blob: a874464aa5889bebe1a7af41ae30323f2d890270 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "runtime.h"
#include <cstdio>
#include <cstdlib>
#include <limits>
#include <vector>
#include "UniquePtr.h"
#include "class_linker.h"
#include "heap.h"
#include "image.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "oat_file.h"
#include "signal_catcher.h"
#include "space.h"
#include "thread.h"
#include "thread_list.h"
// TODO: this drags in cutil/log.h, which conflicts with our logging.h.
#include "JniConstants.h"
namespace art {
Runtime* Runtime::instance_ = NULL;
Runtime::Runtime()
: verbose_startup_(false),
default_stack_size_(Thread::kDefaultStackSize),
thread_list_(NULL),
intern_table_(NULL),
class_linker_(NULL),
signal_catcher_(NULL),
java_vm_(NULL),
jni_stub_array_(NULL),
abstract_method_error_stub_array_(NULL),
callee_save_method_(NULL),
started_(false),
vfprintf_(NULL),
exit_(NULL),
abort_(NULL),
stats_enabled_(false) {
}
Runtime::~Runtime() {
// Make sure our internal threads are dead before we start tearing down things they're using.
delete signal_catcher_;
// TODO: GC thread.
// Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
delete thread_list_;
delete class_linker_;
Heap::Destroy();
delete intern_table_;
delete java_vm_;
Thread::Shutdown();
// TODO: acquire a static mutex on Runtime to avoid racing.
CHECK(instance_ == NULL || instance_ == this);
instance_ = NULL;
}
void Runtime::Abort(const char* file, int line) {
// Get any pending output out of the way.
fflush(NULL);
// Many people have difficulty distinguish aborts from crashes,
// so be explicit.
LogMessage(file, line, ERROR, -1).stream() << "Runtime aborting...";
// Perform any platform-specific pre-abort actions.
PlatformAbort(file, line);
// use abort hook if we have one
if (Runtime::Current() != NULL && Runtime::Current()->abort_ != NULL) {
Runtime::Current()->abort_();
// notreached
}
// If we call abort(3) on a device, all threads in the process
// receive SIGABRT. debuggerd dumps the stack trace of the main
// thread, whether or not that was the thread that failed. By
// stuffing a value into a bogus address, we cause a segmentation
// fault in the current thread, and get a useful log from debuggerd.
// We can also trivially tell the difference between a VM crash and
// a deliberate abort by looking at the fault address.
*reinterpret_cast<char*>(0xdeadd00d) = 38;
abort();
// notreached
}
void Runtime::CallExitHook(jint status) {
if (exit_ != NULL) {
ScopedThreadStateChange tsc(Thread::Current(), Thread::kNative);
exit_(status);
LOG(WARNING) << "Exit hook returned instead of exiting!";
}
}
// Parse a string of the form /[0-9]+[kKmMgG]?/, which is used to specify
// memory sizes. [kK] indicates kilobytes, [mM] megabytes, and
// [gG] gigabytes.
//
// "s" should point just past the "-Xm?" part of the string.
// "div" specifies a divisor, e.g. 1024 if the value must be a multiple
// of 1024.
//
// The spec says the -Xmx and -Xms options must be multiples of 1024. It
// doesn't say anything about -Xss.
//
// Returns 0 (a useless size) if "s" is malformed or specifies a low or
// non-evenly-divisible value.
//
size_t ParseMemoryOption(const char *s, size_t div) {
// strtoul accepts a leading [+-], which we don't want,
// so make sure our string starts with a decimal digit.
if (isdigit(*s)) {
const char *s2;
size_t val = strtoul(s, (char **)&s2, 10);
if (s2 != s) {
// s2 should be pointing just after the number.
