| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "register_line.h" |
| |
| #include "android-base/stringprintf.h" |
| |
| #include "dex_instruction-inl.h" |
| #include "method_verifier-inl.h" |
| #include "register_line-inl.h" |
| #include "reg_type-inl.h" |
| |
| namespace art { |
| namespace verifier { |
| |
| using android::base::StringPrintf; |
| |
| bool RegisterLine::CheckConstructorReturn(MethodVerifier* verifier) const { |
| if (kIsDebugBuild && this_initialized_) { |
| // Ensure that there is no UninitializedThisReference type anymore if this_initialized_ is true. |
| for (size_t i = 0; i < num_regs_; i++) { |
| const RegType& type = GetRegisterType(verifier, i); |
| CHECK(!type.IsUninitializedThisReference() && |
| !type.IsUnresolvedAndUninitializedThisReference()) |
| << i << ": " << type.IsUninitializedThisReference() << " in " |
| << verifier->GetMethodReference().PrettyMethod(); |
| } |
| } |
| if (!this_initialized_) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "Constructor returning without calling superclass constructor"; |
| } |
| return this_initialized_; |
| } |
| |
| const RegType& RegisterLine::GetInvocationThis(MethodVerifier* verifier, const Instruction* inst, |
| bool allow_failure) { |
| DCHECK(inst->IsInvoke()); |
| const size_t args_count = inst->VRegA(); |
| if (args_count < 1) { |
| if (!allow_failure) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke lacks 'this'"; |
| } |
| return verifier->GetRegTypeCache()->Conflict(); |
| } |
| /* Get the element type of the array held in vsrc */ |
| const uint32_t this_reg = inst->VRegC(); |
| const RegType& this_type = GetRegisterType(verifier, this_reg); |
| if (!this_type.IsReferenceTypes()) { |
| if (!allow_failure) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "tried to get class from non-reference register v" << this_reg |
| << " (type=" << this_type << ")"; |
| } |
| return verifier->GetRegTypeCache()->Conflict(); |
| } |
| return this_type; |
| } |
| |
| bool RegisterLine::VerifyRegisterTypeWide(MethodVerifier* verifier, uint32_t vsrc, |
| const RegType& check_type1, |
| const RegType& check_type2) { |
| DCHECK(check_type1.CheckWidePair(check_type2)); |
| // Verify the src register type against the check type refining the type of the register |
| const RegType& src_type = GetRegisterType(verifier, vsrc); |
| if (!check_type1.IsAssignableFrom(src_type, verifier)) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << vsrc << " has type " << src_type |
| << " but expected " << check_type1; |
| return false; |
| } |
| const RegType& src_type_h = GetRegisterType(verifier, vsrc + 1); |
| if (!src_type.CheckWidePair(src_type_h)) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register v" << vsrc << " has type " |
| << src_type << "/" << src_type_h; |
| return false; |
| } |
| // The register at vsrc has a defined type, we know the lower-upper-bound, but this is less |
| // precise than the subtype in vsrc so leave it for reference types. For primitive types |
| // if they are a defined type then they are as precise as we can get, however, for constant |
| // types we may wish to refine them. Unfortunately constant propagation has rendered this useless. |
| return true; |
| } |
| |
| void RegisterLine::MarkRefsAsInitialized(MethodVerifier* verifier, const RegType& uninit_type) { |
| DCHECK(uninit_type.IsUninitializedTypes()); |
| const RegType& init_type = verifier->GetRegTypeCache()->FromUninitialized(uninit_type); |
| size_t changed = 0; |
| for (uint32_t i = 0; i < num_regs_; i++) { |
