blob: 6b9f232e8f7dcc23a558d7ff764a2628f487d170 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_arm.h"
#include "arch/arm/asm_support_arm.h"
#include "arch/arm/instruction_set_features_arm.h"
#include "art_method.h"
#include "base/bit_utils.h"
#include "base/bit_utils_iterator.h"
#include "code_generator_utils.h"
#include "common_arm.h"
#include "compiled_method.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "gc/accounting/card_table.h"
#include "intrinsics.h"
#include "intrinsics_arm.h"
#include "linker/arm/relative_patcher_thumb2.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "thread.h"
#include "utils/arm/assembler_arm.h"
#include "utils/arm/managed_register_arm.h"
#include "utils/assembler.h"
#include "utils/stack_checks.h"
namespace art {
template<class MirrorType>
class GcRoot;
namespace arm {
static bool ExpectedPairLayout(Location location) {
// We expected this for both core and fpu register pairs.
return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
}
static constexpr Register kMethodRegisterArgument = R0;
static constexpr Register kCoreAlwaysSpillRegister = R5;
static constexpr Register kCoreCalleeSaves[] =
{ R5, R6, R7, R8, R10, R11, LR };
static constexpr SRegister kFpuCalleeSaves[] =
{ S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 };
// D31 cannot be split into two S registers, and the register allocator only works on
// S registers. Therefore there is no need to block it.
static constexpr DRegister DTMP = D31;
static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
// Reference load (except object array loads) is using LDR Rt, [Rn, #offset] which can handle
// offset < 4KiB. For offsets >= 4KiB, the load shall be emitted as two or more instructions.
// For the Baker read barrier implementation using link-generated thunks we need to split
// the offset explicitly.
constexpr uint32_t kReferenceLoadMinFarOffset = 4 * KB;
// Flags controlling the use of link-time generated thunks for Baker read barriers.
constexpr bool kBakerReadBarrierLinkTimeThunksEnableForFields = true;
constexpr bool kBakerReadBarrierLinkTimeThunksEnableForArrays = true;
constexpr bool kBakerReadBarrierLinkTimeThunksEnableForGcRoots = true;
// The reserved entrypoint register for link-time generated thunks.
const Register kBakerCcEntrypointRegister = R4;
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<ArmAssembler*>(codegen->GetAssembler())-> // NOLINT
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
static inline void CheckLastTempIsBakerCcEntrypointRegister(HInstruction* instruction) {
DCHECK_EQ(static_cast<uint32_t>(kBakerCcEntrypointRegister),
linker::Thumb2RelativePatcher::kBakerCcEntrypointRegister);
DCHECK_NE(instruction->GetLocations()->GetTempCount(), 0u);
DCHECK_EQ(kBakerCcEntrypointRegister,
instruction->GetLocations()->GetTemp(
instruction->GetLocations()->GetTempCount() - 1u).AsRegister<Register>());
}
static inline void EmitPlaceholderBne(CodeGeneratorARM* codegen, Label* bne_label) {
ScopedForce32Bit force_32bit(down_cast<Thumb2Assembler*>(codegen->GetAssembler()));
__ BindTrackedLabel(bne_label);
Label placeholder_label;
__ b(&placeholder_label, NE); // Placeholder, patched at link-time.
__ Bind(&placeholder_label);
}
static inline bool CanEmitNarrowLdr(Register rt, Register rn, uint32_t offset) {
return ArmAssembler::IsLowRegister(rt) && ArmAssembler::IsLowRegister(rn) && offset < 32u;
}
static constexpr int kRegListThreshold = 4;
// SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
// for each live D registers they treat two corresponding S registers as live ones.
//
// Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
// from a list of contiguous S registers a list of contiguous D registers (processing first/last
// S registers corner cases) and save/restore this new list treating them as D registers.
// - decreasing code size
// - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
// restored and then used in regular non SlowPath code as D register.
//
// For the following example (v means the S register is live):
// D names: | D0 | D1 | D2 | D4 | ...
// S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
// Live? | | v | v | v | v | v | v | | ...
//
// S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
// as D registers.
static size_t SaveContiguousSRegisterList(size_t first,
size_t last,
CodeGenerator* codegen,
size_t stack_offset) {
DCHECK_LE(first, last);
if ((first == last) && (first == 0)) {
stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first);
return stack_offset;
}
if (first % 2 == 1) {
stack_offset += codegen->SaveFloatingPointRegister(stack_offset, first++);
}
bool save_last = false;
if (last % 2 == 0) {
save_last = true;
--last;
}
if (first < last) {
DRegister d_reg = static_cast<DRegister>(first / 2);
DCHECK_EQ((last - first + 1) % 2, 0u);
size_t number_of_d_regs = (last - first + 1) / 2;
if (number_of_d_regs == 1) {
__ StoreDToOffset(d_reg, SP, stack_offset);
} else if (number_of_d_regs > 1) {
__ add(IP, SP, ShifterOperand(stack_offset));
__ vstmiad(IP, d_reg, number_of_d_regs);
}
stack_offset += number_of_d_regs * kArmWordSize * 2;
}
if (save_last) {
stack_offset += codegen->SaveFloatingPointRegister(stack_offset, last + 1);
}
return stack_offset;
}
static size_t RestoreContiguousSRegisterList(size_t first,
size_t last,
CodeGenerator* codegen,
size_t stack_offset) {
DCHECK_LE(first, last);
if ((first == last) && (first == 0)) {
stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first);
return stack_offset;
}
if (first % 2 == 1) {
stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, first++);
}
bool restore_last = false;
if (last % 2 == 0) {
restore_last = true;
--last;
}
if (first < last) {
DRegister d_reg = static_cast<DRegister>(first / 2);
DCHECK_EQ((last - first + 1) % 2, 0u);
size_t number_of_d_regs = (last - first + 1) / 2;
if (number_of_d_regs == 1) {
__ LoadDFromOffset(d_reg, SP, stack_offset);
} else if (number_of_d_regs > 1) {
__ add(IP, SP, ShifterOperand(stack_offset));
__ vldmiad(IP, d_reg, number_of_d_regs);
}
stack_offset += number_of_d_regs * kArmWordSize * 2;
}
if (restore_last) {
stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, last + 1);
}
return stack_offset;
}
void SlowPathCodeARM::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
size_t orig_offset = stack_offset;
const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
for (uint32_t i : LowToHighBits(core_spills)) {
// If the register holds an object, update the stack mask.
if (locations->RegisterContainsObject(i)) {
locations->SetStackBit(stack_offset / kVRegSize);
}
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
saved_core_stack_offsets_[i] = stack_offset;
stack_offset += kArmWordSize;
}
int reg_num = POPCOUNT(core_spills);
if (reg_num != 0) {
if (reg_num > kRegListThreshold) {
__ StoreList(RegList(core_spills), orig_offset);
} else {
stack_offset = orig_offset;
for (uint32_t i : LowToHighBits(core_spills)) {
stack_offset += codegen->SaveCoreRegister(stack_offset, i);
}
}
}
uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
orig_offset = stack_offset;
for (uint32_t i : LowToHighBits(fp_spills)) {
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
saved_fpu_stack_offsets_[i] = stack_offset;
stack_offset += kArmWordSize;
}
stack_offset = orig_offset;
while (fp_spills != 0u) {
uint32_t begin = CTZ(fp_spills);
uint32_t tmp = fp_spills + (1u << begin);
fp_spills &= tmp; // Clear the contiguous range of 1s.
uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined.
stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
}
DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
}
void SlowPathCodeARM::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
size_t orig_offset = stack_offset;
const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
for (uint32_t i : LowToHighBits(core_spills)) {
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
stack_offset += kArmWordSize;
}
int reg_num = POPCOUNT(core_spills);
if (reg_num != 0) {
if (reg_num > kRegListThreshold) {
__ LoadList(RegList(core_spills), orig_offset);
} else {
stack_offset = orig_offset;
for (uint32_t i : LowToHighBits(core_spills)) {
stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
}
}
}
uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
while (fp_spills != 0u) {
uint32_t begin = CTZ(fp_spills);
uint32_t tmp = fp_spills + (1u << begin);
fp_spills &= tmp; // Clear the contiguous range of 1s.
uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp); // CTZ(0) is undefined.
stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
}
DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
}
class NullCheckSlowPathARM : public SlowPathCodeARM {
public:
explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCodeARM(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; }
private:
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM);
};
class DivZeroCheckSlowPathARM : public SlowPathCodeARM {
public:
explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCodeARM(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; }
private:
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM);
};
class SuspendCheckSlowPathARM : public SlowPathCodeARM {
public:
SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor)
: SlowPathCodeARM(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
if (successor_ == nullptr) {
__ b(GetReturnLabel());
} else {
__ b(arm_codegen->GetLabelOf(successor_));
}
}
Label* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
HBasicBlock* GetSuccessor() const {
return successor_;
}
const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; }
private:
// If not null, the block to branch to after the suspend check.
HBasicBlock* const successor_;
// If `successor_` is null, the label to branch to after the suspend check.
Label return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM);
};
class BoundsCheckSlowPathARM : public SlowPathCodeARM {
public:
explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction)
: SlowPathCodeARM(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
LocationSummary* locations = instruction_->GetLocations();
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(
locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimInt,
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimInt);
QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
? kQuickThrowStringBounds
: kQuickThrowArrayBounds;
arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; }
private:
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM);
};
class LoadClassSlowPathARM : public SlowPathCodeARM {
public:
LoadClassSlowPathARM(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit)
: SlowPathCodeARM(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
Location out = locations->Out();
constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier);
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
// For HLoadClass/kBssEntry/kSaveEverything, make sure we preserve the address of the entry.
DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
bool is_load_class_bss_entry =
(cls_ == instruction_) && (cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry);
Register entry_address = kNoRegister;
if (is_load_class_bss_entry && call_saves_everything_except_r0) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
// In the unlucky case that the `temp` is R0, we preserve the address in `out` across
// the kSaveEverything call.
bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0));
entry_address = temp_is_r0 ? out.AsRegister<Register>() : temp;
DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0));
if (temp_is_r0) {
__ mov(entry_address, ShifterOperand(temp));
}
}
dex::TypeIndex type_index = cls_->GetTypeIndex();
__ LoadImmediate(calling_convention.GetRegisterAt(0), type_index.index_);
QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
: kQuickInitializeType;
arm_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this);
if (do_clinit_) {
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
} else {
CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
}
// For HLoadClass/kBssEntry, store the resolved Class to the BSS entry.
if (is_load_class_bss_entry) {
if (call_saves_everything_except_r0) {
// The class entry address was preserved in `entry_address` thanks to kSaveEverything.
__ str(R0, Address(entry_address));
} else {
// For non-Baker read barrier, we need to re-calculate the address of the string entry.
Register temp = IP;
CodeGeneratorARM::PcRelativePatchInfo* labels =
arm_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index);
__ BindTrackedLabel(&labels->movw_label);
__ movw(temp, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->movt_label);
__ movt(temp, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->add_pc_label);
__ add(temp, temp, ShifterOperand(PC));
__ str(R0, Address(temp));
}
}
// Move the class to the desired location.
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
}
RestoreLiveRegisters(codegen, locations);
__ b(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; }
private:
// The class this slow path will load.
HLoadClass* const cls_;
// The dex PC of `at_`.
const uint32_t dex_pc_;
// Whether to initialize the class.
const bool do_clinit_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM);
};
class LoadStringSlowPathARM : public SlowPathCodeARM {
public:
explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCodeARM(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
DCHECK(instruction_->IsLoadString());
DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
HLoadString* load = instruction_->AsLoadString();
const dex::StringIndex string_index = load->GetStringIndex();
Register out = locations->Out().AsRegister<Register>();
constexpr bool call_saves_everything_except_r0 = (!kUseReadBarrier || kUseBakerReadBarrier);
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
// In the unlucky case that the `temp` is R0, we preserve the address in `out` across
// the kSaveEverything call.
Register entry_address = kNoRegister;
if (call_saves_everything_except_r0) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
bool temp_is_r0 = (temp == calling_convention.GetRegisterAt(0));
entry_address = temp_is_r0 ? out : temp;
DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0));
if (temp_is_r0) {
__ mov(entry_address, ShifterOperand(temp));
}
}
__ LoadImmediate(calling_convention.GetRegisterAt(0), string_index.index_);
arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
// Store the resolved String to the .bss entry.
if (call_saves_everything_except_r0) {
// The string entry address was preserved in `entry_address` thanks to kSaveEverything.
__ str(R0, Address(entry_address));
} else {
// For non-Baker read barrier, we need to re-calculate the address of the string entry.
Register temp = IP;
CodeGeneratorARM::PcRelativePatchInfo* labels =
arm_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index);
__ BindTrackedLabel(&labels->movw_label);
__ movw(temp, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->movt_label);
__ movt(temp, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->add_pc_label);
__ add(temp, temp, ShifterOperand(PC));
__ str(R0, Address(temp));
}
arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
RestoreLiveRegisters(codegen, locations);
__ b(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; }
private:
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM);
};
class TypeCheckSlowPathARM : public SlowPathCodeARM {
public:
TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal)
: SlowPathCodeARM(instruction), is_fatal_(is_fatal) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
if (!is_fatal_) {
SaveLiveRegisters(codegen, locations);
}
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimNot,
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimNot);
if (instruction_->IsInstanceOf()) {
arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
} else {
DCHECK(instruction_->IsCheckCast());
arm_codegen->InvokeRuntime(kQuickCheckInstanceOf,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
}
if (!is_fatal_) {
RestoreLiveRegisters(codegen, locations);
__ b(GetExitLabel());
}
}
const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; }
bool IsFatal() const OVERRIDE { return is_fatal_; }
private:
const bool is_fatal_;
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM);
};
class DeoptimizationSlowPathARM : public SlowPathCodeARM {
public:
explicit DeoptimizationSlowPathARM(HDeoptimize* instruction)
: SlowPathCodeARM(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
LocationSummary* locations = instruction_->GetLocations();
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
__ LoadImmediate(calling_convention.GetRegisterAt(0),
static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
}
const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; }
private:
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM);
};
class ArraySetSlowPathARM : public SlowPathCodeARM {
public:
explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCodeARM(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
parallel_move.AddMove(
locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimNot,
nullptr);
parallel_move.AddMove(
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimInt,
nullptr);
parallel_move.AddMove(
locations->InAt(2),
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
Primitive::kPrimNot,
nullptr);
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
RestoreLiveRegisters(codegen, locations);
__ b(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; }
private:
DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM);
};
// Abstract base class for read barrier slow paths marking a reference
// `ref`.
//
// Argument `entrypoint` must be a register location holding the read
// barrier marking runtime entry point to be invoked.
class ReadBarrierMarkSlowPathBaseARM : public SlowPathCodeARM {
protected:
ReadBarrierMarkSlowPathBaseARM(HInstruction* instruction, Location ref, Location entrypoint)
: SlowPathCodeARM(instruction), ref_(ref), entrypoint_(entrypoint) {
DCHECK(kEmitCompilerReadBarrier);
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathBaseARM"; }
// Generate assembly code calling the read barrier marking runtime
// entry point (ReadBarrierMarkRegX).
void GenerateReadBarrierMarkRuntimeCall(CodeGenerator* codegen) {
Register ref_reg = ref_.AsRegister<Register>();
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
DCHECK_NE(ref_reg, SP);
DCHECK_NE(ref_reg, LR);
DCHECK_NE(ref_reg, PC);
// IP is used internally by the ReadBarrierMarkRegX entry point
// as a temporary, it cannot be the entry point's input/output.
DCHECK_NE(ref_reg, IP);
DCHECK(0 <= ref_reg && ref_reg < kNumberOfCoreRegisters) << ref_reg;
// "Compact" slow path, saving two moves.
//
// Instead of using the standard runtime calling convention (input
// and output in R0):
//
// R0 <- ref
// R0 <- ReadBarrierMark(R0)
// ref <- R0
//
// we just use rX (the register containing `ref`) as input and output
// of a dedicated entrypoint:
//
// rX <- ReadBarrierMarkRegX(rX)
//
if (entrypoint_.IsValid()) {
arm_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
__ blx(entrypoint_.AsRegister<Register>());
} else {
// Entrypoint is not already loaded, load from the thread.
int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref_reg);
// This runtime call does not require a stack map.
arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
}
}
// The location (register) of the marked object reference.
const Location ref_;
// The location of the entrypoint if it is already loaded.
const Location entrypoint_;
private:
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathBaseARM);
};
// Slow path marking an object reference `ref` during a read
// barrier. The field `obj.field` in the object `obj` holding this
// reference does not get updated by this slow path after marking.
//
// This means that after the execution of this slow path, `ref` will
// always be up-to-date, but `obj.field` may not; i.e., after the
// flip, `ref` will be a to-space reference, but `obj.field` will
// probably still be a from-space reference (unless it gets updated by
// another thread, or if another thread installed another object
// reference (different from `ref`) in `obj.field`).
//
// If `entrypoint` is a valid location it is assumed to already be
// holding the entrypoint. The case where the entrypoint is passed in
// is when the decision to mark is based on whether the GC is marking.
class ReadBarrierMarkSlowPathARM : public ReadBarrierMarkSlowPathBaseARM {
public:
ReadBarrierMarkSlowPathARM(HInstruction* instruction,
Location ref,
Location entrypoint = Location::NoLocation())
: ReadBarrierMarkSlowPathBaseARM(instruction, ref, entrypoint) {
DCHECK(kEmitCompilerReadBarrier);
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; }
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(locations->CanCall());
if (kIsDebugBuild) {
Register ref_reg = ref_.AsRegister<Register>();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
}
DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
<< "Unexpected instruction in read barrier marking slow path: "
<< instruction_->DebugName();
__ Bind(GetEntryLabel());
GenerateReadBarrierMarkRuntimeCall(codegen);
__ b(GetExitLabel());
}
private:
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM);
};
// Slow path loading `obj`'s lock word, loading a reference from
// object `*(obj + offset + (index << scale_factor))` into `ref`, and
// marking `ref` if `obj` is gray according to the lock word (Baker
// read barrier). The field `obj.field` in the object `obj` holding
// this reference does not get updated by this slow path after marking
// (see LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM
// below for that).
//
// This means that after the execution of this slow path, `ref` will
// always be up-to-date, but `obj.field` may not; i.e., after the
// flip, `ref` will be a to-space reference, but `obj.field` will
// probably still be a from-space reference (unless it gets updated by
// another thread, or if another thread installed another object
// reference (different from `ref`) in `obj.field`).
//
// Argument `entrypoint` must be a register location holding the read
// barrier marking runtime entry point to be invoked.
class LoadReferenceWithBakerReadBarrierSlowPathARM : public ReadBarrierMarkSlowPathBaseARM {
public:
LoadReferenceWithBakerReadBarrierSlowPathARM(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location index,
ScaleFactor scale_factor,
bool needs_null_check,
Register temp,
Location entrypoint)
: ReadBarrierMarkSlowPathBaseARM(instruction, ref, entrypoint),
obj_(obj),
offset_(offset),
index_(index),
scale_factor_(scale_factor),
needs_null_check_(needs_null_check),
temp_(temp) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
}
const char* GetDescription() const OVERRIDE {
return "LoadReferenceWithBakerReadBarrierSlowPathARM";
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
Register ref_reg = ref_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
DCHECK_NE(ref_reg, temp_);
DCHECK(instruction_->IsInstanceFieldGet() ||
instruction_->IsStaticFieldGet() ||
instruction_->IsArrayGet() ||
instruction_->IsArraySet() ||
instruction_->IsInstanceOf() ||
instruction_->IsCheckCast() ||
(instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
(instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier marking slow path: "
<< instruction_->DebugName();
// The read barrier instrumentation of object ArrayGet
// instructions does not support the HIntermediateAddress
// instruction.
DCHECK(!(instruction_->IsArrayGet() &&
instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
__ Bind(GetEntryLabel());
// When using MaybeGenerateReadBarrierSlow, the read barrier call is
// inserted after the original load. However, in fast path based
// Baker's read barriers, we need to perform the load of
// mirror::Object::monitor_ *before* the original reference load.
// This load-load ordering is required by the read barrier.
// The slow path (for Baker's algorithm) should look like:
//
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<mirror::Object> ref = *src; // Original reference load.
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// ref = entrypoint(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call.
// }
//
// Note: the original implementation in ReadBarrier::Barrier is
// slightly more complex as it performs additional checks that we do
// not do here for performance reasons.
// /* int32_t */ monitor = obj->monitor_
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
__ LoadFromOffset(kLoadWord, temp_, obj_, monitor_offset);
if (needs_null_check_) {
codegen->MaybeRecordImplicitNullCheck(instruction_);
}
// /* LockWord */ lock_word = LockWord(monitor)
static_assert(sizeof(LockWord) == sizeof(int32_t),
"art::LockWord and int32_t have different sizes.");
// Introduce a dependency on the lock_word including the rb_state,
// which shall prevent load-load reordering without using
// a memory barrier (which would be more expensive).
// `obj` is unchanged by this operation, but its value now depends
// on `temp`.
__ add(obj_, obj_, ShifterOperand(temp_, LSR, 32));
// The actual reference load.
// A possible implicit null check has already been handled above.
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
arm_codegen->GenerateRawReferenceLoad(
instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false);
// Mark the object `ref` when `obj` is gray.
//
// if (rb_state == ReadBarrier::GrayState())
// ref = ReadBarrier::Mark(ref);
//
// Given the numeric representation, it's enough to check the low bit of the
// rb_state. We do that by shifting the bit out of the lock word with LSRS
// which can be a 16-bit instruction unlike the TST immediate.
static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Lsrs(temp_, temp_, LockWord::kReadBarrierStateShift + 1);
__ b(GetExitLabel(), CC); // Carry flag is the last bit shifted out by LSRS.
GenerateReadBarrierMarkRuntimeCall(codegen);
__ b(GetExitLabel());
}
private:
// The register containing the object holding the marked object reference field.
Register obj_;
// The offset, index and scale factor to access the reference in `obj_`.
uint32_t offset_;
Location index_;
ScaleFactor scale_factor_;
// Is a null check required?
bool needs_null_check_;
// A temporary register used to hold the lock word of `obj_`.
Register temp_;
DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierSlowPathARM);
};
// Slow path loading `obj`'s lock word, loading a reference from
// object `*(obj + offset + (index << scale_factor))` into `ref`, and
// marking `ref` if `obj` is gray according to the lock word (Baker
// read barrier). If needed, this slow path also atomically updates
// the field `obj.field` in the object `obj` holding this reference
// after marking (contrary to
// LoadReferenceWithBakerReadBarrierSlowPathARM above, which never
// tries to update `obj.field`).
//
// This means that after the execution of this slow path, both `ref`
// and `obj.field` will be up-to-date; i.e., after the flip, both will
// hold the same to-space reference (unless another thread installed
// another object reference (different from `ref`) in `obj.field`).
//
// Argument `entrypoint` must be a register location holding the read
// barrier marking runtime entry point to be invoked.
class LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM
: public ReadBarrierMarkSlowPathBaseARM {
public:
LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location index,
ScaleFactor scale_factor,
bool needs_null_check,
Register temp1,
Register temp2,
Location entrypoint)
: ReadBarrierMarkSlowPathBaseARM(instruction, ref, entrypoint),
obj_(obj),
offset_(offset),
index_(index),
scale_factor_(scale_factor),
needs_null_check_(needs_null_check),
temp1_(temp1),
temp2_(temp2) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
}
const char* GetDescription() const OVERRIDE {
return "LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM";
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
Register ref_reg = ref_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
DCHECK_NE(ref_reg, temp1_);
// This slow path is only used by the UnsafeCASObject intrinsic at the moment.
DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier marking and field updating slow path: "
<< instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
DCHECK_EQ(offset_, 0u);
DCHECK_EQ(scale_factor_, ScaleFactor::TIMES_1);
// The location of the offset of the marked reference field within `obj_`.
Location field_offset = index_;
DCHECK(field_offset.IsRegisterPair()) << field_offset;
__ Bind(GetEntryLabel());
// The implementation is similar to LoadReferenceWithBakerReadBarrierSlowPathARM's:
//
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<mirror::Object> ref = *src; // Original reference load.
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// old_ref = ref;
// ref = entrypoint(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call.
// compareAndSwapObject(obj, field_offset, old_ref, ref);
// }
// /* int32_t */ monitor = obj->monitor_
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
__ LoadFromOffset(kLoadWord, temp1_, obj_, monitor_offset);
if (needs_null_check_) {
codegen->MaybeRecordImplicitNullCheck(instruction_);
}
// /* LockWord */ lock_word = LockWord(monitor)
static_assert(sizeof(LockWord) == sizeof(int32_t),
"art::LockWord and int32_t have different sizes.");
// Introduce a dependency on the lock_word including the rb_state,
// which shall prevent load-load reordering without using
// a memory barrier (which would be more expensive).
// `obj` is unchanged by this operation, but its value now depends
// on `temp1`.
__ add(obj_, obj_, ShifterOperand(temp1_, LSR, 32));
// The actual reference load.
// A possible implicit null check has already been handled above.
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
arm_codegen->GenerateRawReferenceLoad(
instruction_, ref_, obj_, offset_, index_, scale_factor_, /* needs_null_check */ false);
// Mark the object `ref` when `obj` is gray.
//
// if (rb_state == ReadBarrier::GrayState())
// ref = ReadBarrier::Mark(ref);
//
// Given the numeric representation, it's enough to check the low bit of the
// rb_state. We do that by shifting the bit out of the lock word with LSRS
// which can be a 16-bit instruction unlike the TST immediate.
static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Lsrs(temp1_, temp1_, LockWord::kReadBarrierStateShift + 1);
__ b(GetExitLabel(), CC); // Carry flag is the last bit shifted out by LSRS.
// Save the old value of the reference before marking it.
// Note that we cannot use IP to save the old reference, as IP is
// used internally by the ReadBarrierMarkRegX entry point, and we
// need the old reference after the call to that entry point.
DCHECK_NE(temp1_, IP);
__ Mov(temp1_, ref_reg);
GenerateReadBarrierMarkRuntimeCall(codegen);
// If the new reference is different from the old reference,
// update the field in the holder (`*(obj_ + field_offset)`).
//
// Note that this field could also hold a different object, if
// another thread had concurrently changed it. In that case, the
// LDREX/SUBS/ITNE sequence of instructions in the compare-and-set
// (CAS) operation below would abort the CAS, leaving the field
// as-is.
__ cmp(temp1_, ShifterOperand(ref_reg));
__ b(GetExitLabel(), EQ);
// Update the the holder's field atomically. This may fail if
// mutator updates before us, but it's OK. This is achieved
// using a strong compare-and-set (CAS) operation with relaxed
// memory synchronization ordering, where the expected value is
// the old reference and the desired value is the new reference.
// Convenience aliases.
Register base = obj_;
// The UnsafeCASObject intrinsic uses a register pair as field
// offset ("long offset"), of which only the low part contains
// data.
Register offset = field_offset.AsRegisterPairLow<Register>();
Register expected = temp1_;
Register value = ref_reg;
Register tmp_ptr = IP; // Pointer to actual memory.
Register tmp = temp2_; // Value in memory.
__ add(tmp_ptr, base, ShifterOperand(offset));
if (kPoisonHeapReferences) {
__ PoisonHeapReference(expected);
if (value == expected) {
// Do not poison `value`, as it is the same register as
// `expected`, which has just been poisoned.