// If this is the end of the string, the user
// has specified a number of bytes. Otherwise,
// there should be exactly one more character
// that specifies a multiplier.
if (*s2 != '\0') {
// The remainder of the string is either a single multiplier
// character, or nothing to indicate that the value is in
// bytes.
char c = *s2++;
if (*s2 == '\0') {
size_t mul;
if (c == '\0') {
mul = 1;
} else if (c == 'k' || c == 'K') {
mul = KB;
} else if (c == 'm' || c == 'M') {
mul = MB;
} else if (c == 'g' || c == 'G') {
mul = GB;
} else {
// Unknown multiplier character.
return 0;
}
if (val <= std::numeric_limits<size_t>::max() / mul) {
val *= mul;
} else {
// Clamp to a multiple of 1024.
val = std::numeric_limits<size_t>::max() & ~(1024-1);
}
} else {
// There's more than one character after the numeric part.
return 0;
}
}
// The man page says that a -Xm value must be a multiple of 1024.
if (val % div == 0) {
return val;
}
}
}
return 0;
}
void LoadJniLibrary(JavaVMExt* vm, const char* name) {
// TODO: OS_SHARED_LIB_FORMAT_STR
std::string mapped_name(StringPrintf("lib%s.so", name));
std::string reason;
if (!vm->LoadNativeLibrary(mapped_name, NULL, reason)) {
LOG(FATAL) << "LoadNativeLibrary failed for \"" << mapped_name << "\": "
<< reason;
}
}
Runtime::ParsedOptions* Runtime::ParsedOptions::Create(const Options& options, bool ignore_unrecognized) {
UniquePtr<ParsedOptions> parsed(new ParsedOptions());
const char* boot_class_path = getenv("BOOTCLASSPATH");
if (boot_class_path != NULL) {
parsed->boot_class_path_ = getenv("BOOTCLASSPATH");
}
const char* class_path = getenv("CLASSPATH");
if (class_path != NULL) {
parsed->class_path_ = getenv("CLASSPATH");
}
#ifdef NDEBUG
// -Xcheck:jni is off by default for regular builds...
parsed->check_jni_ = false;
#else
// ...but on by default in debug builds.
parsed->check_jni_ = true;
#endif
parsed->heap_initial_size_ = Heap::kInitialSize;
parsed->heap_maximum_size_ = Heap::kMaximumSize;
parsed->stack_size_ = Thread::kDefaultStackSize;
parsed->hook_vfprintf_ = vfprintf;
parsed->hook_exit_ = exit;
parsed->hook_abort_ = abort;
for (size_t i = 0; i < options.size(); ++i) {
const StringPiece& option = options[i].first;
if (false) {
LOG(INFO) << "option[" << i << "]=" << option;
}
if (option.starts_with("-Xbootclasspath:")) {
parsed->boot_class_path_ = option.substr(strlen("-Xbootclasspath:")).data();
} else if (option == "-classpath" || option == "-cp") {
// TODO: support -Djava.class.path
i++;
if (i == options.size()) {
// TODO: usage
LOG(FATAL) << "Missing required class path value for " << option;
return NULL;
}
const StringPiece& value = options[i].first;
parsed->class_path_ = value.data();
} else if (option.starts_with("-Ximage:")) {
parsed->images_.push_back(option.substr(strlen("-Ximage:")).data());
} else if (option.starts_with("-Xcheck:jni")) {
parsed->check_jni_ = true;
} else if (option.starts_with("-Xms")) {
size_t size = ParseMemoryOption(option.substr(strlen("-Xms")).data(), 1024);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Failed to parse " << option;
return NULL;
}
parsed->heap_initial_size_ = size;
} else if (option.starts_with("-Xmx")) {
size_t size = ParseMemoryOption(option.substr(strlen("-Xmx")).data(), 1024);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Failed to parse " << option;
return NULL;
}
parsed->heap_maximum_size_ = size;
} else if (option.starts_with("-Xss")) {
size_t size = ParseMemoryOption(option.substr(strlen("-Xss")).data(), 1);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Failed to parse " << option;
return NULL;