| if (GetRegisterType(verifier, i).Equals(uninit_type)) { |
| line_[i] = init_type.GetId(); |
| changed++; |
| } |
| } |
| // Is this initializing "this"? |
| if (uninit_type.IsUninitializedThisReference() || |
| uninit_type.IsUnresolvedAndUninitializedThisReference()) { |
| this_initialized_ = true; |
| } |
| DCHECK_GT(changed, 0u); |
| } |
| |
| void RegisterLine::MarkAllRegistersAsConflicts(MethodVerifier* verifier) { |
| uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId(); |
| for (uint32_t i = 0; i < num_regs_; i++) { |
| line_[i] = conflict_type_id; |
| } |
| } |
| |
| void RegisterLine::MarkAllRegistersAsConflictsExcept(MethodVerifier* verifier, uint32_t vsrc) { |
| uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId(); |
| for (uint32_t i = 0; i < num_regs_; i++) { |
| if (i != vsrc) { |
| line_[i] = conflict_type_id; |
| } |
| } |
| } |
| |
| void RegisterLine::MarkAllRegistersAsConflictsExceptWide(MethodVerifier* verifier, uint32_t vsrc) { |
| uint16_t conflict_type_id = verifier->GetRegTypeCache()->Conflict().GetId(); |
| for (uint32_t i = 0; i < num_regs_; i++) { |
| if ((i != vsrc) && (i != (vsrc + 1))) { |
| line_[i] = conflict_type_id; |
| } |
| } |
| } |
| |
| std::string RegisterLine::Dump(MethodVerifier* verifier) const { |
| std::string result; |
| for (size_t i = 0; i < num_regs_; i++) { |
| result += StringPrintf("%zd:[", i); |
| result += GetRegisterType(verifier, i).Dump(); |
| result += "],"; |
| } |
| for (const auto& monitor : monitors_) { |
| result += StringPrintf("{%d},", monitor); |
| } |
| for (auto& pairs : reg_to_lock_depths_) { |
| result += StringPrintf("<%d -> %x>", pairs.first, pairs.second); |
| } |
| return result; |
| } |
| |
| void RegisterLine::MarkUninitRefsAsInvalid(MethodVerifier* verifier, const RegType& uninit_type) { |
| for (size_t i = 0; i < num_regs_; i++) { |
| if (GetRegisterType(verifier, i).Equals(uninit_type)) { |
| line_[i] = verifier->GetRegTypeCache()->Conflict().GetId(); |
| ClearAllRegToLockDepths(i); |
| } |
| } |
| } |
| |
| void RegisterLine::CopyResultRegister1(MethodVerifier* verifier, uint32_t vdst, bool is_reference) { |
| const RegType& type = verifier->GetRegTypeCache()->GetFromId(result_[0]); |
| if ((!is_reference && !type.IsCategory1Types()) || |
| (is_reference && !type.IsReferenceTypes())) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "copyRes1 v" << vdst << "<- result0" << " type=" << type; |
| } else { |
| DCHECK(verifier->GetRegTypeCache()->GetFromId(result_[1]).IsUndefined()); |
| SetRegisterType<LockOp::kClear>(verifier, vdst, type); |
| result_[0] = verifier->GetRegTypeCache()->Undefined().GetId(); |
| } |
| } |
| |
| /* |
| * Implement "move-result-wide". Copy the category-2 value from the result |
| * register to another register, and reset the result register. |
| */ |
| void RegisterLine::CopyResultRegister2(MethodVerifier* verifier, uint32_t vdst) { |
| const RegType& type_l = verifier->GetRegTypeCache()->GetFromId(result_[0]); |
| const RegType& type_h = verifier->GetRegTypeCache()->GetFromId(result_[1]); |
| if (!type_l.IsCategory2Types()) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "copyRes2 v" << vdst << "<- result0" << " type=" << type_l; |
| } else { |
| DCHECK(type_l.CheckWidePair(type_h)); // Set should never allow this case |
| SetRegisterTypeWide(verifier, vdst, type_l, type_h); // also sets the high |
| result_[0] = verifier->GetRegTypeCache()->Undefined().GetId(); |
| result_[1] = verifier->GetRegTypeCache()->Undefined().GetId(); |
