| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #ifndef ART_COMPILER_OPTIMIZING_NODES_H_ | 
 | #define ART_COMPILER_OPTIMIZING_NODES_H_ | 
 |  | 
 | #include <algorithm> | 
 | #include <array> | 
 | #include <type_traits> | 
 |  | 
 | #include "base/arena_containers.h" | 
 | #include "base/arena_object.h" | 
 | #include "base/stl_util.h" | 
 | #include "dex/compiler_enums.h" | 
 | #include "entrypoints/quick/quick_entrypoints_enum.h" | 
 | #include "handle.h" | 
 | #include "handle_scope.h" | 
 | #include "invoke_type.h" | 
 | #include "locations.h" | 
 | #include "method_reference.h" | 
 | #include "mirror/class.h" | 
 | #include "offsets.h" | 
 | #include "primitive.h" | 
 | #include "utils/arena_bit_vector.h" | 
 | #include "utils/growable_array.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | class GraphChecker; | 
 | class HBasicBlock; | 
 | class HCurrentMethod; | 
 | class HDoubleConstant; | 
 | class HEnvironment; | 
 | class HFakeString; | 
 | class HFloatConstant; | 
 | class HGraphBuilder; | 
 | class HGraphVisitor; | 
 | class HInstruction; | 
 | class HIntConstant; | 
 | class HInvoke; | 
 | class HLongConstant; | 
 | class HNullConstant; | 
 | class HPhi; | 
 | class HSuspendCheck; | 
 | class HTryBoundary; | 
 | class LiveInterval; | 
 | class LocationSummary; | 
 | class SlowPathCode; | 
 | class SsaBuilder; | 
 |  | 
 | namespace mirror { | 
 | class DexCache; | 
 | }  // namespace mirror | 
 |  | 
 | static const int kDefaultNumberOfBlocks = 8; | 
 | static const int kDefaultNumberOfSuccessors = 2; | 
 | static const int kDefaultNumberOfPredecessors = 2; | 
 | static const int kDefaultNumberOfExceptionalPredecessors = 0; | 
 | static const int kDefaultNumberOfDominatedBlocks = 1; | 
 | static const int kDefaultNumberOfBackEdges = 1; | 
 |  | 
 | static constexpr uint32_t kMaxIntShiftValue = 0x1f; | 
 | static constexpr uint64_t kMaxLongShiftValue = 0x3f; | 
 |  | 
 | static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1); | 
 |  | 
 | static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1); | 
 |  | 
 | static constexpr uint32_t kNoDexPc = -1; | 
 |  | 
 | enum IfCondition { | 
 |   kCondEQ, | 
 |   kCondNE, | 
 |   kCondLT, | 
 |   kCondLE, | 
 |   kCondGT, | 
 |   kCondGE, | 
 | }; | 
 |  | 
 | class HInstructionList : public ValueObject { | 
 |  public: | 
 |   HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {} | 
 |  | 
 |   void AddInstruction(HInstruction* instruction); | 
 |   void RemoveInstruction(HInstruction* instruction); | 
 |  | 
 |   // Insert `instruction` before/after an existing instruction `cursor`. | 
 |   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); | 
 |   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); | 
 |  | 
 |   // Return true if this list contains `instruction`. | 
 |   bool Contains(HInstruction* instruction) const; | 
 |  | 
 |   // Return true if `instruction1` is found before `instruction2` in | 
 |   // this instruction list and false otherwise.  Abort if none | 
 |   // of these instructions is found. | 
 |   bool FoundBefore(const HInstruction* instruction1, | 
 |                    const HInstruction* instruction2) const; | 
 |  | 
 |   bool IsEmpty() const { return first_instruction_ == nullptr; } | 
 |   void Clear() { first_instruction_ = last_instruction_ = nullptr; } | 
 |  | 
 |   // Update the block of all instructions to be `block`. | 
 |   void SetBlockOfInstructions(HBasicBlock* block) const; | 
 |  | 
 |   void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list); | 
 |   void Add(const HInstructionList& instruction_list); | 
 |  | 
 |   // Return the number of instructions in the list. This is an expensive operation. | 
 |   size_t CountSize() const; | 
 |  | 
 |  private: | 
 |   HInstruction* first_instruction_; | 
 |   HInstruction* last_instruction_; | 
 |  | 
 |   friend class HBasicBlock; | 
 |   friend class HGraph; | 
 |   friend class HInstruction; | 
 |   friend class HInstructionIterator; | 
 |   friend class HBackwardInstructionIterator; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInstructionList); | 
 | }; | 
 |  | 
 | // Control-flow graph of a method. Contains a list of basic blocks. | 
 | class HGraph : public ArenaObject<kArenaAllocGraph> { | 
 |  public: | 
 |   HGraph(ArenaAllocator* arena, | 
 |          const DexFile& dex_file, | 
 |          uint32_t method_idx, | 
 |          bool should_generate_constructor_barrier, | 
 |          InstructionSet instruction_set, | 
 |          InvokeType invoke_type = kInvalidInvokeType, | 
 |          bool debuggable = false, | 
 |          int start_instruction_id = 0) | 
 |       : arena_(arena), | 
 |         blocks_(arena->Adapter(kArenaAllocBlockList)), | 
 |         reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)), | 
 |         linear_order_(arena->Adapter(kArenaAllocLinearOrder)), | 
 |         entry_block_(nullptr), | 
 |         exit_block_(nullptr), | 
 |         maximum_number_of_out_vregs_(0), | 
 |         number_of_vregs_(0), | 
 |         number_of_in_vregs_(0), | 
 |         temporaries_vreg_slots_(0), | 
 |         has_bounds_checks_(false), | 
 |         has_try_catch_(false), | 
 |         debuggable_(debuggable), | 
 |         current_instruction_id_(start_instruction_id), | 
 |         dex_file_(dex_file), | 
 |         method_idx_(method_idx), | 
 |         invoke_type_(invoke_type), | 
 |         in_ssa_form_(false), | 
 |         should_generate_constructor_barrier_(should_generate_constructor_barrier), | 
 |         instruction_set_(instruction_set), | 
 |         cached_null_constant_(nullptr), | 
 |         cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)), | 
 |         cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)), | 
 |         cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)), | 
 |         cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)), | 
 |         cached_current_method_(nullptr) { | 
 |     blocks_.reserve(kDefaultNumberOfBlocks); | 
 |   } | 
 |  | 
 |   ArenaAllocator* GetArena() const { return arena_; } | 
 |   const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; } | 
 |  | 
 |   HBasicBlock* GetBlock(size_t id) const { | 
 |     DCHECK_LT(id, blocks_.size()); | 
 |     return blocks_[id]; | 
 |   } | 
 |  | 
 |   bool IsInSsaForm() const { return in_ssa_form_; } | 
 |  | 
 |   HBasicBlock* GetEntryBlock() const { return entry_block_; } | 
 |   HBasicBlock* GetExitBlock() const { return exit_block_; } | 
 |   bool HasExitBlock() const { return exit_block_ != nullptr; } | 
 |  | 
 |   void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; } | 
 |   void SetExitBlock(HBasicBlock* block) { exit_block_ = block; } | 
 |  | 
 |   void AddBlock(HBasicBlock* block); | 
 |  | 
 |   // Try building the SSA form of this graph, with dominance computation and loop | 
 |   // recognition. Returns whether it was successful in doing all these steps. | 
 |   bool TryBuildingSsa() { | 
 |     BuildDominatorTree(); | 
 |     // The SSA builder requires loops to all be natural. Specifically, the dead phi | 
 |     // elimination phase checks the consistency of the graph when doing a post-order | 
 |     // visit for eliminating dead phis: a dead phi can only have loop header phi | 
 |     // users remaining when being visited. | 
 |     if (!AnalyzeNaturalLoops()) return false; | 
 |     // Precompute per-block try membership before entering the SSA builder, | 
 |     // which needs the information to build catch block phis from values of | 
 |     // locals at throwing instructions inside try blocks. | 
 |     ComputeTryBlockInformation(); | 
 |     TransformToSsa(); | 
 |     in_ssa_form_ = true; | 
 |     return true; | 
 |   } | 
 |  | 
 |   void ComputeDominanceInformation(); | 
 |   void ClearDominanceInformation(); | 
 |  | 
 |   void BuildDominatorTree(); | 
 |   void TransformToSsa(); | 
 |   void SimplifyCFG(); | 
 |   void SimplifyCatchBlocks(); | 
 |  | 
 |   // Analyze all natural loops in this graph. Returns false if one | 
 |   // loop is not natural, that is the header does not dominate the | 
 |   // back edge. | 
 |   bool AnalyzeNaturalLoops() const; | 
 |  | 
 |   // Iterate over blocks to compute try block membership. Needs reverse post | 
 |   // order and loop information. | 
 |   void ComputeTryBlockInformation(); | 
 |  | 
 |   // Inline this graph in `outer_graph`, replacing the given `invoke` instruction. | 
 |   // Returns the instruction used to replace the invoke expression or null if the | 
 |   // invoke is for a void method. | 
 |   HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke); | 
 |  | 
 |   // Need to add a couple of blocks to test if the loop body is entered and | 
 |   // put deoptimization instructions, etc. | 
 |   void TransformLoopHeaderForBCE(HBasicBlock* header); | 
 |  | 
 |   // Removes `block` from the graph. | 
 |   void DeleteDeadBlock(HBasicBlock* block); | 
 |  | 
 |   // Splits the edge between `block` and `successor` while preserving the | 
 |   // indices in the predecessor/successor lists. If there are multiple edges | 
 |   // between the blocks, the lowest indices are used. | 
 |   // Returns the new block which is empty and has the same dex pc as `successor`. | 
 |   HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor); | 
 |  | 
 |   void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor); | 
 |   void SimplifyLoop(HBasicBlock* header); | 
 |  | 
 |   int32_t GetNextInstructionId() { | 
 |     DCHECK_NE(current_instruction_id_, INT32_MAX); | 
 |     return current_instruction_id_++; | 
 |   } | 
 |  | 
 |   int32_t GetCurrentInstructionId() const { | 
 |     return current_instruction_id_; | 
 |   } | 
 |  | 
 |   void SetCurrentInstructionId(int32_t id) { | 
 |     current_instruction_id_ = id; | 
 |   } | 
 |  | 
 |   uint16_t GetMaximumNumberOfOutVRegs() const { | 
 |     return maximum_number_of_out_vregs_; | 
 |   } | 
 |  | 
 |   void SetMaximumNumberOfOutVRegs(uint16_t new_value) { | 
 |     maximum_number_of_out_vregs_ = new_value; | 
 |   } | 
 |  | 
 |   void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) { | 
 |     maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value); | 
 |   } | 
 |  | 
 |   void UpdateTemporariesVRegSlots(size_t slots) { | 
 |     temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_); | 
 |   } | 
 |  | 
 |   size_t GetTemporariesVRegSlots() const { | 
 |     DCHECK(!in_ssa_form_); | 
 |     return temporaries_vreg_slots_; | 
 |   } | 
 |  | 
 |   void SetNumberOfVRegs(uint16_t number_of_vregs) { | 
 |     number_of_vregs_ = number_of_vregs; | 
 |   } | 
 |  | 
 |   uint16_t GetNumberOfVRegs() const { | 
 |     return number_of_vregs_; | 
 |   } | 
 |  | 
 |   void SetNumberOfInVRegs(uint16_t value) { | 
 |     number_of_in_vregs_ = value; | 
 |   } | 
 |  | 
 |   uint16_t GetNumberOfLocalVRegs() const { | 
 |     DCHECK(!in_ssa_form_); | 
 |     return number_of_vregs_ - number_of_in_vregs_; | 
 |   } | 
 |  | 
 |   const ArenaVector<HBasicBlock*>& GetReversePostOrder() const { | 
 |     return reverse_post_order_; | 
 |   } | 
 |  | 
 |   const ArenaVector<HBasicBlock*>& GetLinearOrder() const { | 
 |     return linear_order_; | 
 |   } | 
 |  | 
 |   bool HasBoundsChecks() const { | 
 |     return has_bounds_checks_; | 
 |   } | 
 |  | 
 |   void SetHasBoundsChecks(bool value) { | 
 |     has_bounds_checks_ = value; | 
 |   } | 
 |  | 
 |   bool ShouldGenerateConstructorBarrier() const { | 
 |     return should_generate_constructor_barrier_; | 
 |   } | 
 |  | 
 |   bool IsDebuggable() const { return debuggable_; } | 
 |  | 
 |   // Returns a constant of the given type and value. If it does not exist | 
 |   // already, it is created and inserted into the graph. This method is only for | 
 |   // integral types. | 
 |   HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc); | 
 |  | 
 |   // TODO: This is problematic for the consistency of reference type propagation | 
 |   // because it can be created anytime after the pass and thus it will be left | 
 |   // with an invalid type. | 
 |   HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc); | 
 |  | 
 |   HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) { | 
 |     return CreateConstant(value, &cached_int_constants_, dex_pc); | 
 |   } | 
 |   HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) { | 
 |     return CreateConstant(value, &cached_long_constants_, dex_pc); | 
 |   } | 
 |   HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) { | 
 |     return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc); | 
 |   } | 
 |   HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) { | 
 |     return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc); | 
 |   } | 
 |  | 
 |   HCurrentMethod* GetCurrentMethod(); | 
 |  | 
 |   HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const; | 
 |  | 
 |   const DexFile& GetDexFile() const { | 
 |     return dex_file_; | 
 |   } | 
 |  | 
 |   uint32_t GetMethodIdx() const { | 
 |     return method_idx_; | 
 |   } | 
 |  | 
 |   InvokeType GetInvokeType() const { | 
 |     return invoke_type_; | 
 |   } | 
 |  | 
 |   InstructionSet GetInstructionSet() const { | 
 |     return instruction_set_; | 
 |   } | 
 |  | 
 |   bool HasTryCatch() const { return has_try_catch_; } | 
 |   void SetHasTryCatch(bool value) { has_try_catch_ = value; } | 
 |  | 
 |  private: | 
 |   void VisitBlockForDominatorTree(HBasicBlock* block, | 
 |                                   HBasicBlock* predecessor, | 
 |                                   ArenaVector<size_t>* visits); | 
 |   void FindBackEdges(ArenaBitVector* visited); | 
 |   void VisitBlockForBackEdges(HBasicBlock* block, | 
 |                               ArenaBitVector* visited, | 
 |                               ArenaBitVector* visiting); | 
 |   void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const; | 
 |   void RemoveDeadBlocks(const ArenaBitVector& visited); | 
 |  | 
 |   template <class InstructionType, typename ValueType> | 
 |   InstructionType* CreateConstant(ValueType value, | 
 |                                   ArenaSafeMap<ValueType, InstructionType*>* cache, | 
 |                                   uint32_t dex_pc = kNoDexPc) { | 
 |     // Try to find an existing constant of the given value. | 
 |     InstructionType* constant = nullptr; | 
 |     auto cached_constant = cache->find(value); | 
 |     if (cached_constant != cache->end()) { | 
 |       constant = cached_constant->second; | 
 |     } | 
 |  | 
 |     // If not found or previously deleted, create and cache a new instruction. | 
 |     // Don't bother reviving a previously deleted instruction, for simplicity. | 
 |     if (constant == nullptr || constant->GetBlock() == nullptr) { | 
 |       constant = new (arena_) InstructionType(value, dex_pc); | 
 |       cache->Overwrite(value, constant); | 
 |       InsertConstant(constant); | 
 |     } | 
 |     return constant; | 
 |   } | 
 |  | 
 |   void InsertConstant(HConstant* instruction); | 
 |  | 
 |   // Cache a float constant into the graph. This method should only be | 
 |   // called by the SsaBuilder when creating "equivalent" instructions. | 
 |   void CacheFloatConstant(HFloatConstant* constant); | 
 |  | 
 |   // See CacheFloatConstant comment. | 
 |   void CacheDoubleConstant(HDoubleConstant* constant); | 
 |  | 
 |   ArenaAllocator* const arena_; | 
 |  | 
 |   // List of blocks in insertion order. | 
 |   ArenaVector<HBasicBlock*> blocks_; | 
 |  | 
 |   // List of blocks to perform a reverse post order tree traversal. | 
 |   ArenaVector<HBasicBlock*> reverse_post_order_; | 
 |  | 
 |   // List of blocks to perform a linear order tree traversal. | 
 |   ArenaVector<HBasicBlock*> linear_order_; | 
 |  | 
 |   HBasicBlock* entry_block_; | 
 |   HBasicBlock* exit_block_; | 
 |  | 
 |   // The maximum number of virtual registers arguments passed to a HInvoke in this graph. | 
 |   uint16_t maximum_number_of_out_vregs_; | 
 |  | 
 |   // The number of virtual registers in this method. Contains the parameters. | 
 |   uint16_t number_of_vregs_; | 
 |  | 
