_end_ = initial_capacity / kCodeAndDataCapacityDivider; |
| exec_end_ = initial_capacity - data_end_; |
| } |
| |
| void JitCodeCache::InitializeSpaces() { |
| // Initialize the data heap |
| data_mspace_ = create_mspace_with_base(data_pages_.Begin(), data_end_, false /*locked*/); |
| CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed"; |
| |
| // Initialize the code heap |
| MemMap* code_heap = nullptr; |
| if (non_exec_pages_.IsValid()) { |
| code_heap = &non_exec_pages_; |
| } else if (exec_pages_.IsValid()) { |
| code_heap = &exec_pages_; |
| } |
| if (code_heap != nullptr) { |
| // Make all pages reserved for the code heap writable. The mspace allocator, that manages the |
| // heap, will take and initialize pages in create_mspace_with_base(). |
| CheckedCall(mprotect, "create code heap", code_heap->Begin(), code_heap->Size(), kProtRW); |
| exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/); |
| CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed"; |
| SetFootprintLimit(initial_capacity_); |
| // Protect pages containing heap metadata. Updates to the code heap toggle write permission to |
| // perform the update and there are no other times write access is required. |
| CheckedCall(mprotect, "protect code heap", code_heap->Begin(), code_heap->Size(), kProtR); |
| } else { |
| exec_mspace_ = nullptr; |
| SetFootprintLimit(initial_capacity_); |
| } |
| } |
| |
| JitCodeCache::~JitCodeCache() {} |
| |
| bool JitCodeCache::ContainsPc(const void* ptr) const { |
| return exec_pages_.HasAddress(ptr) || zygote_exec_pages_.HasAddress(ptr); |
| } |
| |
| bool JitCodeCache::WillExecuteJitCode(ArtMethod* method) { |
| ScopedObjectAccess soa(art::Thread::Current()); |
| ScopedAssertNoThreadSuspension sants(__FUNCTION__); |
| if (ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { |
| return true; |
| } else if (method->GetEntryPointFromQuickCompiledCode() == GetQuickInstrumentationEntryPoint()) { |
| return FindCompiledCodeForInstrumentation(method) != nullptr; |
| } |
| return false; |
| } |
| |
| bool JitCodeCache::ContainsMethod(ArtMethod* method) { |
| MutexLock mu(Thread::Current(), lock_); |
| if (UNLIKELY(method->IsNative())) { |
| auto it = jni_stubs_map_.find(JniStubKey(method)); |
| if (it != jni_stubs_map_.end() && |
| it->second.IsCompiled() && |
| ContainsElement(it->second.GetMethods(), method)) { |
| return true; |
| } |
| } else { |
| for (const auto& it : method_code_map_) { |
| if (it.second == method) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| const void* JitCodeCache::GetJniStubCode(ArtMethod* method) { |
| DCHECK(method->IsNative()); |
| MutexLock mu(Thread::Current(), lock_); |
| auto it = jni_stubs_map_.find(JniStubKey(method)); |
| if (it != jni_stubs_map_.end()) { |
| JniStubData& data = it->second; |
| if (data.IsCompiled() && ContainsElement(data.GetMethods(), method)) { |
| return data.GetCode(); |
| } |
| } |
| return nullptr; |
| } |
| |
| const void* JitCodeCache::FindCompiledCodeForInstrumentation(ArtMethod* method) { |
| // If jit-gc is still on we use the SavedEntryPoint field for doing that and so cannot use it to |
| // find the instrumentation entrypoint. |
| if (LIKELY(GetGarbageCollectCode())) { |
| return nullptr; |
| } |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| if (info == nullptr) { |
| return nullptr; |
| } |
| // When GC is disabled for trampoline tracing we will use SavedEntrypoint to hold the actual |
| // jit-compiled version of the method. If jit-gc is disabled for other reasons this will just be |
| // nullptr. |
| return info->GetSavedEntryPoint(); |
| } |
| |
| class ScopedCodeCacheWrite : ScopedTrace { |
| public: |
| explicit ScopedCodeCacheWrite(const JitCodeCache* const code_cache) |
| : ScopedTrace("ScopedCodeCacheWrite"), |
| code_cache_(code_cache) { |
| ScopedTrace trace("mprotect all"); |
| const MemMap* const updatable_pages = code_cache_->GetUpdatableCodeMapping(); |
| if (updatable_pages != nullptr) { |
| int prot = code_cache_->HasDualCodeMapping() ? kProtRW : kProtRWX; |
| CheckedCall(mprotect, "Cache +W", updatable_pages->Begin(), updatable_pages->Size(), prot); |
| } |
| } |
| |
| ~ScopedCodeCacheWrite() { |
| ScopedTrace trace("mprotect code"); |
| const MemMap* const updatable_pages = code_cache_->GetUpdatableCodeMapping(); |
| if (updatable_pages != nullptr) { |
| int prot = code_cache_->HasDualCodeMapping() ? kProtR : kProtRX; |
| CheckedCall(mprotect, "Cache -W", updatable_pages->Begin(), updatable_pages->Size(), prot); |
| } |
| } |
| |
| private: |
| const JitCodeCache* const code_cache_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ScopedCodeCacheWrite); |
| }; |
| |
| uint8_t* JitCodeCache::CommitCode(Thread* self, |
| ArtMethod* method, |
| uint8_t* stack_map, |
| uint8_t* roots_data, |
| const uint8_t* code, |
| size_t code_size, |
| size_t data_size, |
| bool osr, |
| const std::vector<Handle<mirror::Object>>& roots, |
| bool has_should_deoptimize_flag, |
| const ArenaSet<ArtMethod*>& cha_single_implementation_list) { |
| uint8_t* result = CommitCodeInternal(self, |
| method, |
| stack_map, |
| roots_data, |
| code, |
| code_size, |
| data_size, |
| osr, |
| roots, |
| has_should_deoptimize_flag, |
| cha_single_implementation_list); |
| if (result == nullptr) { |
| // Retry. |
| GarbageCollectCache(self); |
| result = CommitCodeInternal(self, |
| method, |
| stack_map, |
| roots_data, |
| code, |
| code_size, |
| data_size, |
| osr, |
| roots, |
| has_should_deoptimize_flag, |
| cha_single_implementation_list); |
| } |
| return result; |
| } |
| |
| bool JitCodeCache::WaitForPotentialCollectionToComplete(Thread* self) { |
| bool in_collection = false; |
| while (collection_in_progress_) { |
| in_collection = true; |
| lock_cond_.Wait(self); |
| } |
| return in_collection; |
| } |
| |
| static uintptr_t FromCodeToAllocation(const void* code) { |
| size_t alignment = GetInstructionSetAlignment(kRuntimeISA); |
| return reinterpret_cast<uintptr_t>(code) - RoundUp(sizeof(OatQuickMethodHeader), alignment); |
| } |
| |
| static uint32_t ComputeRootTableSize(uint32_t number_of_roots) { |
| return sizeof(uint32_t) + number_of_roots * sizeof(GcRoot<mirror::Object>); |
| } |
| |
| static uint32_t GetNumberOfRoots(const uint8_t* stack_map) { |
| // The length of the table is stored just before the stack map (and therefore at the end of |
| // the table itself), in order to be able to fetch it from a `stack_map` pointer. |
| return reinterpret_cast<const uint32_t*>(stack_map)[-1]; |
| } |
| |
| static void FillRootTableLength(uint8_t* roots_data, uint32_t length) { |
| // Store the length of the table at the end. This will allow fetching it from a `stack_map` |
| // pointer. |
| reinterpret_cast<uint32_t*>(roots_data)[length] = length; |
| } |
| |
| static const uint8_t* FromStackMapToRoots(const uint8_t* stack_map_data) { |
| return stack_map_data - ComputeRootTableSize(GetNumberOfRoots(stack_map_data)); |
| } |
| |
| static void DCheckRootsAreValid(const std::vector<Handle<mirror::Object>>& roots) |
| REQUIRES(!Locks::intern_table_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!kIsDebugBuild) { |
| return; |
| } |
| // Put all roots in `roots_data`. |
| for (Handle<mirror::Object> object : roots) { |
| // Ensure the string is strongly interned. b/32995596 |
| if (object->IsString()) { |
| ObjPtr<mirror::String> str = object->AsString(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| CHECK(class_linker->GetInternTable()->LookupStrong(Thread::Current(), str) != nullptr); |
| } |
| } |
| } |
| |
| void JitCodeCache::FillRootTable(uint8_t* roots_data, |
| const std::vector<Handle<mirror::Object>>& roots) { |
| GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data); |
| const uint32_t length = roots.size(); |
| // Put all roots in `roots_data`. |
| for (uint32_t i = 0; i < length; ++i) { |
| ObjPtr<mirror::Object> object = roots[i].Get(); |
| gc_roots[i] = GcRoot<mirror::Object>(object); |
| } |
| } |
| |
| static uint8_t* GetRootTable(const void* code_ptr, uint32_t* number_of_roots = nullptr) { |
| OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| uint8_t* data = method_header->GetOptimizedCodeInfoPtr(); |
