| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_DEX_REG_STORAGE_H_ |
| #define ART_COMPILER_DEX_REG_STORAGE_H_ |
| |
| |
| namespace art { |
| |
| /* |
| * 16-bit representation of the physical register container holding a Dalvik value. |
| * The encoding allows up to 64 physical elements per storage class, and supports eight |
| * register container shapes. |
| * |
| * [V] [HHHHH] [SSS] [F] [LLLLLL] |
| * |
| * [LLLLLL] |
| * Physical register number for the low or solo register. |
| * 0..63 |
| * |
| * [F] |
| * Describes type of the [LLLLL] register. |
| * 0: Core |
| * 1: Floating point |
| * |
| * [SSS] |
| * Shape of the register container. |
| * 000: Invalid |
| * 001: 32-bit solo register |
| * 010: 64-bit solo register |
| * 011: 64-bit pair consisting of two 32-bit solo registers |
| * 100: 128-bit solo register |
| * 101: 256-bit solo register |
| * 110: 512-bit solo register |
| * 111: 1024-bit solo register |
| * |
| * [HHHHH] |
| * Physical register number of the high register (valid only for register pair). |
| * 0..31 |
| * |
| * [V] |
| * 0 -> Invalid |
| * 1 -> Valid |
| * |
| * Note that in all non-invalid cases, we can determine if the storage is floating point |
| * by testing bit 7. Note also that a register pair is effectively limited to a pair of |
| * physical register numbers in the 0..31 range. |
| * |
| * On some target architectures, the same underlying physical register container can be given |
| * different views. For example, Arm's 32-bit single-precision floating point registers |
| * s2 and s3 map to the low and high halves of double-precision d1. Similarly, X86's xmm3 |
| * vector register can be viewed as 32-bit, 64-bit, 128-bit, etc. In these cases the use of |
| * one view will affect the other views. The RegStorage class does not concern itself |
| * with potential aliasing. That will be done using the associated RegisterInfo struct. |
| * Distinct RegStorage elements should be created for each view of a physical register |
| * container. The management of the aliased physical elements will be handled via RegisterInfo |
| * records. |
| */ |
| |
| class RegStorage { |
| public: |
| enum RegStorageKind { |
| kValidMask = 0x8000, |
| kValid = 0x8000, |
| kInvalid = 0x0000, |
| kShapeMask = 0x0380, |
| k32BitSolo = 0x0080, |
| k64BitSolo = 0x0100, |
| k64BitPair = 0x0180, |
| k128BitSolo = 0x0200, |
| k256BitSolo = 0x0280, |
| k512BitSolo = 0x0300, |
| k1024BitSolo = 0x0380, |
| k64BitMask = 0x0300, |
| k64Bits = 0x0100, |
| kShapeTypeMask = 0x03c0, |
| kFloatingPoint = 0x0040, |
| kCoreRegister = 0x0000, |
| }; |
| |
| static const uint16_t kRegValMask = 0x03ff; // Num, type and shape. |
| static const uint16_t kRegTypeMask = 0x007f; // Num and type. |
| static const uint16_t kRegNumMask = 0x003f; // Num only. |
| static const uint16_t kHighRegNumMask = 0x001f; // 0..31 for high reg |
| static const uint16_t kMaxRegs = kRegValMask + 1; |
| // TODO: deprecate use of kInvalidRegVal and speed up GetReg(). Rely on valid bit instead. |
| static const uint16_t kInvalidRegVal = 0x03ff; |