 |   // The number of virtual registers used by parameters of this method. | 
 |   uint16_t number_of_in_vregs_; | 
 |  | 
 |   // Number of vreg size slots that the temporaries use (used in baseline compiler). | 
 |   size_t temporaries_vreg_slots_; | 
 |  | 
 |   // Has bounds checks. We can totally skip BCE if it's false. | 
 |   bool has_bounds_checks_; | 
 |  | 
 |   // Flag whether there are any try/catch blocks in the graph. We will skip | 
 |   // try/catch-related passes if false. | 
 |   bool has_try_catch_; | 
 |  | 
 |   // Indicates whether the graph should be compiled in a way that | 
 |   // ensures full debuggability. If false, we can apply more | 
 |   // aggressive optimizations that may limit the level of debugging. | 
 |   const bool debuggable_; | 
 |  | 
 |   // The current id to assign to a newly added instruction. See HInstruction.id_. | 
 |   int32_t current_instruction_id_; | 
 |  | 
 |   // The dex file from which the method is from. | 
 |   const DexFile& dex_file_; | 
 |  | 
 |   // The method index in the dex file. | 
 |   const uint32_t method_idx_; | 
 |  | 
 |   // If inlined, this encodes how the callee is being invoked. | 
 |   const InvokeType invoke_type_; | 
 |  | 
 |   // Whether the graph has been transformed to SSA form. Only used | 
 |   // in debug mode to ensure we are not using properties only valid | 
 |   // for non-SSA form (like the number of temporaries). | 
 |   bool in_ssa_form_; | 
 |  | 
 |   const bool should_generate_constructor_barrier_; | 
 |  | 
 |   const InstructionSet instruction_set_; | 
 |  | 
 |   // Cached constants. | 
 |   HNullConstant* cached_null_constant_; | 
 |   ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_; | 
 |   ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_; | 
 |   ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_; | 
 |   ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_; | 
 |  | 
 |   HCurrentMethod* cached_current_method_; | 
 |  | 
 |   friend class SsaBuilder;           // For caching constants. | 
 |   friend class SsaLivenessAnalysis;  // For the linear order. | 
 |   ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1); | 
 |   DISALLOW_COPY_AND_ASSIGN(HGraph); | 
 | }; | 
 |  | 
 | class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> { | 
 |  public: | 
 |   HLoopInformation(HBasicBlock* header, HGraph* graph) | 
 |       : header_(header), | 
 |         suspend_check_(nullptr), | 
 |         back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)), | 
 |         // Make bit vector growable, as the number of blocks may change. | 
 |         blocks_(graph->GetArena(), graph->GetBlocks().size(), true) { | 
 |     back_edges_.reserve(kDefaultNumberOfBackEdges); | 
 |   } | 
 |  | 
 |   HBasicBlock* GetHeader() const { | 
 |     return header_; | 
 |   } | 
 |  | 
 |   void SetHeader(HBasicBlock* block) { | 
 |     header_ = block; | 
 |   } | 
 |  | 
 |   HSuspendCheck* GetSuspendCheck() const { return suspend_check_; } | 
 |   void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; } | 
 |   bool HasSuspendCheck() const { return suspend_check_ != nullptr; } | 
 |  | 
 |   void AddBackEdge(HBasicBlock* back_edge) { | 
 |     back_edges_.push_back(back_edge); | 
 |   } | 
 |  | 
 |   void RemoveBackEdge(HBasicBlock* back_edge) { | 
 |     RemoveElement(back_edges_, back_edge); | 
 |   } | 
 |  | 
 |   bool IsBackEdge(const HBasicBlock& block) const { | 
 |     return ContainsElement(back_edges_, &block); | 
 |   } | 
 |  | 
 |   size_t NumberOfBackEdges() const { | 
 |     return back_edges_.size(); | 
 |   } | 
 |  | 
 |   HBasicBlock* GetPreHeader() const; | 
 |  | 
 |   const ArenaVector<HBasicBlock*>& GetBackEdges() const { | 
 |     return back_edges_; | 
 |   } | 
 |  | 
 |   // Returns the lifetime position of the back edge that has the | 
 |   // greatest lifetime position. | 
 |   size_t GetLifetimeEnd() const; | 
 |  | 
 |   void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) { | 
 |     ReplaceElement(back_edges_, existing, new_back_edge); | 
 |   } | 
 |  | 
 |   // Finds blocks that are part of this loop. Returns whether the loop is a natural loop, | 
 |   // that is the header dominates the back edge. | 
 |   bool Populate(); | 
 |  | 
 |   // Reanalyzes the loop by removing loop info from its blocks and re-running | 
 |   // Populate(). If there are no back edges left, the loop info is completely | 
 |   // removed as well as its SuspendCheck instruction. It must be run on nested | 
 |   // inner loops first. | 
 |   void Update(); | 
 |  | 
 |   // Returns whether this loop information contains `block`. | 
 |   // Note that this loop information *must* be populated before entering this function. | 
 |   bool Contains(const HBasicBlock& block) const; | 
 |  | 
 |   // Returns whether this loop information is an inner loop of `other`. | 
 |   // Note that `other` *must* be populated before entering this function. | 
 |   bool IsIn(const HLoopInformation& other) const; | 
 |  | 
 |   const ArenaBitVector& GetBlocks() const { return blocks_; } | 
 |  | 
 |   void Add(HBasicBlock* block); | 
 |   void Remove(HBasicBlock* block); | 
 |  | 
 |  private: | 
 |   // Internal recursive implementation of `Populate`. | 
 |   void PopulateRecursive(HBasicBlock* block); | 
 |  | 
 |   HBasicBlock* header_; | 
 |   HSuspendCheck* suspend_check_; | 
 |   ArenaVector<HBasicBlock*> back_edges_; | 
 |   ArenaBitVector blocks_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HLoopInformation); | 
 | }; | 
 |  | 
 | // Stores try/catch information for basic blocks. | 
 | // Note that HGraph is constructed so that catch blocks cannot simultaneously | 
 | // be try blocks. | 
 | class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> { | 
 |  public: | 
 |   // Try block information constructor. | 
 |   explicit TryCatchInformation(const HTryBoundary& try_entry) | 
 |       : try_entry_(&try_entry), | 
 |         catch_dex_file_(nullptr), | 
 |         catch_type_index_(DexFile::kDexNoIndex16) { | 
 |     DCHECK(try_entry_ != nullptr); | 
 |   } | 
 |  | 
 |   // Catch block information constructor. | 
 |   TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file) | 
 |       : try_entry_(nullptr), | 
 |         catch_dex_file_(&dex_file), | 
 |         catch_type_index_(catch_type_index) {} | 
 |  | 
 |   bool IsTryBlock() const { return try_entry_ != nullptr; } | 
 |  | 
 |   const HTryBoundary& GetTryEntry() const { | 
 |     DCHECK(IsTryBlock()); | 
 |     return *try_entry_; | 
 |   } | 
 |  | 
 |   bool IsCatchBlock() const { return catch_dex_file_ != nullptr; } | 
 |  | 
 |   bool IsCatchAllTypeIndex() const { | 
 |     DCHECK(IsCatchBlock()); | 
 |     return catch_type_index_ == DexFile::kDexNoIndex16; | 
 |   } | 
 |  | 
 |   uint16_t GetCatchTypeIndex() const { | 
 |     DCHECK(IsCatchBlock()); | 
 |     return catch_type_index_; | 
 |   } | 
 |  | 
 |   const DexFile& GetCatchDexFile() const { | 
 |     DCHECK(IsCatchBlock()); | 
 |     return *catch_dex_file_; | 
 |   } | 
 |  | 
 |  private: | 
 |   // One of possibly several TryBoundary instructions entering the block's try. | 
 |   // Only set for try blocks. | 
 |   const HTryBoundary* try_entry_; | 
 |  | 
 |   // Exception type information. Only set for catch blocks. | 
 |   const DexFile* catch_dex_file_; | 
 |   const uint16_t catch_type_index_; | 
 | }; | 
 |  | 
 | static constexpr size_t kNoLifetime = -1; | 
 | static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1); | 
 |  | 
 | // A block in a method. Contains the list of instructions represented | 
 | // as a double linked list. Each block knows its predecessors and | 
 | // successors. | 
 |  | 
 | class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> { | 
 |  public: | 
 |   HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc) | 
 |       : graph_(graph), | 
 |         predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)), | 
 |         successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)), | 
 |         loop_information_(nullptr), | 
 |         dominator_(nullptr), | 
 |         dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)), | 
 |         block_id_(kInvalidBlockId), | 
 |         dex_pc_(dex_pc), | 
 |         lifetime_start_(kNoLifetime), | 
 |         lifetime_end_(kNoLifetime), | 
 |         try_catch_information_(nullptr) { | 
 |     predecessors_.reserve(kDefaultNumberOfPredecessors); | 
 |     successors_.reserve(kDefaultNumberOfSuccessors); | 
 |     dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks); | 
 |   } | 
 |  | 
 |   const ArenaVector<HBasicBlock*>& GetPredecessors() const { | 
 |     return predecessors_; | 
 |   } | 
 |  | 
 |   HBasicBlock* GetPredecessor(size_t pred_idx) const { | 
 |     DCHECK_LT(pred_idx, predecessors_.size()); | 
 |     return predecessors_[pred_idx]; | 
 |   } | 
 |  | 
 |   const ArenaVector<HBasicBlock*>& GetSuccessors() const { | 
 |     return successors_; | 
 |   } | 
 |  | 
 |   HBasicBlock* GetSuccessor(size_t succ_idx) const { | 
 |     DCHECK_LT(succ_idx, successors_.size()); | 
 |     return successors_[succ_idx]; | 
 |   } | 
 |  | 
 |   bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) { | 
 |     return ContainsElement(successors_, block, start_from); | 
 |   } | 
 |  | 
 |   const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const { | 
 |     return dominated_blocks_; | 
 |   } | 
 |  | 
 |   bool IsEntryBlock() const { | 
 |     return graph_->GetEntryBlock() == this; | 
 |   } | 
 |  | 
 |   bool IsExitBlock() const { | 
 |     return graph_->GetExitBlock() == this; | 
 |   } | 
 |  | 
 |   bool IsSingleGoto() const; | 
 |   bool IsSingleTryBoundary() const; | 
 |  | 
 |   // Returns true if this block emits nothing but a jump. | 
 |   bool IsSingleJump() const { | 
 |     HLoopInformation* loop_info = GetLoopInformation(); | 
 |     return (IsSingleGoto() || IsSingleTryBoundary()) | 
 |            // Back edges generate a suspend check. | 
 |            && (loop_info == nullptr || !loop_info->IsBackEdge(*this)); | 
 |   } | 
 |  | 
 |   void AddBackEdge(HBasicBlock* back_edge) { | 
 |     if (loop_information_ == nullptr) { | 
 |       loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_); | 
 |     } | 
 |     DCHECK_EQ(loop_information_->GetHeader(), this); | 
 |     loop_information_->AddBackEdge(back_edge); | 
 |   } | 
 |  | 
 |   HGraph* GetGraph() const { return graph_; } | 
 |   void SetGraph(HGraph* graph) { graph_ = graph; } | 
 |  | 
 |   uint32_t GetBlockId() const { return block_id_; } | 
 |   void SetBlockId(int id) { block_id_ = id; } | 
 |   uint32_t GetDexPc() const { return dex_pc_; } | 
 |  | 
 |   HBasicBlock* GetDominator() const { return dominator_; } | 
 |   void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; } | 
 |   void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); } | 
 |  | 
 |   void RemoveDominatedBlock(HBasicBlock* block) { | 
 |     RemoveElement(dominated_blocks_, block); | 
 |   } | 
 |  | 
 |   void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) { | 
 |     ReplaceElement(dominated_blocks_, existing, new_block); | 
 |   } | 
 |  | 
 |   void ClearDominanceInformation(); | 
 |  | 
 |   int NumberOfBackEdges() const { | 
 |     return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0; | 
 |   } | 
 |  | 
 |   HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; } | 
 |   HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; } | 
 |   const HInstructionList& GetInstructions() const { return instructions_; } | 
 |   HInstruction* GetFirstPhi() const { return phis_.first_instruction_; } | 
 |   HInstruction* GetLastPhi() const { return phis_.last_instruction_; } | 
 |   const HInstructionList& GetPhis() const { return phis_; } | 
 |  | 
 |   void AddSuccessor(HBasicBlock* block) { | 
 |     successors_.push_back(block); | 
 |     block->predecessors_.push_back(this); | 
 |   } | 
 |  | 
 |   void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) { | 
 |     size_t successor_index = GetSuccessorIndexOf(existing); | 
 |     existing->RemovePredecessor(this); | 
 |     new_block->predecessors_.push_back(this); | 
 |     successors_[successor_index] = new_block; | 
 |   } | 
 |  | 
 |   void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) { | 
 |     size_t predecessor_index = GetPredecessorIndexOf(existing); | 
 |     existing->RemoveSuccessor(this); | 
 |     new_block->successors_.push_back(this); | 
 |     predecessors_[predecessor_index] = new_block; | 
 |   } | 
 |  | 
 |   // Insert `this` between `predecessor` and `successor. This method | 
 |   // preserves the indicies, and will update the first edge found between | 
 |   // `predecessor` and `successor`. | 
 |   void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) { | 
 |     size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor); | 
 |     size_t successor_index = predecessor->GetSuccessorIndexOf(successor); | 
 |     successor->predecessors_[predecessor_index] = this; | 
 |     predecessor->successors_[successor_index] = this; | 
 |     successors_.push_back(successor); | 
 |     predecessors_.push_back(predecessor); | 
 |   } | 
 |  | 
 |   void RemovePredecessor(HBasicBlock* block) { | 
 |     predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block)); | 
 |   } | 
 |  | 
 |   void RemoveSuccessor(HBasicBlock* block) { | 
 |     successors_.erase(successors_.begin() + GetSuccessorIndexOf(block)); | 
 |   } | 
 |  | 
 |   void ClearAllPredecessors() { | 
 |     predecessors_.clear(); | 
 |   } | 
 |  | 
 |   void AddPredecessor(HBasicBlock* block) { | 
 |     predecessors_.push_back(block); | 
 |     block->successors_.push_back(this); | 
 |   } | 
 |  | 
 |   void SwapPredecessors() { | 
 |     DCHECK_EQ(predecessors_.size(), 2u); | 
 |     std::swap(predecessors_[0], predecessors_[1]); | 
 |   } | 
 |  | 
 |   void SwapSuccessors() { | 
 |     DCHECK_EQ(successors_.size(), 2u); | 
 |     std::swap(successors_[0], successors_[1]); | 
 |   } | 
 |  | 
 |   size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const { | 
 |     return IndexOfElement(predecessors_, predecessor); | 
 |   } | 
 |  | 
 |   size_t GetSuccessorIndexOf(HBasicBlock* successor) const { | 
 |     return IndexOfElement(successors_, successor); | 
 |   } | 
 |  | 
 |   HBasicBlock* GetSinglePredecessor() const { | 
 |     DCHECK_EQ(GetPredecessors().size(), 1u); | 
 |     return GetPredecessor(0); | 
 |   } | 
 |  | 
 |   HBasicBlock* GetSingleSuccessor() const { | 
 |     DCHECK_EQ(GetSuccessors().size(), 1u); | 
 |     return GetSuccessor(0); | 
 |   } | 
 |  | 
 |   // Returns whether the first occurrence of `predecessor` in the list of | 
 |   // predecessors is at index `idx`. | 
 |   bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const { | 
 |     DCHECK_EQ(GetPredecessor(idx), predecessor); | 
 |     return GetPredecessorIndexOf(predecessor) == idx; | 
 |   } | 
 |  | 
 |   // Returns the number of non-exceptional successors. SsaChecker ensures that | 
 |   // these are stored at the beginning of the successor list. | 
 |   size_t NumberOfNormalSuccessors() const { | 
 |     return EndsWithTryBoundary() ? 1 : GetSuccessors().size(); | 
 |   } | 
 |  | 
 |   // Split the block into two blocks just before `cursor`. Returns the newly | 
 |   // created, latter block. Note that this method will add the block to the | 
 |   // graph, create a Goto at the end of the former block and will create an edge | 
 |   // between the blocks. It will not, however, update the reverse post order or | 
 |   // loop information. | 
 |   HBasicBlock* SplitBefore(HInstruction* cursor); | 
 |  | 
 |   // Split the block into two blocks just after `cursor`. Returns the newly | 
 |   // created block. Note that this method just updates raw block information, | 
 |   // like predecessors, successors, dominators, and instruction list. It does not | 
 |   // update the graph, reverse post order, loop information, nor make sure the | 
 |   // blocks are consistent (for example ending with a control flow instruction). | 
 |   HBasicBlock* SplitAfter(HInstruction* cursor); | 