| uint32_t roots = GetNumberOfRoots(data); |
| if (number_of_roots != nullptr) { |
| *number_of_roots = roots; |
| } |
| return data - ComputeRootTableSize(roots); |
| } |
| |
| // Use a sentinel for marking entries in the JIT table that have been cleared. |
| // This helps diagnosing in case the compiled code tries to wrongly access such |
| // entries. |
| static mirror::Class* const weak_sentinel = |
| reinterpret_cast<mirror::Class*>(Context::kBadGprBase + 0xff); |
| |
| // Helper for the GC to process a weak class in a JIT root table. |
| static inline void ProcessWeakClass(GcRoot<mirror::Class>* root_ptr, |
| IsMarkedVisitor* visitor, |
| mirror::Class* update) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // This does not need a read barrier because this is called by GC. |
| mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>(); |
| if (cls != nullptr && cls != weak_sentinel) { |
| DCHECK((cls->IsClass<kDefaultVerifyFlags>())); |
| // Look at the classloader of the class to know if it has been unloaded. |
| // This does not need a read barrier because this is called by GC. |
| mirror::Object* class_loader = |
| cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>(); |
| if (class_loader == nullptr || visitor->IsMarked(class_loader) != nullptr) { |
| // The class loader is live, update the entry if the class has moved. |
| mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls)); |
| // Note that new_object can be null for CMS and newly allocated objects. |
| if (new_cls != nullptr && new_cls != cls) { |
| *root_ptr = GcRoot<mirror::Class>(new_cls); |
| } |
| } else { |
| // The class loader is not live, clear the entry. |
| *root_ptr = GcRoot<mirror::Class>(update); |
| } |
| } |
| } |
| |
| void JitCodeCache::SweepRootTables(IsMarkedVisitor* visitor) { |
| MutexLock mu(Thread::Current(), lock_); |
| for (const auto& entry : method_code_map_) { |
| uint32_t number_of_roots = 0; |
| uint8_t* roots_data = GetRootTable(entry.first, &number_of_roots); |
| GcRoot<mirror::Object>* roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data); |
| for (uint32_t i = 0; i < number_of_roots; ++i) { |
| // This does not need a read barrier because this is called by GC. |
| mirror::Object* object = roots[i].Read<kWithoutReadBarrier>(); |
| if (object == nullptr || object == weak_sentinel) { |
| // entry got deleted in a previous sweep. |
| } else if (object->IsString<kDefaultVerifyFlags, kWithoutReadBarrier>()) { |
| mirror::Object* new_object = visitor->IsMarked(object); |
| // We know the string is marked because it's a strongly-interned string that |
| // is always alive. The IsMarked implementation of the CMS collector returns |
| // null for newly allocated objects, but we know those haven't moved. Therefore, |
| // only update the entry if we get a different non-null string. |
| // TODO: Do not use IsMarked for j.l.Class, and adjust once we move this method |
| // out of the weak access/creation pause. b/32167580 |
| if (new_object != nullptr && new_object != object) { |
| DCHECK(new_object->IsString()); |
| roots[i] = GcRoot<mirror::Object>(new_object); |
| } |
| } else { |
| ProcessWeakClass( |
| reinterpret_cast<GcRoot<mirror::Class>*>(&roots[i]), visitor, weak_sentinel); |
| } |
| } |
| } |
| // Walk over inline caches to clear entries containing unloaded classes. |
| for (ProfilingInfo* info : profiling_infos_) { |
| for (size_t i = 0; i < info->number_of_inline_caches_; ++i) { |
| InlineCache* cache = &info->cache_[i]; |
| for (size_t j = 0; j < InlineCache::kIndividualCacheSize; ++j) { |
| ProcessWeakClass(&cache->classes_[j], visitor, nullptr); |
| } |
| } |
| } |
| } |
| |
| void JitCodeCache::FreeCodeAndData(const void* code_ptr) { |
| uintptr_t allocation = FromCodeToAllocation(code_ptr); |
| // Notify native debugger that we are about to remove the code. |
| // It does nothing if we are not using native debugger. |
| MutexLock mu(Thread::Current(), *Locks::native_debug_interface_lock_); |
| RemoveNativeDebugInfoForJit(code_ptr); |
| if (OatQuickMethodHeader::FromCodePointer(code_ptr)->IsOptimized()) { |
| FreeData(GetRootTable(code_ptr)); |
| } // else this is a JNI stub without any data. |
| |
| uint8_t* code_allocation = reinterpret_cast<uint8_t*>(allocation); |
| if (HasDualCodeMapping()) { |
| code_allocation = TranslateAddress(code_allocation, exec_pages_, non_exec_pages_); |
| } |
| |
| FreeCode(code_allocation); |
| } |
| |
| void JitCodeCache::FreeAllMethodHeaders( |
| const std::unordered_set<OatQuickMethodHeader*>& method_headers) { |
| // We need to remove entries in method_headers from CHA dependencies |
| // first since once we do FreeCode() below, the memory can be reused |
| // so it's possible for the same method_header to start representing |
| // different compile code. |
| MutexLock mu(Thread::Current(), lock_); |
| { |
| MutexLock mu2(Thread::Current(), *Locks::cha_lock_); |
| Runtime::Current()->GetClassLinker()->GetClassHierarchyAnalysis() |
| ->RemoveDependentsWithMethodHeaders(method_headers); |
| } |
| |
| ScopedCodeCacheWrite scc(this); |
| for (const OatQuickMethodHeader* method_header : method_headers) { |
| FreeCodeAndData(method_header->GetCode()); |
| } |
| } |
| |
| void JitCodeCache::RemoveMethodsIn(Thread* self, const LinearAlloc& alloc) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| // We use a set to first collect all method_headers whose code need to be |
| // removed. We need to free the underlying code after we remove CHA dependencies |
| // for entries in this set. And it's more efficient to iterate through |
| // the CHA dependency map just once with an unordered_set. |
| std::unordered_set<OatQuickMethodHeader*> method_headers; |
| { |
| MutexLock mu(self, lock_); |
| // We do not check if a code cache GC is in progress, as this method comes |
| // with the classlinker_classes_lock_ held, and suspending ourselves could |
| // lead to a deadlock. |
| { |
| ScopedCodeCacheWrite scc(this); |
| for (auto it = jni_stubs_map_.begin(); it != jni_stubs_map_.end();) { |
| it->second.RemoveMethodsIn(alloc); |
| if (it->second.GetMethods().empty()) { |
| method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->second.GetCode())); |
| it = jni_stubs_map_.erase(it); |
| } else { |
| it->first.UpdateShorty(it->second.GetMethods().front()); |
| ++it; |
| } |
| } |
| for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { |
| if (alloc.ContainsUnsafe(it->second)) { |
| method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->first)); |
| it = method_code_map_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| } |
| for (auto it = osr_code_map_.begin(); it != osr_code_map_.end();) { |
| if (alloc.ContainsUnsafe(it->first)) { |
| // Note that the code has already been pushed to method_headers in the loop |
| // above and is going to be removed in FreeCode() below. |
| it = osr_code_map_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| for (auto it = profiling_infos_.begin(); it != profiling_infos_.end();) { |
| ProfilingInfo* info = *it; |
| if (alloc.ContainsUnsafe(info->GetMethod())) { |
| info->GetMethod()->SetProfilingInfo(nullptr); |
| FreeData(reinterpret_cast<uint8_t*>(info)); |
| it = profiling_infos_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| } |
| FreeAllMethodHeaders(method_headers); |
| } |
| |
| bool JitCodeCache::IsWeakAccessEnabled(Thread* self) const { |
| return kUseReadBarrier |
| ? self->GetWeakRefAccessEnabled() |
| : is_weak_access_enabled_.load(std::memory_order_seq_cst); |
| } |
| |
| void JitCodeCache::WaitUntilInlineCacheAccessible(Thread* self) { |
| if (IsWeakAccessEnabled(self)) { |
| return; |
| } |
| ScopedThreadSuspension sts(self, kWaitingWeakGcRootRead); |
| MutexLock mu(self, lock_); |
| while (!IsWeakAccessEnabled(self)) { |
| inline_cache_cond_.Wait(self); |
| } |
| } |
| |
| void JitCodeCache::BroadcastForInlineCacheAccess() { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, lock_); |
| inline_cache_cond_.Broadcast(self); |
| } |
| |
| void JitCodeCache::AllowInlineCacheAccess() { |
| DCHECK(!kUseReadBarrier); |
| is_weak_access_enabled_.store(true, std::memory_order_seq_cst); |