| static const uint16_t kHighRegShift = 10; |
| static const uint16_t kHighRegMask = (kHighRegNumMask << kHighRegShift); |
| |
| // Reg is [F][LLLLL], will override any existing shape and use rs_kind. |
| RegStorage(RegStorageKind rs_kind, int reg) { |
| DCHECK_NE(rs_kind, k64BitPair); |
| DCHECK_EQ(rs_kind & ~kShapeMask, 0); |
| reg_ = kValid | rs_kind | (reg & kRegTypeMask); |
| } |
| RegStorage(RegStorageKind rs_kind, int low_reg, int high_reg) { |
| DCHECK_EQ(rs_kind, k64BitPair); |
| DCHECK_EQ(low_reg & kFloatingPoint, high_reg & kFloatingPoint); |
| DCHECK_LE(high_reg & kRegNumMask, kHighRegNumMask) << "High reg must be in 0..31"; |
| reg_ = kValid | rs_kind | ((high_reg & kHighRegNumMask) << kHighRegShift) | |
| (low_reg & kRegTypeMask); |
| } |
| constexpr explicit RegStorage(uint16_t val) : reg_(val) {} |
| RegStorage() : reg_(kInvalid) {} |
| |
| bool operator==(const RegStorage rhs) const { |
| return (reg_ == rhs.GetRawBits()); |
| } |
| |
| bool operator!=(const RegStorage rhs) const { |
| return (reg_ != rhs.GetRawBits()); |
| } |
| |
| bool Valid() const { |
| return ((reg_ & kValidMask) == kValid); |
| } |
| |
| bool Is32Bit() const { |
| return ((reg_ & kShapeMask) == k32BitSolo); |
| } |
| |
| bool Is64Bit() const { |
| return ((reg_ & k64BitMask) == k64Bits); |
| } |
| |
| bool Is64BitSolo() const { |
| return ((reg_ & kShapeMask) == k64BitSolo); |
| } |
| |
| bool IsPair() const { |
| return ((reg_ & kShapeMask) == k64BitPair); |
| } |
| |
| bool IsFloat() const { |
| DCHECK(Valid()); |
| return ((reg_ & kFloatingPoint) == kFloatingPoint); |
| } |
| |
| bool IsDouble() const { |
| DCHECK(Valid()); |
| return (reg_ & (kFloatingPoint | k64BitMask)) == (kFloatingPoint | k64Bits); |
| } |
| |
| bool IsSingle() const { |
| DCHECK(Valid()); |
| return (reg_ & (kFloatingPoint | k64BitMask)) == kFloatingPoint; |
| } |
| |
| static bool IsFloat(uint16_t reg) { |
| return ((reg & kFloatingPoint) == kFloatingPoint); |
| } |
| |
| static bool IsDouble(uint16_t reg) { |
| return (reg & (kFloatingPoint | k64BitMask)) == (kFloatingPoint | k64Bits); |
| } |
| |
| static bool IsSingle(uint16_t reg) { |
| return (reg & (kFloatingPoint | k64BitMask)) == kFloatingPoint; |
| } |
| |
| // Used to retrieve either the low register of a pair, or the only register. |
| int GetReg() const { |
| DCHECK(!IsPair()) << "reg_ = 0x" << std::hex << reg_; |
| return Valid() ? (reg_ & kRegValMask) : kInvalidRegVal; |
| } |
| |
| // Sets shape, type and num of solo. |
| void SetReg(int reg) { |
| DCHECK(Valid()); |
| DCHECK(!IsPair()); |
| reg_ = (reg_ & ~kRegValMask) | reg; |
| } |
| |
| // Set the reg number and type only, target remain 64-bit pair. |
| void SetLowReg(int reg) { |
| DCHECK(IsPair()); |
| reg_ = (reg_ & ~kRegTypeMask) | (reg & kRegTypeMask); |
| } |
| |
| // Retrieve the least significant register of a pair and return as 32-bit solo. |
| int GetLowReg() const { |
| DCHECK(IsPair()); |
| return ((reg_ & kRegTypeMask) | k32BitSolo); |
| } |
| |
| // Create a stand-alone RegStorage from the low reg of a pair. |
| RegStorage GetLow() const { |
| DCHECK(IsPair()); |