} else {
__ PoisonHeapReference(value);
}
}
// do {
// tmp = [r_ptr] - expected;
// } while (tmp == 0 && failure([r_ptr] <- r_new_value));
Label loop_head, exit_loop;
__ Bind(&loop_head);
__ ldrex(tmp, tmp_ptr);
__ subs(tmp, tmp, ShifterOperand(expected));
__ it(NE);
__ clrex(NE);
__ b(&exit_loop, NE);
__ strex(tmp, value, tmp_ptr);
__ cmp(tmp, ShifterOperand(1));
__ b(&loop_head, EQ);
__ Bind(&exit_loop);
if (kPoisonHeapReferences) {
__ UnpoisonHeapReference(expected);
if (value == expected) {
// Do not unpoison `value`, as it is the same register as
// `expected`, which has just been unpoisoned.
} else {
__ UnpoisonHeapReference(value);
}
}
__ b(GetExitLabel());
}
private:
// The register containing the object holding the marked object reference field.
const Register obj_;
// The offset, index and scale factor to access the reference in `obj_`.
uint32_t offset_;
Location index_;
ScaleFactor scale_factor_;
// Is a null check required?
bool needs_null_check_;
// A temporary register used to hold the lock word of `obj_`; and
// also to hold the original reference value, when the reference is
// marked.
const Register temp1_;
// A temporary register used in the implementation of the CAS, to
// update the object's reference field.
const Register temp2_;
DISALLOW_COPY_AND_ASSIGN(LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM);
};
// Slow path generating a read barrier for a heap reference.
class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCodeARM {
public:
ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index)
: SlowPathCodeARM(instruction),
out_(out),
ref_(ref),
obj_(obj),
offset_(offset),
index_(index) {
DCHECK(kEmitCompilerReadBarrier);
// If `obj` is equal to `out` or `ref`, it means the initial object
// has been overwritten by (or after) the heap object reference load
// to be instrumented, e.g.:
//
// __ LoadFromOffset(kLoadWord, out, out, offset);
// codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
//
// In that case, we have lost the information about the original
// object, and the emitted read barrier cannot work properly.
DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
LocationSummary* locations = instruction_->GetLocations();
Register reg_out = out_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
DCHECK(instruction_->IsInstanceFieldGet() ||
instruction_->IsStaticFieldGet() ||
instruction_->IsArrayGet() ||
instruction_->IsInstanceOf() ||
instruction_->IsCheckCast() ||
(instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
<< "Unexpected instruction in read barrier for heap reference slow path: "
<< instruction_->DebugName();
// The read barrier instrumentation of object ArrayGet
// instructions does not support the HIntermediateAddress
// instruction.
DCHECK(!(instruction_->IsArrayGet() &&
instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
// We may have to change the index's value, but as `index_` is a
// constant member (like other "inputs" of this slow path),
// introduce a copy of it, `index`.
Location index = index_;
if (index_.IsValid()) {
// Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
if (instruction_->IsArrayGet()) {
// Compute the actual memory offset and store it in `index`.
Register index_reg = index_.AsRegister<Register>();
DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
// We are about to change the value of `index_reg` (see the
// calls to art::arm::Thumb2Assembler::Lsl and
// art::arm::Thumb2Assembler::AddConstant below), but it has
// not been saved by the previous call to
// art::SlowPathCode::SaveLiveRegisters, as it is a
// callee-save register --
// art::SlowPathCode::SaveLiveRegisters does not consider
// callee-save registers, as it has been designed with the
// assumption that callee-save registers are supposed to be
// handled by the called function. So, as a callee-save
// register, `index_reg` _would_ eventually be saved onto
// the stack, but it would be too late: we would have
// changed its value earlier. Therefore, we manually save
// it here into another freely available register,
// `free_reg`, chosen of course among the caller-save
// registers (as a callee-save `free_reg` register would
// exhibit the same problem).
//
// Note we could have requested a temporary register from
// the register allocator instead; but we prefer not to, as
// this is a slow path, and we know we can find a
// caller-save register that is available.
Register free_reg = FindAvailableCallerSaveRegister(codegen);
__ Mov(free_reg, index_reg);
index_reg = free_reg;
index = Location::RegisterLocation(index_reg);
} else {
// The initial register stored in `index_` has already been
// saved in the call to art::SlowPathCode::SaveLiveRegisters
// (as it is not a callee-save register), so we can freely
// use it.
}
// Shifting the index value contained in `index_reg` by the scale
// factor (2) cannot overflow in practice, as the runtime is
// unable to allocate object arrays with a size larger than
// 2^26 - 1 (that is, 2^28 - 4 bytes).
__ Lsl(index_reg, index_reg, TIMES_4);
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
__ AddConstant(index_reg, index_reg, offset_);
} else {
// In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
// intrinsics, `index_` is not shifted by a scale factor of 2
// (as in the case of ArrayGet), as it is actually an offset
// to an object field within an object.
DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
(instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
<< instruction_->AsInvoke()->GetIntrinsic();
DCHECK_EQ(offset_, 0U);
DCHECK(index_.IsRegisterPair());
// UnsafeGet's offset location is a register pair, the low
// part contains the correct offset.
index = index_.ToLow();
}
}
// We're moving two or three locations to locations that could
// overlap, so we need a parallel move resolver.
InvokeRuntimeCallingConvention calling_convention;
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
parallel_move.AddMove(ref_,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimNot,
nullptr);
parallel_move.AddMove(obj_,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimNot,
nullptr);
if (index.IsValid()) {
parallel_move.AddMove(index,
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
Primitive::kPrimInt,
nullptr);
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
} else {
codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
__ LoadImmediate(calling_convention.GetRegisterAt(2), offset_);
}
arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<
kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
arm_codegen->Move32(out_, Location::RegisterLocation(R0));
RestoreLiveRegisters(codegen, locations);
__ b(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; }
private:
Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
size_t ref = static_cast<int>(ref_.AsRegister<Register>());
size_t obj = static_cast<int>(obj_.AsRegister<Register>());
for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
return static_cast<Register>(i);
}
}
// We shall never fail to find a free caller-save register, as
// there are more than two core caller-save registers on ARM
// (meaning it is possible to find one which is different from
// `ref` and `obj`).
DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
LOG(FATAL) << "Could not find a free caller-save register";
UNREACHABLE();
}
const Location out_;
const Location ref_;
const Location obj_;
const uint32_t offset_;
// An additional location containing an index to an array.
// Only used for HArrayGet and the UnsafeGetObject &
// UnsafeGetObjectVolatile intrinsics.
const Location index_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM);
};
// Slow path generating a read barrier for a GC root.
class ReadBarrierForRootSlowPathARM : public SlowPathCodeARM {
public:
ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root)
: SlowPathCodeARM(instruction), out_(out), root_(root) {
DCHECK(kEmitCompilerReadBarrier);
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
Register reg_out = out_.AsRegister<Register>();
DCHECK(locations->CanCall());
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
<< "Unexpected instruction in read barrier for GC root slow path: "
<< instruction_->DebugName();
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
arm_codegen->Move32(out_, Location::RegisterLocation(R0));
RestoreLiveRegisters(codegen, locations);
__ b(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; }
private:
const Location out_;
const Location root_;
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM);
};
inline Condition ARMCondition(IfCondition cond) {
switch (cond) {
case kCondEQ: return EQ;
case kCondNE: return NE;
case kCondLT: return LT;
case kCondLE: return LE;
case kCondGT: return GT;
case kCondGE: return GE;
case kCondB: return LO;
case kCondBE: return LS;
case kCondA: return HI;
case kCondAE: return HS;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
// Maps signed condition to unsigned condition.
inline Condition ARMUnsignedCondition(IfCondition cond) {
switch (cond) {
case kCondEQ: return EQ;
case kCondNE: return NE;
// Signed to unsigned.
case kCondLT: return LO;
case kCondLE: return LS;
case kCondGT: return HI;
case kCondGE: return HS;
// Unsigned remain unchanged.
case kCondB: return LO;
case kCondBE: return LS;
case kCondA: return HI;
case kCondAE: return HS;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
// The ARM condition codes can express all the necessary branches, see the
// "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
// There is no dex instruction or HIR that would need the missing conditions
// "equal or unordered" or "not equal".
switch (cond) {
case kCondEQ: return EQ;
case kCondNE: return NE /* unordered */;
case kCondLT: return gt_bias ? CC : LT /* unordered */;
case kCondLE: return gt_bias ? LS : LE /* unordered */;
case kCondGT: return gt_bias ? HI /* unordered */ : GT;
case kCondGE: return gt_bias ? CS /* unordered */ : GE;
default:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
}
inline Shift ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
switch (op_kind) {
case HDataProcWithShifterOp::kASR: return ASR;
case HDataProcWithShifterOp::kLSL: return LSL;
case HDataProcWithShifterOp::kLSR: return LSR;
default:
LOG(FATAL) << "Unexpected op kind " << op_kind;
UNREACHABLE();
}
}
static void GenerateDataProcInstruction(HInstruction::InstructionKind kind,
Register out,
Register first,
const ShifterOperand& second,
CodeGeneratorARM* codegen) {
if (second.IsImmediate() && second.GetImmediate() == 0) {
const ShifterOperand in = kind == HInstruction::kAnd
? ShifterOperand(0)
: ShifterOperand(first);
__ mov(out, in);
} else {
switch (kind) {
case HInstruction::kAdd:
__ add(out, first, second);
break;
case HInstruction::kAnd:
__ and_(out, first, second);
break;
case HInstruction::kOr:
__ orr(out, first, second);
break;
case HInstruction::kSub:
__ sub(out, first, second);
break;
case HInstruction::kXor:
__ eor(out, first, second);
break;
default:
LOG(FATAL) << "Unexpected instruction kind: " << kind;
UNREACHABLE();
}
}
}
static void GenerateDataProc(HInstruction::InstructionKind kind,
const Location& out,
const Location& first,
const ShifterOperand& second_lo,
const ShifterOperand& second_hi,
CodeGeneratorARM* codegen) {
const Register first_hi = first.AsRegisterPairHigh<Register>();
const Register first_lo = first.AsRegisterPairLow<Register>();
const Register out_hi = out.AsRegisterPairHigh<Register>();
const Register out_lo = out.AsRegisterPairLow<Register>();
if (kind == HInstruction::kAdd) {
__ adds(out_lo, first_lo, second_lo);
__ adc(out_hi, first_hi, second_hi);
} else if (kind == HInstruction::kSub) {
__ subs(out_lo, first_lo, second_lo);
__ sbc(out_hi, first_hi, second_hi);
} else {
GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen);
GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen);
}
}
static ShifterOperand GetShifterOperand(Register rm, Shift shift, uint32_t shift_imm) {
return shift_imm == 0 ? ShifterOperand(rm) : ShifterOperand(rm, shift, shift_imm);
}
static void GenerateLongDataProc(HDataProcWithShifterOp* instruction, CodeGeneratorARM* codegen) {
DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong);
DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind()));
const LocationSummary* const locations = instruction->GetLocations();
const uint32_t shift_value = instruction->GetShiftAmount();
const HInstruction::InstructionKind kind = instruction->GetInstrKind();
const Location first = locations->InAt(0);
const Location second = locations->InAt(1);
const Location out = locations->Out();
const Register first_hi = first.AsRegisterPairHigh<Register>();
const Register first_lo = first.AsRegisterPairLow<Register>();
const Register out_hi = out.AsRegisterPairHigh<Register>();
const Register out_lo = out.AsRegisterPairLow<Register>();
const Register second_hi = second.AsRegisterPairHigh<Register>();
const Register second_lo = second.AsRegisterPairLow<Register>();
const Shift shift = ShiftFromOpKind(instruction->GetOpKind());
if (shift_value >= 32) {
if (shift == LSL) {
GenerateDataProcInstruction(kind,
out_hi,
first_hi,
ShifterOperand(second_lo, LSL, shift_value - 32),
codegen);
GenerateDataProcInstruction(kind,
out_lo,
first_lo,
ShifterOperand(0),
codegen);
} else if (shift == ASR) {
GenerateDataProc(kind,
out,
first,
GetShifterOperand(second_hi, ASR, shift_value - 32),
ShifterOperand(second_hi, ASR, 31),
codegen);
} else {
DCHECK_EQ(shift, LSR);
GenerateDataProc(kind,
out,
first,
GetShifterOperand(second_hi, LSR, shift_value - 32),
ShifterOperand(0),
codegen);
}
} else {
DCHECK_GT(shift_value, 1U);
DCHECK_LT(shift_value, 32U);
if (shift == LSL) {
// We are not doing this for HInstruction::kAdd because the output will require
// Location::kOutputOverlap; not applicable to other cases.
if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
GenerateDataProcInstruction(kind,
out_hi,
first_hi,
ShifterOperand(second_hi, LSL, shift_value),
codegen);
GenerateDataProcInstruction(kind,
out_hi,
out_hi,
ShifterOperand(second_lo, LSR, 32 - shift_value),
codegen);
GenerateDataProcInstruction(kind,
out_lo,
first_lo,
ShifterOperand(second_lo, LSL, shift_value),
codegen);
} else {
__ Lsl(IP, second_hi, shift_value);
__ orr(IP, IP, ShifterOperand(second_lo, LSR, 32 - shift_value));
GenerateDataProc(kind,
out,
first,
ShifterOperand(second_lo, LSL, shift_value),
ShifterOperand(IP),
codegen);
}
} else {
DCHECK(shift == ASR || shift == LSR);
// We are not doing this for HInstruction::kAdd because the output will require
// Location::kOutputOverlap; not applicable to other cases.
if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
GenerateDataProcInstruction(kind,
out_lo,
first_lo,
ShifterOperand(second_lo, LSR, shift_value),
codegen);
GenerateDataProcInstruction(kind,
out_lo,
out_lo,
ShifterOperand(second_hi, LSL, 32 - shift_value),
codegen);
GenerateDataProcInstruction(kind,
out_hi,
first_hi,
ShifterOperand(second_hi, shift, shift_value),
codegen);
} else {
__ Lsr(IP, second_lo, shift_value);
__ orr(IP, IP, ShifterOperand(second_hi, LSL, 32 - shift_value));
GenerateDataProc(kind,
out,
first,
ShifterOperand(IP),
ShifterOperand(second_hi, shift, shift_value),
codegen);
}
}
}
}
static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARM* codegen) {
Primitive::Type type = instruction->InputAt(0)->GetType();
Location lhs_loc = instruction->GetLocations()->InAt(0);
Location rhs_loc = instruction->GetLocations()->InAt(1);
if (rhs_loc.IsConstant()) {
// 0.0 is the only immediate that can be encoded directly in
// a VCMP instruction.
//
// Both the JLS (section 15.20.1) and the JVMS (section 6.5)
// specify that in a floating-point comparison, positive zero
// and negative zero are considered equal, so we can use the
// literal 0.0 for both cases here.
//
// Note however that some methods (Float.equal, Float.compare,
// Float.compareTo, Double.equal, Double.compare,
// Double.compareTo, Math.max, Math.min, StrictMath.max,
// StrictMath.min) consider 0.0 to be (strictly) greater than
// -0.0. So if we ever translate calls to these methods into a
// HCompare instruction, we must handle the -0.0 case with
// care here.
DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
if (type == Primitive::kPrimFloat) {
__ vcmpsz(lhs_loc.AsFpuRegister<SRegister>());
} else {
DCHECK_EQ(type, Primitive::kPrimDouble);
__ vcmpdz(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()));
}
} else {
if (type == Primitive::kPrimFloat) {
__ vcmps(lhs_loc.AsFpuRegister<SRegister>(), rhs_loc.AsFpuRegister<SRegister>());
} else {
DCHECK_EQ(type, Primitive::kPrimDouble);
__ vcmpd(FromLowSToD(lhs_loc.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(rhs_loc.AsFpuRegisterPairLow<SRegister>()));
}
}
}
static int64_t AdjustConstantForCondition(int64_t value,
IfCondition* condition,
IfCondition* opposite) {
if (value == 1) {
if (*condition == kCondB) {
value = 0;
*condition = kCondEQ;
*opposite = kCondNE;
} else if (*condition == kCondAE) {
value = 0;
*condition = kCondNE;
*opposite = kCondEQ;
}
} else if (value == -1) {
if (*condition == kCondGT) {
value = 0;
*condition = kCondGE;
*opposite = kCondLT;
} else if (*condition == kCondLE) {
value = 0;
*condition = kCondLT;
*opposite = kCondGE;
}
}
return value;
}
static std::pair<Condition, Condition> GenerateLongTestConstant(HCondition* condition,
bool invert,
CodeGeneratorARM* codegen) {
DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong);
const LocationSummary* const locations = condition->GetLocations();
IfCondition cond = condition->GetCondition();
IfCondition opposite = condition->GetOppositeCondition();
if (invert) {
std::swap(cond, opposite);
}
std::pair<Condition, Condition> ret(EQ, NE);
const Location left = locations->InAt(0);
const Location right = locations->InAt(1);
DCHECK(right.IsConstant());
const Register left_high = left.AsRegisterPairHigh<Register>();
const Register left_low = left.AsRegisterPairLow<Register>();
int64_t value = AdjustConstantForCondition(right.GetConstant()->AsLongConstant()->GetValue(),
&cond,
&opposite);
// Comparisons against 0 are common enough to deserve special attention.
if (value == 0) {
switch (cond) {
case kCondNE:
// x > 0 iff x != 0 when the comparison is unsigned.
case kCondA:
ret = std::make_pair(NE, EQ);
FALLTHROUGH_INTENDED;
case kCondEQ:
// x <= 0 iff x == 0 when the comparison is unsigned.
case kCondBE:
__ orrs(IP, left_low, ShifterOperand(left_high));
return ret;
case kCondLT:
case kCondGE:
__ cmp(left_high, ShifterOperand(0));
return std::make_pair(ARMCondition(cond), ARMCondition(opposite));
// Trivially true or false.
case kCondB:
ret = std::make_pair(NE, EQ);
FALLTHROUGH_INTENDED;
case kCondAE:
__ cmp(left_low, ShifterOperand(left_low));
return ret;
default:
break;
}
}
switch (cond) {
case kCondEQ:
case kCondNE:
case kCondB:
case kCondBE:
case kCondA:
case kCondAE:
__ CmpConstant(left_high, High32Bits(value));
__ it(EQ);
__ cmp(left_low, ShifterOperand(Low32Bits(value)), EQ);
ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
break;
case kCondLE:
case kCondGT:
// Trivially true or false.
if (value == std::numeric_limits<int64_t>::max()) {
__ cmp(left_low, ShifterOperand(left_low));
ret = cond == kCondLE ? std::make_pair(EQ, NE) : std::make_pair(NE, EQ);
break;
}
if (cond == kCondLE) {
DCHECK_EQ(opposite, kCondGT);
cond = kCondLT;
opposite = kCondGE;
} else {
DCHECK_EQ(cond, kCondGT);
DCHECK_EQ(opposite, kCondLE);
cond = kCondGE;
opposite = kCondLT;
}
value++;
FALLTHROUGH_INTENDED;
case kCondGE:
case kCondLT:
__ CmpConstant(left_low, Low32Bits(value));
__ sbcs(IP, left_high, ShifterOperand(High32Bits(value)));
ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
break;
default:
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
return ret;
}
static std::pair<Condition, Condition> GenerateLongTest(HCondition* condition,
bool invert,
CodeGeneratorARM* codegen) {
DCHECK_EQ(condition->GetLeft()->GetType(), Primitive::kPrimLong);
const LocationSummary* const locations = condition->GetLocations();
IfCondition cond = condition->GetCondition();
IfCondition opposite = condition->GetOppositeCondition();
if (invert) {
std::swap(cond, opposite);
}
std::pair<Condition, Condition> ret;
Location left = locations->InAt(0);
Location right = locations->InAt(1);
DCHECK(right.IsRegisterPair());
switch (cond) {
case kCondEQ:
case kCondNE:
case kCondB:
case kCondBE:
case kCondA:
case kCondAE:
__ cmp(left.AsRegisterPairHigh<Register>(),
ShifterOperand(right.AsRegisterPairHigh<Register>()));
__ it(EQ);
__ cmp(left.AsRegisterPairLow<Register>(),
ShifterOperand(right.AsRegisterPairLow<Register>()),
EQ);
ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
break;
case kCondLE:
case kCondGT:
if (cond == kCondLE) {
DCHECK_EQ(opposite, kCondGT);
cond = kCondGE;
opposite = kCondLT;
} else {
DCHECK_EQ(cond, kCondGT);
DCHECK_EQ(opposite, kCondLE);
cond = kCondLT;
opposite = kCondGE;
}
std::swap(left, right);
FALLTHROUGH_INTENDED;
case kCondGE:
case kCondLT:
__ cmp(left.AsRegisterPairLow<Register>(),
ShifterOperand(right.AsRegisterPairLow<Register>()));
__ sbcs(IP,
left.AsRegisterPairHigh<Register>(),
ShifterOperand(right.AsRegisterPairHigh<Register>()));
ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
break;
default:
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
return ret;
}
static std::pair<Condition, Condition> GenerateTest(HCondition* condition,
bool invert,
CodeGeneratorARM* codegen) {
const LocationSummary* const locations = condition->GetLocations();
const Primitive::Type type = condition->GetLeft()->GetType();
IfCondition cond = condition->GetCondition();
IfCondition opposite = condition->GetOppositeCondition();
std::pair<Condition, Condition> ret;
const Location right = locations->InAt(1);
if (invert) {
std::swap(cond, opposite);
}
if (type == Primitive::kPrimLong) {
ret = locations->InAt(1).IsConstant()
? GenerateLongTestConstant(condition, invert, codegen)
: GenerateLongTest(condition, invert, codegen);
} else if (Primitive::IsFloatingPointType(type)) {
GenerateVcmp(condition, codegen);
__ vmstat();
ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()),
ARMFPCondition(opposite, condition->IsGtBias()));
} else {
DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
const Register left = locations->InAt(0).AsRegister<Register>();
if (right.IsRegister()) {
__ cmp(left, ShifterOperand(right.AsRegister<Register>()));
} else {
DCHECK(right.IsConstant());
__ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant()));
}
ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
}
return ret;
}
static bool CanGenerateTest(HCondition* condition, ArmAssembler* assembler) {
if (condition->GetLeft()->GetType() == Primitive::kPrimLong) {
const LocationSummary* const locations = condition->GetLocations();
if (locations->InAt(1).IsConstant()) {
IfCondition c = condition->GetCondition();
IfCondition opposite = condition->GetOppositeCondition();
const int64_t value = AdjustConstantForCondition(
Int64FromConstant(locations->InAt(1).GetConstant()),
&c,
&opposite);
ShifterOperand so;
if (c < kCondLT || c > kCondGE) {
// Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
// we check that the least significant half of the first input to be compared
// is in a low register (the other half is read outside an IT block), and
// the constant fits in an 8-bit unsigned integer, so that a 16-bit CMP
// encoding can be used; 0 is always handled, no matter what registers are
// used by the first input.
if (value != 0 &&
(!ArmAssembler::IsLowRegister(locations->InAt(0).AsRegisterPairLow<Register>()) ||
!IsUint<8>(Low32Bits(value)))) {
return false;
}
} else if (c == kCondLE || c == kCondGT) {
if (value < std::numeric_limits<int64_t>::max() &&
!assembler->ShifterOperandCanHold(kNoRegister,
kNoRegister,
SBC,
High32Bits(value + 1),
kCcSet,
&so)) {
return false;
}
} else if (!assembler->ShifterOperandCanHold(kNoRegister,
kNoRegister,
SBC,
High32Bits(value),
kCcSet,
&so)) {
return false;
}
}
}
return true;
}
static void GenerateConditionGeneric(HCondition* cond, CodeGeneratorARM* codegen) {
DCHECK(CanGenerateTest(cond, codegen->GetAssembler()));
const Register out = cond->GetLocations()->Out().AsRegister<Register>();
const auto condition = GenerateTest(cond, false, codegen);
__ mov(out, ShifterOperand(0), AL, kCcKeep);
if (ArmAssembler::IsLowRegister(out)) {
__ it(condition.first);
__ mov(out, ShifterOperand(1), condition.first);
} else {
Label done_label;
Label* const final_label = codegen->GetFinalLabel(cond, &done_label);
__ b(final_label, condition.second);
__ LoadImmediate(out, 1);
if (done_label.IsLinked()) {
__ Bind(&done_label);
}
}
}
static void GenerateEqualLong(HCondition* cond, CodeGeneratorARM* codegen) {
DCHECK_EQ(cond->GetLeft()->GetType(), Primitive::kPrimLong);
const LocationSummary* const locations = cond->GetLocations();
IfCondition condition = cond->GetCondition();
const Register out = locations->Out().AsRegister<Register>();
const Location left = locations->InAt(0);
const Location right = locations->InAt(1);
Register left_high = left.AsRegisterPairHigh<Register>();
Register left_low = left.AsRegisterPairLow<Register>();
if (right.IsConstant()) {
IfCondition opposite = cond->GetOppositeCondition();
const int64_t value = AdjustConstantForCondition(Int64FromConstant(right.GetConstant()),
&condition,
&opposite);
int32_t value_high = -High32Bits(value);
int32_t value_low = -Low32Bits(value);
// The output uses Location::kNoOutputOverlap.
if (out == left_high) {
std::swap(left_low, left_high);
std::swap(value_low, value_high);
}
__ AddConstant(out, left_low, value_low);
__ AddConstant(IP, left_high, value_high);
} else {
DCHECK(right.IsRegisterPair());
__ sub(IP, left_high, ShifterOperand(right.AsRegisterPairHigh<Register>()));
__ sub(out, left_low, ShifterOperand(right.AsRegisterPairLow<Register>()));
}
// Need to check after calling AdjustConstantForCondition().
DCHECK(condition == kCondEQ || condition == kCondNE) << condition;
if (condition == kCondNE && ArmAssembler::IsLowRegister(out)) {
__ orrs(out, out, ShifterOperand(IP));
__ it(NE);
__ mov(out, ShifterOperand(1), NE);
} else {
__ orr(out, out, ShifterOperand(IP));
codegen->GenerateConditionWithZero(condition, out, out, IP);
}
}
static void GenerateLongComparesAndJumps(HCondition* cond,
Label* true_label,
Label* false_label,
CodeGeneratorARM* codegen) {
LocationSummary* locations = cond->GetLocations();
Location left = locations->InAt(0);
Location right = locations->InAt(1);
IfCondition if_cond = cond->GetCondition();
Register left_high = left.AsRegisterPairHigh<Register>();
Register left_low = left.AsRegisterPairLow<Register>();
IfCondition true_high_cond = if_cond;
IfCondition false_high_cond = cond->GetOppositeCondition();
Condition final_condition = ARMUnsignedCondition(if_cond); // unsigned on lower part
// Set the conditions for the test, remembering that == needs to be
// decided using the low words.
switch (if_cond) {
case kCondEQ:
case kCondNE:
// Nothing to do.
break;
case kCondLT:
false_high_cond = kCondGT;
break;
case kCondLE:
true_high_cond = kCondLT;
break;
case kCondGT:
false_high_cond = kCondLT;
break;
case kCondGE:
true_high_cond = kCondGT;
break;
case kCondB:
false_high_cond = kCondA;
break;
case kCondBE:
true_high_cond = kCondB;
break;
case kCondA:
false_high_cond = kCondB;
break;
case kCondAE:
true_high_cond = kCondA;
break;
}
if (right.IsConstant()) {
int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
int32_t val_low = Low32Bits(value);
int32_t val_high = High32Bits(value);
__ CmpConstant(left_high, val_high);
if (if_cond == kCondNE) {
__ b(true_label, ARMCondition(true_high_cond));
} else if (if_cond == kCondEQ) {
__ b(false_label, ARMCondition(false_high_cond));
} else {
__ b(true_label, ARMCondition(true_high_cond));
__ b(false_label, ARMCondition(false_high_cond));
}
// Must be equal high, so compare the lows.