| BroadcastForInlineCacheAccess(); |
| } |
| |
| void JitCodeCache::DisallowInlineCacheAccess() { |
| DCHECK(!kUseReadBarrier); |
| is_weak_access_enabled_.store(false, std::memory_order_seq_cst); |
| } |
| |
| void JitCodeCache::CopyInlineCacheInto(const InlineCache& ic, |
| Handle<mirror::ObjectArray<mirror::Class>> array) { |
| WaitUntilInlineCacheAccessible(Thread::Current()); |
| // Note that we don't need to lock `lock_` here, the compiler calling |
| // this method has already ensured the inline cache will not be deleted. |
| for (size_t in_cache = 0, in_array = 0; |
| in_cache < InlineCache::kIndividualCacheSize; |
| ++in_cache) { |
| mirror::Class* object = ic.classes_[in_cache].Read(); |
| if (object != nullptr) { |
| array->Set(in_array++, object); |
| } |
| } |
| } |
| |
| static void ClearMethodCounter(ArtMethod* method, bool was_warm) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (was_warm) { |
| method->SetPreviouslyWarm(); |
| } |
| // We reset the counter to 1 so that the profile knows that the method was executed at least once. |
| // This is required for layout purposes. |
| // We also need to make sure we'll pass the warmup threshold again, so we set to 0 if |
| // the warmup threshold is 1. |
| uint16_t jit_warmup_threshold = Runtime::Current()->GetJITOptions()->GetWarmupThreshold(); |
| method->SetCounter(std::min(jit_warmup_threshold - 1, 1)); |
| } |
| |
| void JitCodeCache::WaitForPotentialCollectionToCompleteRunnable(Thread* self) { |
| while (collection_in_progress_) { |
| lock_.Unlock(self); |
| { |
| ScopedThreadSuspension sts(self, kSuspended); |
| MutexLock mu(self, lock_); |
| WaitForPotentialCollectionToComplete(self); |
| } |
| lock_.Lock(self); |
| } |
| } |
| |
| const MemMap* JitCodeCache::GetUpdatableCodeMapping() const { |
| if (HasDualCodeMapping()) { |
| return &non_exec_pages_; |
| } else if (HasCodeMapping()) { |
| return &exec_pages_; |
| } else { |
| return nullptr; |
| } |
| } |
| |
| uint8_t* JitCodeCache::CommitCodeInternal(Thread* self, |
| ArtMethod* method, |
| uint8_t* stack_map, |
| uint8_t* roots_data, |
| const uint8_t* code, |
| size_t code_size, |
| size_t data_size, |
| bool osr, |
| const std::vector<Handle<mirror::Object>>& roots, |
| bool has_should_deoptimize_flag, |
| const ArenaSet<ArtMethod*>& |
| cha_single_implementation_list) { |
| DCHECK(!method->IsNative() || !osr); |
| |
| if (!method->IsNative()) { |
| // We need to do this before grabbing the lock_ because it needs to be able to see the string |
| // InternTable. Native methods do not have roots. |
| DCheckRootsAreValid(roots); |
| } |
| |
| OatQuickMethodHeader* method_header = nullptr; |
| uint8_t* code_ptr = nullptr; |
| |
| MutexLock mu(self, lock_); |
| // We need to make sure that there will be no jit-gcs going on and wait for any ongoing one to |
| // finish. |
| WaitForPotentialCollectionToCompleteRunnable(self); |
| { |
| ScopedCodeCacheWrite scc(this); |
| |
| size_t alignment = GetInstructionSetAlignment(kRuntimeISA); |
| // Ensure the header ends up at expected instruction alignment. |
| size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment); |
| size_t total_size = header_size + code_size; |
| |
| // AllocateCode allocates memory in non-executable region for alignment header and code. The |
| // header size may include alignment padding. |
| uint8_t* nox_memory = AllocateCode(total_size); |
| if (nox_memory == nullptr) { |
| return nullptr; |
| } |
| |
| // code_ptr points to non-executable code. |
| code_ptr = nox_memory + header_size; |
| std::copy(code, code + code_size, code_ptr); |
| method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| |
| // From here code_ptr points to executable code. |
| if (HasDualCodeMapping()) { |
| code_ptr = TranslateAddress(code_ptr, non_exec_pages_, exec_pages_); |
| } |
| |
| new (method_header) OatQuickMethodHeader( |
| (stack_map != nullptr) ? code_ptr - stack_map : 0u, |
| code_size); |
| |
| DCHECK(!Runtime::Current()->IsAotCompiler()); |
| if (has_should_deoptimize_flag) { |
| method_header->SetHasShouldDeoptimizeFlag(); |
| } |
| |
| // Update method_header pointer to executable code region. |
| if (HasDualCodeMapping()) { |
| method_header = TranslateAddress(method_header, non_exec_pages_, exec_pages_); |
| } |
| |
| // Both instruction and data caches need flushing to the point of unification where both share |
| // a common view of memory. Flushing the data cache ensures the dirty cachelines from the |
| // newly added code are written out to the point of unification. Flushing the instruction |
| // cache ensures the newly written code will be fetched from the point of unification before |
| // use. Memory in the code cache is re-cycled as code is added and removed. The flushes |
| // prevent stale code from residing in the instruction cache. |
| // |
| // Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels |
| // may trigger a segfault if a page fault occurs when requesting a cache maintenance |
| // operation. This is a kernel bug that we need to work around until affected devices |
| // (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed. |
| // |
| // For reference, this behavior is caused by this commit: |
| // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c |
| // |
| if (HasDualCodeMapping()) { |
| // Flush the data cache lines associated with the non-executable copy of the code just added. |
| FlushDataCache(nox_memory, nox_memory + total_size); |
| } |
| // FlushInstructionCache() flushes both data and instruction caches lines. The cacheline range |
| // flushed is for the executable mapping of the code just added. |
| FlushInstructionCache(code_ptr, code_ptr + code_size); |
| |
| // Ensure CPU instruction pipelines are flushed for all cores. This is necessary for |
| // correctness as code may still be in instruction pipelines despite the i-cache flush. It is |
| // not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB |
| // shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to |
| // notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have |
| // hardware support that broadcasts TLB invalidations and so their kernels have no software |
| // based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to |
| // address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on |
| // platforms lacking the appropriate support. |
| art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore); |
| |
| number_of_compilations_++; |
| } |
| |
| // We need to update the entry point in the runnable state for the instrumentation. |
| { |
| // The following needs to be guarded by cha_lock_ also. Otherwise it's possible that the |
| // compiled code is considered invalidated by some class linking, but below we still make the |
| // compiled code valid for the method. Need cha_lock_ for checking all single-implementation |
| // flags and register dependencies. |
| MutexLock cha_mu(self, *Locks::cha_lock_); |
| bool single_impl_still_valid = true; |
| for (ArtMethod* single_impl : cha_single_implementation_list) { |
| if (!single_impl->HasSingleImplementation()) { |
| // Simply discard the compiled code. Clear the counter so that it may be recompiled later. |
| // Hopefully the class hierarchy will be more stable when compilation is retried. |
| single_impl_still_valid = false; |
| ClearMethodCounter(method, /*was_warm=*/ false); |
| break; |
| } |
| } |
| |
| // Discard the code if any single-implementation assumptions are now invalid. |
| if (!single_impl_still_valid) { |
| VLOG(jit) << "JIT discarded jitted code due to invalid single-implementation assumptions."; |
| return nullptr; |
| } |
| DCHECK(cha_single_implementation_list.empty() || !Runtime::Current()->IsJavaDebuggable()) |
| << "Should not be using cha on debuggable apps/runs!"; |
| |
| for (ArtMethod* single_impl : cha_single_implementation_list) { |
| Runtime::Current()->GetClassLinker()->GetClassHierarchyAnalysis()->AddDependency( |
| single_impl, method, method_header); |
| } |
| |
| if (UNLIKELY(method->IsNative())) { |
| auto it = jni_stubs_map_.find(JniStubKey(method)); |
| DCHECK(it != jni_stubs_map_.end()) |