 |  | 
 |   // Merge `other` at the end of `this`. Successors and dominated blocks of | 
 |   // `other` are changed to be successors and dominated blocks of `this`. Note | 
 |   // that this method does not update the graph, reverse post order, loop | 
 |   // information, nor make sure the blocks are consistent (for example ending | 
 |   // with a control flow instruction). | 
 |   void MergeWithInlined(HBasicBlock* other); | 
 |  | 
 |   // Replace `this` with `other`. Predecessors, successors, and dominated blocks | 
 |   // of `this` are moved to `other`. | 
 |   // Note that this method does not update the graph, reverse post order, loop | 
 |   // information, nor make sure the blocks are consistent (for example ending | 
 |   // with a control flow instruction). | 
 |   void ReplaceWith(HBasicBlock* other); | 
 |  | 
 |   // Merge `other` at the end of `this`. This method updates loops, reverse post | 
 |   // order, links to predecessors, successors, dominators and deletes the block | 
 |   // from the graph. The two blocks must be successive, i.e. `this` the only | 
 |   // predecessor of `other` and vice versa. | 
 |   void MergeWith(HBasicBlock* other); | 
 |  | 
 |   // Disconnects `this` from all its predecessors, successors and dominator, | 
 |   // removes it from all loops it is included in and eventually from the graph. | 
 |   // The block must not dominate any other block. Predecessors and successors | 
 |   // are safely updated. | 
 |   void DisconnectAndDelete(); | 
 |  | 
 |   void AddInstruction(HInstruction* instruction); | 
 |   // Insert `instruction` before/after an existing instruction `cursor`. | 
 |   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); | 
 |   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); | 
 |   // Replace instruction `initial` with `replacement` within this block. | 
 |   void ReplaceAndRemoveInstructionWith(HInstruction* initial, | 
 |                                        HInstruction* replacement); | 
 |   void AddPhi(HPhi* phi); | 
 |   void InsertPhiAfter(HPhi* instruction, HPhi* cursor); | 
 |   // RemoveInstruction and RemovePhi delete a given instruction from the respective | 
 |   // instruction list. With 'ensure_safety' set to true, it verifies that the | 
 |   // instruction is not in use and removes it from the use lists of its inputs. | 
 |   void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true); | 
 |   void RemovePhi(HPhi* phi, bool ensure_safety = true); | 
 |   void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true); | 
 |  | 
 |   bool IsLoopHeader() const { | 
 |     return IsInLoop() && (loop_information_->GetHeader() == this); | 
 |   } | 
 |  | 
 |   bool IsLoopPreHeaderFirstPredecessor() const { | 
 |     DCHECK(IsLoopHeader()); | 
 |     return GetPredecessor(0) == GetLoopInformation()->GetPreHeader(); | 
 |   } | 
 |  | 
 |   HLoopInformation* GetLoopInformation() const { | 
 |     return loop_information_; | 
 |   } | 
 |  | 
 |   // Set the loop_information_ on this block. Overrides the current | 
 |   // loop_information if it is an outer loop of the passed loop information. | 
 |   // Note that this method is called while creating the loop information. | 
 |   void SetInLoop(HLoopInformation* info) { | 
 |     if (IsLoopHeader()) { | 
 |       // Nothing to do. This just means `info` is an outer loop. | 
 |     } else if (!IsInLoop()) { | 
 |       loop_information_ = info; | 
 |     } else if (loop_information_->Contains(*info->GetHeader())) { | 
 |       // Block is currently part of an outer loop. Make it part of this inner loop. | 
 |       // Note that a non loop header having a loop information means this loop information | 
 |       // has already been populated | 
 |       loop_information_ = info; | 
 |     } else { | 
 |       // Block is part of an inner loop. Do not update the loop information. | 
 |       // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()` | 
 |       // at this point, because this method is being called while populating `info`. | 
 |     } | 
 |   } | 
 |  | 
 |   // Raw update of the loop information. | 
 |   void SetLoopInformation(HLoopInformation* info) { | 
 |     loop_information_ = info; | 
 |   } | 
 |  | 
 |   bool IsInLoop() const { return loop_information_ != nullptr; } | 
 |  | 
 |   TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; } | 
 |  | 
 |   void SetTryCatchInformation(TryCatchInformation* try_catch_information) { | 
 |     try_catch_information_ = try_catch_information; | 
 |   } | 
 |  | 
 |   bool IsTryBlock() const { | 
 |     return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock(); | 
 |   } | 
 |  | 
 |   bool IsCatchBlock() const { | 
 |     return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock(); | 
 |   } | 
 |  | 
 |   // Returns the try entry that this block's successors should have. They will | 
 |   // be in the same try, unless the block ends in a try boundary. In that case, | 
 |   // the appropriate try entry will be returned. | 
 |   const HTryBoundary* ComputeTryEntryOfSuccessors() const; | 
 |  | 
 |   // Returns whether this block dominates the blocked passed as parameter. | 
 |   bool Dominates(HBasicBlock* block) const; | 
 |  | 
 |   size_t GetLifetimeStart() const { return lifetime_start_; } | 
 |   size_t GetLifetimeEnd() const { return lifetime_end_; } | 
 |  | 
 |   void SetLifetimeStart(size_t start) { lifetime_start_ = start; } | 
 |   void SetLifetimeEnd(size_t end) { lifetime_end_ = end; } | 
 |  | 
 |  | 
 |   bool EndsWithControlFlowInstruction() const; | 
 |   bool EndsWithIf() const; | 
 |   bool EndsWithTryBoundary() const; | 
 |   bool HasSinglePhi() const; | 
 |  | 
 |  private: | 
 |   HGraph* graph_; | 
 |   ArenaVector<HBasicBlock*> predecessors_; | 
 |   ArenaVector<HBasicBlock*> successors_; | 
 |   HInstructionList instructions_; | 
 |   HInstructionList phis_; | 
 |   HLoopInformation* loop_information_; | 
 |   HBasicBlock* dominator_; | 
 |   ArenaVector<HBasicBlock*> dominated_blocks_; | 
 |   uint32_t block_id_; | 
 |   // The dex program counter of the first instruction of this block. | 
 |   const uint32_t dex_pc_; | 
 |   size_t lifetime_start_; | 
 |   size_t lifetime_end_; | 
 |   TryCatchInformation* try_catch_information_; | 
 |  | 
 |   friend class HGraph; | 
 |   friend class HInstruction; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HBasicBlock); | 
 | }; | 
 |  | 
 | // Iterates over the LoopInformation of all loops which contain 'block' | 
 | // from the innermost to the outermost. | 
 | class HLoopInformationOutwardIterator : public ValueObject { | 
 |  public: | 
 |   explicit HLoopInformationOutwardIterator(const HBasicBlock& block) | 
 |       : current_(block.GetLoopInformation()) {} | 
 |  | 
 |   bool Done() const { return current_ == nullptr; } | 
 |  | 
 |   void Advance() { | 
 |     DCHECK(!Done()); | 
 |     current_ = current_->GetPreHeader()->GetLoopInformation(); | 
 |   } | 
 |  | 
 |   HLoopInformation* Current() const { | 
 |     DCHECK(!Done()); | 
 |     return current_; | 
 |   } | 
 |  | 
 |  private: | 
 |   HLoopInformation* current_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator); | 
 | }; | 
 |  | 
 | #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \ | 
 |   M(Add, BinaryOperation)                                               \ | 
 |   M(And, BinaryOperation)                                               \ | 
 |   M(ArrayGet, Instruction)                                              \ | 
 |   M(ArrayLength, Instruction)                                           \ | 
 |   M(ArraySet, Instruction)                                              \ | 
 |   M(BooleanNot, UnaryOperation)                                         \ | 
 |   M(BoundsCheck, Instruction)                                           \ | 
 |   M(BoundType, Instruction)                                             \ | 
 |   M(CheckCast, Instruction)                                             \ | 
 |   M(ClearException, Instruction)                                        \ | 
 |   M(ClinitCheck, Instruction)                                           \ | 
 |   M(Compare, BinaryOperation)                                           \ | 
 |   M(Condition, BinaryOperation)                                         \ | 
 |   M(CurrentMethod, Instruction)                                         \ | 
 |   M(Deoptimize, Instruction)                                            \ | 
 |   M(Div, BinaryOperation)                                               \ | 
 |   M(DivZeroCheck, Instruction)                                          \ | 
 |   M(DoubleConstant, Constant)                                           \ | 
 |   M(Equal, Condition)                                                   \ | 
 |   M(Exit, Instruction)                                                  \ | 
 |   M(FakeString, Instruction)                                            \ | 
 |   M(FloatConstant, Constant)                                            \ | 
 |   M(Goto, Instruction)                                                  \ | 
 |   M(GreaterThan, Condition)                                             \ | 
 |   M(GreaterThanOrEqual, Condition)                                      \ | 
 |   M(If, Instruction)                                                    \ | 
 |   M(InstanceFieldGet, Instruction)                                      \ | 
 |   M(InstanceFieldSet, Instruction)                                      \ | 
 |   M(InstanceOf, Instruction)                                            \ | 
 |   M(IntConstant, Constant)                                              \ | 
 |   M(InvokeInterface, Invoke)                                            \ | 
 |   M(InvokeStaticOrDirect, Invoke)                                       \ | 
 |   M(InvokeVirtual, Invoke)                                              \ | 
 |   M(LessThan, Condition)                                                \ | 
 |   M(LessThanOrEqual, Condition)                                         \ | 
 |   M(LoadClass, Instruction)                                             \ | 
 |   M(LoadException, Instruction)                                         \ | 
 |   M(LoadLocal, Instruction)                                             \ | 
 |   M(LoadString, Instruction)                                            \ | 
 |   M(Local, Instruction)                                                 \ | 
 |   M(LongConstant, Constant)                                             \ | 
 |   M(MemoryBarrier, Instruction)                                         \ | 
 |   M(MonitorOperation, Instruction)                                      \ | 
 |   M(Mul, BinaryOperation)                                               \ | 
 |   M(Neg, UnaryOperation)                                                \ | 
 |   M(NewArray, Instruction)                                              \ | 
 |   M(NewInstance, Instruction)                                           \ | 
 |   M(Not, UnaryOperation)                                                \ | 
 |   M(NotEqual, Condition)                                                \ | 
 |   M(NullConstant, Instruction)                                          \ | 
 |   M(NullCheck, Instruction)                                             \ | 
 |   M(Or, BinaryOperation)                                                \ | 
 |   M(ParallelMove, Instruction)                                          \ | 
 |   M(ParameterValue, Instruction)                                        \ | 
 |   M(Phi, Instruction)                                                   \ | 
 |   M(Rem, BinaryOperation)                                               \ | 
 |   M(Return, Instruction)                                                \ | 
 |   M(ReturnVoid, Instruction)                                            \ | 
 |   M(Shl, BinaryOperation)                                               \ | 
 |   M(Shr, BinaryOperation)                                               \ | 
 |   M(StaticFieldGet, Instruction)                                        \ | 
 |   M(StaticFieldSet, Instruction)                                        \ | 
 |   M(StoreLocal, Instruction)                                            \ | 
 |   M(Sub, BinaryOperation)                                               \ | 
 |   M(SuspendCheck, Instruction)                                          \ | 
 |   M(Temporary, Instruction)                                             \ | 
 |   M(Throw, Instruction)                                                 \ | 
 |   M(TryBoundary, Instruction)                                           \ | 
 |   M(TypeConversion, Instruction)                                        \ | 
 |   M(UShr, BinaryOperation)                                              \ | 
 |   M(Xor, BinaryOperation)                                               \ | 
 |  | 
 | #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) | 
 |  | 
 | #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) | 
 |  | 
 | #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) | 
 |  | 
 | #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \ | 
 |   M(X86ComputeBaseMethodAddress, Instruction)                           \ | 
 |   M(X86LoadFromConstantTable, Instruction) | 
 |  | 
 | #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) | 
 |  | 
 | #define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \ | 
 |   FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \ | 
 |   FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \ | 
 |   FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \ | 
 |   FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \ | 
 |   FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \ | 
 |   FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) | 
 |  | 
 | #define FOR_EACH_INSTRUCTION(M)                                         \ | 
 |   FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \ | 
 |   M(Constant, Instruction)                                              \ | 
 |   M(UnaryOperation, Instruction)                                        \ | 
 |   M(BinaryOperation, Instruction)                                       \ | 
 |   M(Invoke, Instruction) | 
 |  | 
 | #define FORWARD_DECLARATION(type, super) class H##type; | 
 | FOR_EACH_INSTRUCTION(FORWARD_DECLARATION) | 
 | #undef FORWARD_DECLARATION | 
 |  | 
 | #define DECLARE_INSTRUCTION(type)                                       \ | 
 |   InstructionKind GetKind() const OVERRIDE { return k##type; }          \ | 
 |   const char* DebugName() const OVERRIDE { return #type; }              \ | 
 |   const H##type* As##type() const OVERRIDE { return this; }             \ | 
 |   H##type* As##type() OVERRIDE { return this; }                         \ | 
 |   bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \ | 
 |     return other->Is##type();                                           \ | 
 |   }                                                                     \ | 
 |   void Accept(HGraphVisitor* visitor) OVERRIDE | 
 |  | 
 | template <typename T> class HUseList; | 
 |  | 
 | template <typename T> | 
 | class HUseListNode : public ArenaObject<kArenaAllocUseListNode> { | 
 |  public: | 
 |   HUseListNode* GetPrevious() const { return prev_; } | 
 |   HUseListNode* GetNext() const { return next_; } | 
 |   T GetUser() const { return user_; } | 
 |   size_t GetIndex() const { return index_; } | 
 |   void SetIndex(size_t index) { index_ = index; } | 
 |  | 
 |  private: | 
 |   HUseListNode(T user, size_t index) | 
 |       : user_(user), index_(index), prev_(nullptr), next_(nullptr) {} | 
 |  | 
 |   T const user_; | 
 |   size_t index_; | 
 |   HUseListNode<T>* prev_; | 
 |   HUseListNode<T>* next_; | 
 |  | 
 |   friend class HUseList<T>; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HUseListNode); | 
 | }; | 
 |  | 
 | template <typename T> | 
 | class HUseList : public ValueObject { | 
 |  public: | 
 |   HUseList() : first_(nullptr) {} | 
 |  | 
 |   void Clear() { | 