__ CmpConstant(left_low, val_low);
} else {
Register right_high = right.AsRegisterPairHigh<Register>();
Register right_low = right.AsRegisterPairLow<Register>();
__ cmp(left_high, ShifterOperand(right_high));
if (if_cond == kCondNE) {
__ b(true_label, ARMCondition(true_high_cond));
} else if (if_cond == kCondEQ) {
__ b(false_label, ARMCondition(false_high_cond));
} else {
__ b(true_label, ARMCondition(true_high_cond));
__ b(false_label, ARMCondition(false_high_cond));
}
// Must be equal high, so compare the lows.
__ cmp(left_low, ShifterOperand(right_low));
}
// The last comparison might be unsigned.
// TODO: optimize cases where this is always true/false
__ b(true_label, final_condition);
}
static void GenerateConditionLong(HCondition* cond, CodeGeneratorARM* codegen) {
DCHECK_EQ(cond->GetLeft()->GetType(), Primitive::kPrimLong);
const LocationSummary* const locations = cond->GetLocations();
IfCondition condition = cond->GetCondition();
const Register out = locations->Out().AsRegister<Register>();
const Location left = locations->InAt(0);
const Location right = locations->InAt(1);
if (right.IsConstant()) {
IfCondition opposite = cond->GetOppositeCondition();
// Comparisons against 0 are common enough to deserve special attention.
if (AdjustConstantForCondition(Int64FromConstant(right.GetConstant()),
&condition,
&opposite) == 0) {
switch (condition) {
case kCondNE:
case kCondA:
if (ArmAssembler::IsLowRegister(out)) {
// We only care if both input registers are 0 or not.
__ orrs(out,
left.AsRegisterPairLow<Register>(),
ShifterOperand(left.AsRegisterPairHigh<Register>()));
__ it(NE);
__ mov(out, ShifterOperand(1), NE);
return;
}
FALLTHROUGH_INTENDED;
case kCondEQ:
case kCondBE:
// We only care if both input registers are 0 or not.
__ orr(out,
left.AsRegisterPairLow<Register>(),
ShifterOperand(left.AsRegisterPairHigh<Register>()));
codegen->GenerateConditionWithZero(condition, out, out);
return;
case kCondLT:
case kCondGE:
// We only care about the sign bit.
FALLTHROUGH_INTENDED;
case kCondAE:
case kCondB:
codegen->GenerateConditionWithZero(condition, out, left.AsRegisterPairHigh<Register>());
return;
case kCondLE:
case kCondGT:
default:
break;
}
}
}
if ((condition == kCondEQ || condition == kCondNE) &&
// If `out` is a low register, then the GenerateConditionGeneric()
// function generates a shorter code sequence that is still branchless.
(!ArmAssembler::IsLowRegister(out) || !CanGenerateTest(cond, codegen->GetAssembler()))) {
GenerateEqualLong(cond, codegen);
return;
}
if (CanGenerateTest(cond, codegen->GetAssembler())) {
GenerateConditionGeneric(cond, codegen);
return;
}
// Convert the jumps into the result.
Label done_label;
Label* const final_label = codegen->GetFinalLabel(cond, &done_label);
Label true_label, false_label;
GenerateLongComparesAndJumps(cond, &true_label, &false_label, codegen);
// False case: result = 0.
__ Bind(&false_label);
__ mov(out, ShifterOperand(0));
__ b(final_label);
// True case: result = 1.
__ Bind(&true_label);
__ mov(out, ShifterOperand(1));
if (done_label.IsLinked()) {
__ Bind(&done_label);
}
}
static void GenerateConditionIntegralOrNonPrimitive(HCondition* cond, CodeGeneratorARM* codegen) {
const Primitive::Type type = cond->GetLeft()->GetType();
DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
if (type == Primitive::kPrimLong) {
GenerateConditionLong(cond, codegen);
return;
}
const LocationSummary* const locations = cond->GetLocations();
IfCondition condition = cond->GetCondition();
Register in = locations->InAt(0).AsRegister<Register>();
const Register out = locations->Out().AsRegister<Register>();
const Location right = cond->GetLocations()->InAt(1);
int64_t value;
if (right.IsConstant()) {
IfCondition opposite = cond->GetOppositeCondition();
value = AdjustConstantForCondition(Int64FromConstant(right.GetConstant()),
&condition,
&opposite);
// Comparisons against 0 are common enough to deserve special attention.
if (value == 0) {
switch (condition) {
case kCondNE:
case kCondA:
if (ArmAssembler::IsLowRegister(out) && out == in) {
__ cmp(out, ShifterOperand(0));
__ it(NE);
__ mov(out, ShifterOperand(1), NE);
return;
}
FALLTHROUGH_INTENDED;
case kCondEQ:
case kCondBE:
case kCondLT:
case kCondGE:
case kCondAE:
case kCondB:
codegen->GenerateConditionWithZero(condition, out, in);
return;
case kCondLE:
case kCondGT:
default:
break;
}
}
}
if (condition == kCondEQ || condition == kCondNE) {
ShifterOperand operand;
if (right.IsConstant()) {
operand = ShifterOperand(value);
} else if (out == right.AsRegister<Register>()) {
// Avoid 32-bit instructions if possible.
operand = ShifterOperand(in);
in = right.AsRegister<Register>();
} else {
operand = ShifterOperand(right.AsRegister<Register>());
}
if (condition == kCondNE && ArmAssembler::IsLowRegister(out)) {
__ subs(out, in, operand);
__ it(NE);
__ mov(out, ShifterOperand(1), NE);
} else {
__ sub(out, in, operand);
codegen->GenerateConditionWithZero(condition, out, out);
}
return;
}
GenerateConditionGeneric(cond, codegen);
}
static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) {
const Primitive::Type type = constant->GetType();
bool ret = false;
DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
if (type == Primitive::kPrimLong) {
const uint64_t value = constant->AsLongConstant()->GetValueAsUint64();
ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value));
} else {
ret = IsUint<8>(CodeGenerator::GetInt32ValueOf(constant));
}
return ret;
}
static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) {
DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) {
return Location::ConstantLocation(constant->AsConstant());
}
return Location::RequiresRegister();
}
static bool CanGenerateConditionalMove(const Location& out, const Location& src) {
// Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
// we check that we are not dealing with floating-point output (there is no
// 16-bit VMOV encoding).
if (!out.IsRegister() && !out.IsRegisterPair()) {
return false;
}
// For constants, we also check that the output is in one or two low registers,
// and that the constants fit in an 8-bit unsigned integer, so that a 16-bit
// MOV encoding can be used.
if (src.IsConstant()) {
if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) {
return false;
}
if (out.IsRegister()) {
if (!ArmAssembler::IsLowRegister(out.AsRegister<Register>())) {
return false;
}
} else {
DCHECK(out.IsRegisterPair());
if (!ArmAssembler::IsLowRegister(out.AsRegisterPairHigh<Register>())) {
return false;
}
}
}
return true;
}
#undef __
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<ArmAssembler*>(GetAssembler())-> // NOLINT
Label* CodeGeneratorARM::GetFinalLabel(HInstruction* instruction, Label* final_label) {
DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck());
DCHECK(!instruction->IsInvoke() || !instruction->GetLocations()->CanCall());
const HBasicBlock* const block = instruction->GetBlock();
const HLoopInformation* const info = block->GetLoopInformation();
HInstruction* const next = instruction->GetNext();
// Avoid a branch to a branch.
if (next->IsGoto() && (info == nullptr ||
!info->IsBackEdge(*block) ||
!info->HasSuspendCheck())) {
final_label = GetLabelOf(next->AsGoto()->GetSuccessor());
}
return final_label;
}
void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << Register(reg);
}
void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << SRegister(reg);
}
size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
__ StoreToOffset(kStoreWord, static_cast<Register>(reg_id), SP, stack_index);
return kArmWordSize;
}
size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
__ LoadFromOffset(kLoadWord, static_cast<Register>(reg_id), SP, stack_index);
return kArmWordSize;
}
size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ StoreSToOffset(static_cast<SRegister>(reg_id), SP, stack_index);
return kArmWordSize;
}
size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ LoadSFromOffset(static_cast<SRegister>(reg_id), SP, stack_index);
return kArmWordSize;
}
CodeGeneratorARM::CodeGeneratorARM(HGraph* graph,
const ArmInstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats)
: CodeGenerator(graph,
kNumberOfCoreRegisters,
kNumberOfSRegisters,
kNumberOfRegisterPairs,
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
arraysize(kCoreCalleeSaves)),
ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
arraysize(kFpuCalleeSaves)),
compiler_options,
stats),
block_labels_(nullptr),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetArena(), this),
assembler_(graph->GetArena()),
isa_features_(isa_features),
uint32_literals_(std::less<uint32_t>(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
pc_relative_method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
method_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
baker_read_barrier_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
jit_string_patches_(StringReferenceValueComparator(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
jit_class_patches_(TypeReferenceValueComparator(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
// Always save the LR register to mimic Quick.
AddAllocatedRegister(Location::RegisterLocation(LR));
}
void CodeGeneratorARM::Finalize(CodeAllocator* allocator) {
// Ensure that we fix up branches and literal loads and emit the literal pool.
__ FinalizeCode();
// Adjust native pc offsets in stack maps.
for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
uint32_t old_position =
stack_map_stream_.GetStackMap(i).native_pc_code_offset.Uint32Value(kThumb2);
uint32_t new_position = __ GetAdjustedPosition(old_position);
stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
}
// Adjust pc offsets for the disassembly information.
if (disasm_info_ != nullptr) {
GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
for (auto& it : *disasm_info_->GetInstructionIntervals()) {
it.second.start = __ GetAdjustedPosition(it.second.start);
it.second.end = __ GetAdjustedPosition(it.second.end);
}
for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
}
}
CodeGenerator::Finalize(allocator);
}
void CodeGeneratorARM::SetupBlockedRegisters() const {
// Stack register, LR and PC are always reserved.
blocked_core_registers_[SP] = true;
blocked_core_registers_[LR] = true;
blocked_core_registers_[PC] = true;
// Reserve thread register.
blocked_core_registers_[TR] = true;
// Reserve temp register.
blocked_core_registers_[IP] = true;
if (GetGraph()->IsDebuggable()) {
// Stubs do not save callee-save floating point registers. If the graph
// is debuggable, we need to deal with these registers differently. For
// now, just block them.
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
}
}
}
InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen)
: InstructionCodeGenerator(graph, codegen),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
void CodeGeneratorARM::ComputeSpillMask() {
core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
// There is no easy instruction to restore just the PC on thumb2. We spill and
// restore another arbitrary register.
core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister);
fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
// We use vpush and vpop for saving and restoring floating point registers, which take
// a SRegister and the number of registers to save/restore after that SRegister. We
// therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
// but in the range.
if (fpu_spill_mask_ != 0) {
uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
fpu_spill_mask_ |= (1 << i);
}
}
}
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::ArmCore(static_cast<int>(reg));
}
static dwarf::Reg DWARFReg(SRegister reg) {
return dwarf::Reg::ArmFp(static_cast<int>(reg));
}
void CodeGeneratorARM::GenerateFrameEntry() {
bool skip_overflow_check =
IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
__ Bind(&frame_entry_label_);
if (HasEmptyFrame()) {
return;
}
if (!skip_overflow_check) {
__ AddConstant(IP, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kArm)));
__ LoadFromOffset(kLoadWord, IP, IP, 0);
RecordPcInfo(nullptr, 0);
}
__ PushList(core_spill_mask_);
__ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
__ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize);
if (fpu_spill_mask_ != 0) {
SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
__ vpushs(start_register, POPCOUNT(fpu_spill_mask_));
__ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
__ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize);
}
int adjust = GetFrameSize() - FrameEntrySpillSize();
__ AddConstant(SP, -adjust);
__ cfi().AdjustCFAOffset(adjust);
// Save the current method if we need it. Note that we do not
// do this in HCurrentMethod, as the instruction might have been removed
// in the SSA graph.
if (RequiresCurrentMethod()) {
__ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0);
}
if (GetGraph()->HasShouldDeoptimizeFlag()) {
// Initialize should_deoptimize flag to 0.
__ mov(IP, ShifterOperand(0));
__ StoreToOffset(kStoreWord, IP, SP, GetStackOffsetOfShouldDeoptimizeFlag());
}
}
void CodeGeneratorARM::GenerateFrameExit() {
if (HasEmptyFrame()) {
__ bx(LR);
return;
}
__ cfi().RememberState();
int adjust = GetFrameSize() - FrameEntrySpillSize();
__ AddConstant(SP, adjust);
__ cfi().AdjustCFAOffset(-adjust);
if (fpu_spill_mask_ != 0) {
SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
__ vpops(start_register, POPCOUNT(fpu_spill_mask_));
__ cfi().AdjustCFAOffset(-static_cast<int>(kArmPointerSize) * POPCOUNT(fpu_spill_mask_));
__ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_);
}
// Pop LR into PC to return.
DCHECK_NE(core_spill_mask_ & (1 << LR), 0U);
uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC;
__ PopList(pop_mask);
__ cfi().RestoreState();
__ cfi().DefCFAOffset(GetFrameSize());
}
void CodeGeneratorARM::Bind(HBasicBlock* block) {
Label* label = GetLabelOf(block);
__ BindTrackedLabel(label);
}
Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
uint32_t index = gp_index_++;
uint32_t stack_index = stack_index_++;
if (index < calling_convention.GetNumberOfRegisters()) {
return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
}
}
case Primitive::kPrimLong: {
uint32_t index = gp_index_;
uint32_t stack_index = stack_index_;
gp_index_ += 2;
stack_index_ += 2;
if (index + 1 < calling_convention.GetNumberOfRegisters()) {
if (calling_convention.GetRegisterAt(index) == R1) {
// Skip R1, and use R2_R3 instead.
gp_index_++;
index++;
}
}
if (index + 1 < calling_convention.GetNumberOfRegisters()) {
DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1,
calling_convention.GetRegisterAt(index + 1));
return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index),
calling_convention.GetRegisterAt(index + 1));
} else {
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
}
}
case Primitive::kPrimFloat: {
uint32_t stack_index = stack_index_++;
if (float_index_ % 2 == 0) {
float_index_ = std::max(double_index_, float_index_);
}
if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
}
}
case Primitive::kPrimDouble: {
double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
uint32_t stack_index = stack_index_;
stack_index_ += 2;
if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
uint32_t index = double_index_;
double_index_ += 2;
Location result = Location::FpuRegisterPairLocation(
calling_convention.GetFpuRegisterAt(index),
calling_convention.GetFpuRegisterAt(index + 1));
DCHECK(ExpectedPairLayout(result));
return result;
} else {
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
}
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected parameter type " << type;
break;
}
return Location::NoLocation();
}
Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
return Location::RegisterLocation(R0);
}
case Primitive::kPrimFloat: {
return Location::FpuRegisterLocation(S0);
}
case Primitive::kPrimLong: {
return Location::RegisterPairLocation(R0, R1);
}
case Primitive::kPrimDouble: {
return Location::FpuRegisterPairLocation(S0, S1);
}
case Primitive::kPrimVoid:
return Location::NoLocation();
}
UNREACHABLE();
}
Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const {
return Location::RegisterLocation(kMethodRegisterArgument);
}
void CodeGeneratorARM::Move32(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegister()) {
if (source.IsRegister()) {
__ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
} else {
__ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegister()) {
__ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
} else {
__ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
if (source.IsRegister()) {
__ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
} else if (source.IsFpuRegister()) {
__ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
} else {
DCHECK(source.IsStackSlot()) << source;
__ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
}
}
}
void CodeGeneratorARM::Move64(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegisterPair()) {
if (source.IsRegisterPair()) {
EmitParallelMoves(
Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
Primitive::kPrimInt,
Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
Primitive::kPrimInt);
} else if (source.IsFpuRegister()) {
UNIMPLEMENTED(FATAL);
} else if (source.IsFpuRegisterPair()) {
__ vmovrrd(destination.AsRegisterPairLow<Register>(),
destination.AsRegisterPairHigh<Register>(),
FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
} else {
DCHECK(source.IsDoubleStackSlot());
DCHECK(ExpectedPairLayout(destination));
__ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow<Register>(),
SP, source.GetStackIndex());
}
} else if (destination.IsFpuRegisterPair()) {
if (source.IsDoubleStackSlot()) {
__ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
SP,
source.GetStackIndex());
} else if (source.IsRegisterPair()) {
__ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
source.AsRegisterPairLow<Register>(),
source.AsRegisterPairHigh<Register>());
} else {
UNIMPLEMENTED(FATAL);
}
} else {
DCHECK(destination.IsDoubleStackSlot());
if (source.IsRegisterPair()) {
// No conflict possible, so just do the moves.
if (source.AsRegisterPairLow<Register>() == R1) {
DCHECK_EQ(source.AsRegisterPairHigh<Register>(), R2);
__ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex());
__ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize));
} else {
__ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow<Register>(),
SP, destination.GetStackIndex());
}
} else if (source.IsFpuRegisterPair()) {
__ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
SP,
destination.GetStackIndex());
} else {
DCHECK(source.IsDoubleStackSlot());
EmitParallelMoves(
Location::StackSlot(source.GetStackIndex()),
Location::StackSlot(destination.GetStackIndex()),
Primitive::kPrimInt,
Location::StackSlot(source.GetHighStackIndex(kArmWordSize)),
Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)),
Primitive::kPrimInt);
}
}
}
void CodeGeneratorARM::MoveConstant(Location location, int32_t value) {
DCHECK(location.IsRegister());
__ LoadImmediate(location.AsRegister<Register>(), value);
}
void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
HParallelMove move(GetGraph()->GetArena());
move.AddMove(src, dst, dst_type, nullptr);
GetMoveResolver()->EmitNativeCode(&move);
}
void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) {
if (location.IsRegister()) {
locations->AddTemp(location);
} else if (location.IsRegisterPair()) {
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
} else {
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
}
}
void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
ValidateInvokeRuntime(entrypoint, instruction, slow_path);
GenerateInvokeRuntime(GetThreadOffset<kArmPointerSize>(entrypoint).Int32Value());
if (EntrypointRequiresStackMap(entrypoint)) {
RecordPcInfo(instruction, dex_pc, slow_path);
}
}
void CodeGeneratorARM::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path) {
ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
GenerateInvokeRuntime(entry_point_offset);
}
void CodeGeneratorARM::GenerateInvokeRuntime(int32_t entry_point_offset) {
__ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset);
__ blx(LR);
}
void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) {
DCHECK(!successor->IsExitBlock());
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
__ b(codegen_->GetLabelOf(successor));
}
}
void LocationsBuilderARM::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) {
HandleGoto(got, got->GetSuccessor());
}
void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) {
try_boundary->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) {
HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
if (!successor->IsExitBlock()) {
HandleGoto(try_boundary, successor);
}
}
void LocationsBuilderARM::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
}
void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition,
Label* true_target_in,
Label* false_target_in) {
if (CanGenerateTest(condition, codegen_->GetAssembler())) {
Label* non_fallthrough_target;
bool invert;
bool emit_both_branches;
if (true_target_in == nullptr) {
// The true target is fallthrough.
DCHECK(false_target_in != nullptr);
non_fallthrough_target = false_target_in;
invert = true;
emit_both_branches = false;
} else {
// Either the false target is fallthrough, or there is no fallthrough
// and both branches must be emitted.
non_fallthrough_target = true_target_in;
invert = false;
emit_both_branches = (false_target_in != nullptr);
}
const auto cond = GenerateTest(condition, invert, codegen_);
__ b(non_fallthrough_target, cond.first);
if (emit_both_branches) {
// No target falls through, we need to branch.
__ b(false_target_in);
}
return;
}
// Generated branching requires both targets to be explicit. If either of the
// targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
Label fallthrough_target;
Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
DCHECK_EQ(condition->InputAt(0)->GetType(), Primitive::kPrimLong);
GenerateLongComparesAndJumps(condition, true_target, false_target, codegen_);
if (false_target != &fallthrough_target) {
__ b(false_target);
}
if (fallthrough_target.IsLinked()) {
__ Bind(&fallthrough_target);
}
}
void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
Label* true_target,
Label* false_target) {
HInstruction* cond = instruction->InputAt(condition_input_index);
if (true_target == nullptr && false_target == nullptr) {
// Nothing to do. The code always falls through.
return;
} else if (cond->IsIntConstant()) {
// Constant condition, statically compared against "true" (integer value 1).
if (cond->AsIntConstant()->IsTrue()) {
if (true_target != nullptr) {
__ b(true_target);
}
} else {
DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
if (false_target != nullptr) {
__ b(false_target);
}
}
return;
}
// The following code generates these patterns:
// (1) true_target == nullptr && false_target != nullptr
// - opposite condition true => branch to false_target
// (2) true_target != nullptr && false_target == nullptr
// - condition true => branch to true_target
// (3) true_target != nullptr && false_target != nullptr
// - condition true => branch to true_target
// - branch to false_target
if (IsBooleanValueOrMaterializedCondition(cond)) {
// Condition has been materialized, compare the output to 0.
Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
DCHECK(cond_val.IsRegister());
if (true_target == nullptr) {
__ CompareAndBranchIfZero(cond_val.AsRegister<Register>(), false_target);
} else {
__ CompareAndBranchIfNonZero(cond_val.AsRegister<Register>(), true_target);
}
} else {
// Condition has not been materialized. Use its inputs as the comparison and
// its condition as the branch condition.
HCondition* condition = cond->AsCondition();
// If this is a long or FP comparison that has been folded into
// the HCondition, generate the comparison directly.
Primitive::Type type = condition->InputAt(0)->GetType();
if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
GenerateCompareTestAndBranch(condition, true_target, false_target);
return;
}
Label* non_fallthrough_target;
Condition arm_cond;
LocationSummary* locations = cond->GetLocations();
DCHECK(locations->InAt(0).IsRegister());
Register left = locations->InAt(0).AsRegister<Register>();
Location right = locations->InAt(1);
if (true_target == nullptr) {
arm_cond = ARMCondition(condition->GetOppositeCondition());
non_fallthrough_target = false_target;
} else {
arm_cond = ARMCondition(condition->GetCondition());
non_fallthrough_target = true_target;
}
if (right.IsConstant() && (arm_cond == NE || arm_cond == EQ) &&
CodeGenerator::GetInt32ValueOf(right.GetConstant()) == 0) {
if (arm_cond == EQ) {
__ CompareAndBranchIfZero(left, non_fallthrough_target);
} else {
DCHECK_EQ(arm_cond, NE);
__ CompareAndBranchIfNonZero(left, non_fallthrough_target);
}
} else {
if (right.IsRegister()) {
__ cmp(left, ShifterOperand(right.AsRegister<Register>()));
} else {
DCHECK(right.IsConstant());
__ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant()));
}
__ b(non_fallthrough_target, arm_cond);
}
}
// If neither branch falls through (case 3), the conditional branch to `true_target`
// was already emitted (case 2) and we need to emit a jump to `false_target`.
if (true_target != nullptr && false_target != nullptr) {
__ b(false_target);
}
}
void LocationsBuilderARM::VisitIf(HIf* if_instr) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) {
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
nullptr : codegen_->GetLabelOf(true_successor);
Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
nullptr : codegen_->GetLabelOf(false_successor);
GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
}
void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) {
LocationSummary* locations = new (GetGraph()->GetArena())
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
InvokeRuntimeCallingConvention calling_convention;
RegisterSet caller_saves = RegisterSet::Empty();
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetCustomSlowPathCallerSaves(caller_saves);
if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) {
SlowPathCodeARM* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM>(deoptimize);
GenerateTestAndBranch(deoptimize,
/* condition_input_index */ 0,
slow_path->GetEntryLabel(),
/* false_target */ nullptr);
}
void LocationsBuilderARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
LocationSummary* locations = new (GetGraph()->GetArena())
LocationSummary(flag, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
__ LoadFromOffset(kLoadWord,
flag->GetLocations()->Out().AsRegister<Register>(),
SP,
codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
}
void LocationsBuilderARM::VisitSelect(HSelect* select) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
const bool is_floating_point = Primitive::IsFloatingPointType(select->GetType());
if (is_floating_point) {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue()));
} else {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue()));
}
if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition()));
// The code generator handles overlap with the values, but not with the condition.
locations->SetOut(Location::SameAsFirstInput());
} else if (is_floating_point) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
if (!locations->InAt(1).IsConstant()) {
locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue()));
}
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) {
HInstruction* const condition = select->GetCondition();
const LocationSummary* const locations = select->GetLocations();
const Primitive::Type type = select->GetType();
const Location first = locations->InAt(0);
const Location out = locations->Out();
const Location second = locations->InAt(1);
Location src;
if (condition->IsIntConstant()) {
if (condition->AsIntConstant()->IsFalse()) {
src = first;
} else {
src = second;
}
codegen_->MoveLocation(out, src, type);
return;
}
if (!Primitive::IsFloatingPointType(type) &&
(IsBooleanValueOrMaterializedCondition(condition) ||
CanGenerateTest(condition->AsCondition(), codegen_->GetAssembler()))) {
bool invert = false;
if (out.Equals(second)) {
src = first;
invert = true;
} else if (out.Equals(first)) {
src = second;
} else if (second.IsConstant()) {
DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant()));
src = second;
} else if (first.IsConstant()) {
DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant()));
src = first;
invert = true;
} else {
src = second;
}
if (CanGenerateConditionalMove(out, src)) {
if (!out.Equals(first) && !out.Equals(second)) {
codegen_->MoveLocation(out, src.Equals(first) ? second : first, type);
}
std::pair<Condition, Condition> cond;
if (IsBooleanValueOrMaterializedCondition(condition)) {
__ CmpConstant(locations->InAt(2).AsRegister<Register>(), 0);
cond = invert ? std::make_pair(EQ, NE) : std::make_pair(NE, EQ);
} else {
cond = GenerateTest(condition->AsCondition(), invert, codegen_);
}
if (out.IsRegister()) {
ShifterOperand operand;
if (src.IsConstant()) {
operand = ShifterOperand(CodeGenerator::GetInt32ValueOf(src.GetConstant()));
} else {
DCHECK(src.IsRegister());
operand = ShifterOperand(src.AsRegister<Register>());
}
__ it(cond.first);
__ mov(out.AsRegister<Register>(), operand, cond.first);
} else {
DCHECK(out.IsRegisterPair());
ShifterOperand operand_high;
ShifterOperand operand_low;
if (src.IsConstant()) {
const int64_t value = src.GetConstant()->AsLongConstant()->GetValue();
operand_high = ShifterOperand(High32Bits(value));
operand_low = ShifterOperand(Low32Bits(value));
} else {
DCHECK(src.IsRegisterPair());
operand_high = ShifterOperand(src.AsRegisterPairHigh<Register>());
operand_low = ShifterOperand(src.AsRegisterPairLow<Register>());
}
__ it(cond.first);
__ mov(out.AsRegisterPairLow<Register>(), operand_low, cond.first);
__ it(cond.first);
__ mov(out.AsRegisterPairHigh<Register>(), operand_high, cond.first);
}
return;
}
}
Label* false_target = nullptr;
Label* true_target = nullptr;
Label select_end;
Label* target = codegen_->GetFinalLabel(select, &select_end);
if (out.Equals(second)) {
true_target = target;
src = first;
} else {
false_target = target;
src = second;
if (!out.Equals(first)) {
codegen_->MoveLocation(out, first, type);
}
}
GenerateTestAndBranch(select, 2, true_target, false_target);
codegen_->MoveLocation(out, src, type);
if (select_end.IsLinked()) {
__ Bind(&select_end);
}
}
void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) {
new (GetGraph()->GetArena()) LocationSummary(info);
}
void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) {
// MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
}
void CodeGeneratorARM::GenerateNop() {
__ nop();
}
// `temp` is an extra temporary register that is used for some conditions;
// callers may not specify it, in which case the method will use a scratch
// register instead.
void CodeGeneratorARM::GenerateConditionWithZero(IfCondition condition,
Register out,
Register in,
Register temp) {
switch (condition) {
case kCondEQ:
// x <= 0 iff x == 0 when the comparison is unsigned.
case kCondBE:
if (temp == kNoRegister || (ArmAssembler::IsLowRegister(out) && out != in)) {
temp = out;
}
// Avoid 32-bit instructions if possible; note that `in` and `temp` must be
// different as well.
if (ArmAssembler::IsLowRegister(in) && ArmAssembler::IsLowRegister(temp) && in != temp) {
// temp = - in; only 0 sets the carry flag.