| return RegStorage(k32BitSolo, reg_ & kRegTypeMask); |
| } |
| |
| // Retrieve the most significant register of a pair. |
| int GetHighReg() const { |
| DCHECK(IsPair()); |
| return k32BitSolo | ((reg_ & kHighRegMask) >> kHighRegShift) | (reg_ & kFloatingPoint); |
| } |
| |
| // Create a stand-alone RegStorage from the high reg of a pair. |
| RegStorage GetHigh() const { |
| DCHECK(IsPair()); |
| return RegStorage(kValid | GetHighReg()); |
| } |
| |
| void SetHighReg(int reg) { |
| DCHECK(IsPair()); |
| reg_ = (reg_ & ~kHighRegMask) | ((reg & kHighRegNumMask) << kHighRegShift); |
| } |
| |
| // Return the register number of low or solo. |
| int GetRegNum() const { |
| return reg_ & kRegNumMask; |
| } |
| |
| // Is register number in 0..7? |
| bool Low8() const { |
| return GetRegNum() < 8; |
| } |
| |
| // Is register number in 0..3? |
| bool Low4() const { |
| return GetRegNum() < 4; |
| } |
| |
| // Combine 2 32-bit solo regs into a pair. |
| static RegStorage MakeRegPair(RegStorage low, RegStorage high) { |
| DCHECK(!low.IsPair()); |
| DCHECK(low.Is32Bit()); |
| DCHECK(!high.IsPair()); |
| DCHECK(high.Is32Bit()); |
| return RegStorage(k64BitPair, low.GetReg(), high.GetReg()); |
| } |
| |
| static bool SameRegType(RegStorage reg1, RegStorage reg2) { |
| return (reg1.IsDouble() == reg2.IsDouble()) && (reg1.IsSingle() == reg2.IsSingle()); |
| } |
| |
| static bool SameRegType(int reg1, int reg2) { |
| return (IsDouble(reg1) == IsDouble(reg2)) && (IsSingle(reg1) == IsSingle(reg2)); |
| } |
| |
| // Create a 32-bit solo. |
| static RegStorage Solo32(int reg_num) { |
| return RegStorage(k32BitSolo, reg_num & kRegTypeMask); |
| } |
| |
| // Create a floating point 32-bit solo. |
| static RegStorage FloatSolo32(int reg_num) { |
| return RegStorage(k32BitSolo, (reg_num & kRegNumMask) | kFloatingPoint); |
| } |
| |
| // Create a 128-bit solo. |
| static RegStorage Solo128(int reg_num) { |
| return RegStorage(k128BitSolo, reg_num & kRegTypeMask); |
| } |
| |
| // Create a 64-bit solo. |
| static RegStorage Solo64(int reg_num) { |
| return RegStorage(k64BitSolo, reg_num & kRegTypeMask); |
| } |
| |
| // Create a floating point 64-bit solo. |
| static RegStorage FloatSolo64(int reg_num) { |
| return RegStorage(k64BitSolo, (reg_num & kRegNumMask) | kFloatingPoint); |
| } |
| |
| static RegStorage InvalidReg() { |
| return RegStorage(kInvalid); |
| } |
| |
| static uint16_t RegNum(int raw_reg_bits) { |
| return raw_reg_bits & kRegNumMask; |
| } |
| |
| int GetRawBits() const { |
| return reg_; |
| } |
| |
| size_t StorageSize() { |
| switch (reg_ & kShapeMask) { |
| case kInvalid: return 0; |
| case k32BitSolo: return 4; |
| case k64BitSolo: return 8; |
| case k64BitPair: return 8; // Is this useful? Might want to disallow taking size of pair. |
| case k128BitSolo: return 16; |
| case k256BitSolo: return 32; |
| case k512BitSolo: return 64; |
| case k1024BitSolo: return 128; |
| default: LOG(FATAL) << "Unexpected shape"; |
| } |
| return 0; |
| } |
| |
| private: |
| uint16_t reg_; |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_DEX_REG_STORAGE_H_ |