 |     first_ = nullptr; | 
 |   } | 
 |  | 
 |   // Adds a new entry at the beginning of the use list and returns | 
 |   // the newly created node. | 
 |   HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) { | 
 |     HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index); | 
 |     if (IsEmpty()) { | 
 |       first_ = new_node; | 
 |     } else { | 
 |       first_->prev_ = new_node; | 
 |       new_node->next_ = first_; | 
 |       first_ = new_node; | 
 |     } | 
 |     return new_node; | 
 |   } | 
 |  | 
 |   HUseListNode<T>* GetFirst() const { | 
 |     return first_; | 
 |   } | 
 |  | 
 |   void Remove(HUseListNode<T>* node) { | 
 |     DCHECK(node != nullptr); | 
 |     DCHECK(Contains(node)); | 
 |  | 
 |     if (node->prev_ != nullptr) { | 
 |       node->prev_->next_ = node->next_; | 
 |     } | 
 |     if (node->next_ != nullptr) { | 
 |       node->next_->prev_ = node->prev_; | 
 |     } | 
 |     if (node == first_) { | 
 |       first_ = node->next_; | 
 |     } | 
 |   } | 
 |  | 
 |   bool Contains(const HUseListNode<T>* node) const { | 
 |     if (node == nullptr) { | 
 |       return false; | 
 |     } | 
 |     for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) { | 
 |       if (current == node) { | 
 |         return true; | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool IsEmpty() const { | 
 |     return first_ == nullptr; | 
 |   } | 
 |  | 
 |   bool HasOnlyOneUse() const { | 
 |     return first_ != nullptr && first_->next_ == nullptr; | 
 |   } | 
 |  | 
 |   size_t SizeSlow() const { | 
 |     size_t count = 0; | 
 |     for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) { | 
 |       ++count; | 
 |     } | 
 |     return count; | 
 |   } | 
 |  | 
 |  private: | 
 |   HUseListNode<T>* first_; | 
 | }; | 
 |  | 
 | template<typename T> | 
 | class HUseIterator : public ValueObject { | 
 |  public: | 
 |   explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {} | 
 |  | 
 |   bool Done() const { return current_ == nullptr; } | 
 |  | 
 |   void Advance() { | 
 |     DCHECK(!Done()); | 
 |     current_ = current_->GetNext(); | 
 |   } | 
 |  | 
 |   HUseListNode<T>* Current() const { | 
 |     DCHECK(!Done()); | 
 |     return current_; | 
 |   } | 
 |  | 
 |  private: | 
 |   HUseListNode<T>* current_; | 
 |  | 
 |   friend class HValue; | 
 | }; | 
 |  | 
 | // This class is used by HEnvironment and HInstruction classes to record the | 
 | // instructions they use and pointers to the corresponding HUseListNodes kept | 
 | // by the used instructions. | 
 | template <typename T> | 
 | class HUserRecord { | 
 |  public: | 
 |   HUserRecord() : instruction_(nullptr), use_node_(nullptr) {} | 
 |   explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {} | 
 |  | 
 |   HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node) | 
 |     : instruction_(old_record.instruction_), use_node_(use_node) { | 
 |     DCHECK(instruction_ != nullptr); | 
 |     DCHECK(use_node_ != nullptr); | 
 |     DCHECK(old_record.use_node_ == nullptr); | 
 |   } | 
 |  | 
 |   HInstruction* GetInstruction() const { return instruction_; } | 
 |   HUseListNode<T>* GetUseNode() const { return use_node_; } | 
 |  | 
 |  private: | 
 |   // Instruction used by the user. | 
 |   HInstruction* instruction_; | 
 |  | 
 |   // Corresponding entry in the use list kept by 'instruction_'. | 
 |   HUseListNode<T>* use_node_; | 
 | }; | 
 |  | 
 | /** | 
 |  * Side-effects representation. | 
 |  * | 
 |  * For write/read dependences on fields/arrays, the dependence analysis uses | 
 |  * type disambiguation (e.g. a float field write cannot modify the value of an | 
 |  * integer field read) and the access type (e.g.  a reference array write cannot | 
 |  * modify the value of a reference field read [although it may modify the | 
 |  * reference fetch prior to reading the field, which is represented by its own | 
 |  * write/read dependence]). The analysis makes conservative points-to | 
 |  * assumptions on reference types (e.g. two same typed arrays are assumed to be | 
 |  * the same, and any reference read depends on any reference read without | 
 |  * further regard of its type). | 
 |  * | 
 |  * The internal representation uses 38-bit and is described in the table below. | 
 |  * The first line indicates the side effect, and for field/array accesses the | 
 |  * second line indicates the type of the access (in the order of the | 
 |  * Primitive::Type enum). | 
 |  * The two numbered lines below indicate the bit position in the bitfield (read | 
 |  * vertically). | 
 |  * | 
 |  *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  | | 
 |  *   +-------------+---------+---------+--------------+---------+---------+ | 
 |  *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL| | 
 |  *   |      3      |333333322|222222221|       1      |111111110|000000000| | 
 |  *   |      7      |654321098|765432109|       8      |765432109|876543210| | 
 |  * | 
 |  * Note that, to ease the implementation, 'changes' bits are least significant | 
 |  * bits, while 'dependency' bits are most significant bits. | 
 |  */ | 
 | class SideEffects : public ValueObject { | 
 |  public: | 
 |   SideEffects() : flags_(0) {} | 
 |  | 
 |   static SideEffects None() { | 
 |     return SideEffects(0); | 
 |   } | 
 |  | 
 |   static SideEffects All() { | 
 |     return SideEffects(kAllChangeBits | kAllDependOnBits); | 
 |   } | 
 |  | 
 |   static SideEffects AllChanges() { | 
 |     return SideEffects(kAllChangeBits); | 
 |   } | 
 |  | 
 |   static SideEffects AllDependencies() { | 
 |     return SideEffects(kAllDependOnBits); | 
 |   } | 
 |  | 
 |   static SideEffects AllExceptGCDependency() { | 
 |     return AllWritesAndReads().Union(SideEffects::CanTriggerGC()); | 
 |   } | 
 |  | 
 |   static SideEffects AllWritesAndReads() { | 
 |     return SideEffects(kAllWrites | kAllReads); | 
 |   } | 
 |  | 
 |   static SideEffects AllWrites() { | 
 |     return SideEffects(kAllWrites); | 
 |   } | 
 |  | 
 |   static SideEffects AllReads() { | 
 |     return SideEffects(kAllReads); | 
 |   } | 
 |  | 
 |   static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) { | 
 |     return is_volatile | 
 |         ? AllWritesAndReads() | 
 |         : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset)); | 
 |   } | 
 |  | 
 |   static SideEffects ArrayWriteOfType(Primitive::Type type) { | 
 |     return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset)); | 
 |   } | 
 |  | 
 |   static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) { | 
 |     return is_volatile | 
 |         ? AllWritesAndReads() | 
 |         : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset)); | 
 |   } | 
 |  | 
 |   static SideEffects ArrayReadOfType(Primitive::Type type) { | 
 |     return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset)); | 
 |   } | 
 |  | 
 |   static SideEffects CanTriggerGC() { | 
 |     return SideEffects(1ULL << kCanTriggerGCBit); | 
 |   } | 
 |  | 
 |   static SideEffects DependsOnGC() { | 
 |     return SideEffects(1ULL << kDependsOnGCBit); | 
 |   } | 
 |  | 
 |   // Combines the side-effects of this and the other. | 
 |   SideEffects Union(SideEffects other) const { | 
 |     return SideEffects(flags_ | other.flags_); | 
 |   } | 
 |  | 
 |   SideEffects Exclusion(SideEffects other) const { | 
 |     return SideEffects(flags_ & ~other.flags_); | 
 |   } | 
 |  | 
 |   bool Includes(SideEffects other) const { | 
 |     return (other.flags_ & flags_) == other.flags_; | 
 |   } | 
 |  | 
 |   bool HasSideEffects() const { | 
 |     return (flags_ & kAllChangeBits); | 
 |   } | 
 |  | 
 |   bool HasDependencies() const { | 
 |     return (flags_ & kAllDependOnBits); | 
 |   } | 
 |  | 
 |   // Returns true if there are no side effects or dependencies. | 
 |   bool DoesNothing() const { | 
 |     return flags_ == 0; | 
 |   } | 
 |  | 
 |   // Returns true if something is written. | 
 |   bool DoesAnyWrite() const { | 
 |     return (flags_ & kAllWrites); | 
 |   } | 
 |  | 
 |   // Returns true if something is read. | 
 |   bool DoesAnyRead() const { | 
 |     return (flags_ & kAllReads); | 
 |   } | 
 |  | 
 |   // Returns true if potentially everything is written and read | 
 |   // (every type and every kind of access). | 
 |   bool DoesAllReadWrite() const { | 
 |     return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads); | 
 |   } | 
 |  | 
 |   bool DoesAll() const { | 
 |     return flags_ == (kAllChangeBits | kAllDependOnBits); | 
 |   } | 
 |  | 
 |   // Returns true if this may read something written by other. | 
 |   bool MayDependOn(SideEffects other) const { | 
 |     const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits; | 
 |     return (other.flags_ & depends_on_flags); | 
 |   } | 
 |  | 
 |   // Returns string representation of flags (for debugging only). | 
 |   // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL| | 
 |   std::string ToString() const { | 
 |     std::string flags = "|"; | 
 |     for (int s = kLastBit; s >= 0; s--) { | 
 |       bool current_bit_is_set = ((flags_ >> s) & 1) != 0; | 
 |       if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) { | 
 |         // This is a bit for the GC side effect. | 
 |         if (current_bit_is_set) { | 
 |           flags += "GC"; | 
 |         } | 
 |         flags += "|"; | 
 |       } else { | 
 |         // This is a bit for the array/field analysis. | 
 |         // The underscore character stands for the 'can trigger GC' bit. | 
 |         static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD"; | 
 |         if (current_bit_is_set) { | 
 |           flags += kDebug[s]; | 
 |         } | 
 |         if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) || | 
 |             (s == kFieldReadOffset) || (s == kArrayReadOffset)) { | 
 |           flags += "|"; | 
 |         } | 
 |       } | 
 |     } | 
 |     return flags; | 
 |   } | 
 |  | 
 |   bool Equals(const SideEffects& other) const { return flags_ == other.flags_; } | 
 |  | 
 |  private: | 
 |   static constexpr int kFieldArrayAnalysisBits = 9; | 
 |  | 
 |   static constexpr int kFieldWriteOffset = 0; | 
 |   static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits; | 
 |   static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1; | 
 |   static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1; | 
 |  | 
 |   static constexpr int kChangeBits = kCanTriggerGCBit + 1; | 
 |  | 
 |   static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1; | 
 |   static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits; | 
 |   static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1; | 
 |   static constexpr int kDependsOnGCBit = kLastBitForReads + 1; | 
 |  | 
 |   static constexpr int kLastBit = kDependsOnGCBit; | 
 |   static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits; | 
 |  | 
 |   // Aliases. | 
 |  | 
 |   static_assert(kChangeBits == kDependOnBits, | 
 |                 "the 'change' bits should match the 'depend on' bits."); | 
 |  | 
 |   static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1); | 
 |   static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits; | 
 |   static constexpr uint64_t kAllWrites = | 
 |       ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset; | 
 |   static constexpr uint64_t kAllReads = | 
 |       ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset; | 
 |  | 
 |   // Work around the fact that HIR aliases I/F and J/D. | 
 |   // TODO: remove this interceptor once HIR types are clean | 
 |   static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) { | 
 |     switch (type) { | 
 |       case Primitive::kPrimInt: | 
 |       case Primitive::kPrimFloat: | 
 |         return TypeFlag(Primitive::kPrimInt, offset) | | 
 |                TypeFlag(Primitive::kPrimFloat, offset); | 
 |       case Primitive::kPrimLong: | 
 |       case Primitive::kPrimDouble: | 
 |         return TypeFlag(Primitive::kPrimLong, offset) | | 
 |                TypeFlag(Primitive::kPrimDouble, offset); | 
 |       default: | 
 |         return TypeFlag(type, offset); | 
 |     } | 
 |   } | 
 |  | 
 |   // Translates type to bit flag. | 
 |   static uint64_t TypeFlag(Primitive::Type type, int offset) { | 
 |     CHECK_NE(type, Primitive::kPrimVoid); | 
 |     const uint64_t one = 1; | 
 |     const int shift = type;  // 0-based consecutive enum | 
 |     DCHECK_LE(kFieldWriteOffset, shift); | 
 |     DCHECK_LT(shift, kArrayWriteOffset); | 
 |     return one << (type + offset); | 
 |   } | 
 |  | 
 |   // Private constructor on direct flags value. | 
 |   explicit SideEffects(uint64_t flags) : flags_(flags) {} | 
 |  | 
 |   uint64_t flags_; | 
 | }; | 
 |  | 
 | // A HEnvironment object contains the values of virtual registers at a given location. | 
 | class HEnvironment : public ArenaObject<kArenaAllocEnvironment> { | 
 |  public: | 
 |   HEnvironment(ArenaAllocator* arena, | 
 |                size_t number_of_vregs, | 
 |                const DexFile& dex_file, | 
 |                uint32_t method_idx, | 
 |                uint32_t dex_pc, | 
 |                InvokeType invoke_type, | 
 |                HInstruction* holder) | 
 |      : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)), | 
 |        locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)), | 
 |        parent_(nullptr), | 
 |        dex_file_(dex_file), | 
 |        method_idx_(method_idx), | 
 |        dex_pc_(dex_pc), | 
 |        invoke_type_(invoke_type), | 
 |        holder_(holder) { | 
 |   } | 
 |  | 
 |   HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder) | 
 |       : HEnvironment(arena, | 
 |                      to_copy.Size(), | 
 |                      to_copy.GetDexFile(), | 
 |                      to_copy.GetMethodIdx(), | 
 |                      to_copy.GetDexPc(), | 
 |                      to_copy.GetInvokeType(), | 
 |                      holder) {} | 
 |  | 
 |   void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) { | 
 |     if (parent_ != nullptr) { | 
 |       parent_->SetAndCopyParentChain(allocator, parent); | 
 |     } else { | 
 |       parent_ = new (allocator) HEnvironment(allocator, *parent, holder_); | 
 |       parent_->CopyFrom(parent); | 
 |       if (parent->GetParent() != nullptr) { | 
 |         parent_->SetAndCopyParentChain(allocator, parent->GetParent()); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void CopyFrom(const ArenaVector<HInstruction*>& locals); | 
 |   void CopyFrom(HEnvironment* environment); | 
 |  | 
 |   // Copy from `env`. If it's a loop phi for `loop_header`, copy the first | 
 |   // input to the loop phi instead. This is for inserting instructions that | 
 |   // require an environment (like HDeoptimization) in the loop pre-header. | 
 |   void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header); | 
 |  | 
 |   void SetRawEnvAt(size_t index, HInstruction* instruction) { | 
 |     DCHECK_LT(index, Size()); | 
 |     vregs_[index] = HUserRecord<HEnvironment*>(instruction); | 
 |   } | 
 |  | 
 |   HInstruction* GetInstructionAt(size_t index) const { | 
 |     DCHECK_LT(index, Size()); | 
 |     return vregs_[index].GetInstruction(); | 
 |   } | 
 |  | 
 |   void RemoveAsUserOfInput(size_t index) const; | 
 |  | 
 |   size_t Size() const { return vregs_.size(); } | 
 |  | 
 |   HEnvironment* GetParent() const { return parent_; } | 
 |  | 
 |   void SetLocationAt(size_t index, Location location) { | 
 |     DCHECK_LT(index, Size()); | 
 |     locations_[index] = location; | 
 |   } | 
 |  | 
 |   Location GetLocationAt(size_t index) const { | 
 |     DCHECK_LT(index, Size()); | 
 |     return locations_[index]; | 
 |   } | 
 |  | 
 |   uint32_t GetDexPc() const { | 
 |     return dex_pc_; | 
 |   } | 
 |  | 
 |   uint32_t GetMethodIdx() const { | 
 |     return method_idx_; | 
 |   } | 
 |  | 
 |   InvokeType GetInvokeType() const { | 
 |     return invoke_type_; | 
 |   } | 
 |  | 
 |   const DexFile& GetDexFile() const { | 
 |     return dex_file_; | 
 |   } | 
 |  | 
 |   HInstruction* GetHolder() const { | 