__ rsbs(temp, in, ShifterOperand(0));
if (out == in) {
std::swap(in, temp);
}
// out = - in + in + carry = carry
__ adc(out, temp, ShifterOperand(in));
} else {
// If `in` is 0, then it has 32 leading zeros, and less than that otherwise.
__ clz(out, in);
// Any number less than 32 logically shifted right by 5 bits results in 0;
// the same operation on 32 yields 1.
__ Lsr(out, out, 5);
}
break;
case kCondNE:
// x > 0 iff x != 0 when the comparison is unsigned.
case kCondA:
if (out == in) {
if (temp == kNoRegister || in == temp) {
temp = IP;
}
} else if (temp == kNoRegister || !ArmAssembler::IsLowRegister(temp)) {
temp = out;
}
// temp = in - 1; only 0 does not set the carry flag.
__ subs(temp, in, ShifterOperand(1));
// out = in + ~temp + carry = in + (-(in - 1) - 1) + carry = in - in + 1 - 1 + carry = carry
__ sbc(out, in, ShifterOperand(temp));
break;
case kCondGE:
__ mvn(out, ShifterOperand(in));
in = out;
FALLTHROUGH_INTENDED;
case kCondLT:
// We only care about the sign bit.
__ Lsr(out, in, 31);
break;
case kCondAE:
// Trivially true.
__ mov(out, ShifterOperand(1));
break;
case kCondB:
// Trivially false.
__ mov(out, ShifterOperand(0));
break;
default:
LOG(FATAL) << "Unexpected condition " << condition;
UNREACHABLE();
}
}
void LocationsBuilderARM::HandleCondition(HCondition* cond) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
// Handle the long/FP comparisons made in instruction simplification.
switch (cond->InputAt(0)->GetType()) {
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
if (!cond->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
if (!cond->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
break;
default:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
if (!cond->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
}
void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) {
if (cond->IsEmittedAtUseSite()) {
return;
}
const Primitive::Type type = cond->GetLeft()->GetType();
if (Primitive::IsFloatingPointType(type)) {
GenerateConditionGeneric(cond, codegen_);
return;
}
DCHECK(Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) << type;
const IfCondition condition = cond->GetCondition();
// A condition with only one boolean input, or two boolean inputs without being equality or
// inequality results from transformations done by the instruction simplifier, and is handled
// as a regular condition with integral inputs.
if (type == Primitive::kPrimBoolean &&
cond->GetRight()->GetType() == Primitive::kPrimBoolean &&
(condition == kCondEQ || condition == kCondNE)) {
const LocationSummary* const locations = cond->GetLocations();
Register left = locations->InAt(0).AsRegister<Register>();
const Register out = locations->Out().AsRegister<Register>();
const Location right_loc = locations->InAt(1);
// The constant case is handled by the instruction simplifier.
DCHECK(!right_loc.IsConstant());
Register right = right_loc.AsRegister<Register>();
// Avoid 32-bit instructions if possible.
if (out == right) {
std::swap(left, right);
}
__ eor(out, left, ShifterOperand(right));
if (condition == kCondEQ) {
__ eor(out, out, ShifterOperand(1));
}
return;
}
GenerateConditionIntegralOrNonPrimitive(cond, codegen_);
}
void LocationsBuilderARM::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderARM::VisitConstructorFence(HConstructorFence* constructor_fence) {
constructor_fence->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitConstructorFence(
HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
}
void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
memory_barrier->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
}
void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) {
ret->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderARM::VisitReturn(HReturn* ret) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
}
void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
// The trampoline uses the same calling convention as dex calling conventions,
// except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
// the method_idx.
HandleInvoke(invoke);
}
void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
}
void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
IntrinsicLocationsBuilderARM intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) {
if (invoke->GetLocations()->Intrinsified()) {
IntrinsicCodeGeneratorARM intrinsic(codegen);
intrinsic.Dispatch(invoke);
return true;
}
return false;
}
void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
LocationSummary* locations = invoke->GetLocations();
codegen_->GenerateStaticOrDirectCall(
invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
}
void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) {
InvokeDexCallingConventionVisitorARM calling_convention_visitor;
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
}
void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
IntrinsicLocationsBuilderARM intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
DCHECK(!codegen_->IsLeafMethod());
}
void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) {
HandleInvoke(invoke);
// Add the hidden argument.
invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12));
}
void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
LocationSummary* locations = invoke->GetLocations();
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register hidden_reg = locations->GetTemp(1).AsRegister<Register>();
Location receiver = locations->InAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// Set the hidden argument. This is safe to do this here, as R12
// won't be modified thereafter, before the `blx` (call) instruction.
DCHECK_EQ(R12, hidden_reg);
__ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex());
if (receiver.IsStackSlot()) {
__ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
// /* HeapReference<Class> */ temp = temp->klass_
__ LoadFromOffset(kLoadWord, temp, temp, class_offset);
} else {
// /* HeapReference<Class> */ temp = receiver->klass_
__ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// However this is not required in practice, as this is an
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
__ MaybeUnpoisonHeapReference(temp);
__ LoadFromOffset(kLoadWord, temp, temp,
mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
invoke->GetImtIndex(), kArmPointerSize));
// temp = temp->GetImtEntryAt(method_offset);
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
uint32_t entry_point =
ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
// LR = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, LR, temp, entry_point);
// LR();
__ blx(LR);
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderARM::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
HandleInvoke(invoke);
}
void InstructionCodeGeneratorARM::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
codegen_->GenerateInvokePolymorphicCall(invoke);
}
void LocationsBuilderARM::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) {
LocationSummary* locations = neg->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
DCHECK(in.IsRegister());
__ rsb(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(0));
break;
case Primitive::kPrimLong:
DCHECK(in.IsRegisterPair());
// out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
__ rsbs(out.AsRegisterPairLow<Register>(),
in.AsRegisterPairLow<Register>(),
ShifterOperand(0));
// We cannot emit an RSC (Reverse Subtract with Carry)
// instruction here, as it does not exist in the Thumb-2
// instruction set. We use the following approach
// using SBC and SUB instead.
//
// out.hi = -C
__ sbc(out.AsRegisterPairHigh<Register>(),
out.AsRegisterPairHigh<Register>(),
ShifterOperand(out.AsRegisterPairHigh<Register>()));
// out.hi = out.hi - in.hi
__ sub(out.AsRegisterPairHigh<Register>(),
out.AsRegisterPairHigh<Register>(),
ShifterOperand(in.AsRegisterPairHigh<Register>()));
break;
case Primitive::kPrimFloat:
DCHECK(in.IsFpuRegister());
__ vnegs(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>());
break;
case Primitive::kPrimDouble:
DCHECK(in.IsFpuRegisterPair());
__ vnegd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) {
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
// The float-to-long, double-to-long and long-to-float type conversions
// rely on a call to the runtime.
LocationSummary::CallKind call_kind =
(((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
&& result_type == Primitive::kPrimLong)
|| (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat))
? LocationSummary::kCallOnMainOnly
: LocationSummary::kNoCall;
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
// The Java language does not allow treating boolean as an integral type but
// our bit representation makes it safe.
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to byte is a result of code transformations.
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to short is a result of code transformations.
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-long' instruction.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(
calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::RegisterPairLocation(R0, R1));
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-long' instruction.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterPairLocation(
calling_convention.GetFpuRegisterAt(0),
calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(Location::RegisterPairLocation(R0, R1));
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to char is a result of code transformations.
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-float' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong: {
// Processing a Dex `long-to-float' instruction.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
break;
}
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations = conversion->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to byte is a result of code transformations.
__ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 8);
break;
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
__ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 8);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to short is a result of code transformations.
__ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
break;
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
__ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
DCHECK(out.IsRegister());
if (in.IsRegisterPair()) {
__ Mov(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
} else if (in.IsDoubleStackSlot()) {
__ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), SP, in.GetStackIndex());
} else {
DCHECK(in.IsConstant());
DCHECK(in.GetConstant()->IsLongConstant());
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
__ LoadImmediate(out.AsRegister<Register>(), static_cast<int32_t>(value));
}
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-int' instruction.
SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
__ vcvtis(temp, in.AsFpuRegister<SRegister>());
__ vmovrs(out.AsRegister<Register>(), temp);
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-int' instruction.
SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
__ vcvtid(temp_s, FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
__ vmovrs(out.AsRegister<Register>(), temp_s);
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
DCHECK(out.IsRegisterPair());
DCHECK(in.IsRegister());
__ Mov(out.AsRegisterPairLow<Register>(), in.AsRegister<Register>());
// Sign extension.
__ Asr(out.AsRegisterPairHigh<Register>(),
out.AsRegisterPairLow<Register>(),
31);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-long' instruction.
codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
CheckEntrypointTypes<kQuickF2l, int64_t, float>();
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-long' instruction.
codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
CheckEntrypointTypes<kQuickD2l, int64_t, double>();
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimLong:
// Type conversion from long to char is a result of code transformations.
__ ubfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
break;
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
__ ubfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar: {
// Processing a Dex `int-to-float' instruction.
__ vmovsr(out.AsFpuRegister<SRegister>(), in.AsRegister<Register>());
__ vcvtsi(out.AsFpuRegister<SRegister>(), out.AsFpuRegister<SRegister>());
break;
}
case Primitive::kPrimLong:
// Processing a Dex `long-to-float' instruction.
codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
CheckEntrypointTypes<kQuickL2f, float, int64_t>();
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
__ vcvtsd(out.AsFpuRegister<SRegister>(),
FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar: {
// Processing a Dex `int-to-double' instruction.
__ vmovsr(out.AsFpuRegisterPairLow<SRegister>(), in.AsRegister<Register>());
__ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
out.AsFpuRegisterPairLow<SRegister>());
break;
}
case Primitive::kPrimLong: {
// Processing a Dex `long-to-double' instruction.
Register low = in.AsRegisterPairLow<Register>();
Register high = in.AsRegisterPairHigh<Register>();
SRegister out_s = out.AsFpuRegisterPairLow<SRegister>();
DRegister out_d = FromLowSToD(out_s);
SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
DRegister temp_d = FromLowSToD(temp_s);
SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow<SRegister>();
DRegister constant_d = FromLowSToD(constant_s);
// temp_d = int-to-double(high)
__ vmovsr(temp_s, high);
__ vcvtdi(temp_d, temp_s);
// constant_d = k2Pow32EncodingForDouble
__ LoadDImmediate(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
// out_d = unsigned-to-double(low)
__ vmovsr(out_s, low);
__ vcvtdu(out_d, out_s);
// out_d += temp_d * constant_d
__ vmlad(out_d, temp_d, constant_d);
break;
}
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
__ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
in.AsFpuRegister<SRegister>());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderARM::VisitAdd(HAdd* add) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) {
LocationSummary* locations = add->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (add->GetResultType()) {
case Primitive::kPrimInt:
if (second.IsRegister()) {
__ add(out.AsRegister<Register>(),
first.AsRegister<Register>(),
ShifterOperand(second.AsRegister<Register>()));
} else {
__ AddConstant(out.AsRegister<Register>(),
first.AsRegister<Register>(),
second.GetConstant()->AsIntConstant()->GetValue());
}
break;
case Primitive::kPrimLong: {
if (second.IsConstant()) {
uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
GenerateAddLongConst(out, first, value);
} else {
DCHECK(second.IsRegisterPair());
__ adds(out.AsRegisterPairLow<Register>(),
first.AsRegisterPairLow<Register>(),
ShifterOperand(second.AsRegisterPairLow<Register>()));
__ adc(out.AsRegisterPairHigh<Register>(),
first.AsRegisterPairHigh<Register>(),
ShifterOperand(second.AsRegisterPairHigh<Register>()));
}
break;
}
case Primitive::kPrimFloat:
__ vadds(out.AsFpuRegister<SRegister>(),
first.AsFpuRegister<SRegister>(),
second.AsFpuRegister<SRegister>());
break;
case Primitive::kPrimDouble:
__ vaddd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
break;
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void LocationsBuilderARM::VisitSub(HSub* sub) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitSub(HSub* sub) {
LocationSummary* locations = sub->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
__ sub(out.AsRegister<Register>(),
first.AsRegister<Register>(),
ShifterOperand(second.AsRegister<Register>()));
} else {
__ AddConstant(out.AsRegister<Register>(),
first.AsRegister<Register>(),
-second.GetConstant()->AsIntConstant()->GetValue());
}
break;
}
case Primitive::kPrimLong: {
if (second.IsConstant()) {
uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
GenerateAddLongConst(out, first, -value);
} else {
DCHECK(second.IsRegisterPair());
__ subs(out.AsRegisterPairLow<Register>(),
first.AsRegisterPairLow<Register>(),
ShifterOperand(second.AsRegisterPairLow<Register>()));
__ sbc(out.AsRegisterPairHigh<Register>(),
first.AsRegisterPairHigh<Register>(),
ShifterOperand(second.AsRegisterPairHigh<Register>()));
}
break;
}
case Primitive::kPrimFloat: {
__ vsubs(out.AsFpuRegister<SRegister>(),
first.AsFpuRegister<SRegister>(),
second.AsFpuRegister<SRegister>());
break;
}
case Primitive::kPrimDouble: {
__ vsubd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void LocationsBuilderARM::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitMul(HMul* mul) {
LocationSummary* locations = mul->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (mul->GetResultType()) {
case Primitive::kPrimInt: {
__ mul(out.AsRegister<Register>(),
first.AsRegister<Register>(),
second.AsRegister<Register>());
break;
}
case Primitive::kPrimLong: {
Register out_hi = out.AsRegisterPairHigh<Register>();
Register out_lo = out.AsRegisterPairLow<Register>();
Register in1_hi = first.AsRegisterPairHigh<Register>();
Register in1_lo = first.AsRegisterPairLow<Register>();
Register in2_hi = second.AsRegisterPairHigh<Register>();
Register in2_lo = second.AsRegisterPairLow<Register>();
// Extra checks to protect caused by the existence of R1_R2.
// The algorithm is wrong if out.hi is either in1.lo or in2.lo:
// (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
DCHECK_NE(out_hi, in1_lo);
DCHECK_NE(out_hi, in2_lo);
// input: in1 - 64 bits, in2 - 64 bits
// output: out
// formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
// parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
// parts: out.lo = (in1.lo * in2.lo)[31:0]
// IP <- in1.lo * in2.hi
__ mul(IP, in1_lo, in2_hi);
// out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
__ mla(out_hi, in1_hi, in2_lo, IP);
// out.lo <- (in1.lo * in2.lo)[31:0];
__ umull(out_lo, IP, in1_lo, in2_lo);
// out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
__ add(out_hi, out_hi, ShifterOperand(IP));
break;
}
case Primitive::kPrimFloat: {
__ vmuls(out.AsFpuRegister<SRegister>(),
first.AsFpuRegister<SRegister>(),
second.AsFpuRegister<SRegister>());
break;
}
case Primitive::kPrimDouble: {
__ vmuld(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorARM::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
DCHECK(imm == 1 || imm == -1);
if (instruction->IsRem()) {
__ LoadImmediate(out, 0);
} else {
if (imm == 1) {
__ Mov(out, dividend);
} else {
__ rsb(out, dividend, ShifterOperand(0));
}
}
}
void InstructionCodeGeneratorARM::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
Register temp = locations->GetTemp(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
int ctz_imm = CTZ(abs_imm);
if (ctz_imm == 1) {
__ Lsr(temp, dividend, 32 - ctz_imm);
} else {
__ Asr(temp, dividend, 31);
__ Lsr(temp, temp, 32 - ctz_imm);
}
__ add(out, temp, ShifterOperand(dividend));
if (instruction->IsDiv()) {
__ Asr(out, out, ctz_imm);
if (imm < 0) {
__ rsb(out, out, ShifterOperand(0));
}
} else {
__ ubfx(out, out, 0, ctz_imm);
__ sub(out, out, ShifterOperand(temp));
}
}
void InstructionCodeGeneratorARM::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
Register temp1 = locations->GetTemp(0).AsRegister<Register>();
Register temp2 = locations->GetTemp(1).AsRegister<Register>();
int64_t imm = second.GetConstant()->AsIntConstant()->GetValue();
int64_t magic;
int shift;
CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
__ LoadImmediate(temp1, magic);
__ smull(temp2, temp1, dividend, temp1);
if (imm > 0 && magic < 0) {
__ add(temp1, temp1, ShifterOperand(dividend));
} else if (imm < 0 && magic > 0) {
__ sub(temp1, temp1, ShifterOperand(dividend));
}
if (shift != 0) {
__ Asr(temp1, temp1, shift);
}
if (instruction->IsDiv()) {
__ sub(out, temp1, ShifterOperand(temp1, ASR, 31));
} else {
__ sub(temp1, temp1, ShifterOperand(temp1, ASR, 31));
// TODO: Strength reduction for mls.
__ LoadImmediate(temp2, imm);
__ mls(out, temp1, temp2, dividend);
}
}
void InstructionCodeGeneratorARM::GenerateDivRemConstantIntegral(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK(instruction->GetResultType() == Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
if (imm == 0) {
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
} else if (imm == 1 || imm == -1) {
DivRemOneOrMinusOne(instruction);
} else if (IsPowerOfTwo(AbsOrMin(imm))) {
DivRemByPowerOfTwo(instruction);
} else {
DCHECK(imm <= -2 || imm >= 2);
GenerateDivRemWithAnyConstant(instruction);
}
}
void LocationsBuilderARM::VisitDiv(HDiv* div) {
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
if (div->GetResultType() == Primitive::kPrimLong) {
// pLdiv runtime call.
call_kind = LocationSummary::kCallOnMainOnly;
} else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) {
// sdiv will be replaced by other instruction sequence.
} else if (div->GetResultType() == Primitive::kPrimInt &&
!codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
// pIdivmod runtime call.
call_kind = LocationSummary::kCallOnMainOnly;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
switch (div->GetResultType()) {
case Primitive::kPrimInt: {
if (div->InputAt(1)->IsConstant()) {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
int32_t value = div->InputAt(1)->AsIntConstant()->GetValue();
if (value == 1 || value == 0 || value == -1) {
// No temp register required.
} else {
locations->AddTemp(Location::RequiresRegister());
if (!IsPowerOfTwo(AbsOrMin(value))) {
locations->AddTemp(Location::RequiresRegister());
}
}
} else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
} else {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
// Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
// we only need the former.
locations->SetOut(Location::RegisterLocation(R0));
}
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
locations->SetOut(Location::RegisterPairLocation(R0, R1));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) {
LocationSummary* locations = div->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (div->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsConstant()) {
GenerateDivRemConstantIntegral(div);
} else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
__ sdiv(out.AsRegister<Register>(),
first.AsRegister<Register>(),
second.AsRegister<Register>());
} else {
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
DCHECK_EQ(R0, out.AsRegister<Register>());
codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
}
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
DCHECK_EQ(R0, out.AsRegisterPairLow<Register>());
DCHECK_EQ(R1, out.AsRegisterPairHigh<Register>());
codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
break;
}
case Primitive::kPrimFloat: {
__ vdivs(out.AsFpuRegister<SRegister>(),
first.AsFpuRegister<SRegister>(),
second.AsFpuRegister<SRegister>());
break;
}
case Primitive::kPrimDouble: {
__ vdivd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void LocationsBuilderARM::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
// Most remainders are implemented in the runtime.
LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) {
// sdiv will be replaced by other instruction sequence.
call_kind = LocationSummary::kNoCall;
} else if ((rem->GetResultType() == Primitive::kPrimInt)
&& codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
// Have hardware divide instruction for int, do it with three instructions.
call_kind = LocationSummary::kNoCall;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
switch (type) {
case Primitive::kPrimInt: {
if (rem->InputAt(1)->IsConstant()) {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
int32_t value = rem->InputAt(1)->AsIntConstant()->GetValue();
if (value == 1 || value == 0 || value == -1) {
// No temp register required.
} else {
locations->AddTemp(Location::RequiresRegister());
if (!IsPowerOfTwo(AbsOrMin(value))) {
locations->AddTemp(Location::RequiresRegister());
}
}
} else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
locations->AddTemp(Location::RequiresRegister());
} else {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
// Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
// we only need the latter.
locations->SetOut(Location::RegisterLocation(R1));
}
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
// The runtime helper puts the output in R2,R3.
locations->SetOut(Location::RegisterPairLocation(R2, R3));
break;
}
case Primitive::kPrimFloat: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(Location::FpuRegisterLocation(S0));
break;
}
case Primitive::kPrimDouble: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterPairLocation(
calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
locations->SetInAt(1, Location::FpuRegisterPairLocation(
calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorARM::VisitRem(HRem* rem) {
LocationSummary* locations = rem->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Primitive::Type type = rem->GetResultType();
switch (type) {
case Primitive::kPrimInt: {
if (second.IsConstant()) {
GenerateDivRemConstantIntegral(rem);
} else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
Register reg1 = first.AsRegister<Register>();
Register reg2 = second.AsRegister<Register>();
Register temp = locations->GetTemp(0).AsRegister<Register>();
// temp = reg1 / reg2 (integer division)
// dest = reg1 - temp * reg2
__ sdiv(temp, reg1, reg2);
__ mls(out.AsRegister<Register>(), temp, reg2, reg1);
} else {
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
DCHECK_EQ(R1, out.AsRegister<Register>());
codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
}
break;
}
case Primitive::kPrimLong: {
codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
break;
}
case Primitive::kPrimFloat: {
codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
CheckEntrypointTypes<kQuickFmodf, float, float, float>();
break;
}
case Primitive::kPrimDouble: {
codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
CheckEntrypointTypes<kQuickFmod, double, double, double>();
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
}
void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location value = locations->InAt(0);
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt: {
if (value.IsRegister()) {
__ CompareAndBranchIfZero(value.AsRegister<Register>(), slow_path->GetEntryLabel());
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
__ b(slow_path->GetEntryLabel());
}
}
break;
}
case Primitive::kPrimLong: {
if (value.IsRegisterPair()) {
__ orrs(IP,
value.AsRegisterPairLow<Register>(),
ShifterOperand(value.AsRegisterPairHigh<Register>()));
__ b(slow_path->GetEntryLabel(), EQ);
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
__ b(slow_path->GetEntryLabel());
}
}
break;
default:
LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
}
}
}
void InstructionCodeGeneratorARM::HandleIntegerRotate(LocationSummary* locations) {
Register in = locations->InAt(0).AsRegister<Register>();
Location rhs = locations->InAt(1);
Register out = locations->Out().AsRegister<Register>();
if (rhs.IsConstant()) {
// Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
// so map all rotations to a +ve. equivalent in that range.
// (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
if (rot) {
// Rotate, mapping left rotations to right equivalents if necessary.
// (e.g. left by 2 bits == right by 30.)
__ Ror(out, in, rot);
} else if (out != in) {
__ Mov(out, in);
}
} else {
__ Ror(out, in, rhs.AsRegister<Register>());
}
}
// Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
// rotates by swapping input regs (effectively rotating by the first 32-bits of
// a larger rotation) or flipping direction (thus treating larger right/left
// rotations as sub-word sized rotations in the other direction) as appropriate.
void InstructionCodeGeneratorARM::HandleLongRotate(HRor* ror) {
LocationSummary* locations = ror->GetLocations();
Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
Location rhs = locations->InAt(1);
Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>();
Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>();
if (rhs.IsConstant()) {
uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
// Map all rotations to +ve. equivalents on the interval [0,63].
rot &= kMaxLongShiftDistance;
// For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
// logic below to a simple pair of binary orr.
// (e.g. 34 bits == in_reg swap + 2 bits right.)
if (rot >= kArmBitsPerWord) {
rot -= kArmBitsPerWord;
std::swap(in_reg_hi, in_reg_lo);
}
// Rotate, or mov to out for zero or word size rotations.
if (rot != 0u) {
__ Lsr(out_reg_hi, in_reg_hi, rot);
__ orr(out_reg_hi, out_reg_hi, ShifterOperand(in_reg_lo, arm::LSL, kArmBitsPerWord - rot));
__ Lsr(out_reg_lo, in_reg_lo, rot);
__ orr(out_reg_lo, out_reg_lo, ShifterOperand(in_reg_hi, arm::LSL, kArmBitsPerWord - rot));
} else {
__ Mov(out_reg_lo, in_reg_lo);
__ Mov(out_reg_hi, in_reg_hi);
}
} else {
Register shift_right = locations->GetTemp(0).AsRegister<Register>();
Register shift_left = locations->GetTemp(1).AsRegister<Register>();
Label end;
Label shift_by_32_plus_shift_right;
Label* final_label = codegen_->GetFinalLabel(ror, &end);
__ and_(shift_right, rhs.AsRegister<Register>(), ShifterOperand(0x1F));
__ Lsrs(shift_left, rhs.AsRegister<Register>(), 6);
__ rsb(shift_left, shift_right, ShifterOperand(kArmBitsPerWord), AL, kCcKeep);
__ b(&shift_by_32_plus_shift_right, CC);
// out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
// out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
__ Lsl(out_reg_hi, in_reg_hi, shift_left);
__ Lsr(out_reg_lo, in_reg_lo, shift_right);
__ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
__ Lsl(out_reg_lo, in_reg_lo, shift_left);
__ Lsr(shift_left, in_reg_hi, shift_right);
__ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_left));
__ b(final_label);
__ Bind(&shift_by_32_plus_shift_right); // Shift by 32+shift_right.
// out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
// out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
__ Lsr(out_reg_hi, in_reg_hi, shift_right);
__ Lsl(out_reg_lo, in_reg_lo, shift_left);
__ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
__ Lsr(out_reg_lo, in_reg_lo, shift_right);
__ Lsl(shift_right, in_reg_hi, shift_left);
__ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_right));
if (end.IsLinked()) {
__ Bind(&end);
}
}
}
void LocationsBuilderARM::VisitRor(HRor* ror) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
switch (ror->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
if (ror->InputAt(1)->IsConstant()) {
locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
} else {
locations->SetInAt(1, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitRor(HRor* ror) {
LocationSummary* locations = ror->GetLocations();
Primitive::Type type = ror->GetResultType();
switch (type) {
case Primitive::kPrimInt: {
HandleIntegerRotate(locations);
break;
}
case Primitive::kPrimLong: {
HandleLongRotate(ror);
break;
}
default:
LOG(FATAL) << "Unexpected operation type " << type;
UNREACHABLE();
}
}
void LocationsBuilderARM::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
switch (op->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
if (op->InputAt(1)->IsConstant()) {
locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
} else {
locations->SetInAt(1, Location::RequiresRegister());
// Make the output overlap, as it will be used to hold the masked
// second input.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
if (op->InputAt(1)->IsConstant()) {
locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
// For simplicity, use kOutputOverlap even though we only require that low registers
// don't clash with high registers which the register allocator currently guarantees.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
} else {
locations->SetInAt(1, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
break;
}
default:
LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
}
}
void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations = op->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Primitive::Type type = op->GetResultType();
switch (type) {
case Primitive::kPrimInt: {
Register out_reg = out.AsRegister<Register>();
Register first_reg = first.AsRegister<Register>();
if (second.IsRegister()) {
Register second_reg = second.AsRegister<Register>();
// ARM doesn't mask the shift count so we need to do it ourselves.
__ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftDistance));
if (op->IsShl()) {
__ Lsl(out_reg, first_reg, out_reg);
} else if (op->IsShr()) {
__ Asr(out_reg, first_reg, out_reg);
} else {
__ Lsr(out_reg, first_reg, out_reg);
}
} else {
int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
uint32_t shift_value = cst & kMaxIntShiftDistance;
if (shift_value == 0) { // ARM does not support shifting with 0 immediate.
__ Mov(out_reg, first_reg);
} else if (op->IsShl()) {
__ Lsl(out_reg, first_reg, shift_value);
} else if (op->IsShr()) {
__ Asr(out_reg, first_reg, shift_value);
} else {
__ Lsr(out_reg, first_reg, shift_value);
}
}
break;
}
case Primitive::kPrimLong: {
Register o_h = out.AsRegisterPairHigh<Register>();
Register o_l = out.AsRegisterPairLow<Register>();
Register high = first.AsRegisterPairHigh<Register>();
Register low = first.AsRegisterPairLow<Register>();
if (second.IsRegister()) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register second_reg = second.AsRegister<Register>();
if (op->IsShl()) {
__ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftDistance));
// Shift the high part
__ Lsl(o_h, high, o_l);
// Shift the low part and `or` what overflew on the high part
__ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord));
__ Lsr(temp, low, temp);
__ orr(o_h, o_h, ShifterOperand(temp));
// If the shift is > 32 bits, override the high part
__ subs(temp, o_l, ShifterOperand(kArmBitsPerWord));
__ it(PL);
__ Lsl(o_h, low, temp, PL);
// Shift the low part
__ Lsl(o_l, low, o_l);
} else if (op->IsShr()) {
__ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
// Shift the low part
__ Lsr(o_l, low, o_h);
// Shift the high part and `or` what underflew on the low part
__ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
__ Lsl(temp, high, temp);
__ orr(o_l, o_l, ShifterOperand(temp));
// If the shift is > 32 bits, override the low part
__ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
__ it(PL);
__ Asr(o_l, high, temp, PL);
// Shift the high part
__ Asr(o_h, high, o_h);
} else {
__ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
// same as Shr except we use `Lsr`s and not `Asr`s
__ Lsr(o_l, low, o_h);
__ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
__ Lsl(temp, high, temp);
__ orr(o_l, o_l, ShifterOperand(temp));
__ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
__ it(PL);
__ Lsr(o_l, high, temp, PL);
__ Lsr(o_h, high, o_h);
}
} else {
// Register allocator doesn't create partial overlap.
DCHECK_NE(o_l, high);
DCHECK_NE(o_h, low);
int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
uint32_t shift_value = cst & kMaxLongShiftDistance;
if (shift_value > 32) {
if (op->IsShl()) {
__ Lsl(o_h, low, shift_value - 32);
__ LoadImmediate(o_l, 0);
} else if (op->IsShr()) {
__ Asr(o_l, high, shift_value - 32);
__ Asr(o_h, high, 31);
} else {
__ Lsr(o_l, high, shift_value - 32);
__ LoadImmediate(o_h, 0);
}
} else if (shift_value == 32) {
if (op->IsShl()) {
__ mov(o_h, ShifterOperand(low));
__ LoadImmediate(o_l, 0);
} else if (op->IsShr()) {
__ mov(o_l, ShifterOperand(high));
__ Asr(o_h, high, 31);
} else {
__ mov(o_l, ShifterOperand(high));
__ LoadImmediate(o_h, 0);
}
} else if (shift_value == 1) {
if (op->IsShl()) {
__ Lsls(o_l, low, 1);
__ adc(o_h, high, ShifterOperand(high));
} else if (op->IsShr()) {
__ Asrs(o_h, high, 1);
__ Rrx(o_l, low);
} else {
__ Lsrs(o_h, high, 1);
__ Rrx(o_l, low);
}
} else {
DCHECK(2 <= shift_value && shift_value < 32) << shift_value;
if (op->IsShl()) {
__ Lsl(o_h, high, shift_value);
__ orr(o_h, o_h, ShifterOperand(low, LSR, 32 - shift_value));
__ Lsl(o_l, low, shift_value);
} else if (op->IsShr()) {
__ Lsr(o_l, low, shift_value);
__ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
__ Asr(o_h, high, shift_value);
} else {
__ Lsr(o_l, low, shift_value);
__ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
__ Lsr(o_h, high, shift_value);
}
}
}
break;
}
default:
LOG(FATAL) << "Unexpected operation type " << type;
UNREACHABLE();
}
}
void LocationsBuilderARM::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorARM::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderARM::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorARM::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderARM::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
if (instruction->IsStringAlloc()) {
locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
} else {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
locations->SetOut(Location::RegisterLocation(R0));
}
void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) {
// Note: if heap poisoning is enabled, the entry point takes cares
// of poisoning the reference.
if (instruction->IsStringAlloc()) {
// String is allocated through StringFactory. Call NewEmptyString entry point.
Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
__ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
__ LoadFromOffset(kLoadWord, LR, temp, code_offset.Int32Value());
__ blx(LR);
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
} else {
codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
}
}
void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetOut(Location::RegisterLocation(R0));
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) {
// Note: if heap poisoning is enabled, the entry point takes cares
// of poisoning the reference.
QuickEntrypointEnum entrypoint =
CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass());
codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
DCHECK(!codegen_->IsLeafMethod());
}
void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorARM::VisitParameterValue(
HParameterValue* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, the parameter is already at its location.
}
void LocationsBuilderARM::VisitCurrentMethod(HCurrentMethod* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
}
void InstructionCodeGeneratorARM::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, the method is already at its location.
}
void LocationsBuilderARM::VisitNot(HNot* not_) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitNot(HNot* not_) {
LocationSummary* locations = not_->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
switch (not_->GetResultType()) {
case Primitive::kPrimInt:
__ mvn(out.AsRegister<Register>(), ShifterOperand(in.AsRegister<Register>()));
break;
case Primitive::kPrimLong:
__ mvn(out.AsRegisterPairLow<Register>(),
ShifterOperand(in.AsRegisterPairLow<Register>()));
__ mvn(out.AsRegisterPairHigh<Register>(),
ShifterOperand(in.AsRegisterPairHigh<Register>()));
break;
default:
LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
}
}
void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) {
LocationSummary* locations = bool_not->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
__ eor(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(1));
}
void LocationsBuilderARM::VisitCompare(HCompare* compare) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
switch (compare->InputAt(0)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Output overlaps because it is written before doing the low comparison.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
}
}
void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) {
LocationSummary* locations = compare->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Location left = locations->InAt(0);
Location right = locations->InAt(1);
Label less, greater, done;
Label* final_label = codegen_->GetFinalLabel(compare, &done);
Primitive::Type type = compare->InputAt(0)->GetType();
Condition less_cond;
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt: {
__ LoadImmediate(out, 0);
__ cmp(left.AsRegister<Register>(),
ShifterOperand(right.AsRegister<Register>())); // Signed compare.
less_cond = LT;
break;
}
case Primitive::kPrimLong: {
__ cmp(left.AsRegisterPairHigh<Register>(),
ShifterOperand(right.AsRegisterPairHigh<Register>())); // Signed compare.
__ b(&less, LT);
__ b(&greater, GT);
// Do LoadImmediate before the last `cmp`, as LoadImmediate might affect the status flags.
__ LoadImmediate(out, 0);
__ cmp(left.AsRegisterPairLow<Register>(),
ShifterOperand(right.AsRegisterPairLow<Register>())); // Unsigned compare.
less_cond = LO;
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
__ LoadImmediate(out, 0);
GenerateVcmp(compare, codegen_);
__ vmstat(); // transfer FP status register to ARM APSR.
less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
break;
}
default:
LOG(FATAL) << "Unexpected compare type " << type;
UNREACHABLE();
}
__ b(final_label, EQ);
__ b(&less, less_cond);
__ Bind(&greater);
__ LoadImmediate(out, 1);
__ b(final_label);
__ Bind(&less);
__ LoadImmediate(out, -1);
if (done.IsLinked()) {
__ Bind(&done);
}
}
void LocationsBuilderARM::VisitPhi(HPhi* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void CodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) {
// TODO (ported from quick): revisit ARM barrier kinds.
DmbOptions flavor = DmbOptions::ISH; // Quiet C++ warnings.
switch (kind) {
case MemBarrierKind::kAnyStore:
case MemBarrierKind::kLoadAny:
case MemBarrierKind::kAnyAny: {
flavor = DmbOptions::ISH;
break;
}
case MemBarrierKind::kStoreStore: {
flavor = DmbOptions::ISHST;
break;
}
default:
LOG(FATAL) << "Unexpected memory barrier " << kind;
}
__ dmb(flavor);
}
void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr,
uint32_t offset,
Register out_lo,
Register out_hi) {
if (offset != 0) {
// Ensure `out_lo` is different from `addr`, so that loading
// `offset` into `out_lo` does not clutter `addr`.
DCHECK_NE(out_lo, addr);
__ LoadImmediate(out_lo, offset);
__ add(IP, addr, ShifterOperand(out_lo));
addr = IP;
}
__ ldrexd(out_lo, out_hi, addr);
}
void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr,
uint32_t offset,
Register value_lo,
Register value_hi,
Register temp1,
Register temp2,
HInstruction* instruction) {
Label fail;
if (offset != 0) {
__ LoadImmediate(temp1, offset);
__ add(IP, addr, ShifterOperand(temp1));
addr = IP;
}
__ Bind(&fail);
// We need a load followed by store. (The address used in a STREX instruction must
// be the same as the address in the most recently executed LDREX instruction.)
__ ldrexd(temp1, temp2, addr);
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ strexd(temp1, value_lo, value_hi, addr);
__ CompareAndBranchIfNonZero(temp1, &fail);
}
void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
Primitive::Type field_type = field_info.GetFieldType();
if (Primitive::IsFloatingPointType(field_type)) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble;
bool generate_volatile = field_info.IsVolatile()
&& is_wide
&& !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
// Temporary registers for the write barrier.
// TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
if (needs_write_barrier) {
locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
locations->AddTemp(Location::RequiresRegister());
} else if (generate_volatile) {
// ARM encoding have some additional constraints for ldrexd/strexd:
// - registers need to be consecutive
// - the first register should be even but not R14.
// We don't test for ARM yet, and the assertion makes sure that we
// revisit this if we ever enable ARM encoding.
DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
if (field_type == Primitive::kPrimDouble) {
// For doubles we need two more registers to copy the value.
locations->AddTemp(Location::RegisterLocation(R2));
locations->AddTemp(Location::RegisterLocation(R3));
}
}
}
void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
bool value_can_be_null) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations = instruction->GetLocations();
Register base = locations->InAt(0).AsRegister<Register>();
Location value = locations->InAt(1);
bool is_volatile = field_info.IsVolatile();
bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
if (is_volatile) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
}
switch (field_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
__ StoreToOffset(kStoreByte, value.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
__ StoreToOffset(kStoreHalfword, value.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
if (kPoisonHeapReferences && needs_write_barrier) {
// Note that in the case where `value` is a null reference,
// we do not enter this block, as a null reference does not
// need poisoning.
DCHECK_EQ(field_type, Primitive::kPrimNot);
Register temp = locations->GetTemp(0).AsRegister<Register>();
__ Mov(temp, value.AsRegister<Register>());
__ PoisonHeapReference(temp);
__ StoreToOffset(kStoreWord, temp, base, offset);
} else {
__ StoreToOffset(kStoreWord, value.AsRegister<Register>(), base, offset);
}
break;
}
case Primitive::kPrimLong: {
if (is_volatile && !atomic_ldrd_strd) {
GenerateWideAtomicStore(base, offset,
value.AsRegisterPairLow<Register>(),
value.AsRegisterPairHigh<Register>(),
locations->GetTemp(0).AsRegister<Register>(),
locations->GetTemp(1).AsRegister<Register>(),
instruction);
} else {
__ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), base, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
break;
}
case Primitive::kPrimFloat: {
__ StoreSToOffset(value.AsFpuRegister<SRegister>(), base, offset);
break;
}
case Primitive::kPrimDouble: {
DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow<SRegister>());
if (is_volatile && !atomic_ldrd_strd) {
Register value_reg_lo = locations->GetTemp(0).AsRegister<Register>();
Register value_reg_hi = locations->GetTemp(1).AsRegister<Register>();
__ vmovrrd(value_reg_lo, value_reg_hi, value_reg);
GenerateWideAtomicStore(base, offset,
value_reg_lo,
value_reg_hi,
locations->GetTemp(2).AsRegister<Register>(),
locations->GetTemp(3).AsRegister<Register>(),
instruction);
} else {
__ StoreDToOffset(value_reg, base, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
// Longs and doubles are handled in the switch.
if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register card = locations->GetTemp(1).AsRegister<Register>();
codegen_->MarkGCCard(
temp, card, base, value.AsRegister<Register>(), value_can_be_null);
}
if (is_volatile) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
}
void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
bool object_field_get_with_read_barrier =
kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot);
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction,
object_field_get_with_read_barrier ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall);
if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
bool volatile_for_double = field_info.IsVolatile()
&& (field_info.GetFieldType() == Primitive::kPrimDouble)
&& !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
// The output overlaps in case of volatile long: we don't want the
// code generated by GenerateWideAtomicLoad to overwrite the
// object's location. Likewise, in the case of an object field get
// with read barriers enabled, we do not want the load to overwrite
// the object's location, as we need it to emit the read barrier.
bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) ||
object_field_get_with_read_barrier;
if (Primitive::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetOut(Location::RequiresRegister(),
(overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
}
if (volatile_for_double) {
// ARM encoding have some additional constraints for ldrexd/strexd:
// - registers need to be consecutive
// - the first register should be even but not R14.
// We don't test for ARM yet, and the assertion makes sure that we
// revisit this if we ever enable ARM encoding.
DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
} else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
// We need a temporary register for the read barrier marking slow
// path in CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier.
if (kBakerReadBarrierLinkTimeThunksEnableForFields &&
!Runtime::Current()->UseJitCompilation()) {
// If link-time thunks for the Baker read barrier are enabled, for AOT
// loads we need a temporary only if the offset is too big.
if (field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
locations->AddTemp(Location::RequiresRegister());
}
// And we always need the reserved entrypoint register.
locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister));
} else {
locations->AddTemp(Location::RequiresRegister());
}
}
}
Location LocationsBuilderARM::ArithmeticZeroOrFpuRegister(HInstruction* input) {
DCHECK(input->GetType() == Primitive::kPrimDouble || input->GetType() == Primitive::kPrimFloat)
<< input->GetType();
if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
(input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
return Location::ConstantLocation(input->AsConstant());
} else {
return Location::RequiresFpuRegister();
}
}
Location LocationsBuilderARM::ArmEncodableConstantOrRegister(HInstruction* constant,
Opcode opcode) {
DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
if (constant->IsConstant() &&
CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
return Location::ConstantLocation(constant->AsConstant());
}
return Location::RequiresRegister();
}
bool LocationsBuilderARM::CanEncodeConstantAsImmediate(HConstant* input_cst,
Opcode opcode) {
uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
if (Primitive::Is64BitType(input_cst->GetType())) {
Opcode high_opcode = opcode;
SetCc low_set_cc = kCcDontCare;
switch (opcode) {
case SUB:
// Flip the operation to an ADD.
value = -value;
opcode = ADD;
FALLTHROUGH_INTENDED;
case ADD:
if (Low32Bits(value) == 0u) {
return CanEncodeConstantAsImmediate(High32Bits(value), opcode, kCcDontCare);
}
high_opcode = ADC;
low_set_cc = kCcSet;
break;
default:
break;
}
return CanEncodeConstantAsImmediate(Low32Bits(value), opcode, low_set_cc) &&
CanEncodeConstantAsImmediate(High32Bits(value), high_opcode, kCcDontCare);
} else {
return CanEncodeConstantAsImmediate(Low32Bits(value), opcode);
}
}
bool LocationsBuilderARM::CanEncodeConstantAsImmediate(uint32_t value,
Opcode opcode,
SetCc set_cc) {
ShifterOperand so;
ArmAssembler* assembler = codegen_->GetAssembler();
if (assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, opcode, value, set_cc, &so)) {
return true;
}
Opcode neg_opcode = kNoOperand;
uint32_t neg_value = 0;
switch (opcode) {
case AND: neg_opcode = BIC; neg_value = ~value; break;
case ORR: neg_opcode = ORN; neg_value = ~value; break;
case ADD: neg_opcode = SUB; neg_value = -value; break;
case ADC: neg_opcode = SBC; neg_value = ~value; break;
case SUB: neg_opcode = ADD; neg_value = -value; break;
case SBC: neg_opcode = ADC; neg_value = ~value; break;
case MOV: neg_opcode = MVN; neg_value = ~value; break;
default:
return false;
}
if (assembler->ShifterOperandCanHold(kNoRegister,
kNoRegister,
neg_opcode,
neg_value,
set_cc,
&so)) {
return true;
}
return opcode == AND && IsPowerOfTwo(value + 1);
}
void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
LocationSummary* locations = instruction->GetLocations();
Location base_loc = locations->InAt(0);
Register base = base_loc.AsRegister<Register>();
Location out = locations->Out();
bool is_volatile = field_info.IsVolatile();
bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
switch (field_type) {
case Primitive::kPrimBoolean:
__ LoadFromOffset(kLoadUnsignedByte, out.AsRegister<Register>(), base, offset);
break;
case Primitive::kPrimByte:
__ LoadFromOffset(kLoadSignedByte, out.AsRegister<Register>(), base, offset);
break;
case Primitive::kPrimShort:
__ LoadFromOffset(kLoadSignedHalfword, out.AsRegister<Register>(), base, offset);
break;
case Primitive::kPrimChar:
__ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister<Register>(), base, offset);
break;
case Primitive::kPrimInt:
__ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
break;
case Primitive::kPrimNot: {
// /* HeapReference<Object> */ out = *(base + offset)
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
Location temp_loc = locations->GetTemp(0);
// Note that a potential implicit null check is handled in this
// CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier call.
codegen_->GenerateFieldLoadWithBakerReadBarrier(
instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
if (is_volatile) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
} else {
__ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
if (is_volatile) {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
// If read barriers are enabled, emit read barriers other than
// Baker's using a slow path (and also unpoison the loaded
// reference, if heap poisoning is enabled).
codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
}
break;
}
case Primitive::kPrimLong:
if (is_volatile && !atomic_ldrd_strd) {
GenerateWideAtomicLoad(base, offset,
out.AsRegisterPairLow<Register>(),
out.AsRegisterPairHigh<Register>());
} else {
__ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), base, offset);
}
break;
case Primitive::kPrimFloat:
__ LoadSFromOffset(out.AsFpuRegister<SRegister>(), base, offset);
break;
case Primitive::kPrimDouble: {
DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow<SRegister>());
if (is_volatile && !atomic_ldrd_strd) {
Register lo = locations->GetTemp(0).AsRegister<Register>();
Register hi = locations->GetTemp(1).AsRegister<Register>();
GenerateWideAtomicLoad(base, offset, lo, hi);
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ vmovdrr(out_reg, lo, hi);
} else {
__ LoadDFromOffset(out_reg, base, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) {
// Potential implicit null checks, in the case of reference or
// double fields, are handled in the previous switch statement.
} else {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (is_volatile) {
if (field_type == Primitive::kPrimNot) {
// Memory barriers, in the case of references, are also handled
// in the previous switch statement.
} else {
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
}
}
void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
}
void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
}
void LocationsBuilderARM::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionARM calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionARM calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderARM::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionARM calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionARM calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderARM::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionARM calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionARM calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderARM::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionARM calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(
instruction, instruction->GetFieldType(), calling_convention);
}
void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionARM calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) {
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
locations->SetInAt(0, Location::RequiresRegister());
}
void CodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (CanMoveNullCheckToUser(instruction)) {
return;
}
Location obj = instruction->GetLocations()->InAt(0);
__ LoadFromOffset(kLoadWord, IP, obj.AsRegister<Register>(), 0);
RecordPcInfo(instruction, instruction->GetDexPc());
}
void CodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction);
AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
__ CompareAndBranchIfZero(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
}
void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) {
codegen_->GenerateNullCheck(instruction);
}
static LoadOperandType GetLoadOperandType(Primitive::Type type) {
switch (type) {
case Primitive::kPrimNot:
return kLoadWord;
case Primitive::kPrimBoolean:
return kLoadUnsignedByte;
case Primitive::kPrimByte:
return kLoadSignedByte;
case Primitive::kPrimChar:
return kLoadUnsignedHalfword;
case Primitive::kPrimShort:
return kLoadSignedHalfword;
case Primitive::kPrimInt:
return kLoadWord;
case Primitive::kPrimLong:
return kLoadWordPair;
case Primitive::kPrimFloat:
return kLoadSWord;
case Primitive::kPrimDouble:
return kLoadDWord;
default:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
}
static StoreOperandType GetStoreOperandType(Primitive::Type type) {
switch (type) {
case Primitive::kPrimNot:
return kStoreWord;
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
return kStoreByte;
case Primitive::kPrimChar:
case Primitive::kPrimShort:
return kStoreHalfword;
case Primitive::kPrimInt:
return kStoreWord;
case Primitive::kPrimLong:
return kStoreWordPair;
case Primitive::kPrimFloat:
return kStoreSWord;
case Primitive::kPrimDouble:
return kStoreDWord;
default:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
}
void CodeGeneratorARM::LoadFromShiftedRegOffset(Primitive::Type type,
Location out_loc,
Register base,
Register reg_offset,
Condition cond) {
uint32_t shift_count = Primitive::ComponentSizeShift(type);
Address mem_address(base, reg_offset, Shift::LSL, shift_count);
switch (type) {
case Primitive::kPrimByte:
__ ldrsb(out_loc.AsRegister<Register>(), mem_address, cond);
break;
case Primitive::kPrimBoolean:
__ ldrb(out_loc.AsRegister<Register>(), mem_address, cond);
break;
case Primitive::kPrimShort:
__ ldrsh(out_loc.AsRegister<Register>(), mem_address, cond);
break;
case Primitive::kPrimChar:
__ ldrh(out_loc.AsRegister<Register>(), mem_address, cond);
break;
case Primitive::kPrimNot:
case Primitive::kPrimInt:
__ ldr(out_loc.AsRegister<Register>(), mem_address, cond);
break;
// T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
default:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
}
void CodeGeneratorARM::StoreToShiftedRegOffset(Primitive::Type type,
Location loc,
Register base,
Register reg_offset,
Condition cond) {
uint32_t shift_count = Primitive::ComponentSizeShift(type);
Address mem_address(base, reg_offset, Shift::LSL, shift_count);
switch (type) {
case Primitive::kPrimByte:
case Primitive::kPrimBoolean:
__ strb(loc.AsRegister<Register>(), mem_address, cond);
break;
case Primitive::kPrimShort:
case Primitive::kPrimChar:
__ strh(loc.AsRegister<Register>(), mem_address, cond);
break;
case Primitive::kPrimNot:
case Primitive::kPrimInt:
__ str(loc.AsRegister<Register>(), mem_address, cond);
break;
// T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
case Primitive::kPrimLong:
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
default:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
}
void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) {
bool object_array_get_with_read_barrier =
kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction,
object_array_get_with_read_barrier ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall);
if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (Primitive::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
// The output overlaps in the case of an object array get with
// read barriers enabled: we do not want the move to overwrite the
// array's location, as we need it to emit the read barrier.
locations->SetOut(
Location::RequiresRegister(),
object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
}
if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
// We need a temporary register for the read barrier marking slow
// path in CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier.
if (kBakerReadBarrierLinkTimeThunksEnableForFields &&
!Runtime::Current()->UseJitCompilation() &&
instruction->GetIndex()->IsConstant()) {
// Array loads with constant index are treated as field loads.
// If link-time thunks for the Baker read barrier are enabled, for AOT
// constant index loads we need a temporary only if the offset is too big.
uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
offset += index << Primitive::ComponentSizeShift(Primitive::kPrimNot);
if (offset >= kReferenceLoadMinFarOffset) {
locations->AddTemp(Location::RequiresRegister());
}
// And we always need the reserved entrypoint register.
locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister));
} else if (kBakerReadBarrierLinkTimeThunksEnableForArrays &&
!Runtime::Current()->UseJitCompilation() &&
!instruction->GetIndex()->IsConstant()) {
// We need a non-scratch temporary for the array data pointer.
locations->AddTemp(Location::RequiresRegister());
// And we always need the reserved entrypoint register.
locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister));
} else {
locations->AddTemp(Location::RequiresRegister());
}
} else if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
// Also need a temporary for String compression feature.
locations->AddTemp(Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Location index = locations->InAt(1);
Location out_loc = locations->Out();
uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
Primitive::Type type = instruction->GetType();
const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
instruction->IsStringCharAt();
HInstruction* array_instr = instruction->GetArray();
bool has_intermediate_address = array_instr->IsIntermediateAddress();
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt: {
Register length;
if (maybe_compressed_char_at) {
length = locations->GetTemp(0).AsRegister<Register>();
uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
__ LoadFromOffset(kLoadWord, length, obj, count_offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (index.IsConstant()) {
int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
if (maybe_compressed_char_at) {
Label uncompressed_load, done;
Label* final_label = codegen_->GetFinalLabel(instruction, &done);
__ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ b(&uncompressed_load, CS);
__ LoadFromOffset(kLoadUnsignedByte,
out_loc.AsRegister<Register>(),
obj,
data_offset + const_index);
__ b(final_label);
__ Bind(&uncompressed_load);
__ LoadFromOffset(GetLoadOperandType(Primitive::kPrimChar),
out_loc.AsRegister<Register>(),
obj,
data_offset + (const_index << 1));
if (done.IsLinked()) {
__ Bind(&done);
}
} else {
uint32_t full_offset = data_offset + (const_index << Primitive::ComponentSizeShift(type));
LoadOperandType load_type = GetLoadOperandType(type);
__ LoadFromOffset(load_type, out_loc.AsRegister<Register>(), obj, full_offset);
}
} else {
Register temp = IP;
if (has_intermediate_address) {
// We do not need to compute the intermediate address from the array: the
// input instruction has done it already. See the comment in
// `TryExtractArrayAccessAddress()`.
if (kIsDebugBuild) {
HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
}
temp = obj;
} else {
__ add(temp, obj, ShifterOperand(data_offset));
}
if (maybe_compressed_char_at) {
Label uncompressed_load, done;
Label* final_label = codegen_->GetFinalLabel(instruction, &done);
__ Lsrs(length, length, 1u); // LSRS has a 16-bit encoding, TST (immediate) does not.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ b(&uncompressed_load, CS);
__ ldrb(out_loc.AsRegister<Register>(),
Address(temp, index.AsRegister<Register>(), Shift::LSL, 0));
__ b(final_label);
__ Bind(&uncompressed_load);
__ ldrh(out_loc.AsRegister<Register>(),
Address(temp, index.AsRegister<Register>(), Shift::LSL, 1));
if (done.IsLinked()) {
__ Bind(&done);
}
} else {
codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>());
}
}
break;
}
case Primitive::kPrimNot: {
// The read barrier instrumentation of object ArrayGet
// instructions does not support the HIntermediateAddress
// instruction.
DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
// /* HeapReference<Object> */ out =
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
Location temp = locations->GetTemp(0);
// Note that a potential implicit null check is handled in this
// CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier call.
DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
if (index.IsConstant()) {
// Array load with a constant index can be treated as a field load.
data_offset += helpers::Int32ConstantFrom(index) << Primitive::ComponentSizeShift(type);
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
out_loc,
obj,
data_offset,
locations->GetTemp(0),
/* needs_null_check */ false);
} else {
codegen_->GenerateArrayLoadWithBakerReadBarrier(
instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ false);
}
} else {
Register out = out_loc.AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadFromOffset(kLoadWord, out, obj, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
// If read barriers are enabled, emit read barriers other than
// Baker's using a slow path (and also unpoison the loaded
// reference, if heap poisoning is enabled).
codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
} else {
Register temp = IP;
if (has_intermediate_address) {
// We do not need to compute the intermediate address from the array: the
// input instruction has done it already. See the comment in
// `TryExtractArrayAccessAddress()`.
if (kIsDebugBuild) {
HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
}
temp = obj;
} else {
__ add(temp, obj, ShifterOperand(data_offset));
}
codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, index.AsRegister<Register>());
codegen_->MaybeRecordImplicitNullCheck(instruction);
// If read barriers are enabled, emit read barriers other than
// Baker's using a slow path (and also unpoison the loaded
// reference, if heap poisoning is enabled).
codegen_->MaybeGenerateReadBarrierSlow(
instruction, out_loc, out_loc, obj_loc, data_offset, index);
}
}
break;
}
case Primitive::kPrimLong: {
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
__ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), IP, data_offset);
}
break;
}
case Primitive::kPrimFloat: {
SRegister out = out_loc.AsFpuRegister<SRegister>();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadSFromOffset(out, obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
__ LoadSFromOffset(out, IP, data_offset);
}
break;
}
case Primitive::kPrimDouble: {
SRegister out = out_loc.AsFpuRegisterPairLow<SRegister>();
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadDFromOffset(FromLowSToD(out), obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
__ LoadDFromOffset(FromLowSToD(out), IP, data_offset);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
if (type == Primitive::kPrimNot) {
// Potential implicit null checks, in the case of reference
// arrays, are handled in the previous switch statement.
} else if (!maybe_compressed_char_at) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) {
Primitive::Type value_type = instruction->GetComponentType();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction,
may_need_runtime_call_for_type_check ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (Primitive::IsFloatingPointType(value_type)) {
locations->SetInAt(2, Location::RequiresFpuRegister());
} else {
locations->SetInAt(2, Location::RequiresRegister());
}
if (needs_write_barrier) {
// Temporary registers for the write barrier.
locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
locations->AddTemp(Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location array_loc = locations->InAt(0);
Register array = array_loc.AsRegister<Register>();
Location index = locations->InAt(1);
Primitive::Type value_type = instruction->GetComponentType();
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
uint32_t data_offset =
mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
Location value_loc = locations->InAt(2);
HInstruction* array_instr = instruction->GetArray();
bool has_intermediate_address = array_instr->IsIntermediateAddress();
switch (value_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt: {
if (index.IsConstant()) {
int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
uint32_t full_offset =
data_offset + (const_index << Primitive::ComponentSizeShift(value_type));
StoreOperandType store_type = GetStoreOperandType(value_type);
__ StoreToOffset(store_type, value_loc.AsRegister<Register>(), array, full_offset);
} else {
Register temp = IP;
if (has_intermediate_address) {
// We do not need to compute the intermediate address from the array: the
// input instruction has done it already. See the comment in
// `TryExtractArrayAccessAddress()`.
if (kIsDebugBuild) {
HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == data_offset);
}
temp = array;
} else {
__ add(temp, array, ShifterOperand(data_offset));
}
codegen_->StoreToShiftedRegOffset(value_type,
value_loc,
temp,
index.AsRegister<Register>());
}
break;
}
case Primitive::kPrimNot: {
Register value = value_loc.AsRegister<Register>();
// TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
// See the comment in instruction_simplifier_shared.cc.
DCHECK(!has_intermediate_address);
if (instruction->InputAt(2)->IsNullConstant()) {
// Just setting null.
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreToOffset(kStoreWord, value, array, offset);
} else {
DCHECK(index.IsRegister()) << index;
__ add(IP, array, ShifterOperand(data_offset));
codegen_->StoreToShiftedRegOffset(value_type,
value_loc,
IP,
index.AsRegister<Register>());
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
DCHECK(!needs_write_barrier);
DCHECK(!may_need_runtime_call_for_type_check);
break;
}
DCHECK(needs_write_barrier);
Location temp1_loc = locations->GetTemp(0);
Register temp1 = temp1_loc.AsRegister<Register>();
Location temp2_loc = locations->GetTemp(1);
Register temp2 = temp2_loc.AsRegister<Register>();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
Label done;
Label* final_label = codegen_->GetFinalLabel(instruction, &done);
SlowPathCodeARM* slow_path = nullptr;
if (may_need_runtime_call_for_type_check) {
slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM(instruction);
codegen_->AddSlowPath(slow_path);
if (instruction->GetValueCanBeNull()) {
Label non_zero;
__ CompareAndBranchIfNonZero(value, &non_zero);
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreToOffset(kStoreWord, value, array, offset);
} else {
DCHECK(index.IsRegister()) << index;
__ add(IP, array, ShifterOperand(data_offset));
codegen_->StoreToShiftedRegOffset(value_type,
value_loc,
IP,
index.AsRegister<Register>());
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ b(final_label);
__ Bind(&non_zero);
}
// Note that when read barriers are enabled, the type checks
// are performed without read barriers. This is fine, even in
// the case where a class object is in the from-space after
// the flip, as a comparison involving such a type would not
// produce a false positive; it may of course produce a false
// negative, in which case we would take the ArraySet slow
// path.
// /* HeapReference<Class> */ temp1 = array->klass_
__ LoadFromOffset(kLoadWord, temp1, array, class_offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
// /* HeapReference<Class> */ temp2 = value->klass_
__ LoadFromOffset(kLoadWord, temp2, value, class_offset);
// If heap poisoning is enabled, no need to unpoison `temp1`
// nor `temp2`, as we are comparing two poisoned references.
__ cmp(temp1, ShifterOperand(temp2));
if (instruction->StaticTypeOfArrayIsObjectArray()) {
Label do_put;
__ b(&do_put, EQ);
// If heap poisoning is enabled, the `temp1` reference has
// not been unpoisoned yet; unpoison it now.
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ temp1 = temp1->super_class_
__ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
// If heap poisoning is enabled, no need to unpoison
// `temp1`, as we are comparing against null below.
__ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
__ Bind(&do_put);
} else {
__ b(slow_path->GetEntryLabel(), NE);
}
}
Register source = value;
if (kPoisonHeapReferences) {
// Note that in the case where `value` is a null reference,
// we do not enter this block, as a null reference does not
// need poisoning.
DCHECK_EQ(value_type, Primitive::kPrimNot);
__ Mov(temp1, value);
__ PoisonHeapReference(temp1);
source = temp1;
}
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreToOffset(kStoreWord, source, array, offset);
} else {
DCHECK(index.IsRegister()) << index;
__ add(IP, array, ShifterOperand(data_offset));
codegen_->StoreToShiftedRegOffset(value_type,
Location::RegisterLocation(source),
IP,
index.AsRegister<Register>());
}
if (!may_need_runtime_call_for_type_check) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull());
if (done.IsLinked()) {
__ Bind(&done);
}
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
break;
}
case Primitive::kPrimLong: {
Location value = locations->InAt(2);
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), array, offset);
} else {
__ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
__ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), IP, data_offset);
}
break;
}
case Primitive::kPrimFloat: {
Location value = locations->InAt(2);
DCHECK(value.IsFpuRegister());
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreSToOffset(value.AsFpuRegister<SRegister>(), array, offset);
} else {
__ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
__ StoreSToOffset(value.AsFpuRegister<SRegister>(), IP, data_offset);
}
break;
}
case Primitive::kPrimDouble: {
Location value = locations->InAt(2);
DCHECK(value.IsFpuRegisterPair());
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), array, offset);
} else {
__ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
__ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), IP, data_offset);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << value_type;
UNREACHABLE();
}
// Objects are handled in the switch.
if (value_type != Primitive::kPrimNot) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = instruction->GetLocations();
uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
Register obj = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, obj, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
// Mask out compression flag from String's array length.
if (mirror::kUseStringCompression && instruction->IsStringLength()) {
__ Lsr(out, out, 1u);
}
}
void LocationsBuilderARM::VisitIntermediateAddress(HIntermediateAddress* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitIntermediateAddress(HIntermediateAddress* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
if (second.IsRegister()) {
__ add(out.AsRegister<Register>(),
first.AsRegister<Register>(),
ShifterOperand(second.AsRegister<Register>()));
} else {
__ AddConstant(out.AsRegister<Register>(),
first.AsRegister<Register>(),
second.GetConstant()->AsIntConstant()->GetValue());
}
}
void LocationsBuilderARM::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) {
LOG(FATAL) << "Unreachable " << instruction->GetId();
}
void InstructionCodeGeneratorARM::VisitIntermediateAddressIndex(
HIntermediateAddressIndex* instruction) {
LOG(FATAL) << "Unreachable " << instruction->GetId();
}
void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) {
RegisterSet caller_saves = RegisterSet::Empty();
InvokeRuntimeCallingConvention calling_convention;
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
HInstruction* index = instruction->InputAt(0);
HInstruction* length = instruction->InputAt(1);
// If both index and length are constants we can statically check the bounds. But if at least one
// of them is not encodable ArmEncodableConstantOrRegister will create
// Location::RequiresRegister() which is not desired to happen. Instead we create constant
// locations.
bool both_const = index->IsConstant() && length->IsConstant();
locations->SetInAt(0, both_const
? Location::ConstantLocation(index->AsConstant())
: ArmEncodableConstantOrRegister(index, CMP));
locations->SetInAt(1, both_const
? Location::ConstantLocation(length->AsConstant())
: ArmEncodableConstantOrRegister(length, CMP));
}
void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location index_loc = locations->InAt(0);
Location length_loc = locations->InAt(1);
if (length_loc.IsConstant()) {
int32_t length = helpers::Int32ConstantFrom(length_loc);
if (index_loc.IsConstant()) {
// BCE will remove the bounds check if we are guaranteed to pass.
int32_t index = helpers::Int32ConstantFrom(index_loc);
if (index < 0 || index >= length) {
SlowPathCodeARM* slow_path =
new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction);
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel());
} else {
// Some optimization after BCE may have generated this, and we should not
// generate a bounds check if it is a valid range.
}
return;
}
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction);
__ cmp(index_loc.AsRegister<Register>(), ShifterOperand(length));
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), HS);
} else {
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction);
if (index_loc.IsConstant()) {
int32_t index = helpers::Int32ConstantFrom(index_loc);
__ cmp(length_loc.AsRegister<Register>(), ShifterOperand(index));
} else {
__ cmp(length_loc.AsRegister<Register>(), ShifterOperand(index_loc.AsRegister<Register>()));
}
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), LS);
}
}
void CodeGeneratorARM::MarkGCCard(Register temp,
Register card,
Register object,
Register value,
bool can_be_null) {
Label is_null;
if (can_be_null) {
__ CompareAndBranchIfZero(value, &is_null);
}
__ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
__ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
__ strb(card, Address(card, temp));
if (can_be_null) {
__ Bind(&is_null);
}
}
void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) {
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
SuspendCheckSlowPathARM* slow_path =
down_cast<SuspendCheckSlowPathARM*>(instruction->GetSlowPath());
if (slow_path == nullptr) {
slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor);
instruction->SetSlowPath(slow_path);
codegen_->AddSlowPath(slow_path);
if (successor != nullptr) {
DCHECK(successor->IsLoopHeader());
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
}
} else {
DCHECK_EQ(slow_path->GetSuccessor(), successor);
}
__ LoadFromOffset(
kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
if (successor == nullptr) {
__ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ CompareAndBranchIfZero(IP, codegen_->GetLabelOf(successor));
__ b(slow_path->GetEntryLabel());
}
}
ArmAssembler* ParallelMoveResolverARM::GetAssembler() const {
return codegen_->GetAssembler();
}
void ParallelMoveResolverARM::EmitMove(size_t index) {
MoveOperands* move = moves_[index];
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (destination.IsFpuRegister()) {
__ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
} else {
DCHECK(destination.IsStackSlot());
__ StoreToOffset(kStoreWord, source.AsRegister<Register>(),
SP, destination.GetStackIndex());
}
} else if (source.IsStackSlot()) {
if (destination.IsRegister()) {
__ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(),
SP, source.GetStackIndex());
} else if (destination.IsFpuRegister()) {
__ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
} else {
DCHECK(destination.IsStackSlot());
__ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
}
} else if (source.IsFpuRegister()) {
if (destination.IsRegister()) {
__ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
} else if (destination.IsFpuRegister()) {
__ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
} else {
DCHECK(destination.IsStackSlot());
__ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
}
} else if (source.IsDoubleStackSlot()) {
if (destination.IsDoubleStackSlot()) {
__ LoadDFromOffset(DTMP, SP, source.GetStackIndex());
__ StoreDToOffset(DTMP, SP, destination.GetStackIndex());
} else if (destination.IsRegisterPair()) {
DCHECK(ExpectedPairLayout(destination));
__ LoadFromOffset(
kLoadWordPair, destination.AsRegisterPairLow<Register>(), SP, source.GetStackIndex());
} else {
DCHECK(destination.IsFpuRegisterPair()) << destination;
__ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
SP,
source.GetStackIndex());
}
} else if (source.IsRegisterPair()) {
if (destination.IsRegisterPair()) {
__ Mov(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
__ Mov(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
} else if (destination.IsFpuRegisterPair()) {
__ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
source.AsRegisterPairLow<Register>(),
source.AsRegisterPairHigh<Register>());
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
DCHECK(ExpectedPairLayout(source));
__ StoreToOffset(
kStoreWordPair, source.AsRegisterPairLow<Register>(), SP, destination.GetStackIndex());
}
} else if (source.IsFpuRegisterPair()) {
if (destination.IsRegisterPair()) {
__ vmovrrd(destination.AsRegisterPairLow<Register>(),
destination.AsRegisterPairHigh<Register>(),
FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
} else if (destination.IsFpuRegisterPair()) {
__ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
__ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
SP,
destination.GetStackIndex());
}
} else {
DCHECK(source.IsConstant()) << source;
HConstant* constant = source.GetConstant();
if (constant->IsIntConstant() || constant->IsNullConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(constant);
if (destination.IsRegister()) {
__ LoadImmediate(destination.AsRegister<Register>(), value);
} else {
DCHECK(destination.IsStackSlot());
__ LoadImmediate(IP, value);
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
}
} else if (constant->IsLongConstant()) {
int64_t value = constant->AsLongConstant()->GetValue();
if (destination.IsRegisterPair()) {
__ LoadImmediate(destination.AsRegisterPairLow<Register>(), Low32Bits(value));
__ LoadImmediate(destination.AsRegisterPairHigh<Register>(), High32Bits(value));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
__ LoadImmediate(IP, Low32Bits(value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
__ LoadImmediate(IP, High32Bits(value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
}
} else if (constant->IsDoubleConstant()) {
double value = constant->AsDoubleConstant()->GetValue();
if (destination.IsFpuRegisterPair()) {
__ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), value);
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
uint64_t int_value = bit_cast<uint64_t, double>(value);
__ LoadImmediate(IP, Low32Bits(int_value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
__ LoadImmediate(IP, High32Bits(int_value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
}
} else {
DCHECK(constant->IsFloatConstant()) << constant->DebugName();
float value = constant->AsFloatConstant()->GetValue();
if (destination.IsFpuRegister()) {
__ LoadSImmediate(destination.AsFpuRegister<SRegister>(), value);
} else {
DCHECK(destination.IsStackSlot());
__ LoadImmediate(IP, bit_cast<int32_t, float>(value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
}
}
}
}
void ParallelMoveResolverARM::Exchange(Register reg, int mem) {
__ Mov(IP, reg);
__ LoadFromOffset(kLoadWord, reg, SP, mem);
__ StoreToOffset(kStoreWord, IP, SP, mem);
}
void ParallelMoveResolverARM::Exchange(int mem1, int mem2) {
ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters());
int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
__ LoadFromOffset(kLoadWord, static_cast<Register>(ensure_scratch.GetRegister()),
SP, mem1 + stack_offset);
__ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset);
__ StoreToOffset(kStoreWord, static_cast<Register>(ensure_scratch.GetRegister()),
SP, mem2 + stack_offset);
__ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset);
}
void ParallelMoveResolverARM::EmitSwap(size_t index) {
MoveOperands* move = moves_[index];
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister() && destination.IsRegister()) {
DCHECK_NE(source.AsRegister<Register>(), IP);
DCHECK_NE(destination.AsRegister<Register>(), IP);
__ Mov(IP, source.AsRegister<Register>());
__ Mov(source.AsRegister<Register>(), destination.AsRegister<Register>());
__ Mov(destination.AsRegister<Register>(), IP);
} else if (source.IsRegister() && destination.IsStackSlot()) {
Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsRegister()) {
Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
Exchange(source.GetStackIndex(), destination.GetStackIndex());
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
__ vmovrs(IP, source.AsFpuRegister<SRegister>());
__ vmovs(source.AsFpuRegister<SRegister>(), destination.AsFpuRegister<SRegister>());
__ vmovsr(destination.AsFpuRegister<SRegister>(), IP);
} else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
__ vmovdrr(DTMP, source.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>());
__ Mov(source.AsRegisterPairLow<Register>(), destination.AsRegisterPairLow<Register>());
__ Mov(source.AsRegisterPairHigh<Register>(), destination.AsRegisterPairHigh<Register>());
__ vmovrrd(destination.AsRegisterPairLow<Register>(),
destination.AsRegisterPairHigh<Register>(),
DTMP);
} else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
Register low_reg = source.IsRegisterPair()
? source.AsRegisterPairLow<Register>()
: destination.AsRegisterPairLow<Register>();
int mem = source.IsRegisterPair()
? destination.GetStackIndex()
: source.GetStackIndex();
DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
__ vmovdrr(DTMP, low_reg, static_cast<Register>(low_reg + 1));
__ LoadFromOffset(kLoadWordPair, low_reg, SP, mem);
__ StoreDToOffset(DTMP, SP, mem);
} else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
DRegister first = FromLowSToD(source.AsFpuRegisterPairLow<SRegister>());
DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
__ vmovd(DTMP, first);
__ vmovd(first, second);
__ vmovd(second, DTMP);
} else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
DRegister reg = source.IsFpuRegisterPair()
? FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())
: FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
int mem = source.IsFpuRegisterPair()
? destination.GetStackIndex()
: source.GetStackIndex();
__ vmovd(DTMP, reg);
__ LoadDFromOffset(reg, SP, mem);
__ StoreDToOffset(DTMP, SP, mem);
} else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister<SRegister>()
: destination.AsFpuRegister<SRegister>();
int mem = source.IsFpuRegister()
? destination.GetStackIndex()
: source.GetStackIndex();
__ vmovrs(IP, reg);
__ LoadSFromOffset(reg, SP, mem);
__ StoreToOffset(kStoreWord, IP, SP, mem);
} else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
Exchange(source.GetStackIndex(), destination.GetStackIndex());
Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize));
} else {
LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
}
}
void ParallelMoveResolverARM::SpillScratch(int reg) {
__ Push(static_cast<Register>(reg));
}
void ParallelMoveResolverARM::RestoreScratch(int reg) {
__ Pop(static_cast<Register>(reg));
}
HLoadClass::LoadKind CodeGeneratorARM::GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) {
switch (desired_class_load_kind) {
case HLoadClass::LoadKind::kInvalid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
case HLoadClass::LoadKind::kReferrersClass:
break;
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
case HLoadClass::LoadKind::kBssEntry:
DCHECK(!Runtime::Current()->UseJitCompilation());
break;
case HLoadClass::LoadKind::kJitTableAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
break;
case HLoadClass::LoadKind::kBootImageAddress:
case HLoadClass::LoadKind::kRuntimeCall:
break;
}
return desired_class_load_kind;
}
void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) {
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
InvokeRuntimeCallingConvention calling_convention;
CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
cls,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Location::RegisterLocation(R0));
DCHECK_EQ(calling_convention.GetRegisterAt(0), R0);
return;
}
DCHECK(!cls->NeedsAccessCheck());
const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
locations->SetInAt(0, Location::RequiresRegister());
}
locations->SetOut(Location::RequiresRegister());
if (load_kind == HLoadClass::LoadKind::kBssEntry) {
if (!kUseReadBarrier || kUseBakerReadBarrier) {
// Rely on the type resolution or initialization and marking to save everything we need.
// Note that IP may be clobbered by saving/restoring the live register (only one thanks
// to the custom calling convention) or by marking, so we request a different temp.
locations->AddTemp(Location::RequiresRegister());
RegisterSet caller_saves = RegisterSet::Empty();
InvokeRuntimeCallingConvention calling_convention;
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
// TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
// that the the kPrimNot result register is the same as the first argument register.
locations->SetCustomSlowPathCallerSaves(caller_saves);
} else {
// For non-Baker read barrier we have a temp-clobbering call.
}
}
if (kUseBakerReadBarrier && kBakerReadBarrierLinkTimeThunksEnableForGcRoots) {
if (load_kind == HLoadClass::LoadKind::kBssEntry ||
(load_kind == HLoadClass::LoadKind::kReferrersClass &&
!Runtime::Current()->UseJitCompilation())) {
locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister));
}
}
}
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
// move.
void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
codegen_->GenerateLoadClassRuntimeCall(cls);
return;
}
DCHECK(!cls->NeedsAccessCheck());
LocationSummary* locations = cls->GetLocations();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
? kWithoutReadBarrier
: kCompilerReadBarrierOption;
bool generate_null_check = false;
switch (load_kind) {
case HLoadClass::LoadKind::kReferrersClass: {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
Register current_method = locations->InAt(0).AsRegister<Register>();
GenerateGcRootFieldLoad(cls,
out_loc,
current_method,
ArtMethod::DeclaringClassOffset().Int32Value(),
read_barrier_option);
break;
}
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
CodeGeneratorARM::PcRelativePatchInfo* labels =
codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
__ BindTrackedLabel(&labels->movw_label);
__ movw(out, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->movt_label);
__ movt(out, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->add_pc_label);
__ add(out, out, ShifterOperand(PC));
break;
}
case HLoadClass::LoadKind::kBootImageAddress: {
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
uint32_t address = dchecked_integral_cast<uint32_t>(
reinterpret_cast<uintptr_t>(cls->GetClass().Get()));
DCHECK_NE(address, 0u);
__ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
break;
}
case HLoadClass::LoadKind::kBssEntry: {
Register temp = (!kUseReadBarrier || kUseBakerReadBarrier)
? locations->GetTemp(0).AsRegister<Register>()
: out;
CodeGeneratorARM::PcRelativePatchInfo* labels =
codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex());
__ BindTrackedLabel(&labels->movw_label);
__ movw(temp, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->movt_label);
__ movt(temp, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->add_pc_label);
__ add(temp, temp, ShifterOperand(PC));
GenerateGcRootFieldLoad(cls, out_loc, temp, /* offset */ 0, read_barrier_option);
generate_null_check = true;
break;
}
case HLoadClass::LoadKind::kJitTableAddress: {
__ LoadLiteral(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
cls->GetTypeIndex(),
cls->GetClass()));
// /* GcRoot<mirror::Class> */ out = *out
GenerateGcRootFieldLoad(cls, out_loc, out, /* offset */ 0, read_barrier_option);
break;
}
case HLoadClass::LoadKind::kRuntimeCall:
case HLoadClass::LoadKind::kInvalid:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
if (generate_null_check || cls->MustGenerateClinitCheck()) {
DCHECK(cls->CanCallRuntime());
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
codegen_->AddSlowPath(slow_path);
if (generate_null_check) {
__ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
}
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
}
}
void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) {
// We assume the class is not null.
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
check->GetLoadClass(), check, check->GetDexPc(), true);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path,
check->GetLocations()->InAt(0).AsRegister<Register>());
}
void InstructionCodeGeneratorARM::GenerateClassInitializationCheck(
SlowPathCodeARM* slow_path, Register class_reg) {
__ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value());
__ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized));
__ b(slow_path->GetEntryLabel(), LT);
// Even if the initialized flag is set, we may be in a situation where caches are not synced
// properly. Therefore, we do a memory fence.
__ dmb(ISH);
__ Bind(slow_path->GetExitLabel());
}
HLoadString::LoadKind CodeGeneratorARM::GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) {
switch (desired_string_load_kind) {
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
case HLoadString::LoadKind::kBssEntry:
DCHECK(!Runtime::Current()->UseJitCompilation());
break;
case HLoadString::LoadKind::kJitTableAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
break;
case HLoadString::LoadKind::kBootImageAddress:
case HLoadString::LoadKind::kRuntimeCall:
break;
}
return desired_string_load_kind;
}
void LocationsBuilderARM::VisitLoadString(HLoadString* load) {
LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
HLoadString::LoadKind load_kind = load->GetLoadKind();
if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
locations->SetOut(Location::RegisterLocation(R0));
} else {
locations->SetOut(Location::RequiresRegister());
if (load_kind == HLoadString::LoadKind::kBssEntry) {
if (!kUseReadBarrier || kUseBakerReadBarrier) {
// Rely on the pResolveString and marking to save everything we need, including temps.
// Note that IP may be clobbered by saving/restoring the live register (only one thanks
// to the custom calling convention) or by marking, so we request a different temp.
locations->AddTemp(Location::RequiresRegister());
RegisterSet caller_saves = RegisterSet::Empty();
InvokeRuntimeCallingConvention calling_convention;
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
// TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
// that the the kPrimNot result register is the same as the first argument register.
locations->SetCustomSlowPathCallerSaves(caller_saves);
if (kUseBakerReadBarrier && kBakerReadBarrierLinkTimeThunksEnableForGcRoots) {
locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister));
}
} else {
// For non-Baker read barrier we have a temp-clobbering call.
}
}
}
}
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
// move.
void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
LocationSummary* locations = load->GetLocations();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
HLoadString::LoadKind load_kind = load->GetLoadKind();
switch (load_kind) {
case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
CodeGeneratorARM::PcRelativePatchInfo* labels =
codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
__ BindTrackedLabel(&labels->movw_label);
__ movw(out, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->movt_label);
__ movt(out, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->add_pc_label);
__ add(out, out, ShifterOperand(PC));
return; // No dex cache slow path.
}
case HLoadString::LoadKind::kBootImageAddress: {
uint32_t address = dchecked_integral_cast<uint32_t>(
reinterpret_cast<uintptr_t>(load->GetString().Get()));
DCHECK_NE(address, 0u);
__ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
return; // No dex cache slow path.
}
case HLoadString::LoadKind::kBssEntry: {
DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
Register temp = (!kUseReadBarrier || kUseBakerReadBarrier)
? locations->GetTemp(0).AsRegister<Register>()
: out;
CodeGeneratorARM::PcRelativePatchInfo* labels =
codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
__ BindTrackedLabel(&labels->movw_label);
__ movw(temp, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->movt_label);
__ movt(temp, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->add_pc_label);
__ add(temp, temp, ShifterOperand(PC));
GenerateGcRootFieldLoad(load, out_loc, temp, /* offset */ 0, kCompilerReadBarrierOption);
SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load);
codegen_->AddSlowPath(slow_path);
__ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
case HLoadString::LoadKind::kJitTableAddress: {
__ LoadLiteral(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
load->GetStringIndex(),
load->GetString()));
// /* GcRoot<mirror::String> */ out = *out
GenerateGcRootFieldLoad(load, out_loc, out, /* offset */ 0, kCompilerReadBarrierOption);
return;
}
default:
break;
}
// TODO: Consider re-adding the compiler code to do string dex cache lookup again.
DCHECK(load_kind == HLoadString::LoadKind::kRuntimeCall);
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), out);
__ LoadImmediate(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
}
static int32_t GetExceptionTlsOffset() {
return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
}
void LocationsBuilderARM::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) {
Register out = load->GetLocations()->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
}
void LocationsBuilderARM::VisitClearException(HClearException* clear) {
new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
}
void InstructionCodeGeneratorARM::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
__ LoadImmediate(IP, 0);
__ StoreToOffset(kStoreWord, IP, TR, GetExceptionTlsOffset());
}
void LocationsBuilderARM::VisitThrow(HThrow* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) {
codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
}
// Temp is used for read barrier.
static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
if (kEmitCompilerReadBarrier &&
(kUseBakerReadBarrier ||
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
return 1;
}
return 0;
}
// Interface case has 3 temps, one for holding the number of interfaces, one for the current
// interface pointer, one for loading the current interface.