| << "Entry inserted in NotifyCompilationOf() should be alive."; |
| JniStubData* data = &it->second; |
| DCHECK(ContainsElement(data->GetMethods(), method)) |
| << "Entry inserted in NotifyCompilationOf() should contain this method."; |
| data->SetCode(code_ptr); |
| instrumentation::Instrumentation* instrum = Runtime::Current()->GetInstrumentation(); |
| for (ArtMethod* m : data->GetMethods()) { |
| instrum->UpdateMethodsCode(m, method_header->GetEntryPoint()); |
| } |
| } else { |
| // Fill the root table before updating the entry point. |
| DCHECK_EQ(FromStackMapToRoots(stack_map), roots_data); |
| DCHECK_LE(roots_data, stack_map); |
| FillRootTable(roots_data, roots); |
| { |
| // Flush data cache, as compiled code references literals in it. |
| FlushDataCache(roots_data, roots_data + data_size); |
| } |
| method_code_map_.Put(code_ptr, method); |
| if (osr) { |
| number_of_osr_compilations_++; |
| osr_code_map_.Put(method, code_ptr); |
| } else { |
| Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( |
| method, method_header->GetEntryPoint()); |
| } |
| } |
| VLOG(jit) |
| << "JIT added (osr=" << std::boolalpha << osr << std::noboolalpha << ") " |
| << ArtMethod::PrettyMethod(method) << "@" << method |
| << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": " |
| << " dcache_size=" << PrettySize(DataCacheSizeLocked()) << ": " |
| << reinterpret_cast<const void*>(method_header->GetEntryPoint()) << "," |
| << reinterpret_cast<const void*>(method_header->GetEntryPoint() + |
| method_header->GetCodeSize()); |
| histogram_code_memory_use_.AddValue(code_size); |
| if (code_size > kCodeSizeLogThreshold) { |
| LOG(INFO) << "JIT allocated " |
| << PrettySize(code_size) |
| << " for compiled code of " |
| << ArtMethod::PrettyMethod(method); |
| } |
| } |
| |
| return reinterpret_cast<uint8_t*>(method_header); |
| } |
| |
| size_t JitCodeCache::CodeCacheSize() { |
| MutexLock mu(Thread::Current(), lock_); |
| return CodeCacheSizeLocked(); |
| } |
| |
| bool JitCodeCache::RemoveMethod(ArtMethod* method, bool release_memory) { |
| // This function is used only for testing and only with non-native methods. |
| CHECK(!method->IsNative()); |
| |
| MutexLock mu(Thread::Current(), lock_); |
| |
| bool osr = osr_code_map_.find(method) != osr_code_map_.end(); |
| bool in_cache = RemoveMethodLocked(method, release_memory); |
| |
| if (!in_cache) { |
| return false; |
| } |
| |
| method->SetCounter(0); |
| Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( |
| method, GetQuickToInterpreterBridge()); |
| VLOG(jit) |
| << "JIT removed (osr=" << std::boolalpha << osr << std::noboolalpha << ") " |
| << ArtMethod::PrettyMethod(method) << "@" << method |
| << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": " |
| << " dcache_size=" << PrettySize(DataCacheSizeLocked()); |
| return true; |
| } |
| |
| bool JitCodeCache::RemoveMethodLocked(ArtMethod* method, bool release_memory) { |
| if (LIKELY(!method->IsNative())) { |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| if (info != nullptr) { |
| RemoveElement(profiling_infos_, info); |
| } |
| method->SetProfilingInfo(nullptr); |
| } |
| |
| bool in_cache = false; |
| ScopedCodeCacheWrite ccw(this); |
| if (UNLIKELY(method->IsNative())) { |
| auto it = jni_stubs_map_.find(JniStubKey(method)); |
| if (it != jni_stubs_map_.end() && it->second.RemoveMethod(method)) { |
| in_cache = true; |
| if (it->second.GetMethods().empty()) { |
| if (release_memory) { |
| FreeCodeAndData(it->second.GetCode()); |
| } |
| jni_stubs_map_.erase(it); |
| } else { |
| it->first.UpdateShorty(it->second.GetMethods().front()); |
| } |
| } |
| } else { |
| for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { |
| if (it->second == method) { |
| in_cache = true; |
| if (release_memory) { |
| FreeCodeAndData(it->first); |
| } |
| it = method_code_map_.erase(it); |
| } else { |
| ++it; |
| } |
| } |
| |
| auto osr_it = osr_code_map_.find(method); |
| if (osr_it != osr_code_map_.end()) { |
| osr_code_map_.erase(osr_it); |
| } |
| } |
| |
| return in_cache; |
| } |
| |
| // This notifies the code cache that the given method has been redefined and that it should remove |
| // any cached information it has on the method. All threads must be suspended before calling this |
| // method. The compiled code for the method (if there is any) must not be in any threads call stack. |
| void JitCodeCache::NotifyMethodRedefined(ArtMethod* method) { |
| MutexLock mu(Thread::Current(), lock_); |
| RemoveMethodLocked(method, /* release_memory= */ true); |
| } |
| |
| // This invalidates old_method. Once this function returns one can no longer use old_method to |
| // execute code unless it is fixed up. This fixup will happen later in the process of installing a |
| // class redefinition. |
| // TODO We should add some info to ArtMethod to note that 'old_method' has been invalidated and |
| // shouldn't be used since it is no longer logically in the jit code cache. |
| // TODO We should add DCHECKS that validate that the JIT is paused when this method is entered. |
| void JitCodeCache::MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) { |
| MutexLock mu(Thread::Current(), lock_); |
| if (old_method->IsNative()) { |
| // Update methods in jni_stubs_map_. |
| for (auto& entry : jni_stubs_map_) { |
| JniStubData& data = entry.second; |
| data.MoveObsoleteMethod(old_method, new_method); |
| } |
| return; |
| } |
| // Update ProfilingInfo to the new one and remove it from the old_method. |
| if (old_method->GetProfilingInfo(kRuntimePointerSize) != nullptr) { |
| DCHECK_EQ(old_method->GetProfilingInfo(kRuntimePointerSize)->GetMethod(), old_method); |
| ProfilingInfo* info = old_method->GetProfilingInfo(kRuntimePointerSize); |
| old_method->SetProfilingInfo(nullptr); |
| // Since the JIT should be paused and all threads suspended by the time this is called these |
| // checks should always pass. |
| DCHECK(!info->IsInUseByCompiler()); |
| new_method->SetProfilingInfo(info); |
| // Get rid of the old saved entrypoint if it is there. |
| info->SetSavedEntryPoint(nullptr); |
| info->method_ = new_method; |
| } |
| // Update method_code_map_ to point to the new method. |
| for (auto& it : method_code_map_) { |
| if (it.second == old_method) { |
| it.second = new_method; |
| } |
| } |
| // Update osr_code_map_ to point to the new method. |
| auto code_map = osr_code_map_.find(old_method); |
| if (code_map != osr_code_map_.end()) { |
| osr_code_map_.Put(new_method, code_map->second); |
| osr_code_map_.erase(old_method); |
| } |
| } |
| |
| size_t JitCodeCache::CodeCacheSizeLocked() { |
| return used_memory_for_code_; |
| } |
| |
| size_t JitCodeCache::DataCacheSize() { |
| MutexLock mu(Thread::Current(), lock_); |
| return DataCacheSizeLocked(); |
| } |
| |
| size_t JitCodeCache::DataCacheSizeLocked() { |
| return used_memory_for_data_; |
| } |
| |
| void JitCodeCache::ClearData(Thread* self, |
| uint8_t* stack_map_data, |
| uint8_t* roots_data) { |
| DCHECK_EQ(FromStackMapToRoots(stack_map_data), roots_data); |
| MutexLock mu(self, lock_); |
| FreeData(reinterpret_cast<uint8_t*>(roots_data)); |
| } |
| |
| size_t JitCodeCache::ReserveData(Thread* self, |
| size_t stack_map_size, |
| size_t number_of_roots, |
| ArtMethod* method, |
| uint8_t** stack_map_data, |
| uint8_t** roots_data) { |
| size_t table_size = ComputeRootTableSize(number_of_roots); |
| size_t size = RoundUp(stack_map_size + table_size, sizeof(void*)); |
| uint8_t* result = nullptr; |
| |
| { |
| ScopedThreadSuspension sts(self, kSuspended); |
| MutexLock mu(self, lock_); |
| WaitForPotentialCollectionToComplete(self); |
| result = AllocateData(size); |
| } |
| |
| if (result == nullptr) { |
| // Retry. |
| GarbageCollectCache(self); |
| ScopedThreadSuspension sts(self, kSuspended); |
| MutexLock mu(self, lock_); |
| WaitForPotentialCollectionToComplete(self); |
| result = AllocateData(size); |
| } |
| |
| MutexLock mu(self, lock_); |
| histogram_stack_map_memory_use_.AddValue(size); |
| if (size > kStackMapSizeLogThreshold) { |
| LOG(INFO) << "JIT allocated " |
| << PrettySize(size) |
| << " for stack maps of " |
| << ArtMethod::PrettyMethod(method); |