}
parsed->stack_size_ = size;
} else if (option.starts_with("-D")) {
parsed->properties_.push_back(option.substr(strlen("-D")).data());
} else if (option.starts_with("-Xjnitrace:")) {
parsed->jni_trace_ = option.substr(strlen("-Xjnitrace:")).data();
} else if (option.starts_with("-verbose:")) {
std::vector<std::string> verbose_options;
Split(option.substr(strlen("-verbose:")).data(), ',', verbose_options);
for (size_t i = 0; i < verbose_options.size(); ++i) {
parsed->verbose_.insert(verbose_options[i]);
}
} else if (option == "vfprintf") {
parsed->hook_vfprintf_ = reinterpret_cast<int (*)(FILE *, const char*, va_list)>(options[i].second);
} else if (option == "exit") {
parsed->hook_exit_ = reinterpret_cast<void(*)(jint)>(options[i].second);
} else if (option == "abort") {
parsed->hook_abort_ = reinterpret_cast<void(*)()>(options[i].second);
} else if (option == "host-prefix") {
parsed->host_prefix_ = reinterpret_cast<const char*>(options[i].second);
} else {
if (!ignore_unrecognized) {
// TODO: print usage via vfprintf
LOG(ERROR) << "Unrecognized option " << option;
// TODO: this should exit, but for now tolerate unknown options
//return NULL;
}
}
}
LOG(INFO) << "CheckJNI is " << (parsed->check_jni_ ? "on" : "off");
return parsed.release();
}
Runtime* Runtime::Create(const Options& options, bool ignore_unrecognized) {
// TODO: acquire a static mutex on Runtime to avoid racing.
if (Runtime::instance_ != NULL) {
return NULL;
}
instance_ = new Runtime;
if (!instance_->Init(options, ignore_unrecognized)) {
delete instance_;
instance_ = NULL;
}
return instance_;
}
void Runtime::Start() {
if (IsVerboseStartup()) {
LOG(INFO) << "Runtime::Start entering";
}
CHECK(host_prefix_.empty()) << host_prefix_;
InitNativeMethods();
Thread::FinishStartup();
class_linker_->RunRootClinits();
// Class::AllocObject asserts that all objects allocated better be
// initialized after Runtime::IsStarted is true, so this needs to
// come after ClassLinker::RunRootClinits.
started_ = true;
StartDaemonThreads();
if (IsVerboseStartup()) {
LOG(INFO) << "Runtime::Start exiting";
}
}
void Runtime::StartDaemonThreads() {
signal_catcher_ = new SignalCatcher;
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
jclass c = env->FindClass("java/lang/Daemons");
CHECK(c != NULL);
jmethodID mid = env->GetStaticMethodID(c, "start", "()V");
CHECK(mid != NULL);
env->CallStaticVoidMethod(c, mid);
}
bool Runtime::IsStarted() const {
return started_;
}
bool Runtime::Init(const Options& raw_options, bool ignore_unrecognized) {
CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
UniquePtr<ParsedOptions> options(ParsedOptions::Create(raw_options, ignore_unrecognized));
if (options.get() == NULL) {
LOG(ERROR) << "Failed to parse options";
return false;
}
verbose_startup_ = options->IsVerbose("startup");
if (IsVerboseStartup()) {
LOG(INFO) << "Runtime::Init -verbose:startup enabled";
}
host_prefix_ = options->host_prefix_;
boot_class_path_ = options->boot_class_path_;
class_path_ = options->class_path_;
properties_ = options->properties_;
vfprintf_ = options->hook_vfprintf_;
exit_ = options->hook_exit_;
abort_ = options->hook_abort_;
default_stack_size_ = options->stack_size_;
thread_list_ = new ThreadList(options->IsVerbose("thread"));
intern_table_ = new InternTable;
Heap::Init(options->heap_initial_size_, options->heap_maximum_size_, options->images_);
BlockSignals();
java_vm_ = new JavaVMExt(this, options.get());
Thread::Startup();
// ClassLinker needs an attached thread, but we can't fully attach a thread
// without creating objects.