// The other checks have one temp for loading the object's class.
static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
return 3;
}
return 1 + NumberOfInstanceOfTemps(type_check_kind);
}
void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
bool baker_read_barrier_slow_path = false;
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kAbstractClassCheck:
case TypeCheckKind::kClassHierarchyCheck:
case TypeCheckKind::kArrayObjectCheck:
call_kind =
kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
baker_read_barrier_slow_path = kUseBakerReadBarrier;
break;
case TypeCheckKind::kArrayCheck:
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck:
call_kind = LocationSummary::kCallOnSlowPath;
break;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
if (baker_read_barrier_slow_path) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// The "out" register is used as a temporary, so it overlaps with the inputs.
// Note that TypeCheckSlowPathARM uses this register too.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
codegen_->MaybeAddBakerCcEntrypointTempForFields(locations);
}
}
void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Register cls = locations->InAt(1).AsRegister<Register>();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
DCHECK_LE(num_temps, 1u);
Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
Label done;
Label* const final_label = codegen_->GetFinalLabel(instruction, &done);
SlowPathCodeARM* slow_path = nullptr;
// Return 0 if `obj` is null.
// avoid null check if we know obj is not null.
if (instruction->MustDoNullCheck()) {
DCHECK_NE(out, obj);
__ LoadImmediate(out, 0);
__ CompareAndBranchIfZero(obj, final_label);
}
switch (type_check_kind) {
case TypeCheckKind::kExactCheck: {
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
// Classes must be equal for the instanceof to succeed.
__ cmp(out, ShifterOperand(cls));
// We speculatively set the result to false without changing the condition
// flags, which allows us to avoid some branching later.
__ mov(out, ShifterOperand(0), AL, kCcKeep);
// Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
// we check that the output is in a low register, so that a 16-bit MOV
// encoding can be used.
if (ArmAssembler::IsLowRegister(out)) {
__ it(EQ);
__ mov(out, ShifterOperand(1), EQ);
} else {
__ b(final_label, NE);
__ LoadImmediate(out, 1);
}
break;
}
case TypeCheckKind::kAbstractClassCheck: {
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
// If the class is abstract, we eagerly fetch the super class of the
// object to avoid doing a comparison we know will fail.
Label loop;
__ Bind(&loop);
// /* HeapReference<Class> */ out = out->super_class_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
super_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
// If `out` is null, we use it for the result, and jump to the final label.
__ CompareAndBranchIfZero(out, final_label);
__ cmp(out, ShifterOperand(cls));
__ b(&loop, NE);
__ LoadImmediate(out, 1);
break;
}
case TypeCheckKind::kClassHierarchyCheck: {
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
// Walk over the class hierarchy to find a match.
Label loop, success;
__ Bind(&loop);
__ cmp(out, ShifterOperand(cls));
__ b(&success, EQ);
// /* HeapReference<Class> */ out = out->super_class_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
super_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
// This is essentially a null check, but it sets the condition flags to the
// proper value for the code that follows the loop, i.e. not `EQ`.
__ cmp(out, ShifterOperand(1));
__ b(&loop, HS);
// Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
// we check that the output is in a low register, so that a 16-bit MOV
// encoding can be used.
if (ArmAssembler::IsLowRegister(out)) {
// If `out` is null, we use it for the result, and the condition flags
// have already been set to `NE`, so the IT block that comes afterwards
// (and which handles the successful case) turns into a NOP (instead of
// overwriting `out`).
__ Bind(&success);
// There is only one branch to the `success` label (which is bound to this
// IT block), and it has the same condition, `EQ`, so in that case the MOV
// is executed.
__ it(EQ);
__ mov(out, ShifterOperand(1), EQ);
} else {
// If `out` is null, we use it for the result, and jump to the final label.
__ b(final_label);
__ Bind(&success);
__ LoadImmediate(out, 1);
}
break;
}
case TypeCheckKind::kArrayObjectCheck: {
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
// Do an exact check.
Label exact_check;
__ cmp(out, ShifterOperand(cls));
__ b(&exact_check, EQ);
// Otherwise, we need to check that the object's class is a non-primitive array.
// /* HeapReference<Class> */ out = out->component_type_
GenerateReferenceLoadOneRegister(instruction,
out_loc,
component_offset,
maybe_temp_loc,
kCompilerReadBarrierOption);
// If `out` is null, we use it for the result, and jump to the final label.
__ CompareAndBranchIfZero(out, final_label);
__ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
__ cmp(out, ShifterOperand(0));
// We speculatively set the result to false without changing the condition
// flags, which allows us to avoid some branching later.
__ mov(out, ShifterOperand(0), AL, kCcKeep);
// Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
// we check that the output is in a low register, so that a 16-bit MOV
// encoding can be used.
if (ArmAssembler::IsLowRegister(out)) {
__ Bind(&exact_check);
__ it(EQ);
__ mov(out, ShifterOperand(1), EQ);
} else {
__ b(final_label, NE);
__ Bind(&exact_check);
__ LoadImmediate(out, 1);
}
break;
}
case TypeCheckKind::kArrayCheck: {
// No read barrier since the slow path will retry upon failure.
// /* HeapReference<Class> */ out = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
out_loc,
obj_loc,
class_offset,
maybe_temp_loc,
kWithoutReadBarrier);
__ cmp(out, ShifterOperand(cls));
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
/* is_fatal */ false);
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), NE);
__ LoadImmediate(out, 1);
break;
}
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck: {
// Note that we indeed only call on slow path, but we always go
// into the slow path for the unresolved and interface check
// cases.
//
// We cannot directly call the InstanceofNonTrivial runtime
// entry point without resorting to a type checking slow path
// here (i.e. by calling InvokeRuntime directly), as it would
// require to assign fixed registers for the inputs of this
// HInstanceOf instruction (following the runtime calling
// convention), which might be cluttered by the potential first
// read barrier emission at the beginning of this method.
//
// TODO: Introduce a new runtime entry point taking the object
// to test (instead of its class) as argument, and let it deal
// with the read barrier issues. This will let us refactor this
// case of the `switch` code as it was previously (with a direct
// call to the runtime not using a type checking slow path).
// This should also be beneficial for the other cases above.
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
/* is_fatal */ false);
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel());
break;
}
}
if (done.IsLinked()) {
__ Bind(&done);
}
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) {
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kAbstractClassCheck:
case TypeCheckKind::kClassHierarchyCheck:
case TypeCheckKind::kArrayObjectCheck:
call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
LocationSummary::kCallOnSlowPath :
LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path.
break;
case TypeCheckKind::kArrayCheck:
case TypeCheckKind::kUnresolvedCheck:
case TypeCheckKind::kInterfaceCheck:
call_kind = LocationSummary::kCallOnSlowPath;
break;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
}
void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) {
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
LocationSummary* locations = instruction->GetLocations();
Location obj_loc = locations->InAt(0);
Register obj = obj_loc.AsRegister<Register>();
Register cls = locations->InAt(1).AsRegister<Register>();
Location temp_loc = locations->GetTemp(0);
Register temp = temp_loc.AsRegister<Register>();
const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
DCHECK_LE(num_temps, 3u);
Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
const uint32_t object_array_data_offset =
mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
// Always false for read barriers since we may need to go to the entrypoint for non-fatal cases
// from false negatives. The false negatives may come from avoiding read barriers below. Avoiding
// read barriers is done for performance and code size reasons.
bool is_type_check_slow_path_fatal = false;
if (!kEmitCompilerReadBarrier) {
is_type_check_slow_path_fatal =
(type_check_kind == TypeCheckKind::kExactCheck ||
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
!instruction->CanThrowIntoCatchBlock();
}
SlowPathCodeARM* type_check_slow_path =
new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
is_type_check_slow_path_fatal);
codegen_->AddSlowPath(type_check_slow_path);
Label done;
Label* final_label = codegen_->GetFinalLabel(instruction, &done);
// Avoid null check if we know obj is not null.
if (instruction->MustDoNullCheck()) {
__ CompareAndBranchIfZero(obj, final_label);
}
switch (type_check_kind) {
case TypeCheckKind::kExactCheck:
case TypeCheckKind::kArrayCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
__ cmp(temp, ShifterOperand(cls));
// Jump to slow path for throwing the exception or doing a
// more involved array check.
__ b(type_check_slow_path->GetEntryLabel(), NE);
break;
}
case TypeCheckKind::kAbstractClassCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class is abstract, we eagerly fetch the super class of the
// object to avoid doing a comparison we know will fail.
Label loop;
__ Bind(&loop);
// /* HeapReference<Class> */ temp = temp->super_class_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
super_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class reference currently in `temp` is null, jump to the slow path to throw the
// exception.
__ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
// Otherwise, compare the classes.
__ cmp(temp, ShifterOperand(cls));
__ b(&loop, NE);
break;
}
case TypeCheckKind::kClassHierarchyCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Walk over the class hierarchy to find a match.
Label loop;
__ Bind(&loop);
__ cmp(temp, ShifterOperand(cls));
__ b(final_label, EQ);
// /* HeapReference<Class> */ temp = temp->super_class_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
super_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the class reference currently in `temp` is null, jump to the slow path to throw the
// exception.
__ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
// Otherwise, jump to the beginning of the loop.
__ b(&loop);
break;
}
case TypeCheckKind::kArrayObjectCheck: {
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Do an exact check.
__ cmp(temp, ShifterOperand(cls));
__ b(final_label, EQ);
// Otherwise, we need to check that the object's class is a non-primitive array.
// /* HeapReference<Class> */ temp = temp->component_type_
GenerateReferenceLoadOneRegister(instruction,
temp_loc,
component_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// If the component type is null, jump to the slow path to throw the exception.
__ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
// Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type`
// to further check that this component type is not a primitive type.
__ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot");
__ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel());
break;
}
case TypeCheckKind::kUnresolvedCheck:
// We always go into the type check slow path for the unresolved check case.
// We cannot directly call the CheckCast runtime entry point
// without resorting to a type checking slow path here (i.e. by
// calling InvokeRuntime directly), as it would require to
// assign fixed registers for the inputs of this HInstanceOf
// instruction (following the runtime calling convention), which
// might be cluttered by the potential first read barrier
// emission at the beginning of this method.
__ b(type_check_slow_path->GetEntryLabel());
break;
case TypeCheckKind::kInterfaceCheck: {
// Avoid read barriers to improve performance of the fast path. We can not get false
// positives by doing this.
// /* HeapReference<Class> */ temp = obj->klass_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
obj_loc,
class_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// /* HeapReference<Class> */ temp = temp->iftable_
GenerateReferenceLoadTwoRegisters(instruction,
temp_loc,
temp_loc,
iftable_offset,
maybe_temp2_loc,
kWithoutReadBarrier);
// Iftable is never null.
__ ldr(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset));
// Loop through the iftable and check if any class matches.
Label start_loop;
__ Bind(&start_loop);
__ CompareAndBranchIfZero(maybe_temp2_loc.AsRegister<Register>(),
type_check_slow_path->GetEntryLabel());
__ ldr(maybe_temp3_loc.AsRegister<Register>(), Address(temp, object_array_data_offset));
__ MaybeUnpoisonHeapReference(maybe_temp3_loc.AsRegister<Register>());
// Go to next interface.
__ add(temp, temp, ShifterOperand(2 * kHeapReferenceSize));
__ sub(maybe_temp2_loc.AsRegister<Register>(),
maybe_temp2_loc.AsRegister<Register>(),
ShifterOperand(2));
// Compare the classes and continue the loop if they do not match.
__ cmp(cls, ShifterOperand(maybe_temp3_loc.AsRegister<Register>()));
__ b(&start_loop, NE);
break;
}
}
if (done.IsLinked()) {
__ Bind(&done);
}
__ Bind(type_check_slow_path->GetExitLabel());
}
void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) {
codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
instruction,
instruction->GetDexPc());
if (instruction->IsEnter()) {
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
} else {
CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
}
}
void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); }
void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); }
void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); }
void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
DCHECK(instruction->GetResultType() == Primitive::kPrimInt
|| instruction->GetResultType() == Primitive::kPrimLong);
// Note: GVN reorders commutative operations to have the constant on the right hand side.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) {
HandleBitwiseOperation(instruction);
}
void LocationsBuilderARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
DCHECK(instruction->GetResultType() == Primitive::kPrimInt
|| instruction->GetResultType() == Primitive::kPrimLong);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
if (instruction->GetResultType() == Primitive::kPrimInt) {
Register first_reg = first.AsRegister<Register>();
ShifterOperand second_reg(second.AsRegister<Register>());
Register out_reg = out.AsRegister<Register>();
switch (instruction->GetOpKind()) {
case HInstruction::kAnd:
__ bic(out_reg, first_reg, second_reg);
break;
case HInstruction::kOr:
__ orn(out_reg, first_reg, second_reg);
break;
// There is no EON on arm.
case HInstruction::kXor:
default:
LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
UNREACHABLE();
}
return;
} else {
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
Register first_low = first.AsRegisterPairLow<Register>();
Register first_high = first.AsRegisterPairHigh<Register>();
ShifterOperand second_low(second.AsRegisterPairLow<Register>());
ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
Register out_low = out.AsRegisterPairLow<Register>();
Register out_high = out.AsRegisterPairHigh<Register>();
switch (instruction->GetOpKind()) {
case HInstruction::kAnd:
__ bic(out_low, first_low, second_low);
__ bic(out_high, first_high, second_high);
break;
case HInstruction::kOr:
__ orn(out_low, first_low, second_low);
__ orn(out_high, first_high, second_high);
break;
// There is no EON on arm.
case HInstruction::kXor:
default:
LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
UNREACHABLE();
}
}
}
void LocationsBuilderARM::VisitDataProcWithShifterOp(
HDataProcWithShifterOp* instruction) {
DCHECK(instruction->GetType() == Primitive::kPrimInt ||
instruction->GetType() == Primitive::kPrimLong);
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
const bool overlap = instruction->GetType() == Primitive::kPrimLong &&
HDataProcWithShifterOp::IsExtensionOp(instruction->GetOpKind());
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(),
overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitDataProcWithShifterOp(
HDataProcWithShifterOp* instruction) {
const LocationSummary* const locations = instruction->GetLocations();
const HInstruction::InstructionKind kind = instruction->GetInstrKind();
const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
const Location left = locations->InAt(0);
const Location right = locations->InAt(1);
const Location out = locations->Out();
if (instruction->GetType() == Primitive::kPrimInt) {
DCHECK(!HDataProcWithShifterOp::IsExtensionOp(op_kind));
const Register second = instruction->InputAt(1)->GetType() == Primitive::kPrimLong
? right.AsRegisterPairLow<Register>()
: right.AsRegister<Register>();
GenerateDataProcInstruction(kind,
out.AsRegister<Register>(),
left.AsRegister<Register>(),
ShifterOperand(second,
ShiftFromOpKind(op_kind),
instruction->GetShiftAmount()),
codegen_);
} else {
DCHECK_EQ(instruction->GetType(), Primitive::kPrimLong);
if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
const Register second = right.AsRegister<Register>();
DCHECK_NE(out.AsRegisterPairLow<Register>(), second);
GenerateDataProc(kind,
out,
left,
ShifterOperand(second),
ShifterOperand(second, ASR, 31),
codegen_);
} else {
GenerateLongDataProc(instruction, codegen_);
}
}
}
void InstructionCodeGeneratorARM::GenerateAndConst(Register out, Register first, uint32_t value) {
// Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
if (value == 0xffffffffu) {
if (out != first) {
__ mov(out, ShifterOperand(first));
}
return;
}
if (value == 0u) {
__ mov(out, ShifterOperand(0));
return;
}
ShifterOperand so;
if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, AND, value, &so)) {
__ and_(out, first, so);
} else if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, BIC, ~value, &so)) {
__ bic(out, first, ShifterOperand(~value));
} else {
DCHECK(IsPowerOfTwo(value + 1));
__ ubfx(out, first, 0, WhichPowerOf2(value + 1));
}
}
void InstructionCodeGeneratorARM::GenerateOrrConst(Register out, Register first, uint32_t value) {
// Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
if (value == 0u) {
if (out != first) {
__ mov(out, ShifterOperand(first));
}
return;
}
if (value == 0xffffffffu) {
__ mvn(out, ShifterOperand(0));
return;
}
ShifterOperand so;
if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORR, value, &so)) {
__ orr(out, first, so);
} else {
DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORN, ~value, &so));
__ orn(out, first, ShifterOperand(~value));
}
}
void InstructionCodeGeneratorARM::GenerateEorConst(Register out, Register first, uint32_t value) {
// Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
if (value == 0u) {
if (out != first) {
__ mov(out, ShifterOperand(first));
}
return;
}
__ eor(out, first, ShifterOperand(value));
}
void InstructionCodeGeneratorARM::GenerateAddLongConst(Location out,
Location first,
uint64_t value) {
Register out_low = out.AsRegisterPairLow<Register>();
Register out_high = out.AsRegisterPairHigh<Register>();
Register first_low = first.AsRegisterPairLow<Register>();
Register first_high = first.AsRegisterPairHigh<Register>();
uint32_t value_low = Low32Bits(value);
uint32_t value_high = High32Bits(value);
if (value_low == 0u) {
if (out_low != first_low) {
__ mov(out_low, ShifterOperand(first_low));
}
__ AddConstant(out_high, first_high, value_high);
return;
}
__ AddConstantSetFlags(out_low, first_low, value_low);
ShifterOperand so;
if (__ ShifterOperandCanHold(out_high, first_high, ADC, value_high, kCcDontCare, &so)) {
__ adc(out_high, first_high, so);
} else if (__ ShifterOperandCanHold(out_low, first_low, SBC, ~value_high, kCcDontCare, &so)) {
__ sbc(out_high, first_high, so);
} else {
LOG(FATAL) << "Unexpected constant " << value_high;
UNREACHABLE();
}
}
void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
if (second.IsConstant()) {
uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
uint32_t value_low = Low32Bits(value);
if (instruction->GetResultType() == Primitive::kPrimInt) {
Register first_reg = first.AsRegister<Register>();
Register out_reg = out.AsRegister<Register>();
if (instruction->IsAnd()) {
GenerateAndConst(out_reg, first_reg, value_low);
} else if (instruction->IsOr()) {
GenerateOrrConst(out_reg, first_reg, value_low);
} else {
DCHECK(instruction->IsXor());
GenerateEorConst(out_reg, first_reg, value_low);
}
} else {
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
uint32_t value_high = High32Bits(value);
Register first_low = first.AsRegisterPairLow<Register>();
Register first_high = first.AsRegisterPairHigh<Register>();
Register out_low = out.AsRegisterPairLow<Register>();
Register out_high = out.AsRegisterPairHigh<Register>();
if (instruction->IsAnd()) {
GenerateAndConst(out_low, first_low, value_low);
GenerateAndConst(out_high, first_high, value_high);
} else if (instruction->IsOr()) {
GenerateOrrConst(out_low, first_low, value_low);
GenerateOrrConst(out_high, first_high, value_high);
} else {
DCHECK(instruction->IsXor());
GenerateEorConst(out_low, first_low, value_low);
GenerateEorConst(out_high, first_high, value_high);
}
}
return;
}
if (instruction->GetResultType() == Primitive::kPrimInt) {
Register first_reg = first.AsRegister<Register>();
ShifterOperand second_reg(second.AsRegister<Register>());
Register out_reg = out.AsRegister<Register>();
if (instruction->IsAnd()) {
__ and_(out_reg, first_reg, second_reg);
} else if (instruction->IsOr()) {
__ orr(out_reg, first_reg, second_reg);
} else {
DCHECK(instruction->IsXor());
__ eor(out_reg, first_reg, second_reg);
}
} else {
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
Register first_low = first.AsRegisterPairLow<Register>();
Register first_high = first.AsRegisterPairHigh<Register>();
ShifterOperand second_low(second.AsRegisterPairLow<Register>());
ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
Register out_low = out.AsRegisterPairLow<Register>();
Register out_high = out.AsRegisterPairHigh<Register>();
if (instruction->IsAnd()) {
__ and_(out_low, first_low, second_low);
__ and_(out_high, first_high, second_high);
} else if (instruction->IsOr()) {
__ orr(out_low, first_low, second_low);
__ orr(out_high, first_high, second_high);
} else {
DCHECK(instruction->IsXor());
__ eor(out_low, first_low, second_low);
__ eor(out_high, first_high, second_high);
}
}
}
void InstructionCodeGeneratorARM::GenerateReferenceLoadOneRegister(
HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option) {
Register out_reg = out.AsRegister<Register>();
if (read_barrier_option == kWithReadBarrier) {
CHECK(kEmitCompilerReadBarrier);
DCHECK(maybe_temp.IsRegister()) << maybe_temp;
if (kUseBakerReadBarrier) {
// Load with fast path based Baker's read barrier.
// /* HeapReference<Object> */ out = *(out + offset)
codegen_->GenerateFieldLoadWithBakerReadBarrier(
instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
} else {
// Load with slow path based read barrier.
// Save the value of `out` into `maybe_temp` before overwriting it
// in the following move operation, as we will need it for the
// read barrier below.
__ Mov(maybe_temp.AsRegister<Register>(), out_reg);
// /* HeapReference<Object> */ out = *(out + offset)
__ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
}
} else {
// Plain load with no read barrier.
// /* HeapReference<Object> */ out = *(out + offset)
__ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
__ MaybeUnpoisonHeapReference(out_reg);
}
}
void InstructionCodeGeneratorARM::GenerateReferenceLoadTwoRegisters(
HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option) {
Register out_reg = out.AsRegister<Register>();
Register obj_reg = obj.AsRegister<Register>();
if (read_barrier_option == kWithReadBarrier) {
CHECK(kEmitCompilerReadBarrier);
if (kUseBakerReadBarrier) {
DCHECK(maybe_temp.IsRegister()) << maybe_temp;
// Load with fast path based Baker's read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
codegen_->GenerateFieldLoadWithBakerReadBarrier(
instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
} else {
// Load with slow path based read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
__ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
}
} else {
// Plain load with no read barrier.
// /* HeapReference<Object> */ out = *(obj + offset)
__ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
__ MaybeUnpoisonHeapReference(out_reg);
}
}
void InstructionCodeGeneratorARM::GenerateGcRootFieldLoad(HInstruction* instruction,
Location root,
Register obj,
uint32_t offset,
ReadBarrierOption read_barrier_option) {
Register root_reg = root.AsRegister<Register>();
if (read_barrier_option == kWithReadBarrier) {
DCHECK(kEmitCompilerReadBarrier);
if (kUseBakerReadBarrier) {
// Fast path implementation of art::ReadBarrier::BarrierForRoot when
// Baker's read barrier are used.
if (kBakerReadBarrierLinkTimeThunksEnableForGcRoots &&
!Runtime::Current()->UseJitCompilation()) {
// Note that we do not actually check the value of `GetIsGcMarking()`
// to decide whether to mark the loaded GC root or not. Instead, we
// load into `temp` (actually kBakerCcEntrypointRegister) the read
// barrier mark introspection entrypoint. If `temp` is null, it means
// that `GetIsGcMarking()` is false, and vice versa.
//
// We use link-time generated thunks for the slow path. That thunk
// checks the reference and jumps to the entrypoint if needed.
//
// temp = Thread::Current()->pReadBarrierMarkIntrospection
// lr = &return_address;
// GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
// if (temp != nullptr) {
// goto gc_root_thunk<root_reg>(lr)
// }
// return_address:
CheckLastTempIsBakerCcEntrypointRegister(instruction);
bool narrow = CanEmitNarrowLdr(root_reg, obj, offset);
uint32_t custom_data =
linker::Thumb2RelativePatcher::EncodeBakerReadBarrierGcRootData(root_reg, narrow);
Label* bne_label = codegen_->NewBakerReadBarrierPatch(custom_data);
// entrypoint_reg =
// Thread::Current()->pReadBarrierMarkReg12, i.e. pReadBarrierMarkIntrospection.
DCHECK_EQ(IP, 12);
const int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(IP);
__ LoadFromOffset(kLoadWord, kBakerCcEntrypointRegister, TR, entry_point_offset);
Label return_address;
__ AdrCode(LR, &return_address);
__ CmpConstant(kBakerCcEntrypointRegister, 0);
// Currently the offset is always within range. If that changes,
// we shall have to split the load the same way as for fields.
DCHECK_LT(offset, kReferenceLoadMinFarOffset);
DCHECK(!down_cast<Thumb2Assembler*>(GetAssembler())->IsForced32Bit());
ScopedForce32Bit maybe_force_32bit(down_cast<Thumb2Assembler*>(GetAssembler()), !narrow);
int old_position = GetAssembler()->GetBuffer()->GetPosition();
__ LoadFromOffset(kLoadWord, root_reg, obj, offset);
EmitPlaceholderBne(codegen_, bne_label);
__ Bind(&return_address);
DCHECK_EQ(old_position - GetAssembler()->GetBuffer()->GetPosition(),
narrow ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET
: BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_OFFSET);
} else {
// Note that we do not actually check the value of
// `GetIsGcMarking()` to decide whether to mark the loaded GC
// root or not. Instead, we load into `temp` the read barrier
// mark entry point corresponding to register `root`. If `temp`
// is null, it means that `GetIsGcMarking()` is false, and vice
// versa.
//
// temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
// GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
// if (temp != nullptr) { // <=> Thread::Current()->GetIsGcMarking()
// // Slow path.
// root = temp(root); // root = ReadBarrier::Mark(root); // Runtime entry point call.
// }
// Slow path marking the GC root `root`. The entrypoint will already be loaded in `temp`.
Location temp = Location::RegisterLocation(LR);
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(
instruction, root, /* entrypoint */ temp);
codegen_->AddSlowPath(slow_path);
// temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
const int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(root.reg());
// Loading the entrypoint does not require a load acquire since it is only changed when
// threads are suspended or running a checkpoint.
__ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset);
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
__ LoadFromOffset(kLoadWord, root_reg, obj, offset);
static_assert(
sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
"art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
"have different sizes.");
static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::CompressedReference<mirror::Object> and int32_t "
"have different sizes.");
// The entrypoint is null when the GC is not marking, this prevents one load compared to
// checking GetIsGcMarking.
__ CompareAndBranchIfNonZero(temp.AsRegister<Register>(), slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
} else {
// GC root loaded through a slow path for read barriers other
// than Baker's.
// /* GcRoot<mirror::Object>* */ root = obj + offset
__ AddConstant(root_reg, obj, offset);
// /* mirror::Object* */ root = root->Read()
codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
}
} else {
// Plain GC root load with no read barrier.
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
__ LoadFromOffset(kLoadWord, root_reg, obj, offset);
// Note that GC roots are not affected by heap poisoning, thus we
// do not have to unpoison `root_reg` here.
}
}
void CodeGeneratorARM::MaybeAddBakerCcEntrypointTempForFields(LocationSummary* locations) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
if (kBakerReadBarrierLinkTimeThunksEnableForFields) {
if (!Runtime::Current()->UseJitCompilation()) {
locations->AddTemp(Location::RegisterLocation(kBakerCcEntrypointRegister));
}
}
}
void CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location temp,
bool needs_null_check) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
if (kBakerReadBarrierLinkTimeThunksEnableForFields &&
!Runtime::Current()->UseJitCompilation()) {
// Note that we do not actually check the value of `GetIsGcMarking()`
// to decide whether to mark the loaded reference or not. Instead, we
// load into `temp` (actually kBakerCcEntrypointRegister) the read
// barrier mark introspection entrypoint. If `temp` is null, it means
// that `GetIsGcMarking()` is false, and vice versa.