| } |
| } |
| |
| void RegisterLine::CheckUnaryOp(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& dst_type, const RegType& src_type) { |
| if (VerifyRegisterType(verifier, inst->VRegB_12x(), src_type)) { |
| SetRegisterType<LockOp::kClear>(verifier, inst->VRegA_12x(), dst_type); |
| } |
| } |
| |
| void RegisterLine::CheckUnaryOpWide(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& dst_type1, const RegType& dst_type2, |
| const RegType& src_type1, const RegType& src_type2) { |
| if (VerifyRegisterTypeWide(verifier, inst->VRegB_12x(), src_type1, src_type2)) { |
| SetRegisterTypeWide(verifier, inst->VRegA_12x(), dst_type1, dst_type2); |
| } |
| } |
| |
| void RegisterLine::CheckUnaryOpToWide(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& dst_type1, const RegType& dst_type2, |
| const RegType& src_type) { |
| if (VerifyRegisterType(verifier, inst->VRegB_12x(), src_type)) { |
| SetRegisterTypeWide(verifier, inst->VRegA_12x(), dst_type1, dst_type2); |
| } |
| } |
| |
| void RegisterLine::CheckUnaryOpFromWide(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& dst_type, |
| const RegType& src_type1, const RegType& src_type2) { |
| if (VerifyRegisterTypeWide(verifier, inst->VRegB_12x(), src_type1, src_type2)) { |
| SetRegisterType<LockOp::kClear>(verifier, inst->VRegA_12x(), dst_type); |
| } |
| } |
| |
| void RegisterLine::CheckBinaryOp(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& dst_type, |
| const RegType& src_type1, const RegType& src_type2, |
| bool check_boolean_op) { |
| const uint32_t vregB = inst->VRegB_23x(); |
| const uint32_t vregC = inst->VRegC_23x(); |
| if (VerifyRegisterType(verifier, vregB, src_type1) && |
| VerifyRegisterType(verifier, vregC, src_type2)) { |
| if (check_boolean_op) { |
| DCHECK(dst_type.IsInteger()); |
| if (GetRegisterType(verifier, vregB).IsBooleanTypes() && |
| GetRegisterType(verifier, vregC).IsBooleanTypes()) { |
| SetRegisterType<LockOp::kClear>(verifier, |
| inst->VRegA_23x(), |
| verifier->GetRegTypeCache()->Boolean()); |
| return; |
| } |
| } |
| SetRegisterType<LockOp::kClear>(verifier, inst->VRegA_23x(), dst_type); |
| } |
| } |
| |
| void RegisterLine::CheckBinaryOpWide(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& dst_type1, const RegType& dst_type2, |
| const RegType& src_type1_1, const RegType& src_type1_2, |
| const RegType& src_type2_1, const RegType& src_type2_2) { |
| if (VerifyRegisterTypeWide(verifier, inst->VRegB_23x(), src_type1_1, src_type1_2) && |
| VerifyRegisterTypeWide(verifier, inst->VRegC_23x(), src_type2_1, src_type2_2)) { |
| SetRegisterTypeWide(verifier, inst->VRegA_23x(), dst_type1, dst_type2); |
| } |
| } |
| |
| void RegisterLine::CheckBinaryOpWideShift(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& long_lo_type, const RegType& long_hi_type, |
| const RegType& int_type) { |
| if (VerifyRegisterTypeWide(verifier, inst->VRegB_23x(), long_lo_type, long_hi_type) && |
| VerifyRegisterType(verifier, inst->VRegC_23x(), int_type)) { |
| SetRegisterTypeWide(verifier, inst->VRegA_23x(), long_lo_type, long_hi_type); |
| } |
| } |
| |
| void RegisterLine::CheckBinaryOp2addr(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& dst_type, const RegType& src_type1, |
| const RegType& src_type2, bool check_boolean_op) { |
| const uint32_t vregA = inst->VRegA_12x(); |
| const uint32_t vregB = inst->VRegB_12x(); |
| if (VerifyRegisterType(verifier, vregA, src_type1) && |
| VerifyRegisterType(verifier, vregB, src_type2)) { |
| if (check_boolean_op) { |