Thread::Attach(this, "main", false);
CHECK_GE(Heap::GetSpaces().size(), 1U);
class_linker_ = ((Heap::GetSpaces()[0]->IsImageSpace())
? ClassLinker::Create(intern_table_)
: ClassLinker::Create(options->boot_class_path_, intern_table_));
if (IsVerboseStartup()) {
LOG(INFO) << "Runtime::Init exiting";
}
return true;
}
void Runtime::InitNativeMethods() {
if (IsVerboseStartup()) {
LOG(INFO) << "Runtime::InitNativeMethods entering";
}
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
// Must be in the kNative state for calling native methods (JNI_OnLoad code).
ScopedThreadStateChange tsc(self, Thread::kNative);
// First set up JniConstants, which is used by both the runtime's built-in native
// methods and libcore.
JniConstants::init(env);
// Then set up the native methods provided by the runtime itself.
RegisterRuntimeNativeMethods(env);
// Then set up libcore, which is just a regular JNI library with a regular JNI_OnLoad.
// Most JNI libraries can just use System.loadLibrary, but libcore can't because it's
// the library that implements System.loadLibrary!
LoadJniLibrary(instance_->GetJavaVM(), "javacore");
if (IsVerboseStartup()) {
LOG(INFO) << "Runtime::InitNativeMethods exiting";
}
}
void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
#define REGISTER(FN) extern void FN(JNIEnv*); FN(env)
REGISTER(register_dalvik_system_DexFile);
REGISTER(register_dalvik_system_VMDebug);
REGISTER(register_dalvik_system_VMRuntime);
REGISTER(register_dalvik_system_VMStack);
REGISTER(register_dalvik_system_Zygote);
REGISTER(register_java_lang_Class);
REGISTER(register_java_lang_Object);
REGISTER(register_java_lang_Runtime);
REGISTER(register_java_lang_String);
REGISTER(register_java_lang_System);
REGISTER(register_java_lang_Thread);
REGISTER(register_java_lang_Throwable);
REGISTER(register_java_lang_VMClassLoader);
REGISTER(register_java_lang_reflect_Array);
REGISTER(register_java_lang_reflect_Constructor);
REGISTER(register_java_lang_reflect_Field);
REGISTER(register_java_lang_reflect_Method);
//REGISTER(register_java_lang_reflect_Proxy);
REGISTER(register_java_util_concurrent_atomic_AtomicLong);
REGISTER(register_org_apache_harmony_dalvik_ddmc_DdmServer);
//REGISTER(register_org_apache_harmony_dalvik_ddmc_DdmVmInternal);
REGISTER(register_sun_misc_Unsafe);
#undef REGISTER
}
void Runtime::Dump(std::ostream& os) {
// TODO: dump other runtime statistics?