//
// We use link-time generated thunks for the slow path. That thunk checks
// the holder and jumps to the entrypoint if needed. If the holder is not
// gray, it creates a fake dependency and returns to the LDR instruction.
//
// temp = Thread::Current()->pReadBarrierMarkIntrospection
// lr = &gray_return_address;
// if (temp != nullptr) {
// goto field_thunk<holder_reg, base_reg>(lr)
// }
// not_gray_return_address:
// // Original reference load. If the offset is too large to fit
// // into LDR, we use an adjusted base register here.
// HeapReference<mirror::Object> reference = *(obj+offset);
// gray_return_address:
DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
Register ref_reg = ref.AsRegister<Register>();
bool narrow = CanEmitNarrowLdr(ref_reg, obj, offset);
Register base = obj;
if (offset >= kReferenceLoadMinFarOffset) {
base = temp.AsRegister<Register>();
DCHECK_NE(base, kBakerCcEntrypointRegister);
static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
__ AddConstant(base, obj, offset & ~(kReferenceLoadMinFarOffset - 1u));
offset &= (kReferenceLoadMinFarOffset - 1u);
// Use narrow LDR only for small offsets. Generating narrow encoding LDR for the large
// offsets with `(offset & (kReferenceLoadMinFarOffset - 1u)) < 32u` would most likely
// increase the overall code size when taking the generated thunks into account.
DCHECK(!narrow);
}
CheckLastTempIsBakerCcEntrypointRegister(instruction);
uint32_t custom_data =
linker::Thumb2RelativePatcher::EncodeBakerReadBarrierFieldData(base, obj, narrow);
Label* bne_label = NewBakerReadBarrierPatch(custom_data);
// entrypoint_reg =
// Thread::Current()->pReadBarrierMarkReg12, i.e. pReadBarrierMarkIntrospection.
DCHECK_EQ(IP, 12);
const int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(IP);
__ LoadFromOffset(kLoadWord, kBakerCcEntrypointRegister, TR, entry_point_offset);
Label return_address;
__ AdrCode(LR, &return_address);
__ CmpConstant(kBakerCcEntrypointRegister, 0);
EmitPlaceholderBne(this, bne_label);
DCHECK_LT(offset, kReferenceLoadMinFarOffset);
DCHECK(!down_cast<Thumb2Assembler*>(GetAssembler())->IsForced32Bit());
ScopedForce32Bit maybe_force_32bit(down_cast<Thumb2Assembler*>(GetAssembler()), !narrow);
int old_position = GetAssembler()->GetBuffer()->GetPosition();
__ LoadFromOffset(kLoadWord, ref_reg, base, offset);
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
__ Bind(&return_address);
DCHECK_EQ(old_position - GetAssembler()->GetBuffer()->GetPosition(),
narrow ? BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET
: BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET);
return;
}
// /* HeapReference<Object> */ ref = *(obj + offset)
Location no_index = Location::NoLocation();
ScaleFactor no_scale_factor = TIMES_1;
GenerateReferenceLoadWithBakerReadBarrier(
instruction, ref, obj, offset, no_index, no_scale_factor, temp, needs_null_check);
}
void CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t data_offset,
Location index,
Location temp,
bool needs_null_check) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
static_assert(
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
ScaleFactor scale_factor = TIMES_4;
if (kBakerReadBarrierLinkTimeThunksEnableForArrays &&
!Runtime::Current()->UseJitCompilation()) {
// Note that we do not actually check the value of `GetIsGcMarking()`
// to decide whether to mark the loaded reference or not. Instead, we
// load into `temp` (actually kBakerCcEntrypointRegister) the read
// barrier mark introspection entrypoint. If `temp` is null, it means
// that `GetIsGcMarking()` is false, and vice versa.
//
// We use link-time generated thunks for the slow path. That thunk checks
// the holder and jumps to the entrypoint if needed. If the holder is not
// gray, it creates a fake dependency and returns to the LDR instruction.
//
// temp = Thread::Current()->pReadBarrierMarkIntrospection
// lr = &gray_return_address;
// if (temp != nullptr) {
// goto field_thunk<holder_reg, base_reg>(lr)
// }
// not_gray_return_address:
// // Original reference load. If the offset is too large to fit
// // into LDR, we use an adjusted base register here.
// HeapReference<mirror::Object> reference = data[index];
// gray_return_address:
DCHECK(index.IsValid());
Register index_reg = index.AsRegister<Register>();
Register ref_reg = ref.AsRegister<Register>();
Register data_reg = temp.AsRegister<Register>();
DCHECK_NE(data_reg, kBakerCcEntrypointRegister);
CheckLastTempIsBakerCcEntrypointRegister(instruction);
uint32_t custom_data =
linker::Thumb2RelativePatcher::EncodeBakerReadBarrierArrayData(data_reg);
Label* bne_label = NewBakerReadBarrierPatch(custom_data);
// entrypoint_reg =
// Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
DCHECK_EQ(IP, 12);
const int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(IP);
__ LoadFromOffset(kLoadWord, kBakerCcEntrypointRegister, TR, entry_point_offset);
__ AddConstant(data_reg, obj, data_offset);
Label return_address;
__ AdrCode(LR, &return_address);
__ CmpConstant(kBakerCcEntrypointRegister, 0);
EmitPlaceholderBne(this, bne_label);
ScopedForce32Bit maybe_force_32bit(down_cast<Thumb2Assembler*>(GetAssembler()));
int old_position = GetAssembler()->GetBuffer()->GetPosition();
__ ldr(ref_reg, Address(data_reg, index_reg, LSL, scale_factor));
DCHECK(!needs_null_check); // The thunk cannot handle the null check.
GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
__ Bind(&return_address);
DCHECK_EQ(old_position - GetAssembler()->GetBuffer()->GetPosition(),
BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
return;
}
// /* HeapReference<Object> */ ref =
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
GenerateReferenceLoadWithBakerReadBarrier(
instruction, ref, obj, data_offset, index, scale_factor, temp, needs_null_check);
}
void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location index,
ScaleFactor scale_factor,
Location temp,
bool needs_null_check) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
// Query `art::Thread::Current()->GetIsGcMarking()` to decide
// whether we need to enter the slow path to mark the reference.
// Then, in the slow path, check the gray bit in the lock word of
// the reference's holder (`obj`) to decide whether to mark `ref` or
// not.
//
// Note that we do not actually check the value of `GetIsGcMarking()`;
// instead, we load into `temp2` the read barrier mark entry point
// corresponding to register `ref`. If `temp2` is null, it means
// that `GetIsGcMarking()` is false, and vice versa.
//
// temp2 = Thread::Current()->pReadBarrierMarkReg ## root.reg()
// if (temp2 != nullptr) { // <=> Thread::Current()->GetIsGcMarking()
// // Slow path.
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<mirror::Object> ref = *src; // Original reference load.
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// ref = temp2(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call.
// }
// } else {
// HeapReference<mirror::Object> ref = *src; // Original reference load.
// }
Register temp_reg = temp.AsRegister<Register>();
// Slow path marking the object `ref` when the GC is marking. The
// entrypoint will already be loaded in `temp2`.
Location temp2 = Location::RegisterLocation(LR);
SlowPathCodeARM* slow_path =
new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierSlowPathARM(
instruction,
ref,
obj,
offset,
index,
scale_factor,
needs_null_check,
temp_reg,
/* entrypoint */ temp2);
AddSlowPath(slow_path);
// temp2 = Thread::Current()->pReadBarrierMarkReg ## ref.reg()
const int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref.reg());
// Loading the entrypoint does not require a load acquire since it is only changed when
// threads are suspended or running a checkpoint.
__ LoadFromOffset(kLoadWord, temp2.AsRegister<Register>(), TR, entry_point_offset);
// The entrypoint is null when the GC is not marking, this prevents one load compared to
// checking GetIsGcMarking.
__ CompareAndBranchIfNonZero(temp2.AsRegister<Register>(), slow_path->GetEntryLabel());
// Fast path: the GC is not marking: just load the reference.
GenerateRawReferenceLoad(instruction, ref, obj, offset, index, scale_factor, needs_null_check);
__ Bind(slow_path->GetExitLabel());
}
void CodeGeneratorARM::UpdateReferenceFieldWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
Location field_offset,
Location temp,
bool needs_null_check,
Register temp2) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
// Query `art::Thread::Current()->GetIsGcMarking()` to decide
// whether we need to enter the slow path to update the reference
// field within `obj`. Then, in the slow path, check the gray bit
// in the lock word of the reference's holder (`obj`) to decide
// whether to mark `ref` and update the field or not.
//
// Note that we do not actually check the value of `GetIsGcMarking()`;
// instead, we load into `temp3` the read barrier mark entry point
// corresponding to register `ref`. If `temp3` is null, it means
// that `GetIsGcMarking()` is false, and vice versa.
//
// temp3 = Thread::Current()->pReadBarrierMarkReg ## root.reg()
// if (temp3 != nullptr) { // <=> Thread::Current()->GetIsGcMarking()
// // Slow path.
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// HeapReference<mirror::Object> ref = *src; // Original reference load.
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// old_ref = ref;
// ref = temp3(ref); // ref = ReadBarrier::Mark(ref); // Runtime entry point call.
// compareAndSwapObject(obj, field_offset, old_ref, ref);
// }
// }
Register temp_reg = temp.AsRegister<Register>();
// Slow path updating the object reference at address `obj +
// field_offset` when the GC is marking. The entrypoint will already
// be loaded in `temp3`.
Location temp3 = Location::RegisterLocation(LR);
SlowPathCodeARM* slow_path =
new (GetGraph()->GetArena()) LoadReferenceWithBakerReadBarrierAndUpdateFieldSlowPathARM(
instruction,
ref,
obj,
/* offset */ 0u,
/* index */ field_offset,
/* scale_factor */ ScaleFactor::TIMES_1,
needs_null_check,
temp_reg,
temp2,
/* entrypoint */ temp3);
AddSlowPath(slow_path);
// temp3 = Thread::Current()->pReadBarrierMarkReg ## ref.reg()
const int32_t entry_point_offset =
CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ref.reg());
// Loading the entrypoint does not require a load acquire since it is only changed when
// threads are suspended or running a checkpoint.
__ LoadFromOffset(kLoadWord, temp3.AsRegister<Register>(), TR, entry_point_offset);
// The entrypoint is null when the GC is not marking, this prevents one load compared to
// checking GetIsGcMarking.
__ CompareAndBranchIfNonZero(temp3.AsRegister<Register>(), slow_path->GetEntryLabel());
// Fast path: the GC is not marking: nothing to do (the field is
// up-to-date, and we don't need to load the reference).
__ Bind(slow_path->GetExitLabel());
}
void CodeGeneratorARM::GenerateRawReferenceLoad(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location index,
ScaleFactor scale_factor,
bool needs_null_check) {
Register ref_reg = ref.AsRegister<Register>();
if (index.IsValid()) {
// Load types involving an "index": ArrayGet,
// UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
// intrinsics.
// /* HeapReference<mirror::Object> */ ref = *(obj + offset + (index << scale_factor))
if (index.IsConstant()) {
size_t computed_offset =
(index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset;
__ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
} else {
// Handle the special case of the
// UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
// intrinsics, which use a register pair as index ("long
// offset"), of which only the low part contains data.
Register index_reg = index.IsRegisterPair()
? index.AsRegisterPairLow<Register>()
: index.AsRegister<Register>();
__ add(IP, obj, ShifterOperand(index_reg, LSL, scale_factor));
__ LoadFromOffset(kLoadWord, ref_reg, IP, offset);
}
} else {
// /* HeapReference<mirror::Object> */ ref = *(obj + offset)
__ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
}
if (needs_null_check) {
MaybeRecordImplicitNullCheck(instruction);
}
// Object* ref = ref_addr->AsMirrorPtr()
__ MaybeUnpoisonHeapReference(ref_reg);
}
void CodeGeneratorARM::GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index) {
DCHECK(kEmitCompilerReadBarrier);
// Insert a slow path based read barrier *after* the reference load.
//
// If heap poisoning is enabled, the unpoisoning of the loaded
// reference will be carried out by the runtime within the slow
// path.
//
// Note that `ref` currently does not get unpoisoned (when heap
// poisoning is enabled), which is alright as the `ref` argument is
// not used by the artReadBarrierSlow entry point.
//
// TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena())
ReadBarrierForHeapReferenceSlowPathARM(instruction, out, ref, obj, offset, index);
AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void CodeGeneratorARM::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index) {
if (kEmitCompilerReadBarrier) {
// Baker's read barriers shall be handled by the fast path
// (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier).
DCHECK(!kUseBakerReadBarrier);
// If heap poisoning is enabled, unpoisoning will be taken care of
// by the runtime within the slow path.
GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
} else if (kPoisonHeapReferences) {
__ UnpoisonHeapReference(out.AsRegister<Register>());
}
}
void CodeGeneratorARM::GenerateReadBarrierForRootSlow(HInstruction* instruction,
Location out,
Location root) {
DCHECK(kEmitCompilerReadBarrier);
// Insert a slow path based read barrier *after* the GC root load.
//
// Note that GC roots are not affected by heap poisoning, so we do
// not need to do anything special for this here.
SlowPathCodeARM* slow_path =
new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM(instruction, out, root);
AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM::GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) {
return desired_dispatch_info;
}
Register CodeGeneratorARM::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
Register temp) {
DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
if (!invoke->GetLocations()->Intrinsified()) {
return location.AsRegister<Register>();
}
// For intrinsics we allow any location, so it may be on the stack.
if (!location.IsRegister()) {
__ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
return temp;
}
// For register locations, check if the register was saved. If so, get it from the stack.
// Note: There is a chance that the register was saved but not overwritten, so we could
// save one load. However, since this is just an intrinsic slow path we prefer this
// simple and more robust approach rather that trying to determine if that's the case.
SlowPathCode* slow_path = GetCurrentSlowPath();
DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path.
if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
__ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
return temp;
}
return location.AsRegister<Register>();
}
void CodeGeneratorARM::GenerateStaticOrDirectCall(
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
switch (invoke->GetMethodLoadKind()) {
case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
uint32_t offset =
GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
// temp = thread->string_init_entrypoint
__ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, offset);
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
DCHECK(GetCompilerOptions().IsBootImage());
Register temp_reg = temp.AsRegister<Register>();
PcRelativePatchInfo* labels = NewPcRelativeMethodPatch(invoke->GetTargetMethod());
__ BindTrackedLabel(&labels->movw_label);
__ movw(temp_reg, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->movt_label);
__ movt(temp_reg, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->add_pc_label);
__ add(temp_reg, temp_reg, ShifterOperand(PC));
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
__ LoadImmediate(temp.AsRegister<Register>(), invoke->GetMethodAddress());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
Register temp_reg = temp.AsRegister<Register>();
PcRelativePatchInfo* labels = NewMethodBssEntryPatch(
MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()));
__ BindTrackedLabel(&labels->movw_label);
__ movw(temp_reg, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->movt_label);
__ movt(temp_reg, /* placeholder */ 0u);
__ BindTrackedLabel(&labels->add_pc_label);
__ add(temp_reg, temp_reg, ShifterOperand(PC));
__ LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset */ 0);
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
return; // No code pointer retrieval; the runtime performs the call directly.
}
}
switch (invoke->GetCodePtrLocation()) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
__ bl(GetFrameEntryLabel());
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
// LR = callee_method->entry_point_from_quick_compiled_code_
__ LoadFromOffset(
kLoadWord, LR, callee_method.AsRegister<Register>(),
ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value());
// LR()
__ blx(LR);
break;
}
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
DCHECK(!IsLeafMethod());
}
void CodeGeneratorARM::GenerateVirtualCall(
HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) {
Register temp = temp_location.AsRegister<Register>();
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
// Use the calling convention instead of the location of the receiver, as
// intrinsics may have put the receiver in a different register. In the intrinsics
// slow path, the arguments have been moved to the right place, so here we are
// guaranteed that the receiver is the first register of the calling convention.
InvokeDexCallingConvention calling_convention;
Register receiver = calling_convention.GetRegisterAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// /* HeapReference<Class> */ temp = receiver->klass_
__ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
MaybeRecordImplicitNullCheck(invoke);
// Instead of simply (possibly) unpoisoning `temp` here, we should
// emit a read barrier for the previous class reference load.
// However this is not required in practice, as this is an
// intermediate/temporary reference and because the current
// concurrent copying collector keeps the from-space memory
// intact/accessible until the end of the marking phase (the
// concurrent copying collector may not in the future).
__ MaybeUnpoisonHeapReference(temp);
// temp = temp->GetMethodAt(method_offset);
uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kArmPointerSize).Int32Value();
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
// LR = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, LR, temp, entry_point);
// LR();
__ blx(LR);
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
}
CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeMethodPatch(
MethodReference target_method) {
return NewPcRelativePatch(*target_method.dex_file,
target_method.dex_method_index,
&pc_relative_method_patches_);
}
CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewMethodBssEntryPatch(
MethodReference target_method) {
return NewPcRelativePatch(*target_method.dex_file,
target_method.dex_method_index,
&method_bss_entry_patches_);
}
CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeTypePatch(
const DexFile& dex_file, dex::TypeIndex type_index) {
return NewPcRelativePatch(dex_file, type_index.index_, &pc_relative_type_patches_);
}
CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewTypeBssEntryPatch(
const DexFile& dex_file, dex::TypeIndex type_index) {
return NewPcRelativePatch(dex_file, type_index.index_, &type_bss_entry_patches_);
}
CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeStringPatch(
const DexFile& dex_file, dex::StringIndex string_index) {
return NewPcRelativePatch(dex_file, string_index.index_, &pc_relative_string_patches_);
}
CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativePatch(
const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
patches->emplace_back(dex_file, offset_or_index);
return &patches->back();
}
Label* CodeGeneratorARM::NewBakerReadBarrierPatch(uint32_t custom_data) {
baker_read_barrier_patches_.emplace_back(custom_data);
return &baker_read_barrier_patches_.back().label;
}
Literal* CodeGeneratorARM::DeduplicateBootImageAddressLiteral(uint32_t address) {
return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_);
}
Literal* CodeGeneratorARM::DeduplicateJitStringLiteral(const DexFile& dex_file,
dex::StringIndex string_index,
Handle<mirror::String> handle) {
jit_string_roots_.Overwrite(StringReference(&dex_file, string_index),
reinterpret_cast64<uint64_t>(handle.GetReference()));
return jit_string_patches_.GetOrCreate(
StringReference(&dex_file, string_index),
[this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
}
Literal* CodeGeneratorARM::DeduplicateJitClassLiteral(const DexFile& dex_file,
dex::TypeIndex type_index,
Handle<mirror::Class> handle) {
jit_class_roots_.Overwrite(TypeReference(&dex_file, type_index),
reinterpret_cast64<uint64_t>(handle.GetReference()));
return jit_class_patches_.GetOrCreate(
TypeReference(&dex_file, type_index),
[this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
}
template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
inline void CodeGeneratorARM::EmitPcRelativeLinkerPatches(
const ArenaDeque<PcRelativePatchInfo>& infos,
ArenaVector<LinkerPatch>* linker_patches) {
for (const PcRelativePatchInfo& info : infos) {
const DexFile& dex_file = info.target_dex_file;
size_t offset_or_index = info.offset_or_index;
DCHECK(info.add_pc_label.IsBound());
uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position());
// Add MOVW patch.
DCHECK(info.movw_label.IsBound());
uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position());
linker_patches->push_back(Factory(movw_offset, &dex_file, add_pc_offset, offset_or_index));
// Add MOVT patch.
DCHECK(info.movt_label.IsBound());
uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position());
linker_patches->push_back(Factory(movt_offset, &dex_file, add_pc_offset, offset_or_index));
}
}
void CodeGeneratorARM::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
DCHECK(linker_patches->empty());
size_t size =
/* MOVW+MOVT for each entry */ 2u * pc_relative_method_patches_.size() +
/* MOVW+MOVT for each entry */ 2u * method_bss_entry_patches_.size() +
/* MOVW+MOVT for each entry */ 2u * pc_relative_type_patches_.size() +
/* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size() +
/* MOVW+MOVT for each entry */ 2u * pc_relative_string_patches_.size() +
baker_read_barrier_patches_.size();
linker_patches->reserve(size);
if (GetCompilerOptions().IsBootImage()) {
EmitPcRelativeLinkerPatches<LinkerPatch::RelativeMethodPatch>(pc_relative_method_patches_,
linker_patches);
EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_,
linker_patches);
EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_,
linker_patches);
} else {
DCHECK(pc_relative_method_patches_.empty());
DCHECK(pc_relative_type_patches_.empty());
EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_,
linker_patches);
}
EmitPcRelativeLinkerPatches<LinkerPatch::MethodBssEntryPatch>(method_bss_entry_patches_,
linker_patches);
EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_,
linker_patches);
for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
linker_patches->push_back(LinkerPatch::BakerReadBarrierBranchPatch(info.label.Position(),
info.custom_data));
}
DCHECK_EQ(size, linker_patches->size());
}
Literal* CodeGeneratorARM::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
return map->GetOrCreate(
value,
[this, value]() { return __ NewLiteral<uint32_t>(value); });
}
void LocationsBuilderARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
Location::RequiresRegister());
locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
LocationSummary* locations = instr->GetLocations();
Register res = locations->Out().AsRegister<Register>();
Register accumulator =
locations->InAt(HMultiplyAccumulate::kInputAccumulatorIndex).AsRegister<Register>();
Register mul_left =
locations->InAt(HMultiplyAccumulate::kInputMulLeftIndex).AsRegister<Register>();
Register mul_right =
locations->InAt(HMultiplyAccumulate::kInputMulRightIndex).AsRegister<Register>();
if (instr->GetOpKind() == HInstruction::kAdd) {
__ mla(res, mul_left, mul_right, accumulator);
} else {
__ mls(res, mul_left, mul_right, accumulator);
}
}
void LocationsBuilderARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
// Simple implementation of packed switch - generate cascaded compare/jumps.
void LocationsBuilderARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
codegen_->GetAssembler()->IsThumb()) {
locations->AddTemp(Location::RequiresRegister()); // We need a temp for the table base.
if (switch_instr->GetStartValue() != 0) {
locations->AddTemp(Location::RequiresRegister()); // We need a temp for the bias.
}
}
}
void InstructionCodeGeneratorARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
int32_t lower_bound = switch_instr->GetStartValue();
uint32_t num_entries = switch_instr->GetNumEntries();
LocationSummary* locations = switch_instr->GetLocations();
Register value_reg = locations->InAt(0).AsRegister<Register>();
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
if (num_entries <= kPackedSwitchCompareJumpThreshold || !codegen_->GetAssembler()->IsThumb()) {
// Create a series of compare/jumps.
Register temp_reg = IP;
// Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
// the immediate, because IP is used as the destination register. For the other
// AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
// and they can be encoded in the instruction without making use of IP register.
__ AddConstantSetFlags(temp_reg, value_reg, -lower_bound);
const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
// Jump to successors[0] if value == lower_bound.
__ b(codegen_->GetLabelOf(successors[0]), EQ);
int32_t last_index = 0;
for (; num_entries - last_index > 2; last_index += 2) {
__ AddConstantSetFlags(temp_reg, temp_reg, -2);
// Jump to successors[last_index + 1] if value < case_value[last_index + 2].
__ b(codegen_->GetLabelOf(successors[last_index + 1]), LO);
// Jump to successors[last_index + 2] if value == case_value[last_index + 2].
__ b(codegen_->GetLabelOf(successors[last_index + 2]), EQ);
}
if (num_entries - last_index == 2) {
// The last missing case_value.
__ CmpConstant(temp_reg, 1);
__ b(codegen_->GetLabelOf(successors[last_index + 1]), EQ);
}
// And the default for any other value.
if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
__ b(codegen_->GetLabelOf(default_block));
}
} else {
// Create a table lookup.
Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
// Materialize a pointer to the switch table
std::vector<Label*> labels(num_entries);
const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
for (uint32_t i = 0; i < num_entries; i++) {
labels[i] = codegen_->GetLabelOf(successors[i]);
}
JumpTable* table = __ CreateJumpTable(std::move(labels), temp_reg);
// Remove the bias.
Register key_reg;
if (lower_bound != 0) {
key_reg = locations->GetTemp(1).AsRegister<Register>();
__ AddConstant(key_reg, value_reg, -lower_bound);
} else {
key_reg = value_reg;
}
// Check whether the value is in the table, jump to default block if not.
__ CmpConstant(key_reg, num_entries - 1);
__ b(codegen_->GetLabelOf(default_block), Condition::HI);
// Load the displacement from the table.
__ ldr(temp_reg, Address(temp_reg, key_reg, Shift::LSL, 2));
// Dispatch is a direct add to the PC (for Thumb2).
__ EmitJumpTableDispatch(table, temp_reg);
}
}
void CodeGeneratorARM::MoveFromReturnRegister(Location trg, Primitive::Type type) {
if (!trg.IsValid()) {
DCHECK_EQ(type, Primitive::kPrimVoid);
return;
}
DCHECK_NE(type, Primitive::kPrimVoid);
Location return_loc = InvokeDexCallingConventionVisitorARM().GetReturnLocation(type);
if (return_loc.Equals(trg)) {
return;
}
// TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
// with the last branch.
if (type == Primitive::kPrimLong) {
HParallelMove parallel_move(GetGraph()->GetArena());
parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimInt, nullptr);
parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimInt, nullptr);
GetMoveResolver()->EmitNativeCode(&parallel_move);
} else if (type == Primitive::kPrimDouble) {
HParallelMove parallel_move(GetGraph()->GetArena());
parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimFloat, nullptr);
parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimFloat, nullptr);
GetMoveResolver()->EmitNativeCode(&parallel_move);
} else {
// Let the parallel move resolver take care of all of this.
HParallelMove parallel_move(GetGraph()->GetArena());
parallel_move.AddMove(return_loc, trg, type, nullptr);
GetMoveResolver()->EmitNativeCode(&parallel_move);
}
}
void LocationsBuilderARM::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
instruction->GetIndex(), kArmPointerSize).SizeValue();
__ LoadFromOffset(kLoadWord,
locations->Out().AsRegister<Register>(),
locations->InAt(0).AsRegister<Register>(),
method_offset);
} else {
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
instruction->GetIndex(), kArmPointerSize));
__ LoadFromOffset(kLoadWord,
locations->Out().AsRegister<Register>(),
locations->InAt(0).AsRegister<Register>(),
mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
__ LoadFromOffset(kLoadWord,
locations->Out().AsRegister<Register>(),
locations->Out().AsRegister<Register>(),
method_offset);
}
}
static void PatchJitRootUse(uint8_t* code,
const uint8_t* roots_data,
Literal* literal,
uint64_t index_in_table) {
DCHECK(literal->GetLabel()->IsBound());
uint32_t literal_offset = literal->GetLabel()->Position();
uintptr_t address =
reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
uint8_t* data = code + literal_offset;
reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
}
void CodeGeneratorARM::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
for (const auto& entry : jit_string_patches_) {
const StringReference& string_reference = entry.first;
Literal* table_entry_literal = entry.second;
const auto it = jit_string_roots_.find(string_reference);
DCHECK(it != jit_string_roots_.end());
uint64_t index_in_table = it->second;
PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
}
for (const auto& entry : jit_class_patches_) {
const TypeReference& type_reference = entry.first;
Literal* table_entry_literal = entry.second;
const auto it = jit_class_roots_.find(type_reference);
DCHECK(it != jit_class_roots_.end());
uint64_t index_in_table = it->second;
PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
}
}
#undef __
#undef QUICK_ENTRY_POINT
} // namespace arm
} // namespace art