 |     return holder_; | 
 |   } | 
 |  | 
 |  private: | 
 |   // Record instructions' use entries of this environment for constant-time removal. | 
 |   // It should only be called by HInstruction when a new environment use is added. | 
 |   void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) { | 
 |     DCHECK(env_use->GetUser() == this); | 
 |     size_t index = env_use->GetIndex(); | 
 |     DCHECK_LT(index, Size()); | 
 |     vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use); | 
 |   } | 
 |  | 
 |   ArenaVector<HUserRecord<HEnvironment*>> vregs_; | 
 |   ArenaVector<Location> locations_; | 
 |   HEnvironment* parent_; | 
 |   const DexFile& dex_file_; | 
 |   const uint32_t method_idx_; | 
 |   const uint32_t dex_pc_; | 
 |   const InvokeType invoke_type_; | 
 |  | 
 |   // The instruction that holds this environment. | 
 |   HInstruction* const holder_; | 
 |  | 
 |   friend class HInstruction; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HEnvironment); | 
 | }; | 
 |  | 
 | class ReferenceTypeInfo : ValueObject { | 
 |  public: | 
 |   typedef Handle<mirror::Class> TypeHandle; | 
 |  | 
 |   static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) { | 
 |     // The constructor will check that the type_handle is valid. | 
 |     return ReferenceTypeInfo(type_handle, is_exact); | 
 |   } | 
 |  | 
 |   static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); } | 
 |  | 
 |   static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) { | 
 |     return handle.GetReference() != nullptr; | 
 |   } | 
 |  | 
 |   bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) { | 
 |     return IsValidHandle(type_handle_); | 
 |   } | 
 |   bool IsExact() const { return is_exact_; } | 
 |  | 
 |   bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) { | 
 |     DCHECK(IsValid()); | 
 |     return GetTypeHandle()->IsObjectClass(); | 
 |   } | 
 |   bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) { | 
 |     DCHECK(IsValid()); | 
 |     return GetTypeHandle()->IsInterface(); | 
 |   } | 
 |  | 
 |   Handle<mirror::Class> GetTypeHandle() const { return type_handle_; } | 
 |  | 
 |   bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) { | 
 |     DCHECK(IsValid()); | 
 |     DCHECK(rti.IsValid()); | 
 |     return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); | 
 |   } | 
 |  | 
 |   // Returns true if the type information provide the same amount of details. | 
 |   // Note that it does not mean that the instructions have the same actual type | 
 |   // (because the type can be the result of a merge). | 
 |   bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) { | 
 |     if (!IsValid() && !rti.IsValid()) { | 
 |       // Invalid types are equal. | 
 |       return true; | 
 |     } | 
 |     if (!IsValid() || !rti.IsValid()) { | 
 |       // One is valid, the other not. | 
 |       return false; | 
 |     } | 
 |     return IsExact() == rti.IsExact() | 
 |         && GetTypeHandle().Get() == rti.GetTypeHandle().Get(); | 
 |   } | 
 |  | 
 |  private: | 
 |   ReferenceTypeInfo(); | 
 |   ReferenceTypeInfo(TypeHandle type_handle, bool is_exact); | 
 |  | 
 |   // The class of the object. | 
 |   TypeHandle type_handle_; | 
 |   // Whether or not the type is exact or a superclass of the actual type. | 
 |   // Whether or not we have any information about this type. | 
 |   bool is_exact_; | 
 | }; | 
 |  | 
 | std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs); | 
 |  | 
 | class HInstruction : public ArenaObject<kArenaAllocInstruction> { | 
 |  public: | 
 |   HInstruction(SideEffects side_effects, uint32_t dex_pc = kNoDexPc) | 
 |       : previous_(nullptr), | 
 |         next_(nullptr), | 
 |         block_(nullptr), | 
 |         dex_pc_(dex_pc), | 
 |         id_(-1), | 
 |         ssa_index_(-1), | 
 |         environment_(nullptr), | 
 |         locations_(nullptr), | 
 |         live_interval_(nullptr), | 
 |         lifetime_position_(kNoLifetime), | 
 |         side_effects_(side_effects), | 
 |         reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {} | 
 |  | 
 |   virtual ~HInstruction() {} | 
 |  | 
 | #define DECLARE_KIND(type, super) k##type, | 
 |   enum InstructionKind { | 
 |     FOR_EACH_INSTRUCTION(DECLARE_KIND) | 
 |   }; | 
 | #undef DECLARE_KIND | 
 |  | 
 |   HInstruction* GetNext() const { return next_; } | 
 |   HInstruction* GetPrevious() const { return previous_; } | 
 |  | 
 |   HInstruction* GetNextDisregardingMoves() const; | 
 |   HInstruction* GetPreviousDisregardingMoves() const; | 
 |  | 
 |   HBasicBlock* GetBlock() const { return block_; } | 
 |   ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); } | 
 |   void SetBlock(HBasicBlock* block) { block_ = block; } | 
 |   bool IsInBlock() const { return block_ != nullptr; } | 
 |   bool IsInLoop() const { return block_->IsInLoop(); } | 
 |   bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); } | 
 |  | 
 |   virtual size_t InputCount() const = 0; | 
 |   HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); } | 
 |  | 
 |   virtual void Accept(HGraphVisitor* visitor) = 0; | 
 |   virtual const char* DebugName() const = 0; | 
 |  | 
 |   virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; } | 
 |   void SetRawInputAt(size_t index, HInstruction* input) { | 
 |     SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input)); | 
 |   } | 
 |  | 
 |   virtual bool NeedsEnvironment() const { return false; } | 
 |  | 
 |   uint32_t GetDexPc() const { return dex_pc_; } | 
 |  | 
 |   virtual bool IsControlFlow() const { return false; } | 
 |  | 
 |   virtual bool CanThrow() const { return false; } | 
 |   bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); } | 
 |  | 
 |   bool HasSideEffects() const { return side_effects_.HasSideEffects(); } | 
 |   bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); } | 
 |  | 
 |   // Does not apply for all instructions, but having this at top level greatly | 
 |   // simplifies the null check elimination. | 
 |   // TODO: Consider merging can_be_null into ReferenceTypeInfo. | 
 |   virtual bool CanBeNull() const { | 
 |     DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types"; | 
 |     return true; | 
 |   } | 
 |  | 
 |   virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const { | 
 |     UNUSED(obj); | 
 |     return false; | 
 |   } | 
 |  | 
 |   void SetReferenceTypeInfo(ReferenceTypeInfo rti); | 
 |  | 
 |   ReferenceTypeInfo GetReferenceTypeInfo() const { | 
 |     DCHECK_EQ(GetType(), Primitive::kPrimNot); | 
 |     return reference_type_info_; | 
 |   } | 
 |  | 
 |   void AddUseAt(HInstruction* user, size_t index) { | 
 |     DCHECK(user != nullptr); | 
 |     HUseListNode<HInstruction*>* use = | 
 |         uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena()); | 
 |     user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use)); | 
 |   } | 
 |  | 
 |   void AddEnvUseAt(HEnvironment* user, size_t index) { | 
 |     DCHECK(user != nullptr); | 
 |     HUseListNode<HEnvironment*>* env_use = | 
 |         env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena()); | 
 |     user->RecordEnvUse(env_use); | 
 |   } | 
 |  | 
 |   void RemoveAsUserOfInput(size_t input) { | 
 |     HUserRecord<HInstruction*> input_use = InputRecordAt(input); | 
 |     input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode()); | 
 |   } | 
 |  | 
 |   const HUseList<HInstruction*>& GetUses() const { return uses_; } | 
 |   const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; } | 
 |  | 
 |   bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); } | 
 |   bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); } | 
 |   bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); } | 
 |   bool HasOnlyOneNonEnvironmentUse() const { | 
 |     return !HasEnvironmentUses() && GetUses().HasOnlyOneUse(); | 
 |   } | 
 |  | 
 |   // Does this instruction strictly dominate `other_instruction`? | 
 |   // Returns false if this instruction and `other_instruction` are the same. | 
 |   // Aborts if this instruction and `other_instruction` are both phis. | 
 |   bool StrictlyDominates(HInstruction* other_instruction) const; | 
 |  | 
 |   int GetId() const { return id_; } | 
 |   void SetId(int id) { id_ = id; } | 
 |  | 
 |   int GetSsaIndex() const { return ssa_index_; } | 
 |   void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; } | 
 |   bool HasSsaIndex() const { return ssa_index_ != -1; } | 
 |  | 
 |   bool HasEnvironment() const { return environment_ != nullptr; } | 
 |   HEnvironment* GetEnvironment() const { return environment_; } | 
 |   // Set the `environment_` field. Raw because this method does not | 
 |   // update the uses lists. | 
 |   void SetRawEnvironment(HEnvironment* environment) { | 
 |     DCHECK(environment_ == nullptr); | 
 |     DCHECK_EQ(environment->GetHolder(), this); | 
 |     environment_ = environment; | 
 |   } | 
 |  | 
 |   // Set the environment of this instruction, copying it from `environment`. While | 
 |   // copying, the uses lists are being updated. | 
 |   void CopyEnvironmentFrom(HEnvironment* environment) { | 
 |     DCHECK(environment_ == nullptr); | 
 |     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena(); | 
 |     environment_ = new (allocator) HEnvironment(allocator, *environment, this); | 
 |     environment_->CopyFrom(environment); | 
 |     if (environment->GetParent() != nullptr) { | 
 |       environment_->SetAndCopyParentChain(allocator, environment->GetParent()); | 
 |     } | 
 |   } | 
 |  | 
 |   void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment, | 
 |                                                 HBasicBlock* block) { | 
 |     DCHECK(environment_ == nullptr); | 
 |     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena(); | 
 |     environment_ = new (allocator) HEnvironment(allocator, *environment, this); | 
 |     environment_->CopyFromWithLoopPhiAdjustment(environment, block); | 
 |     if (environment->GetParent() != nullptr) { | 
 |       environment_->SetAndCopyParentChain(allocator, environment->GetParent()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Returns the number of entries in the environment. Typically, that is the | 
 |   // number of dex registers in a method. It could be more in case of inlining. | 
 |   size_t EnvironmentSize() const; | 
 |  | 
 |   LocationSummary* GetLocations() const { return locations_; } | 
 |   void SetLocations(LocationSummary* locations) { locations_ = locations; } | 
 |  | 
 |   void ReplaceWith(HInstruction* instruction); | 
 |   void ReplaceInput(HInstruction* replacement, size_t index); | 
 |  | 
 |   // This is almost the same as doing `ReplaceWith()`. But in this helper, the | 
 |   // uses of this instruction by `other` are *not* updated. | 
 |   void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) { | 
 |     ReplaceWith(other); | 
 |     other->ReplaceInput(this, use_index); | 
 |   } | 
 |  | 
 |   // Move `this` instruction before `cursor`. | 
 |   void MoveBefore(HInstruction* cursor); | 
 |  | 
 | #define INSTRUCTION_TYPE_CHECK(type, super)                                    \ | 
 |   bool Is##type() const { return (As##type() != nullptr); }                    \ | 
 |   virtual const H##type* As##type() const { return nullptr; }                  \ | 
 |   virtual H##type* As##type() { return nullptr; } | 
 |  | 
 |   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK) | 
 | #undef INSTRUCTION_TYPE_CHECK | 
 |  | 
 |   // Returns whether the instruction can be moved within the graph. | 
 |   virtual bool CanBeMoved() const { return false; } | 
 |  | 
 |   // Returns whether the two instructions are of the same kind. | 
 |   virtual bool InstructionTypeEquals(HInstruction* other) const { | 
 |     UNUSED(other); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Returns whether any data encoded in the two instructions is equal. | 
 |   // This method does not look at the inputs. Both instructions must be | 
 |   // of the same type, otherwise the method has undefined behavior. | 
 |   virtual bool InstructionDataEquals(HInstruction* other) const { | 
 |     UNUSED(other); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Returns whether two instructions are equal, that is: | 
 |   // 1) They have the same type and contain the same data (InstructionDataEquals). | 
 |   // 2) Their inputs are identical. | 
 |   bool Equals(HInstruction* other) const; | 
 |  | 
 |   virtual InstructionKind GetKind() const = 0; | 
 |  | 
 |   virtual size_t ComputeHashCode() const { | 
 |     size_t result = GetKind(); | 
 |     for (size_t i = 0, e = InputCount(); i < e; ++i) { | 
 |       result = (result * 31) + InputAt(i)->GetId(); | 
 |     } | 
 |     return result; | 
 |   } | 
 |  | 
 |   SideEffects GetSideEffects() const { return side_effects_; } | 
 |  | 
 |   size_t GetLifetimePosition() const { return lifetime_position_; } | 
 |   void SetLifetimePosition(size_t position) { lifetime_position_ = position; } | 
 |   LiveInterval* GetLiveInterval() const { return live_interval_; } | 
 |   void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; } | 
 |   bool HasLiveInterval() const { return live_interval_ != nullptr; } | 
 |  | 
 |   bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); } | 
 |  | 
 |   // Returns whether the code generation of the instruction will require to have access | 
 |   // to the current method. Such instructions are: | 
 |   // (1): Instructions that require an environment, as calling the runtime requires | 
 |   //      to walk the stack and have the current method stored at a specific stack address. | 
 |   // (2): Object literals like classes and strings, that are loaded from the dex cache | 
 |   //      fields of the current method. | 
 |   bool NeedsCurrentMethod() const { | 
 |     return NeedsEnvironment() || IsLoadClass() || IsLoadString(); | 
 |   } | 
 |  | 
 |   virtual bool NeedsDexCache() const { return false; } | 
 |  | 
 |   // Does this instruction have any use in an environment before | 
 |   // control flow hits 'other'? | 
 |   bool HasAnyEnvironmentUseBefore(HInstruction* other); | 
 |  | 
 |   // Remove all references to environment uses of this instruction. | 
 |   // The caller must ensure that this is safe to do. | 
 |   void RemoveEnvironmentUsers(); | 
 |  | 
 |  protected: | 
 |   virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0; | 
 |   virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0; | 
 |  | 
 |  private: | 
 |   void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); } | 
 |  | 
 |   HInstruction* previous_; | 
 |   HInstruction* next_; | 
 |   HBasicBlock* block_; | 
 |   const uint32_t dex_pc_; | 
 |  | 
 |   // An instruction gets an id when it is added to the graph. | 
 |   // It reflects creation order. A negative id means the instruction | 
 |   // has not been added to the graph. | 
 |   int id_; | 
 |  | 
 |   // When doing liveness analysis, instructions that have uses get an SSA index. | 
 |   int ssa_index_; | 
 |  | 
 |   // List of instructions that have this instruction as input. | 
 |   HUseList<HInstruction*> uses_; | 
 |  | 
 |   // List of environments that contain this instruction. | 
 |   HUseList<HEnvironment*> env_uses_; | 
 |  | 
 |   // The environment associated with this instruction. Not null if the instruction | 
 |   // might jump out of the method. | 
 |   HEnvironment* environment_; | 
 |  | 
 |   // Set by the code generator. | 
 |   LocationSummary* locations_; | 
 |  | 
 |   // Set by the liveness analysis. | 
 |   LiveInterval* live_interval_; | 
 |  | 
 |   // Set by the liveness analysis, this is the position in a linear | 
 |   // order of blocks where this instruction's live interval start. | 
 |   size_t lifetime_position_; | 
 |  | 
 |   const SideEffects side_effects_; | 
 |  | 
 |   // TODO: for primitive types this should be marked as invalid. | 
 |   ReferenceTypeInfo reference_type_info_; | 
 |  | 
 |   friend class GraphChecker; | 
 |   friend class HBasicBlock; | 
 |   friend class HEnvironment; | 
 |   friend class HGraph; | 