os << "Loaded classes: " << class_linker_->NumLoadedClasses() << "\n";
os << "Intern table size: " << GetInternTable()->Size() << "\n";
// LOGV("VM stats: meth=%d ifld=%d sfld=%d linear=%d",
// gDvm.numDeclaredMethods,
// gDvm.numDeclaredInstFields,
// gDvm.numDeclaredStaticFields,
// gDvm.pBootLoaderAlloc->curOffset);
// LOGI("GC precise methods: %d", dvmPointerSetGetCount(gDvm.preciseMethods));
os << "\n";
thread_list_->Dump(os);
}
void Runtime::SetStatsEnabled(bool new_state) {
if (new_state == true) {
GetStats()->Clear(~0);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
Thread::Current()->GetStats()->Clear(~0);
}
stats_enabled_ = new_state;
}
void Runtime::ResetStats(int kinds) {
GetStats()->Clear(kinds & 0xffff);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
Thread::Current()->GetStats()->Clear(kinds >> 16);
}
RuntimeStats* Runtime::GetStats() {
return &stats_;
}
int32_t Runtime::GetStat(int kind) {
RuntimeStats* stats;
if (kind < (1<<16)) {
stats = GetStats();
} else {
stats = Thread::Current()->GetStats();
kind >>= 16;
}
switch (kind) {
case KIND_ALLOCATED_OBJECTS:
return stats->allocated_objects;
case KIND_ALLOCATED_BYTES:
return stats->allocated_bytes;
case KIND_FREED_OBJECTS:
return stats->freed_objects;
case KIND_FREED_BYTES:
return stats->freed_bytes;
case KIND_GC_INVOCATIONS:
return stats->gc_for_alloc_count;
case KIND_CLASS_INIT_COUNT:
return stats->class_init_count;
case KIND_CLASS_INIT_TIME:
// Convert ns to us, reduce to 32 bits.
return (int) (stats->class_init_time_ns / 1000);
case KIND_EXT_ALLOCATED_OBJECTS:
case KIND_EXT_ALLOCATED_BYTES:
case KIND_EXT_FREED_OBJECTS:
case KIND_EXT_FREED_BYTES:
return 0; // backward compatibility
default:
CHECK(false);
return -1; // unreachable
}
}
void Runtime::BlockSignals() {
sigset_t sigset;
if (sigemptyset(&sigset) == -1) {
PLOG(FATAL) << "sigemptyset failed";
}
if (sigaddset(&sigset, SIGPIPE) == -1) {
PLOG(ERROR) << "sigaddset SIGPIPE failed";
}
// SIGQUIT is used to dump the runtime's state (including stack traces).
if (sigaddset(&sigset, SIGQUIT) == -1) {
PLOG(ERROR) << "sigaddset SIGQUIT failed";
}
// SIGUSR1 is used to initiate a heap dump.
if (sigaddset(&sigset, SIGUSR1) == -1) {
PLOG(ERROR) << "sigaddset SIGUSR1 failed";
}
CHECK_EQ(sigprocmask(SIG_BLOCK, &sigset, NULL), 0);
}
void Runtime::AttachCurrentThread(const char* name, bool as_daemon) {
Thread::Attach(instance_, name, as_daemon);
}
void Runtime::DetachCurrentThread() {
// TODO: check we're not calling DetachCurrentThread from a call stack that
// includes managed frames. (It's only valid if the stack is all-native.)
thread_list_->Unregister();
}
void Runtime::VisitRoots(Heap::RootVisitor* visitor, void* arg) const {
class_linker_->VisitRoots(visitor, arg);
intern_table_->VisitRoots(visitor, arg);
java_vm_->VisitRoots(visitor, arg);
thread_list_->VisitRoots(visitor, arg);
visitor(jni_stub_array_, arg);
visitor(abstract_method_error_stub_array_, arg);
visitor(callee_save_method_, arg);
//(*visitor)(&gDvm.outOfMemoryObj, 0, ROOT_VM_INTERNAL, arg);
//(*visitor)(&gDvm.internalErrorObj, 0, ROOT_VM_INTERNAL, arg);
//(*visitor)(&gDvm.noClassDefFoundErrorObj, 0, ROOT_VM_INTERNAL, arg);
UNIMPLEMENTED(WARNING) << "some roots not marked";
}
bool Runtime::HasJniStubArray() const {