| DCHECK(dst_type.IsInteger()); |
| if (GetRegisterType(verifier, vregA).IsBooleanTypes() && |
| GetRegisterType(verifier, vregB).IsBooleanTypes()) { |
| SetRegisterType<LockOp::kClear>(verifier, |
| vregA, |
| verifier->GetRegTypeCache()->Boolean()); |
| return; |
| } |
| } |
| SetRegisterType<LockOp::kClear>(verifier, vregA, dst_type); |
| } |
| } |
| |
| void RegisterLine::CheckBinaryOp2addrWide(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& dst_type1, const RegType& dst_type2, |
| const RegType& src_type1_1, const RegType& src_type1_2, |
| const RegType& src_type2_1, const RegType& src_type2_2) { |
| const uint32_t vregA = inst->VRegA_12x(); |
| const uint32_t vregB = inst->VRegB_12x(); |
| if (VerifyRegisterTypeWide(verifier, vregA, src_type1_1, src_type1_2) && |
| VerifyRegisterTypeWide(verifier, vregB, src_type2_1, src_type2_2)) { |
| SetRegisterTypeWide(verifier, vregA, dst_type1, dst_type2); |
| } |
| } |
| |
| void RegisterLine::CheckBinaryOp2addrWideShift(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& long_lo_type, const RegType& long_hi_type, |
| const RegType& int_type) { |
| const uint32_t vregA = inst->VRegA_12x(); |
| const uint32_t vregB = inst->VRegB_12x(); |
| if (VerifyRegisterTypeWide(verifier, vregA, long_lo_type, long_hi_type) && |
| VerifyRegisterType(verifier, vregB, int_type)) { |
| SetRegisterTypeWide(verifier, vregA, long_lo_type, long_hi_type); |
| } |
| } |
| |
| void RegisterLine::CheckLiteralOp(MethodVerifier* verifier, const Instruction* inst, |
| const RegType& dst_type, const RegType& src_type, |
| bool check_boolean_op, bool is_lit16) { |
| const uint32_t vregA = is_lit16 ? inst->VRegA_22s() : inst->VRegA_22b(); |
| const uint32_t vregB = is_lit16 ? inst->VRegB_22s() : inst->VRegB_22b(); |
| if (VerifyRegisterType(verifier, vregB, src_type)) { |
| if (check_boolean_op) { |
| DCHECK(dst_type.IsInteger()); |
| /* check vB with the call, then check the constant manually */ |
| const uint32_t val = is_lit16 ? inst->VRegC_22s() : inst->VRegC_22b(); |
| if (GetRegisterType(verifier, vregB).IsBooleanTypes() && (val == 0 || val == 1)) { |
| SetRegisterType<LockOp::kClear>(verifier, |
| vregA, |
| verifier->GetRegTypeCache()->Boolean()); |
| return; |
| } |
| } |
| SetRegisterType<LockOp::kClear>(verifier, vregA, dst_type); |
| } |
| } |
| |
| static constexpr uint32_t kVirtualNullRegister = std::numeric_limits<uint32_t>::max(); |
| |
| void RegisterLine::PushMonitor(MethodVerifier* verifier, uint32_t reg_idx, int32_t insn_idx) { |
| const RegType& reg_type = GetRegisterType(verifier, reg_idx); |
| if (!reg_type.IsReferenceTypes()) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter on non-object (" |
| << reg_type << ")"; |
| } else if (monitors_.size() >= 32) { |
| verifier->Fail(VERIFY_ERROR_LOCKING); |
| if (kDumpLockFailures) { |
| VLOG(verifier) << "monitor-enter stack overflow while verifying " |
| << verifier->GetMethodReference().PrettyMethod(); |
| } |
| } else { |
| if (SetRegToLockDepth(reg_idx, monitors_.size())) { |
| // Null literals can establish aliases that we can't easily track. As such, handle the zero |
| // case as the 2^32-1 register (which isn't available in dex bytecode). |
| if (reg_type.IsZero()) { |
| SetRegToLockDepth(kVirtualNullRegister, monitors_.size()); |
| } |
| |
| monitors_.push_back(insn_idx); |
| } else { |
| verifier->Fail(VERIFY_ERROR_LOCKING); |
| if (kDumpLockFailures) { |
| VLOG(verifier) << "unexpected monitor-enter on register v" << reg_idx << " in " |