 |   friend class HInstructionList; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInstruction); | 
 | }; | 
 | std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs); | 
 |  | 
 | class HInputIterator : public ValueObject { | 
 |  public: | 
 |   explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {} | 
 |  | 
 |   bool Done() const { return index_ == instruction_->InputCount(); } | 
 |   HInstruction* Current() const { return instruction_->InputAt(index_); } | 
 |   void Advance() { index_++; } | 
 |  | 
 |  private: | 
 |   HInstruction* instruction_; | 
 |   size_t index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInputIterator); | 
 | }; | 
 |  | 
 | class HInstructionIterator : public ValueObject { | 
 |  public: | 
 |   explicit HInstructionIterator(const HInstructionList& instructions) | 
 |       : instruction_(instructions.first_instruction_) { | 
 |     next_ = Done() ? nullptr : instruction_->GetNext(); | 
 |   } | 
 |  | 
 |   bool Done() const { return instruction_ == nullptr; } | 
 |   HInstruction* Current() const { return instruction_; } | 
 |   void Advance() { | 
 |     instruction_ = next_; | 
 |     next_ = Done() ? nullptr : instruction_->GetNext(); | 
 |   } | 
 |  | 
 |  private: | 
 |   HInstruction* instruction_; | 
 |   HInstruction* next_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInstructionIterator); | 
 | }; | 
 |  | 
 | class HBackwardInstructionIterator : public ValueObject { | 
 |  public: | 
 |   explicit HBackwardInstructionIterator(const HInstructionList& instructions) | 
 |       : instruction_(instructions.last_instruction_) { | 
 |     next_ = Done() ? nullptr : instruction_->GetPrevious(); | 
 |   } | 
 |  | 
 |   bool Done() const { return instruction_ == nullptr; } | 
 |   HInstruction* Current() const { return instruction_; } | 
 |   void Advance() { | 
 |     instruction_ = next_; | 
 |     next_ = Done() ? nullptr : instruction_->GetPrevious(); | 
 |   } | 
 |  | 
 |  private: | 
 |   HInstruction* instruction_; | 
 |   HInstruction* next_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator); | 
 | }; | 
 |  | 
 | template<size_t N> | 
 | class HTemplateInstruction: public HInstruction { | 
 |  public: | 
 |   HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc = kNoDexPc) | 
 |       : HInstruction(side_effects, dex_pc), inputs_() {} | 
 |   virtual ~HTemplateInstruction() {} | 
 |  | 
 |   size_t InputCount() const OVERRIDE { return N; } | 
 |  | 
 |  protected: | 
 |   const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { | 
 |     DCHECK_LT(i, N); | 
 |     return inputs_[i]; | 
 |   } | 
 |  | 
 |   void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE { | 
 |     DCHECK_LT(i, N); | 
 |     inputs_[i] = input; | 
 |   } | 
 |  | 
 |  private: | 
 |   std::array<HUserRecord<HInstruction*>, N> inputs_; | 
 |  | 
 |   friend class SsaBuilder; | 
 | }; | 
 |  | 
 | // HTemplateInstruction specialization for N=0. | 
 | template<> | 
 | class HTemplateInstruction<0>: public HInstruction { | 
 |  public: | 
 |   explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc = kNoDexPc) | 
 |       : HInstruction(side_effects, dex_pc) {} | 
 |  | 
 |   virtual ~HTemplateInstruction() {} | 
 |  | 
 |   size_t InputCount() const OVERRIDE { return 0; } | 
 |  | 
 |  protected: | 
 |   const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE { | 
 |     LOG(FATAL) << "Unreachable"; | 
 |     UNREACHABLE(); | 
 |   } | 
 |  | 
 |   void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED, | 
 |                            const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE { | 
 |     LOG(FATAL) << "Unreachable"; | 
 |     UNREACHABLE(); | 
 |   } | 
 |  | 
 |  private: | 
 |   friend class SsaBuilder; | 
 | }; | 
 |  | 
 | template<intptr_t N> | 
 | class HExpression : public HTemplateInstruction<N> { | 
 |  public: | 
 |   HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {} | 
 |   virtual ~HExpression() {} | 
 |  | 
 |   Primitive::Type GetType() const OVERRIDE { return type_; } | 
 |  | 
 |  protected: | 
 |   Primitive::Type type_; | 
 | }; | 
 |  | 
 | // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow | 
 | // instruction that branches to the exit block. | 
 | class HReturnVoid : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HReturnVoid(uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction(SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool IsControlFlow() const OVERRIDE { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(ReturnVoid); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HReturnVoid); | 
 | }; | 
 |  | 
 | // Represents dex's RETURN opcodes. A HReturn is a control flow | 
 | // instruction that branches to the exit block. | 
 | class HReturn : public HTemplateInstruction<1> { | 
 |  public: | 
 |   explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction(SideEffects::None(), dex_pc) { | 
 |     SetRawInputAt(0, value); | 
 |   } | 
 |  | 
 |   bool IsControlFlow() const OVERRIDE { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(Return); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HReturn); | 
 | }; | 
 |  | 
 | // The exit instruction is the only instruction of the exit block. | 
 | // Instructions aborting the method (HThrow and HReturn) must branch to the | 
 | // exit block. | 
 | class HExit : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool IsControlFlow() const OVERRIDE { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(Exit); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HExit); | 
 | }; | 
 |  | 
 | // Jumps from one block to another. | 
 | class HGoto : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool IsControlFlow() const OVERRIDE { return true; } | 
 |  | 
 |   HBasicBlock* GetSuccessor() const { | 
 |     return GetBlock()->GetSingleSuccessor(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Goto); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HGoto); | 
 | }; | 
 |  | 
 | class HConstant : public HExpression<0> { | 
 |  public: | 
 |   explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression(type, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |  | 
 |   virtual bool IsMinusOne() const { return false; } | 
 |   virtual bool IsZero() const { return false; } | 
 |   virtual bool IsOne() const { return false; } | 
 |  | 
 |   virtual uint64_t GetValueAsUint64() const = 0; | 
 |  | 
 |   DECLARE_INSTRUCTION(Constant); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HConstant); | 
 | }; | 
 |  | 
 | class HNullConstant : public HConstant { | 
 |  public: | 
 |   bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
 |     return true; | 
 |   } | 
 |  | 
 |   uint64_t GetValueAsUint64() const OVERRIDE { return 0; } | 
 |  | 
 |   size_t ComputeHashCode() const OVERRIDE { return 0; } | 
 |  | 
 |   DECLARE_INSTRUCTION(NullConstant); | 
 |  | 
 |  private: | 
 |   explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {} | 
 |  | 
 |   friend class HGraph; | 
 |   DISALLOW_COPY_AND_ASSIGN(HNullConstant); | 
 | }; | 
 |  | 
 | // Constants of the type int. Those can be from Dex instructions, or | 
 | // synthesized (for example with the if-eqz instruction). | 
 | class HIntConstant : public HConstant { | 
 |  public: | 
 |   int32_t GetValue() const { return value_; } | 
 |  | 
 |   uint64_t GetValueAsUint64() const OVERRIDE { return static_cast<uint64_t>(value_); } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     DCHECK(other->IsIntConstant()); | 
 |     return other->AsIntConstant()->value_ == value_; | 
 |   } | 
 |  | 
 |   size_t ComputeHashCode() const OVERRIDE { return GetValue(); } | 
 |  | 
 |   bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } | 
 |   bool IsZero() const OVERRIDE { return GetValue() == 0; } | 
 |   bool IsOne() const OVERRIDE { return GetValue() == 1; } | 
 |  | 
 |   DECLARE_INSTRUCTION(IntConstant); | 
 |  | 
 |  private: | 
 |   explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) | 
 |       : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {} | 
 |   explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc) | 
 |       : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {} | 
 |  | 
 |   const int32_t value_; | 
 |  | 
 |   friend class HGraph; | 
 |   ART_FRIEND_TEST(GraphTest, InsertInstructionBefore); | 
 |   ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast); | 
 |   DISALLOW_COPY_AND_ASSIGN(HIntConstant); | 
 | }; | 
 |  | 
 | class HLongConstant : public HConstant { | 
 |  public: | 
 |   int64_t GetValue() const { return value_; } | 
 |  | 
 |   uint64_t GetValueAsUint64() const OVERRIDE { return value_; } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     DCHECK(other->IsLongConstant()); | 
 |     return other->AsLongConstant()->value_ == value_; | 
 |   } | 
 |  | 
 |   size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } | 
 |  | 
 |   bool IsMinusOne() const OVERRIDE { return GetValue() == -1; } | 
 |   bool IsZero() const OVERRIDE { return GetValue() == 0; } | 
 |   bool IsOne() const OVERRIDE { return GetValue() == 1; } | 
 |  | 
 |   DECLARE_INSTRUCTION(LongConstant); | 
 |  | 
 |  private: | 
 |   explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) | 
 |       : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {} | 
 |  | 
 |   const int64_t value_; | 
 |  | 
 |   friend class HGraph; | 
 |   DISALLOW_COPY_AND_ASSIGN(HLongConstant); | 
 | }; | 
 |  | 
 | // Conditional branch. A block ending with an HIf instruction must have | 
 | // two successors. | 
 | class HIf : public HTemplateInstruction<1> { | 
 |  public: | 
 |   explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction(SideEffects::None(), dex_pc) { | 
 |     SetRawInputAt(0, input); | 
 |   } | 
 |  | 
 |   bool IsControlFlow() const OVERRIDE { return true; } | 
 |  | 
 |   HBasicBlock* IfTrueSuccessor() const { | 
 |     return GetBlock()->GetSuccessor(0); | 
 |   } | 
 |  | 
 |   HBasicBlock* IfFalseSuccessor() const { | 
 |     return GetBlock()->GetSuccessor(1); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(If); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HIf); | 
 | }; | 
 |  | 
 |  | 
 | // Abstract instruction which marks the beginning and/or end of a try block and | 
 | // links it to the respective exception handlers. Behaves the same as a Goto in | 
 | // non-exceptional control flow. | 
 | // Normal-flow successor is stored at index zero, exception handlers under | 
 | // higher indices in no particular order. | 
 | class HTryBoundary : public HTemplateInstruction<0> { | 
 |  public: | 
 |   enum BoundaryKind { | 
 |     kEntry, | 
 |     kExit, | 
 |   }; | 
 |  | 
 |   explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {} | 
 |  | 
 |   bool IsControlFlow() const OVERRIDE { return true; } | 
 |  | 
 |   // Returns the block's non-exceptional successor (index zero). | 
 |   HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessor(0); } | 
 |  | 
 |   // Returns whether `handler` is among its exception handlers (non-zero index | 
 |   // successors). | 
 |   bool HasExceptionHandler(const HBasicBlock& handler) const { | 
 |     DCHECK(handler.IsCatchBlock()); | 
 |     return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */); | 
 |   } | 
 |  | 
 |   // If not present already, adds `handler` to its block's list of exception | 
 |   // handlers. | 
 |   void AddExceptionHandler(HBasicBlock* handler) { | 
 |     if (!HasExceptionHandler(*handler)) { | 
 |       GetBlock()->AddSuccessor(handler); | 
 |     } | 
 |   } | 
 |  | 
 |   bool IsEntry() const { return kind_ == BoundaryKind::kEntry; } | 
 |  | 
 |   bool HasSameExceptionHandlersAs(const HTryBoundary& other) const; | 
 |  | 
 |   DECLARE_INSTRUCTION(TryBoundary); | 
 |  | 
 |  private: | 
 |   const BoundaryKind kind_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HTryBoundary); | 
 | }; | 
 |  | 
 | // Iterator over exception handlers of a given HTryBoundary, i.e. over | 
 | // exceptional successors of its basic block. | 
 | class HExceptionHandlerIterator : public ValueObject { | 
 |  public: | 
 |   explicit HExceptionHandlerIterator(const HTryBoundary& try_boundary) | 
 |     : block_(*try_boundary.GetBlock()), index_(block_.NumberOfNormalSuccessors()) {} | 
 |  | 
 |   bool Done() const { return index_ == block_.GetSuccessors().size(); } | 
 |   HBasicBlock* Current() const { return block_.GetSuccessor(index_); } | 
 |   size_t CurrentSuccessorIndex() const { return index_; } | 
 |   void Advance() { ++index_; } | 
 |  | 
 |  private: | 
 |   const HBasicBlock& block_; | 
 |   size_t index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HExceptionHandlerIterator); | 
 | }; | 
 |  | 
 | // Deoptimize to interpreter, upon checking a condition. | 
 | class HDeoptimize : public HTemplateInstruction<1> { | 
 |  public: | 
 |   explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc) | 
 |       : HTemplateInstruction(SideEffects::None(), dex_pc) { | 
 |     SetRawInputAt(0, cond); | 
 |   } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { return true; } | 
 |   bool CanThrow() const OVERRIDE { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(Deoptimize); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HDeoptimize); | 
 | }; | 
 |  | 
 | // Represents the ArtMethod that was passed as a first argument to | 
 | // the method. It is used by instructions that depend on it, like | 
 | // instructions that work with the dex cache. | 
 | class HCurrentMethod : public HExpression<0> { | 
 |  public: | 
 |   explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression(type, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   DECLARE_INSTRUCTION(CurrentMethod); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HCurrentMethod); | 
 | }; | 
 |  | 
 | class HUnaryOperation : public HExpression<1> { | 
 |  public: | 
 |   HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression(result_type, SideEffects::None(), dex_pc) { | 
 |     SetRawInputAt(0, input); | 
 |   } | 
 |  | 
 |   HInstruction* GetInput() const { return InputAt(0); } | 
 |   Primitive::Type GetResultType() const { return GetType(); } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Try to statically evaluate `operation` and return a HConstant | 
 |   // containing the result of this evaluation.  If `operation` cannot | 
 |   // be evaluated as a constant, return null. | 
 |   HConstant* TryStaticEvaluation() const; | 
 |  | 
 |   // Apply this operation to `x`. | 
 |   virtual HConstant* Evaluate(HIntConstant* x) const = 0; | 
 |   virtual HConstant* Evaluate(HLongConstant* x) const = 0; | 
 |  | 
 |   DECLARE_INSTRUCTION(UnaryOperation); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HUnaryOperation); | 
 | }; | 
 |  | 
 | class HBinaryOperation : public HExpression<2> { | 
 |  public: | 
 |   HBinaryOperation(Primitive::Type result_type, | 
 |                    HInstruction* left, | 
 |                    HInstruction* right, | 
 |                    SideEffects side_effects = SideEffects::None(), | 
 |                    uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression(result_type, side_effects, dex_pc) { | 
 |     SetRawInputAt(0, left); | 
 |     SetRawInputAt(1, right); | 
 |   } | 
 |  | 
 |   HInstruction* GetLeft() const { return InputAt(0); } | 
 |   HInstruction* GetRight() const { return InputAt(1); } | 
 |   Primitive::Type GetResultType() const { return GetType(); } | 
 |  | 
 |   virtual bool IsCommutative() const { return false; } | 
 |  | 
 |   // Put constant on the right. | 
 |   // Returns whether order is changed. | 
 |   bool OrderInputsWithConstantOnTheRight() { | 
 |     HInstruction* left = InputAt(0); | 
 |     HInstruction* right = InputAt(1); | 
 |     if (left->IsConstant() && !right->IsConstant()) { | 
 |       ReplaceInput(right, 0); | 
 |       ReplaceInput(left, 1); | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Order inputs by instruction id, but favor constant on the right side. | 
 |   // This helps GVN for commutative ops. | 
 |   void OrderInputs() { | 
 |     DCHECK(IsCommutative()); | 
 |     HInstruction* left = InputAt(0); | 