| } |
| if (result != nullptr) { |
| *roots_data = result; |
| *stack_map_data = result + table_size; |
| FillRootTableLength(*roots_data, number_of_roots); |
| return size; |
| } else { |
| *roots_data = nullptr; |
| *stack_map_data = nullptr; |
| return 0; |
| } |
| } |
| |
| class MarkCodeClosure final : public Closure { |
| public: |
| MarkCodeClosure(JitCodeCache* code_cache, CodeCacheBitmap* bitmap, Barrier* barrier) |
| : code_cache_(code_cache), bitmap_(bitmap), barrier_(barrier) {} |
| |
| void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| DCHECK(thread == Thread::Current() || thread->IsSuspended()); |
| StackVisitor::WalkStack( |
| [&](const art::StackVisitor* stack_visitor) { |
| const OatQuickMethodHeader* method_header = |
| stack_visitor->GetCurrentOatQuickMethodHeader(); |
| if (method_header == nullptr) { |
| return true; |
| } |
| const void* code = method_header->GetCode(); |
| if (code_cache_->ContainsPc(code) && !code_cache_->IsInZygoteExecSpace(code)) { |
| // Use the atomic set version, as multiple threads are executing this code. |
| bitmap_->AtomicTestAndSet(FromCodeToAllocation(code)); |
| } |
| return true; |
| }, |
| thread, |
| /* context= */ nullptr, |
| art::StackVisitor::StackWalkKind::kSkipInlinedFrames); |
| |
| if (kIsDebugBuild) { |
| // The stack walking code queries the side instrumentation stack if it |
| // sees an instrumentation exit pc, so the JIT code of methods in that stack |
| // must have been seen. We sanity check this below. |
| for (const instrumentation::InstrumentationStackFrame& frame |
| : *thread->GetInstrumentationStack()) { |
| // The 'method_' in InstrumentationStackFrame is the one that has return_pc_ in |
| // its stack frame, it is not the method owning return_pc_. We just pass null to |
| // LookupMethodHeader: the method is only checked against in debug builds. |
| OatQuickMethodHeader* method_header = |
| code_cache_->LookupMethodHeader(frame.return_pc_, /* method= */ nullptr); |
| if (method_header != nullptr) { |
| const void* code = method_header->GetCode(); |
| CHECK(bitmap_->Test(FromCodeToAllocation(code))); |
| } |
| } |
| } |
| barrier_->Pass(Thread::Current()); |
| } |
| |
| private: |
| JitCodeCache* const code_cache_; |
| CodeCacheBitmap* const bitmap_; |
| Barrier* const barrier_; |
| }; |
| |
| void JitCodeCache::NotifyCollectionDone(Thread* self) { |
| collection_in_progress_ = false; |
| lock_cond_.Broadcast(self); |
| } |
| |
| void JitCodeCache::SetFootprintLimit(size_t new_footprint) { |
| size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider; |
| DCHECK(IsAlignedParam(data_space_footprint, kPageSize)); |
| DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint); |
| mspace_set_footprint_limit(data_mspace_, data_space_footprint); |
| if (HasCodeMapping()) { |
| ScopedCodeCacheWrite scc(this); |
| mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint); |
| } |
| } |
| |
| bool JitCodeCache::IncreaseCodeCacheCapacity() { |
| if (current_capacity_ == max_capacity_) { |
| return false; |
| } |
| |
| // Double the capacity if we're below 1MB, or increase it by 1MB if |
| // we're above. |
| if (current_capacity_ < 1 * MB) { |
| current_capacity_ *= 2; |
| } else { |
| current_capacity_ += 1 * MB; |
| } |
| if (current_capacity_ > max_capacity_) { |
| current_capacity_ = max_capacity_; |
| } |
| |
| VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_); |
| |
| SetFootprintLimit(current_capacity_); |
| |
| return true; |
| } |
| |
| void JitCodeCache::MarkCompiledCodeOnThreadStacks(Thread* self) { |
| Barrier barrier(0); |
| size_t threads_running_checkpoint = 0; |
| MarkCodeClosure closure(this, GetLiveBitmap(), &barrier); |
| threads_running_checkpoint = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); |
| // Now that we have run our checkpoint, move to a suspended state and wait |
| // for other threads to run the checkpoint. |
| ScopedThreadSuspension sts(self, kSuspended); |
| if (threads_running_checkpoint != 0) { |
| barrier.Increment(self, threads_running_checkpoint); |
| } |
| } |
| |
| bool JitCodeCache::ShouldDoFullCollection() { |
| if (current_capacity_ == max_capacity_) { |
| // Always do a full collection when the code cache is full. |
| return true; |
| } else if (current_capacity_ < kReservedCapacity) { |
| // Always do partial collection when the code cache size is below the reserved |
| // capacity. |
| return false; |
| } else if (last_collection_increased_code_cache_) { |
| // This time do a full collection. |
| return true; |
| } else { |
| // This time do a partial collection. |
| return false; |
| } |
| } |
| |
| void JitCodeCache::GarbageCollectCache(Thread* self) { |
| ScopedTrace trace(__FUNCTION__); |
| if (!garbage_collect_code_) { |
| MutexLock mu(self, lock_); |
| IncreaseCodeCacheCapacity(); |
| return; |
| } |
| |
| // Wait for an existing collection, or let everyone know we are starting one. |
| { |
| ScopedThreadSuspension sts(self, kSuspended); |
| MutexLock mu(self, lock_); |
| if (WaitForPotentialCollectionToComplete(self)) { |
| return; |
| } else { |
| number_of_collections_++; |
| live_bitmap_.reset(CodeCacheBitmap::Create( |
| "code-cache-bitmap", |
| reinterpret_cast<uintptr_t>(exec_pages_.Begin()), |
| reinterpret_cast<uintptr_t>(exec_pages_.Begin() + current_capacity_ / 2))); |
| collection_in_progress_ = true; |
| } |
| } |
| |
| TimingLogger logger("JIT code cache timing logger", true, VLOG_IS_ON(jit)); |
| { |
| TimingLogger::ScopedTiming st("Code cache collection", &logger); |
| |
| bool do_full_collection = false; |
| { |
| MutexLock mu(self, lock_); |
| do_full_collection = ShouldDoFullCollection(); |
| } |
| |
| VLOG(jit) << "Do " |
| << (do_full_collection ? "full" : "partial") |
| << " code cache collection, code=" |
| << PrettySize(CodeCacheSize()) |
| << ", data=" << PrettySize(DataCacheSize()); |
| |
| DoCollection(self, /* collect_profiling_info= */ do_full_collection); |
| |
| VLOG(jit) << "After code cache collection, code=" |
| << PrettySize(CodeCacheSize()) |
| << ", data=" << PrettySize(DataCacheSize()); |
| |
| { |
| MutexLock mu(self, lock_); |
| |
| // Increase the code cache only when we do partial collections. |
| // TODO: base this strategy on how full the code cache is? |
| if (do_full_collection) { |
| last_collection_increased_code_cache_ = false; |
| } else { |
| last_collection_increased_code_cache_ = true; |
| IncreaseCodeCacheCapacity(); |
| } |
| |
| bool next_collection_will_be_full = ShouldDoFullCollection(); |
| |
| // Start polling the liveness of compiled code to prepare for the next full collection. |
| if (next_collection_will_be_full) { |
| // Save the entry point of methods we have compiled, and update the entry |
| // point of those methods to the interpreter. If the method is invoked, the |
| // interpreter will update its entry point to the compiled code and call it. |
| for (ProfilingInfo* info : profiling_infos_) { |
| const void* entry_point = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); |
| if (!IsInZygoteDataSpace(info) && ContainsPc(entry_point)) { |
| info->SetSavedEntryPoint(entry_point); |
| // Don't call Instrumentation::UpdateMethodsCode(), as it can check the declaring |
| // class of the method. We may be concurrently running a GC which makes accessing |
| // the class unsafe. We know it is OK to bypass the instrumentation as we've just |
| // checked that the current entry point is JIT compiled code. |
| info->GetMethod()->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); |
| } |
| } |
| |
| DCHECK(CheckLiveCompiledCodeHasProfilingInfo()); |
| |
| // Change entry points of native methods back to the GenericJNI entrypoint. |
| for (const auto& entry : jni_stubs_map_) { |
| const JniStubData& data = entry.second; |
| if (!data.IsCompiled() || IsInZygoteExecSpace(data.GetCode())) { |
| continue; |
| } |
| // Make sure a single invocation of the GenericJNI trampoline tries to recompile. |
| uint16_t new_counter = Runtime::Current()->GetJit()->HotMethodThreshold() - 1u; |
| const OatQuickMethodHeader* method_header = |
| OatQuickMethodHeader::FromCodePointer(data.GetCode()); |