| << verifier->GetMethodReference().PrettyMethod(); |
| } |
| } |
| } |
| } |
| |
| void RegisterLine::PopMonitor(MethodVerifier* verifier, uint32_t reg_idx) { |
| const RegType& reg_type = GetRegisterType(verifier, reg_idx); |
| if (!reg_type.IsReferenceTypes()) { |
| verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit on non-object (" << reg_type << ")"; |
| } else if (monitors_.empty()) { |
| verifier->Fail(VERIFY_ERROR_LOCKING); |
| if (kDumpLockFailures) { |
| VLOG(verifier) << "monitor-exit stack underflow while verifying " |
| << verifier->GetMethodReference().PrettyMethod(); |
| } |
| } else { |
| monitors_.pop_back(); |
| |
| bool success = IsSetLockDepth(reg_idx, monitors_.size()); |
| |
| if (!success && reg_type.IsZero()) { |
| // Null literals can establish aliases that we can't easily track. As such, handle the zero |
| // case as the 2^32-1 register (which isn't available in dex bytecode). |
| success = IsSetLockDepth(kVirtualNullRegister, monitors_.size()); |
| if (success) { |
| reg_idx = kVirtualNullRegister; |
| } |
| } |
| |
| if (!success) { |
| verifier->Fail(VERIFY_ERROR_LOCKING); |
| if (kDumpLockFailures) { |
| VLOG(verifier) << "monitor-exit not unlocking the top of the monitor stack while verifying " |
| << verifier->GetMethodReference().PrettyMethod(); |
| } |
| } else { |
| // Record the register was unlocked. This clears all aliases, thus it will also clear the |
| // null lock, if necessary. |
| ClearRegToLockDepth(reg_idx, monitors_.size()); |
| } |
| } |
| } |
| |
| bool FindLockAliasedRegister(uint32_t src, |
| const RegisterLine::RegToLockDepthsMap& src_map, |
| const RegisterLine::RegToLockDepthsMap& search_map) { |
| auto it = src_map.find(src); |
| if (it == src_map.end()) { |
| // "Not locked" is trivially aliased. |
| return true; |
| } |
| uint32_t src_lock_levels = it->second; |
| if (src_lock_levels == 0) { |
| // "Not locked" is trivially aliased. |
| return true; |
| } |
| |
| // Scan the map for the same value. |
| for (const std::pair<const uint32_t, uint32_t>& pair : search_map) { |
| if (pair.first != src && pair.second == src_lock_levels) { |
| return true; |
| } |
| } |
| |
| // Nothing found, no alias. |
| return false; |
| } |
| |
| bool RegisterLine::MergeRegisters(MethodVerifier* verifier, const RegisterLine* incoming_line) { |
| bool changed = false; |
| DCHECK(incoming_line != nullptr); |
| for (size_t idx = 0; idx < num_regs_; idx++) { |
| if (line_[idx] != incoming_line->line_[idx]) { |
| const RegType& incoming_reg_type = incoming_line->GetRegisterType(verifier, idx); |
| const RegType& cur_type = GetRegisterType(verifier, idx); |
| const RegType& new_type = cur_type.Merge( |
| incoming_reg_type, verifier->GetRegTypeCache(), verifier); |
| changed = changed || !cur_type.Equals(new_type); |
| line_[idx] = new_type.GetId(); |
| } |
| } |
| if (monitors_.size() > 0 || incoming_line->monitors_.size() > 0) { |
| if (monitors_.size() != incoming_line->monitors_.size()) { |
| verifier->Fail(VERIFY_ERROR_LOCKING); |
| if (kDumpLockFailures) { |
| VLOG(verifier) << "mismatched stack depths (depth=" << MonitorStackDepth() |
| << ", incoming depth=" << incoming_line->MonitorStackDepth() << ") in " |
| << verifier->GetMethodReference().PrettyMethod(); |
| } |
| } else if (reg_to_lock_depths_ != incoming_line->reg_to_lock_depths_) { |
| for (uint32_t idx = 0; idx < num_regs_; idx++) { |
| size_t depths = reg_to_lock_depths_.count(idx); |
| size_t incoming_depths = incoming_line->reg_to_lock_depths_.count(idx); |