 |     HInstruction* right = InputAt(1); | 
 |     if (left == right || (!left->IsConstant() && right->IsConstant())) { | 
 |       return; | 
 |     } | 
 |     if (OrderInputsWithConstantOnTheRight()) { | 
 |       return; | 
 |     } | 
 |     // Order according to instruction id. | 
 |     if (left->GetId() > right->GetId()) { | 
 |       ReplaceInput(right, 0); | 
 |       ReplaceInput(left, 1); | 
 |     } | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Try to statically evaluate `operation` and return a HConstant | 
 |   // containing the result of this evaluation.  If `operation` cannot | 
 |   // be evaluated as a constant, return null. | 
 |   HConstant* TryStaticEvaluation() const; | 
 |  | 
 |   // Apply this operation to `x` and `y`. | 
 |   virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0; | 
 |   virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0; | 
 |   virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED, | 
 |                               HLongConstant* y ATTRIBUTE_UNUSED) const { | 
 |     VLOG(compiler) << DebugName() << " is not defined for the (int, long) case."; | 
 |     return nullptr; | 
 |   } | 
 |   virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED, | 
 |                               HIntConstant* y ATTRIBUTE_UNUSED) const { | 
 |     VLOG(compiler) << DebugName() << " is not defined for the (long, int) case."; | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Returns an input that can legally be used as the right input and is | 
 |   // constant, or null. | 
 |   HConstant* GetConstantRight() const; | 
 |  | 
 |   // If `GetConstantRight()` returns one of the input, this returns the other | 
 |   // one. Otherwise it returns null. | 
 |   HInstruction* GetLeastConstantLeft() const; | 
 |  | 
 |   DECLARE_INSTRUCTION(BinaryOperation); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HBinaryOperation); | 
 | }; | 
 |  | 
 | // The comparison bias applies for floating point operations and indicates how NaN | 
 | // comparisons are treated: | 
 | enum class ComparisonBias { | 
 |   kNoBias,  // bias is not applicable (i.e. for long operation) | 
 |   kGtBias,  // return 1 for NaN comparisons | 
 |   kLtBias,  // return -1 for NaN comparisons | 
 | }; | 
 |  | 
 | class HCondition : public HBinaryOperation { | 
 |  public: | 
 |   HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc), | 
 |         needs_materialization_(true), | 
 |         bias_(ComparisonBias::kNoBias) {} | 
 |  | 
 |   bool NeedsMaterialization() const { return needs_materialization_; } | 
 |   void ClearNeedsMaterialization() { needs_materialization_ = false; } | 
 |  | 
 |   // For code generation purposes, returns whether this instruction is just before | 
 |   // `instruction`, and disregard moves in between. | 
 |   bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const; | 
 |  | 
 |   DECLARE_INSTRUCTION(Condition); | 
 |  | 
 |   virtual IfCondition GetCondition() const = 0; | 
 |  | 
 |   virtual IfCondition GetOppositeCondition() const = 0; | 
 |  | 
 |   bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; } | 
 |  | 
 |   void SetBias(ComparisonBias bias) { bias_ = bias; } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     return bias_ == other->AsCondition()->bias_; | 
 |   } | 
 |  | 
 |   bool IsFPConditionTrueIfNaN() const { | 
 |     DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())); | 
 |     IfCondition if_cond = GetCondition(); | 
 |     return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE); | 
 |   } | 
 |  | 
 |   bool IsFPConditionFalseIfNaN() const { | 
 |     DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())); | 
 |     IfCondition if_cond = GetCondition(); | 
 |     return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ); | 
 |   } | 
 |  | 
 |  private: | 
 |   // For register allocation purposes, returns whether this instruction needs to be | 
 |   // materialized (that is, not just be in the processor flags). | 
 |   bool needs_materialization_; | 
 |  | 
 |   // Needed if we merge a HCompare into a HCondition. | 
 |   ComparisonBias bias_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HCondition); | 
 | }; | 
 |  | 
 | // Instruction to check if two inputs are equal to each other. | 
 | class HEqual : public HCondition { | 
 |  public: | 
 |   HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
 |       : HCondition(first, second, dex_pc) {} | 
 |  | 
 |   bool IsCommutative() const OVERRIDE { return true; } | 
 |  | 
 |   template <typename T> bool Compute(T x, T y) const { return x == y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Equal); | 
 |  | 
 |   IfCondition GetCondition() const OVERRIDE { | 
 |     return kCondEQ; | 
 |   } | 
 |  | 
 |   IfCondition GetOppositeCondition() const OVERRIDE { | 
 |     return kCondNE; | 
 |   } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HEqual); | 
 | }; | 
 |  | 
 | class HNotEqual : public HCondition { | 
 |  public: | 
 |   HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
 |       : HCondition(first, second, dex_pc) {} | 
 |  | 
 |   bool IsCommutative() const OVERRIDE { return true; } | 
 |  | 
 |   template <typename T> bool Compute(T x, T y) const { return x != y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(NotEqual); | 
 |  | 
 |   IfCondition GetCondition() const OVERRIDE { | 
 |     return kCondNE; | 
 |   } | 
 |  | 
 |   IfCondition GetOppositeCondition() const OVERRIDE { | 
 |     return kCondEQ; | 
 |   } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HNotEqual); | 
 | }; | 
 |  | 
 | class HLessThan : public HCondition { | 
 |  public: | 
 |   HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
 |       : HCondition(first, second, dex_pc) {} | 
 |  | 
 |   template <typename T> bool Compute(T x, T y) const { return x < y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(LessThan); | 
 |  | 
 |   IfCondition GetCondition() const OVERRIDE { | 
 |     return kCondLT; | 
 |   } | 
 |  | 
 |   IfCondition GetOppositeCondition() const OVERRIDE { | 
 |     return kCondGE; | 
 |   } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HLessThan); | 
 | }; | 
 |  | 
 | class HLessThanOrEqual : public HCondition { | 
 |  public: | 
 |   HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
 |       : HCondition(first, second, dex_pc) {} | 
 |  | 
 |   template <typename T> bool Compute(T x, T y) const { return x <= y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(LessThanOrEqual); | 
 |  | 
 |   IfCondition GetCondition() const OVERRIDE { | 
 |     return kCondLE; | 
 |   } | 
 |  | 
 |   IfCondition GetOppositeCondition() const OVERRIDE { | 
 |     return kCondGT; | 
 |   } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual); | 
 | }; | 
 |  | 
 | class HGreaterThan : public HCondition { | 
 |  public: | 
 |   HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
 |       : HCondition(first, second, dex_pc) {} | 
 |  | 
 |   template <typename T> bool Compute(T x, T y) const { return x > y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(GreaterThan); | 
 |  | 
 |   IfCondition GetCondition() const OVERRIDE { | 
 |     return kCondGT; | 
 |   } | 
 |  | 
 |   IfCondition GetOppositeCondition() const OVERRIDE { | 
 |     return kCondLE; | 
 |   } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HGreaterThan); | 
 | }; | 
 |  | 
 | class HGreaterThanOrEqual : public HCondition { | 
 |  public: | 
 |   HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) | 
 |       : HCondition(first, second, dex_pc) {} | 
 |  | 
 |   template <typename T> bool Compute(T x, T y) const { return x >= y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(GreaterThanOrEqual); | 
 |  | 
 |   IfCondition GetCondition() const OVERRIDE { | 
 |     return kCondGE; | 
 |   } | 
 |  | 
 |   IfCondition GetOppositeCondition() const OVERRIDE { | 
 |     return kCondLT; | 
 |   } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual); | 
 | }; | 
 |  | 
 |  | 
 | // Instruction to check how two inputs compare to each other. | 
 | // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1. | 
 | class HCompare : public HBinaryOperation { | 
 |  public: | 
 |   HCompare(Primitive::Type type, | 
 |            HInstruction* first, | 
 |            HInstruction* second, | 
 |            ComparisonBias bias, | 
 |            uint32_t dex_pc) | 
 |       : HBinaryOperation(Primitive::kPrimInt, | 
 |                          first, | 
 |                          second, | 
 |                          SideEffectsForArchRuntimeCalls(type), | 
 |                          dex_pc), | 
 |         bias_(bias) { | 
 |     DCHECK_EQ(type, first->GetType()); | 
 |     DCHECK_EQ(type, second->GetType()); | 
 |   } | 
 |  | 
 |   template <typename T> | 
 |   int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     return bias_ == other->AsCompare()->bias_; | 
 |   } | 
 |  | 
 |   ComparisonBias GetBias() const { return bias_; } | 
 |  | 
 |   bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; } | 
 |  | 
 |  | 
 |   static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) { | 
 |     // MIPS64 uses a runtime call for FP comparisons. | 
 |     return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Compare); | 
 |  | 
 |  private: | 
 |   const ComparisonBias bias_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HCompare); | 
 | }; | 
 |  | 
 | // A local in the graph. Corresponds to a Dex register. | 
 | class HLocal : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HLocal(uint16_t reg_number) | 
 |       : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {} | 
 |  | 
 |   DECLARE_INSTRUCTION(Local); | 
 |  | 
 |   uint16_t GetRegNumber() const { return reg_number_; } | 
 |  | 
 |  private: | 
 |   // The Dex register number. | 
 |   const uint16_t reg_number_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HLocal); | 
 | }; | 
 |  | 
 | // Load a given local. The local is an input of this instruction. | 
 | class HLoadLocal : public HExpression<1> { | 
 |  public: | 
 |   HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression(type, SideEffects::None(), dex_pc) { | 
 |     SetRawInputAt(0, local); | 
 |   } | 
 |  | 
 |   HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); } | 
 |  | 
 |   DECLARE_INSTRUCTION(LoadLocal); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HLoadLocal); | 
 | }; | 
 |  | 
 | // Store a value in a given local. This instruction has two inputs: the value | 
 | // and the local. | 
 | class HStoreLocal : public HTemplateInstruction<2> { | 
 |  public: | 
 |   HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction(SideEffects::None(), dex_pc) { | 
 |     SetRawInputAt(0, local); | 
 |     SetRawInputAt(1, value); | 
 |   } | 
 |  | 
 |   HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); } | 
 |  | 
 |   DECLARE_INSTRUCTION(StoreLocal); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HStoreLocal); | 
 | }; | 
 |  | 
 | class HFloatConstant : public HConstant { | 
 |  public: | 
 |   float GetValue() const { return value_; } | 
 |  | 
 |   uint64_t GetValueAsUint64() const OVERRIDE { | 
 |     return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_)); | 
 |   } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     DCHECK(other->IsFloatConstant()); | 
 |     return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64(); | 
 |   } | 
 |  | 
 |   size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } | 
 |  | 
 |   bool IsMinusOne() const OVERRIDE { | 
 |     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f)); | 
 |   } | 
 |   bool IsZero() const OVERRIDE { | 
 |     return value_ == 0.0f; | 
 |   } | 
 |   bool IsOne() const OVERRIDE { | 
 |     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f); | 
 |   } | 
 |   bool IsNaN() const { | 
 |     return std::isnan(value_); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(FloatConstant); | 
 |  | 
 |  private: | 
 |   explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc) | 
 |       : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {} | 
 |   explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc) | 
 |       : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {} | 
 |  | 
 |   const float value_; | 
 |  | 
 |   // Only the SsaBuilder and HGraph can create floating-point constants. | 
 |   friend class SsaBuilder; | 
 |   friend class HGraph; | 
 |   DISALLOW_COPY_AND_ASSIGN(HFloatConstant); | 
 | }; | 
 |  | 
 | class HDoubleConstant : public HConstant { | 
 |  public: | 
 |   double GetValue() const { return value_; } | 
 |  | 
 |   uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     DCHECK(other->IsDoubleConstant()); | 
 |     return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64(); | 
 |   } | 
 |  | 
 |   size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); } | 
 |  | 
 |   bool IsMinusOne() const OVERRIDE { | 
 |     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0)); | 
 |   } | 
 |   bool IsZero() const OVERRIDE { | 
 |     return value_ == 0.0; | 
 |   } | 
 |   bool IsOne() const OVERRIDE { | 
 |     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0); | 
 |   } | 
 |   bool IsNaN() const { | 
 |     return std::isnan(value_); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(DoubleConstant); | 
 |  | 
 |  private: | 
 |   explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) | 
 |       : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {} | 
 |   explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc) | 
 |       : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {} | 
 |  | 
 |   const double value_; | 
 |  | 
 |   // Only the SsaBuilder and HGraph can create floating-point constants. | 
 |   friend class SsaBuilder; | 
 |   friend class HGraph; | 
 |   DISALLOW_COPY_AND_ASSIGN(HDoubleConstant); | 
 | }; | 
 |  | 
 | enum class Intrinsics { | 
 | #define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name, | 
 | #include "intrinsics_list.h" | 
 |   kNone, | 
 |   INTRINSICS_LIST(OPTIMIZING_INTRINSICS) | 
 | #undef INTRINSICS_LIST | 
 | #undef OPTIMIZING_INTRINSICS | 
 | }; | 
 | std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic); | 
 |  | 
 | enum IntrinsicNeedsEnvironmentOrCache { | 
 |   kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache. | 
 |   kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache. | 
 | }; | 
 |  | 
 | class HInvoke : public HInstruction { | 
 |  public: | 
 |   size_t InputCount() const OVERRIDE { return inputs_.size(); } | 
 |  | 
 |   // Runtime needs to walk the stack, so Dex -> Dex calls need to | 
 |   // know their environment. | 
 |   bool NeedsEnvironment() const OVERRIDE { | 
 |     return needs_environment_or_cache_ == kNeedsEnvironmentOrCache; | 
 |   } | 
 |  | 
 |   void SetArgumentAt(size_t index, HInstruction* argument) { | 
 |     SetRawInputAt(index, argument); | 
 |   } | 
 |  | 
 |   // Return the number of arguments.  This number can be lower than | 
 |   // the number of inputs returned by InputCount(), as some invoke | 
 |   // instructions (e.g. HInvokeStaticOrDirect) can have non-argument | 
 |   // inputs at the end of their list of inputs. | 
 |   uint32_t GetNumberOfArguments() const { return number_of_arguments_; } | 
 |  | 
 |   Primitive::Type GetType() const OVERRIDE { return return_type_; } | 
 |  | 
 |  | 
 |   uint32_t GetDexMethodIndex() const { return dex_method_index_; } | 
 |   const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); } | 
 |  | 
 |   InvokeType GetOriginalInvokeType() const { return original_invoke_type_; } | 
 |  | 
 |   Intrinsics GetIntrinsic() const { | 
 |     return intrinsic_; | 
 |   } | 
 |  | 
 |   void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache) { | 
 |     intrinsic_ = intrinsic; | 
 |     needs_environment_or_cache_ = needs_env_or_cache; | 
 |   } | 
 |  | 
 |   bool IsFromInlinedInvoke() const { | 
 |     return GetEnvironment()->GetParent() != nullptr; | 
 |   } | 
 |  | 
 |   bool CanThrow() const OVERRIDE { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(Invoke); | 
 |  | 