| for (ArtMethod* method : data.GetMethods()) { |
| if (method->GetEntryPointFromQuickCompiledCode() == method_header->GetEntryPoint()) { |
| // Don't call Instrumentation::UpdateMethodsCode(), same as for normal methods above. |
| method->SetCounter(new_counter); |
| method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub()); |
| } |
| } |
| } |
| } |
| live_bitmap_.reset(nullptr); |
| NotifyCollectionDone(self); |
| } |
| } |
| Runtime::Current()->GetJit()->AddTimingLogger(logger); |
| } |
| |
| void JitCodeCache::RemoveUnmarkedCode(Thread* self) { |
| ScopedTrace trace(__FUNCTION__); |
| std::unordered_set<OatQuickMethodHeader*> method_headers; |
| { |
| MutexLock mu(self, lock_); |
| ScopedCodeCacheWrite scc(this); |
| // Iterate over all compiled code and remove entries that are not marked. |
| for (auto it = jni_stubs_map_.begin(); it != jni_stubs_map_.end();) { |
| JniStubData* data = &it->second; |
| if (IsInZygoteExecSpace(data->GetCode()) || |
| !data->IsCompiled() || |
| GetLiveBitmap()->Test(FromCodeToAllocation(data->GetCode()))) { |
| ++it; |
| } else { |
| method_headers.insert(OatQuickMethodHeader::FromCodePointer(data->GetCode())); |
| it = jni_stubs_map_.erase(it); |
| } |
| } |
| for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { |
| const void* code_ptr = it->first; |
| uintptr_t allocation = FromCodeToAllocation(code_ptr); |
| if (IsInZygoteExecSpace(code_ptr) || GetLiveBitmap()->Test(allocation)) { |
| ++it; |
| } else { |
| OatQuickMethodHeader* header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| method_headers.insert(header); |
| it = method_code_map_.erase(it); |
| } |
| } |
| } |
| FreeAllMethodHeaders(method_headers); |
| } |
| |
| void JitCodeCache::DoCollection(Thread* self, bool collect_profiling_info) { |
| ScopedTrace trace(__FUNCTION__); |
| { |
| MutexLock mu(self, lock_); |
| if (collect_profiling_info) { |
| // Clear the profiling info of methods that do not have compiled code as entrypoint. |
| // Also remove the saved entry point from the ProfilingInfo objects. |
| for (ProfilingInfo* info : profiling_infos_) { |
| const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); |
| if (!ContainsPc(ptr) && !info->IsInUseByCompiler() && !IsInZygoteDataSpace(info)) { |
| info->GetMethod()->SetProfilingInfo(nullptr); |
| } |
| |
| if (info->GetSavedEntryPoint() != nullptr) { |
| info->SetSavedEntryPoint(nullptr); |
| // We are going to move this method back to interpreter. Clear the counter now to |
| // give it a chance to be hot again. |
| ClearMethodCounter(info->GetMethod(), /*was_warm=*/ true); |
| } |
| } |
| } else if (kIsDebugBuild) { |
| // Sanity check that the profiling infos do not have a dangling entry point. |
| for (ProfilingInfo* info : profiling_infos_) { |
| DCHECK(info->GetSavedEntryPoint() == nullptr); |
| } |
| } |
| |
| // Mark compiled code that are entrypoints of ArtMethods. Compiled code that is not |
| // an entry point is either: |
| // - an osr compiled code, that will be removed if not in a thread call stack. |
| // - discarded compiled code, that will be removed if not in a thread call stack. |
| for (const auto& entry : jni_stubs_map_) { |
| const JniStubData& data = entry.second; |
| const void* code_ptr = data.GetCode(); |
| if (IsInZygoteExecSpace(code_ptr)) { |
| continue; |
| } |
| const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| for (ArtMethod* method : data.GetMethods()) { |
| if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { |
| GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr)); |
| break; |
| } |
| } |
| } |
| for (const auto& it : method_code_map_) { |
| ArtMethod* method = it.second; |
| const void* code_ptr = it.first; |
| if (IsInZygoteExecSpace(code_ptr)) { |
| continue; |
| } |
| const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { |
| GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr)); |
| } |
| } |
| |
| // Empty osr method map, as osr compiled code will be deleted (except the ones |
| // on thread stacks). |
| osr_code_map_.clear(); |
| } |
| |
| // Run a checkpoint on all threads to mark the JIT compiled code they are running. |
| MarkCompiledCodeOnThreadStacks(self); |
| |
| // At this point, mutator threads are still running, and entrypoints of methods can |
| // change. We do know they cannot change to a code cache entry that is not marked, |
| // therefore we can safely remove those entries. |
| RemoveUnmarkedCode(self); |
| |
| if (collect_profiling_info) { |
| MutexLock mu(self, lock_); |
| // Free all profiling infos of methods not compiled nor being compiled. |
| auto profiling_kept_end = std::remove_if(profiling_infos_.begin(), profiling_infos_.end(), |
| [this] (ProfilingInfo* info) NO_THREAD_SAFETY_ANALYSIS { |
| const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); |
| // We have previously cleared the ProfilingInfo pointer in the ArtMethod in the hope |
| // that the compiled code would not get revived. As mutator threads run concurrently, |
| // they may have revived the compiled code, and now we are in the situation where |
| // a method has compiled code but no ProfilingInfo. |
| // We make sure compiled methods have a ProfilingInfo object. It is needed for |
| // code cache collection. |
| if (ContainsPc(ptr) && |
| info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) == nullptr) { |
| info->GetMethod()->SetProfilingInfo(info); |
| } else if (info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) != info) { |
| // No need for this ProfilingInfo object anymore. |
| FreeData(reinterpret_cast<uint8_t*>(info)); |
| return true; |
| } |
| return false; |
| }); |
| profiling_infos_.erase(profiling_kept_end, profiling_infos_.end()); |
| DCHECK(CheckLiveCompiledCodeHasProfilingInfo()); |
| } |
| } |
| |
| bool JitCodeCache::CheckLiveCompiledCodeHasProfilingInfo() { |
| ScopedTrace trace(__FUNCTION__); |
| // Check that methods we have compiled do have a ProfilingInfo object. We would |
| // have memory leaks of compiled code otherwise. |
| for (const auto& it : method_code_map_) { |
| ArtMethod* method = it.second; |
| if (method->GetProfilingInfo(kRuntimePointerSize) == nullptr) { |
| const void* code_ptr = it.first; |
| const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { |
| // If the code is not dead, then we have a problem. Note that this can even |
| // happen just after a collection, as mutator threads are running in parallel |
| // and could deoptimize an existing compiled code. |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| OatQuickMethodHeader* JitCodeCache::LookupMethodHeader(uintptr_t pc, ArtMethod* method) { |
| static_assert(kRuntimeISA != InstructionSet::kThumb2, "kThumb2 cannot be a runtime ISA"); |
| if (kRuntimeISA == InstructionSet::kArm) { |
| // On Thumb-2, the pc is offset by one. |
| --pc; |
| } |
| if (!ContainsPc(reinterpret_cast<const void*>(pc))) { |
| return nullptr; |
| } |
| |
| if (!kIsDebugBuild) { |
| // Called with null `method` only from MarkCodeClosure::Run() in debug build. |
| CHECK(method != nullptr); |
| } |
| |
| MutexLock mu(Thread::Current(), lock_); |
| OatQuickMethodHeader* method_header = nullptr; |
| ArtMethod* found_method = nullptr; // Only for DCHECK(), not for JNI stubs. |
| if (method != nullptr && UNLIKELY(method->IsNative())) { |
| auto it = jni_stubs_map_.find(JniStubKey(method)); |
| if (it == jni_stubs_map_.end() || !ContainsElement(it->second.GetMethods(), method)) { |
| return nullptr; |
| } |
| const void* code_ptr = it->second.GetCode(); |
| method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| if (!method_header->Contains(pc)) { |
| return nullptr; |
| } |
| } else { |
| auto it = method_code_map_.lower_bound(reinterpret_cast<const void*>(pc)); |
| if (it != method_code_map_.begin()) { |
| --it; |
| const void* code_ptr = it->first; |
| if (OatQuickMethodHeader::FromCodePointer(code_ptr)->Contains(pc)) { |
| method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); |
| found_method = it->second; |
| } |
| } |
| if (method_header == nullptr && method == nullptr) { |
| // Scan all compiled JNI stubs as well. This slow search is used only |
| // for checks in debug build, for release builds the `method` is not null. |