return jni_stub_array_ != NULL;
}
ByteArray* Runtime::GetJniStubArray() const {
CHECK(jni_stub_array_ != NULL);
return jni_stub_array_;
}
void Runtime::SetJniStubArray(ByteArray* jni_stub_array) {
CHECK(jni_stub_array != NULL);
CHECK(jni_stub_array_ == NULL || jni_stub_array_ == jni_stub_array);
jni_stub_array_ = jni_stub_array;
}
bool Runtime::HasAbstractMethodErrorStubArray() const {
return abstract_method_error_stub_array_ != NULL;
}
ByteArray* Runtime::GetAbstractMethodErrorStubArray() const {
CHECK(abstract_method_error_stub_array_ != NULL);
return abstract_method_error_stub_array_;
}
void Runtime::SetAbstractMethodErrorStubArray(ByteArray* abstract_method_error_stub_array) {
CHECK(abstract_method_error_stub_array != NULL);
CHECK(abstract_method_error_stub_array_ == NULL || abstract_method_error_stub_array_ == abstract_method_error_stub_array);
abstract_method_error_stub_array_ = abstract_method_error_stub_array;
}
Method* Runtime::CreateCalleeSaveMethod(InstructionSet insns) {
Class* method_class = Method::GetMethodClass();
Method* method = down_cast<Method*>(method_class->AllocObject());
method->SetDeclaringClass(method_class);
method->SetName(intern_table_->InternStrong("$$$callee_save_method$$$"));
method->SetSignature(intern_table_->InternStrong("()V"));
method->SetCodeArray(NULL, insns);
if ((insns == kThumb2) || (insns == kArm)) {
size_t frame_size = (12 /* gprs */ + 32 /* fprs */ + 4 /* data */) * kPointerSize;
method->SetFrameSizeInBytes(frame_size);
method->SetReturnPcOffsetInBytes(frame_size - kPointerSize);
method->SetCoreSpillMask((1 << art::arm::R1) |
(1 << art::arm::R2) |
(1 << art::arm::R3) |
(1 << art::arm::R4) |
(1 << art::arm::R5) |
(1 << art::arm::R6) |
(1 << art::arm::R7) |
(1 << art::arm::R8) |
(1 << art::arm::R9) |
(1 << art::arm::R10) |
(1 << art::arm::R11) |
(1 << art::arm::LR));
method->SetFpSpillMask((1 << art::arm::S0) |
(1 << art::arm::S1) |
(1 << art::arm::S2) |
(1 << art::arm::S3) |
(1 << art::arm::S4) |
(1 << art::arm::S5) |
(1 << art::arm::S6) |
(1 << art::arm::S7) |
(1 << art::arm::S8) |
(1 << art::arm::S9) |
(1 << art::arm::S10) |
(1 << art::arm::S11) |
(1 << art::arm::S12) |
(1 << art::arm::S13) |
(1 << art::arm::S14) |
(1 << art::arm::S15) |
(1 << art::arm::S16) |
(1 << art::arm::S17) |
(1 << art::arm::S18) |
(1 << art::arm::S19) |
(1 << art::arm::S20) |
(1 << art::arm::S21) |
(1 << art::arm::S22) |
(1 << art::arm::S23) |
(1 << art::arm::S24) |
(1 << art::arm::S25) |
(1 << art::arm::S26) |
(1 << art::arm::S27) |
(1 << art::arm::S28) |
(1 << art::arm::S29) |
(1 << art::arm::S30) |
(1 << art::arm::S31));
} else if (insns == kX86) {
method->SetFrameSizeInBytes(32);
method->SetReturnPcOffsetInBytes(28);
method->SetCoreSpillMask((1 << art::x86::EBX) |
(1 << art::x86::EBP) |
(1 << art::x86::ESI) |
(1 << art::x86::EDI));
method->SetFpSpillMask(0);
} else {
UNIMPLEMENTED(FATAL);
}
return method;
}
bool Runtime::HasCalleeSaveMethod() const {
return callee_save_method_ != NULL;
}
// Returns a special method that describes all callee saves being spilled to the stack.
Method* Runtime::GetCalleeSaveMethod() const {
CHECK(callee_save_method_ != NULL);
return callee_save_method_;
}
void Runtime::SetCalleeSaveMethod(Method* method) {
callee_save_method_ = method;
}
} // namespace art