| if (depths != incoming_depths) { |
| // Stack levels aren't matching. This is potentially bad, as we don't do a |
| // flow-sensitive analysis. |
| // However, this could be an alias of something locked in one path, and the alias was |
| // destroyed in another path. It is fine to drop this as long as there's another alias |
| // for the lock around. The last vanishing alias will then report that things would be |
| // left unlocked. We need to check for aliases for both lock levels. |
| // |
| // Example (lock status in curly braces as pair of register and lock leels): |
| // |
| // lock v1 {v1=1} |
| // | | |
| // v0 = v1 {v0=1, v1=1} v0 = v2 {v1=1} |
| // | | |
| // {v1=1} |
| // // Dropping v0, as the status can't be merged |
| // // but the lock info ("locked at depth 1" and) |
| // // "not locked at all") is available. |
| if (!FindLockAliasedRegister(idx, |
| reg_to_lock_depths_, |
| reg_to_lock_depths_) || |
| !FindLockAliasedRegister(idx, |
| incoming_line->reg_to_lock_depths_, |
| reg_to_lock_depths_)) { |
| verifier->Fail(VERIFY_ERROR_LOCKING); |
| if (kDumpLockFailures) { |
| VLOG(verifier) << "mismatched stack depths for register v" << idx |
| << ": " << depths << " != " << incoming_depths << " in " |
| << verifier->GetMethodReference().PrettyMethod(); |
| } |
| break; |
| } |
| // We found aliases, set this to zero. |
| reg_to_lock_depths_.erase(idx); |
| } else if (depths > 0) { |
| // Check whether they're actually the same levels. |
| uint32_t locked_levels = reg_to_lock_depths_.find(idx)->second; |
| uint32_t incoming_locked_levels = incoming_line->reg_to_lock_depths_.find(idx)->second; |
| if (locked_levels != incoming_locked_levels) { |
| // Lock levels aren't matching. This is potentially bad, as we don't do a |
| // flow-sensitive analysis. |
| // However, this could be an alias of something locked in one path, and the alias was |
| // destroyed in another path. It is fine to drop this as long as there's another alias |
| // for the lock around. The last vanishing alias will then report that things would be |
| // left unlocked. We need to check for aliases for both lock levels. |
| // |
| // Example (lock status in curly braces as pair of register and lock leels): |
| // |
| // lock v1 {v1=1} |
| // lock v2 {v1=1, v2=2} |
| // | | |
| // v0 = v1 {v0=1, v1=1, v2=2} v0 = v2 {v0=2, v1=1, v2=2} |
| // | | |
| // {v1=1, v2=2} |
| // // Dropping v0, as the status can't be |
| // // merged but the lock info ("locked at |
| // // depth 1" and "locked at depth 2") is |
| // // available. |
| if (!FindLockAliasedRegister(idx, |
| reg_to_lock_depths_, |
| reg_to_lock_depths_) || |
| !FindLockAliasedRegister(idx, |
| incoming_line->reg_to_lock_depths_, |
| reg_to_lock_depths_)) { |
| // No aliases for both current and incoming, we'll lose information. |
| verifier->Fail(VERIFY_ERROR_LOCKING); |
| if (kDumpLockFailures) { |
| VLOG(verifier) << "mismatched lock levels for register v" << idx << ": " |
| << std::hex << locked_levels << std::dec << " != " |
| << std::hex << incoming_locked_levels << std::dec << " in " |
| << verifier->GetMethodReference().PrettyMethod(); |
| } |
| break; |
| } |
| // We found aliases, set this to zero. |
| reg_to_lock_depths_.erase(idx); |
| } |
| } |
| } |
| } |
| } |
| |
| // Check whether "this" was initialized in both paths. |
| if (this_initialized_ && !incoming_line->this_initialized_) { |
| this_initialized_ = false; |
| changed = true; |
| } |
| return changed; |
| } |
| |
| } // namespace verifier |
| } // namespace art |