| for (auto&& entry : jni_stubs_map_) { |
| const JniStubData& data = entry.second; |
| if (data.IsCompiled() && |
| OatQuickMethodHeader::FromCodePointer(data.GetCode())->Contains(pc)) { |
| method_header = OatQuickMethodHeader::FromCodePointer(data.GetCode()); |
| } |
| } |
| } |
| if (method_header == nullptr) { |
| return nullptr; |
| } |
| } |
| |
| if (kIsDebugBuild && method != nullptr && !method->IsNative()) { |
| // When we are walking the stack to redefine classes and creating obsolete methods it is |
| // possible that we might have updated the method_code_map by making this method obsolete in a |
| // previous frame. Therefore we should just check that the non-obsolete version of this method |
| // is the one we expect. We change to the non-obsolete versions in the error message since the |
| // obsolete version of the method might not be fully initialized yet. This situation can only |
| // occur when we are in the process of allocating and setting up obsolete methods. Otherwise |
| // method and it->second should be identical. (See openjdkjvmti/ti_redefine.cc for more |
| // information.) |
| DCHECK_EQ(found_method->GetNonObsoleteMethod(), method->GetNonObsoleteMethod()) |
| << ArtMethod::PrettyMethod(method->GetNonObsoleteMethod()) << " " |
| << ArtMethod::PrettyMethod(found_method->GetNonObsoleteMethod()) << " " |
| << std::hex << pc; |
| } |
| return method_header; |
| } |
| |
| OatQuickMethodHeader* JitCodeCache::LookupOsrMethodHeader(ArtMethod* method) { |
| MutexLock mu(Thread::Current(), lock_); |
| auto it = osr_code_map_.find(method); |
| if (it == osr_code_map_.end()) { |
| return nullptr; |
| } |
| return OatQuickMethodHeader::FromCodePointer(it->second); |
| } |
| |
| ProfilingInfo* JitCodeCache::AddProfilingInfo(Thread* self, |
| ArtMethod* method, |
| const std::vector<uint32_t>& entries, |
| bool retry_allocation) |
| // No thread safety analysis as we are using TryLock/Unlock explicitly. |
| NO_THREAD_SAFETY_ANALYSIS { |
| ProfilingInfo* info = nullptr; |
| if (!retry_allocation) { |
| // If we are allocating for the interpreter, just try to lock, to avoid |
| // lock contention with the JIT. |
| if (lock_.ExclusiveTryLock(self)) { |
| info = AddProfilingInfoInternal(self, method, entries); |
| lock_.ExclusiveUnlock(self); |
| } |
| } else { |
| { |
| MutexLock mu(self, lock_); |
| info = AddProfilingInfoInternal(self, method, entries); |
| } |
| |
| if (info == nullptr) { |
| GarbageCollectCache(self); |
| MutexLock mu(self, lock_); |
| info = AddProfilingInfoInternal(self, method, entries); |
| } |
| } |
| return info; |
| } |
| |
| ProfilingInfo* JitCodeCache::AddProfilingInfoInternal(Thread* self ATTRIBUTE_UNUSED, |
| ArtMethod* method, |
| const std::vector<uint32_t>& entries) { |
| size_t profile_info_size = RoundUp( |
| sizeof(ProfilingInfo) + sizeof(InlineCache) * entries.size(), |
| sizeof(void*)); |
| |
| // Check whether some other thread has concurrently created it. |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| if (info != nullptr) { |
| return info; |
| } |
| |
| uint8_t* data = AllocateData(profile_info_size); |
| if (data == nullptr) { |
| return nullptr; |
| } |
| info = new (data) ProfilingInfo(method, entries); |
| |
| // Make sure other threads see the data in the profiling info object before the |
| // store in the ArtMethod's ProfilingInfo pointer. |
| std::atomic_thread_fence(std::memory_order_release); |
| |
| method->SetProfilingInfo(info); |
| profiling_infos_.push_back(info); |
| histogram_profiling_info_memory_use_.AddValue(profile_info_size); |
| return info; |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock |
| // is already held. |
| void* JitCodeCache::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS { |
| if (mspace == exec_mspace_) { |
| DCHECK(exec_mspace_ != nullptr); |
| const MemMap* const code_pages = GetUpdatableCodeMapping(); |
| void* result = code_pages->Begin() + exec_end_; |
| exec_end_ += increment; |
| return result; |
| } else { |
| DCHECK_EQ(data_mspace_, mspace); |
| void* result = data_pages_.Begin() + data_end_; |
| data_end_ += increment; |
| return result; |
| } |
| } |
| |
| void JitCodeCache::GetProfiledMethods(const std::set<std::string>& dex_base_locations, |
| std::vector<ProfileMethodInfo>& methods) { |
| Thread* self = Thread::Current(); |
| WaitUntilInlineCacheAccessible(self); |
| MutexLock mu(self, lock_); |
| ScopedTrace trace(__FUNCTION__); |
| uint16_t jit_compile_threshold = Runtime::Current()->GetJITOptions()->GetCompileThreshold(); |
| for (const ProfilingInfo* info : profiling_infos_) { |
| ArtMethod* method = info->GetMethod(); |
| const DexFile* dex_file = method->GetDexFile(); |
| const std::string base_location = DexFileLoader::GetBaseLocation(dex_file->GetLocation()); |
| if (!ContainsElement(dex_base_locations, base_location)) { |
| // Skip dex files which are not profiled. |
| continue; |
| } |
| std::vector<ProfileMethodInfo::ProfileInlineCache> inline_caches; |
| |
| // If the method didn't reach the compilation threshold don't save the inline caches. |
| // They might be incomplete and cause unnecessary deoptimizations. |
| // If the inline cache is empty the compiler will generate a regular invoke virtual/interface. |
| if (method->GetCounter() < jit_compile_threshold) { |
| methods.emplace_back(/*ProfileMethodInfo*/ |
| MethodReference(dex_file, method->GetDexMethodIndex()), inline_caches); |
| continue; |
| } |
| |
| for (size_t i = 0; i < info->number_of_inline_caches_; ++i) { |
| std::vector<TypeReference> profile_classes; |
| const InlineCache& cache = info->cache_[i]; |
| ArtMethod* caller = info->GetMethod(); |
| bool is_missing_types = false; |
| for (size_t k = 0; k < InlineCache::kIndividualCacheSize; k++) { |
| mirror::Class* cls = cache.classes_[k].Read(); |
| if (cls == nullptr) { |
| break; |
| } |
| |
| // Check if the receiver is in the boot class path or if it's in the |
| // same class loader as the caller. If not, skip it, as there is not |
| // much we can do during AOT. |
| if (!cls->IsBootStrapClassLoaded() && |
| caller->GetClassLoader() != cls->GetClassLoader()) { |
| is_missing_types = true; |
| continue; |
| } |
| |
| const DexFile* class_dex_file = nullptr; |
| dex::TypeIndex type_index; |
| |
| if (cls->GetDexCache() == nullptr) { |
| DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); |
| // Make a best effort to find the type index in the method's dex file. |
| // We could search all open dex files but that might turn expensive |
| // and probably not worth it. |
| class_dex_file = dex_file; |
| type_index = cls->FindTypeIndexInOtherDexFile(*dex_file); |
| } else { |
| class_dex_file = &(cls->GetDexFile()); |
| type_index = cls->GetDexTypeIndex(); |
| } |
| if (!type_index.IsValid()) { |
| // Could be a proxy class or an array for which we couldn't find the type index. |
| is_missing_types = true; |
| continue; |
| } |
| if (ContainsElement(dex_base_locations, |
| DexFileLoader::GetBaseLocation(class_dex_file->GetLocation()))) { |
| // Only consider classes from the same apk (including multidex). |
| profile_classes.emplace_back(/*ProfileMethodInfo::ProfileClassReference*/ |
| class_dex_file, type_index); |
| } else { |
| is_missing_types = true; |
| } |
| } |
| if (!profile_classes.empty()) { |
| inline_caches.emplace_back(/*ProfileMethodInfo::ProfileInlineCache*/ |
| cache.dex_pc_, is_missing_types, profile_classes); |
| } |
| } |
| methods.emplace_back(/*ProfileMethodInfo*/ |
| MethodReference(dex_file, method->GetDexMethodIndex()), inline_caches); |
| } |
| } |
| |
| bool JitCodeCache::IsOsrCompiled(ArtMethod* method) { |
| MutexLock mu(Thread::Current(), lock_); |
| return osr_code_map_.find(method) != osr_code_map_.end(); |
| } |
| |
| bool JitCodeCache::NotifyCompilationOf(ArtMethod* method, Thread* self, bool osr) { |
| if (!osr && ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { |
| return false; |
| } |
| |
| MutexLock mu(self, lock_); |
| if (osr && (osr_code_map_.find(method) != osr_code_map_.end())) { |
| return false; |
| } |
| |
| if (UNLIKELY(method->IsNative())) { |
| JniStubKey key(method); |
| auto it = jni_stubs_map_.find(key); |
| bool new_compilation = false; |
| if (it == jni_stubs_map_.end()) { |
| // Create a new entry to mark the stub as being compiled. |
| it = jni_stubs_map_.Put(key, JniStubData{}); |
| new_compilation = true; |
| } |
| JniStubData* data = &it->second; |
| data->AddMethod(method); |
| if (data->IsCompiled()) { |
| OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(data->GetCode()); |
| const void* entrypoint = method_header->GetEntryPoint(); |
| // Update also entrypoints of other methods held by the JniStubData. |
| // We could simply update the entrypoint of `method` but if the last JIT GC has |
| // changed these entrypoints to GenericJNI in preparation for a full GC, we may |
| // as well change them back as this stub shall not be collected anyway and this |
| // can avoid a few expensive GenericJNI calls. |
| instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); |
| for (ArtMethod* m : data->GetMethods()) { |
| // Call the dedicated method instead of the more generic UpdateMethodsCode, because |
| // `m` might be in the process of being deleted. |
| instrumentation->UpdateNativeMethodsCodeToJitCode(m, entrypoint); |
| } |
| if (collection_in_progress_) { |
| CHECK(!IsInZygoteExecSpace(data->GetCode())); |
| GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(data->GetCode())); |
| } |
| } |
| return new_compilation; |
| } else { |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| if (info == nullptr) { |
| VLOG(jit) << method->PrettyMethod() << " needs a ProfilingInfo to be compiled"; |
| // Because the counter is not atomic, there are some rare cases where we may not hit the |
| // threshold for creating the ProfilingInfo. Reset the counter now to "correct" this. |
| ClearMethodCounter(method, /*was_warm=*/ false); |
| return false; |
| } |
| |
| if (info->IsMethodBeingCompiled(osr)) { |
| return false; |
| } |
| |
| info->SetIsMethodBeingCompiled(true, osr); |
| return true; |
| } |
| } |
| |
| ProfilingInfo* JitCodeCache::NotifyCompilerUse(ArtMethod* method, Thread* self) { |
| MutexLock mu(self, lock_); |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| if (info != nullptr) { |
| if (!info->IncrementInlineUse()) { |
| // Overflow of inlining uses, just bail. |
| return nullptr; |
| } |
| } |
| return info; |
| } |
| |
| void JitCodeCache::DoneCompilerUse(ArtMethod* method, Thread* self) { |
| MutexLock mu(self, lock_); |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| DCHECK(info != nullptr); |
| info->DecrementInlineUse(); |
| } |
| |
| void JitCodeCache::DoneCompiling(ArtMethod* method, Thread* self, bool osr) { |
| DCHECK_EQ(Thread::Current(), self); |
| MutexLock mu(self, lock_); |
| if (UNLIKELY(method->IsNative())) { |
| auto it = jni_stubs_map_.find(JniStubKey(method)); |
| DCHECK(it != jni_stubs_map_.end()); |
| JniStubData* data = &it->second; |
| DCHECK(ContainsElement(data->GetMethods(), method)); |
| if (UNLIKELY(!data->IsCompiled())) { |
| // Failed to compile; the JNI compiler never fails, but the cache may be full. |
| jni_stubs_map_.erase(it); // Remove the entry added in NotifyCompilationOf(). |
| } // else CommitCodeInternal() updated entrypoints of all methods in the JniStubData. |
| } else { |
| ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); |
| DCHECK(info->IsMethodBeingCompiled(osr)); |
| info->SetIsMethodBeingCompiled(false, osr); |
| } |
| } |
| |
| void JitCodeCache::InvalidateCompiledCodeFor(ArtMethod* method, |
| const OatQuickMethodHeader* header) { |
| DCHECK(!method->IsNative()); |
| ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize); |
| const void* method_entrypoint = method->GetEntryPointFromQuickCompiledCode(); |
| if ((profiling_info != nullptr) && |
| (profiling_info->GetSavedEntryPoint() == header->GetEntryPoint())) { |
| // When instrumentation is set, the actual entrypoint is the one in the profiling info. |
| method_entrypoint = profiling_info->GetSavedEntryPoint(); |
| // Prevent future uses of the compiled code. |
| profiling_info->SetSavedEntryPoint(nullptr); |
| } |
| |
| // Clear the method counter if we are running jitted code since we might want to jit this again in |
| // the future. |
| if (method_entrypoint == header->GetEntryPoint()) { |
| // The entrypoint is the one to invalidate, so we just update it to the interpreter entry point |
| // and clear the counter to get the method Jitted again. |
| Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( |
| method, GetQuickToInterpreterBridge()); |
| ClearMethodCounter(method, /*was_warm=*/ profiling_info != nullptr); |
| } else { |
| MutexLock mu(Thread::Current(), lock_); |
| auto it = osr_code_map_.find(method); |
| if (it != osr_code_map_.end() && OatQuickMethodHeader::FromCodePointer(it->second) == header) { |
| // Remove the OSR method, to avoid using it again. |
| osr_code_map_.erase(it); |
| } |
| } |
| } |
| |
| uint8_t* JitCodeCache::AllocateCode(size_t code_size) { |
| size_t alignment = GetInstructionSetAlignment(kRuntimeISA); |
| uint8_t* result = reinterpret_cast<uint8_t*>( |
| mspace_memalign(exec_mspace_, alignment, code_size)); |
| size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment); |
| // Ensure the header ends up at expected instruction alignment. |
| DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(result + header_size), alignment); |
| used_memory_for_code_ += mspace_usable_size(result); |
| return result; |
| } |
| |
| void JitCodeCache::FreeCode(uint8_t* code) { |
| CHECK(!IsInZygoteExecSpace(code)); |
| used_memory_for_code_ -= mspace_usable_size(code); |
| mspace_free(exec_mspace_, code); |
| } |
| |
| uint8_t* JitCodeCache::AllocateData(size_t data_size) { |
| void* result = mspace_malloc(data_mspace_, data_size); |
| used_memory_for_data_ += mspace_usable_size(result); |
| return reinterpret_cast<uint8_t*>(result); |
| } |
| |
| void JitCodeCache::FreeData(uint8_t* data) { |
| CHECK(!IsInZygoteDataSpace(data)); |
| used_memory_for_data_ -= mspace_usable_size(data); |
| mspace_free(data_mspace_, data); |
| } |
| |
| void JitCodeCache::Dump(std::ostream& os) { |
| MutexLock mu(Thread::Current(), lock_); |
| MutexLock mu2(Thread::Current(), *Locks::native_debug_interface_lock_); |
| os << "Current JIT code cache size: " << PrettySize(used_memory_for_code_) << "\n" |
| << "Current JIT data cache size: " << PrettySize(used_memory_for_data_) << "\n" |
| << "Current JIT mini-debug-info size: " << PrettySize(GetJitNativeDebugInfoMemUsage()) << "\n" |
| << "Current JIT capacity: " << PrettySize(current_capacity_) << "\n" |
| << "Current number of JIT JNI stub entries: " << jni_stubs_map_.size() << "\n" |
| << "Current number of JIT code cache entries: " << method_code_map_.size() << "\n" |
| << "Total number of JIT compilations: " << number_of_compilations_ << "\n" |
| << "Total number of JIT compilations for on stack replacement: " |
| << number_of_osr_compilations_ << "\n" |
| << "Total number of JIT code cache collections: " << number_of_collections_ << std::endl; |
| histogram_stack_map_memory_use_.PrintMemoryUse(os); |
| histogram_code_memory_use_.PrintMemoryUse(os); |
| histogram_profiling_info_memory_use_.PrintMemoryUse(os); |
| } |
| |
| void JitCodeCache::PostForkChildAction(bool is_system_server, bool is_zygote) { |
| if (is_zygote) { |
| // Don't transition if this is for a child zygote. |
| return; |
| } |
| MutexLock mu(Thread::Current(), lock_); |
| |
| zygote_data_pages_ = std::move(data_pages_); |
| zygote_exec_pages_ = std::move(exec_pages_); |
| zygote_data_mspace_ = data_mspace_; |
| zygote_exec_mspace_ = exec_mspace_; |
| |
| size_t initial_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheInitialCapacity(); |
| size_t max_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheMaxCapacity(); |
| |
| InitializeState(initial_capacity, max_capacity); |
| |
| std::string error_msg; |
| if (!InitializeMappings(/* rwx_memory_allowed= */ !is_system_server, is_zygote, &error_msg)) { |
| LOG(WARNING) << "Could not reset JIT state after zygote fork: " << error_msg; |
| return; |
| } |
| |
| InitializeSpaces(); |
| } |
| |
| } // namespace jit |
| } // namespace art |