 |  protected: | 
 |   HInvoke(ArenaAllocator* arena, | 
 |           uint32_t number_of_arguments, | 
 |           uint32_t number_of_other_inputs, | 
 |           Primitive::Type return_type, | 
 |           uint32_t dex_pc, | 
 |           uint32_t dex_method_index, | 
 |           InvokeType original_invoke_type) | 
 |     : HInstruction( | 
 |           SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays. | 
 |       number_of_arguments_(number_of_arguments), | 
 |       inputs_(number_of_arguments + number_of_other_inputs, arena->Adapter(kArenaAllocInvokeInputs)), | 
 |       return_type_(return_type), | 
 |       dex_method_index_(dex_method_index), | 
 |       original_invoke_type_(original_invoke_type), | 
 |       intrinsic_(Intrinsics::kNone), | 
 |       needs_environment_or_cache_(kNeedsEnvironmentOrCache) { | 
 |   } | 
 |  | 
 |   const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE { | 
 |     DCHECK_LT(index, InputCount()); | 
 |     return inputs_[index]; | 
 |   } | 
 |  | 
 |   void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE { | 
 |     DCHECK_LT(index, InputCount()); | 
 |     inputs_[index] = input; | 
 |   } | 
 |  | 
 |   uint32_t number_of_arguments_; | 
 |   ArenaVector<HUserRecord<HInstruction*>> inputs_; | 
 |   const Primitive::Type return_type_; | 
 |   const uint32_t dex_method_index_; | 
 |   const InvokeType original_invoke_type_; | 
 |   Intrinsics intrinsic_; | 
 |   IntrinsicNeedsEnvironmentOrCache needs_environment_or_cache_; | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HInvoke); | 
 | }; | 
 |  | 
 | class HInvokeStaticOrDirect : public HInvoke { | 
 |  public: | 
 |   // Requirements of this method call regarding the class | 
 |   // initialization (clinit) check of its declaring class. | 
 |   enum class ClinitCheckRequirement { | 
 |     kNone,      // Class already initialized. | 
 |     kExplicit,  // Static call having explicit clinit check as last input. | 
 |     kImplicit,  // Static call implicitly requiring a clinit check. | 
 |   }; | 
 |  | 
 |   // Determines how to load the target ArtMethod*. | 
 |   enum class MethodLoadKind { | 
 |     // Use a String init ArtMethod* loaded from Thread entrypoints. | 
 |     kStringInit, | 
 |  | 
 |     // Use the method's own ArtMethod* loaded by the register allocator. | 
 |     kRecursive, | 
 |  | 
 |     // Use ArtMethod* at a known address, embed the direct address in the code. | 
 |     // Used for app->boot calls with non-relocatable image and for JIT-compiled calls. | 
 |     kDirectAddress, | 
 |  | 
 |     // Use ArtMethod* at an address that will be known at link time, embed the direct | 
 |     // address in the code. If the image is relocatable, emit .patch_oat entry. | 
 |     // Used for app->boot calls with relocatable image and boot->boot calls, whether | 
 |     // the image relocatable or not. | 
 |     kDirectAddressWithFixup, | 
 |  | 
 |     // Load from resoved methods array in the dex cache using a PC-relative load. | 
 |     // Used when we need to use the dex cache, for example for invoke-static that | 
 |     // may cause class initialization (the entry may point to a resolution method), | 
 |     // and we know that we can access the dex cache arrays using a PC-relative load. | 
 |     kDexCachePcRelative, | 
 |  | 
 |     // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*. | 
 |     // Used for JIT when we need to use the dex cache. This is also the last-resort-kind | 
 |     // used when other kinds are unavailable (say, dex cache arrays are not PC-relative) | 
 |     // or unimplemented or impractical (i.e. slow) on a particular architecture. | 
 |     kDexCacheViaMethod, | 
 |   }; | 
 |  | 
 |   // Determines the location of the code pointer. | 
 |   enum class CodePtrLocation { | 
 |     // Recursive call, use local PC-relative call instruction. | 
 |     kCallSelf, | 
 |  | 
 |     // Use PC-relative call instruction patched at link time. | 
 |     // Used for calls within an oat file, boot->boot or app->app. | 
 |     kCallPCRelative, | 
 |  | 
 |     // Call to a known target address, embed the direct address in code. | 
 |     // Used for app->boot call with non-relocatable image and for JIT-compiled calls. | 
 |     kCallDirect, | 
 |  | 
 |     // Call to a target address that will be known at link time, embed the direct | 
 |     // address in code. If the image is relocatable, emit .patch_oat entry. | 
 |     // Used for app->boot calls with relocatable image and boot->boot calls, whether | 
 |     // the image relocatable or not. | 
 |     kCallDirectWithFixup, | 
 |  | 
 |     // Use code pointer from the ArtMethod*. | 
 |     // Used when we don't know the target code. This is also the last-resort-kind used when | 
 |     // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture. | 
 |     kCallArtMethod, | 
 |   }; | 
 |  | 
 |   struct DispatchInfo { | 
 |     const MethodLoadKind method_load_kind; | 
 |     const CodePtrLocation code_ptr_location; | 
 |     // The method load data holds | 
 |     //   - thread entrypoint offset for kStringInit method if this is a string init invoke. | 
 |     //     Note that there are multiple string init methods, each having its own offset. | 
 |     //   - the method address for kDirectAddress | 
 |     //   - the dex cache arrays offset for kDexCachePcRel. | 
 |     const uint64_t method_load_data; | 
 |     const uint64_t direct_code_ptr; | 
 |   }; | 
 |  | 
 |   HInvokeStaticOrDirect(ArenaAllocator* arena, | 
 |                         uint32_t number_of_arguments, | 
 |                         Primitive::Type return_type, | 
 |                         uint32_t dex_pc, | 
 |                         uint32_t method_index, | 
 |                         MethodReference target_method, | 
 |                         DispatchInfo dispatch_info, | 
 |                         InvokeType original_invoke_type, | 
 |                         InvokeType invoke_type, | 
 |                         ClinitCheckRequirement clinit_check_requirement) | 
 |       : HInvoke(arena, | 
 |                 number_of_arguments, | 
 |                 // There is one extra argument for the HCurrentMethod node, and | 
 |                 // potentially one other if the clinit check is explicit, and one other | 
 |                 // if the method is a string factory. | 
 |                 1u + (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) | 
 |                    + (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u), | 
 |                 return_type, | 
 |                 dex_pc, | 
 |                 method_index, | 
 |                 original_invoke_type), | 
 |         invoke_type_(invoke_type), | 
 |         clinit_check_requirement_(clinit_check_requirement), | 
 |         target_method_(target_method), | 
 |         dispatch_info_(dispatch_info) {} | 
 |  | 
 |   bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
 |     UNUSED(obj); | 
 |     // We access the method via the dex cache so we can't do an implicit null check. | 
 |     // TODO: for intrinsics we can generate implicit null checks. | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool CanBeNull() const OVERRIDE { | 
 |     return return_type_ == Primitive::kPrimNot && !IsStringInit(); | 
 |   } | 
 |  | 
 |   InvokeType GetInvokeType() const { return invoke_type_; } | 
 |   MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; } | 
 |   CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; } | 
 |   bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; } | 
 |   bool NeedsDexCache() const OVERRIDE { | 
 |     if (intrinsic_ != Intrinsics::kNone) { return needs_environment_or_cache_; } | 
 |     return !IsRecursive() && !IsStringInit(); | 
 |   } | 
 |   bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; } | 
 |   uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); } | 
 |   bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; } | 
 |   bool HasPcRelDexCache() const { return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative; } | 
 |   bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; } | 
 |   MethodReference GetTargetMethod() const { return target_method_; } | 
 |  | 
 |   int32_t GetStringInitOffset() const { | 
 |     DCHECK(IsStringInit()); | 
 |     return dispatch_info_.method_load_data; | 
 |   } | 
 |  | 
 |   uint64_t GetMethodAddress() const { | 
 |     DCHECK(HasMethodAddress()); | 
 |     return dispatch_info_.method_load_data; | 
 |   } | 
 |  | 
 |   uint32_t GetDexCacheArrayOffset() const { | 
 |     DCHECK(HasPcRelDexCache()); | 
 |     return dispatch_info_.method_load_data; | 
 |   } | 
 |  | 
 |   uint64_t GetDirectCodePtr() const { | 
 |     DCHECK(HasDirectCodePtr()); | 
 |     return dispatch_info_.direct_code_ptr; | 
 |   } | 
 |  | 
 |   ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; } | 
 |  | 
 |   // Is this instruction a call to a static method? | 
 |   bool IsStatic() const { | 
 |     return GetInvokeType() == kStatic; | 
 |   } | 
 |  | 
 |   // Remove the art::HLoadClass instruction set as last input by | 
 |   // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of | 
 |   // the initial art::HClinitCheck instruction (only relevant for | 
 |   // static calls with explicit clinit check). | 
 |   void RemoveLoadClassAsLastInput() { | 
 |     DCHECK(IsStaticWithExplicitClinitCheck()); | 
 |     size_t last_input_index = InputCount() - 1; | 
 |     HInstruction* last_input = InputAt(last_input_index); | 
 |     DCHECK(last_input != nullptr); | 
 |     DCHECK(last_input->IsLoadClass()) << last_input->DebugName(); | 
 |     RemoveAsUserOfInput(last_input_index); | 
 |     inputs_.pop_back(); | 
 |     clinit_check_requirement_ = ClinitCheckRequirement::kImplicit; | 
 |     DCHECK(IsStaticWithImplicitClinitCheck()); | 
 |   } | 
 |  | 
 |   bool IsStringFactoryFor(HFakeString* str) const { | 
 |     if (!IsStringInit()) return false; | 
 |     // +1 for the current method. | 
 |     if (InputCount() == (number_of_arguments_ + 1)) return false; | 
 |     return InputAt(InputCount() - 1)->AsFakeString() == str; | 
 |   } | 
 |  | 
 |   void RemoveFakeStringArgumentAsLastInput() { | 
 |     DCHECK(IsStringInit()); | 
 |     size_t last_input_index = InputCount() - 1; | 
 |     HInstruction* last_input = InputAt(last_input_index); | 
 |     DCHECK(last_input != nullptr); | 
 |     DCHECK(last_input->IsFakeString()) << last_input->DebugName(); | 
 |     RemoveAsUserOfInput(last_input_index); | 
 |     inputs_.pop_back(); | 
 |   } | 
 |  | 
 |   // Is this a call to a static method whose declaring class has an | 
 |   // explicit intialization check in the graph? | 
 |   bool IsStaticWithExplicitClinitCheck() const { | 
 |     return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit); | 
 |   } | 
 |  | 
 |   // Is this a call to a static method whose declaring class has an | 
 |   // implicit intialization check requirement? | 
 |   bool IsStaticWithImplicitClinitCheck() const { | 
 |     return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(InvokeStaticOrDirect); | 
 |  | 
 |  protected: | 
 |   const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { | 
 |     const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i); | 
 |     if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) { | 
 |       HInstruction* input = input_record.GetInstruction(); | 
 |       // `input` is the last input of a static invoke marked as having | 
 |       // an explicit clinit check. It must either be: | 
 |       // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or | 
 |       // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation. | 
 |       DCHECK(input != nullptr); | 
 |       DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName(); | 
 |     } | 
 |     return input_record; | 
 |   } | 
 |  | 
 |  private: | 
 |   const InvokeType invoke_type_; | 
 |   ClinitCheckRequirement clinit_check_requirement_; | 
 |   // The target method may refer to different dex file or method index than the original | 
 |   // invoke. This happens for sharpened calls and for calls where a method was redeclared | 
 |   // in derived class to increase visibility. | 
 |   MethodReference target_method_; | 
 |   DispatchInfo dispatch_info_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect); | 
 | }; | 
 |  | 
 | class HInvokeVirtual : public HInvoke { | 
 |  public: | 
 |   HInvokeVirtual(ArenaAllocator* arena, | 
 |                  uint32_t number_of_arguments, | 
 |                  Primitive::Type return_type, | 
 |                  uint32_t dex_pc, | 
 |                  uint32_t dex_method_index, | 
 |                  uint32_t vtable_index) | 
 |       : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual), | 
 |         vtable_index_(vtable_index) {} | 
 |  | 
 |   bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
 |     // TODO: Add implicit null checks in intrinsics. | 
 |     return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); | 
 |   } | 
 |  | 
 |   uint32_t GetVTableIndex() const { return vtable_index_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(InvokeVirtual); | 
 |  | 
 |  private: | 
 |   const uint32_t vtable_index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual); | 
 | }; | 
 |  | 
 | class HInvokeInterface : public HInvoke { | 
 |  public: | 
 |   HInvokeInterface(ArenaAllocator* arena, | 
 |                    uint32_t number_of_arguments, | 
 |                    Primitive::Type return_type, | 
 |                    uint32_t dex_pc, | 
 |                    uint32_t dex_method_index, | 
 |                    uint32_t imt_index) | 
 |       : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface), | 
 |         imt_index_(imt_index) {} | 
 |  | 
 |   bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
 |     // TODO: Add implicit null checks in intrinsics. | 
 |     return (obj == InputAt(0)) && !GetLocations()->Intrinsified(); | 
 |   } | 
 |  | 
 |   uint32_t GetImtIndex() const { return imt_index_; } | 
 |   uint32_t GetDexMethodIndex() const { return dex_method_index_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(InvokeInterface); | 
 |  | 
 |  private: | 
 |   const uint32_t imt_index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInvokeInterface); | 
 | }; | 
 |  | 
 | class HNewInstance : public HExpression<1> { | 
 |  public: | 
 |   HNewInstance(HCurrentMethod* current_method, | 
 |                uint32_t dex_pc, | 
 |                uint16_t type_index, | 
 |                const DexFile& dex_file, | 
 |                QuickEntrypointEnum entrypoint) | 
 |       : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc), | 
 |         type_index_(type_index), | 
 |         dex_file_(dex_file), | 
 |         entrypoint_(entrypoint) { | 
 |     SetRawInputAt(0, current_method); | 
 |   } | 
 |  | 
 |   uint16_t GetTypeIndex() const { return type_index_; } | 
 |   const DexFile& GetDexFile() const { return dex_file_; } | 
 |  | 
 |   // Calls runtime so needs an environment. | 
 |   bool NeedsEnvironment() const OVERRIDE { return true; } | 
 |   // It may throw when called on: | 
 |   //   - interfaces | 
 |   //   - abstract/innaccessible/unknown classes | 
 |   // TODO: optimize when possible. | 
 |   bool CanThrow() const OVERRIDE { return true; } | 
 |  | 
 |   bool CanBeNull() const OVERRIDE { return false; } | 
 |  | 
 |   QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(NewInstance); | 
 |  | 
 |  private: | 
 |   const uint16_t type_index_; | 
 |   const DexFile& dex_file_; | 
 |   const QuickEntrypointEnum entrypoint_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HNewInstance); | 
 | }; | 
 |  | 
 | class HNeg : public HUnaryOperation { | 
 |  public: | 
 |   HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
 |       : HUnaryOperation(result_type, input, dex_pc) {} | 
 |  | 
 |   template <typename T> T Compute(T x) const { return -x; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Neg); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HNeg); | 
 | }; | 
 |  | 
 | class HNewArray : public HExpression<2> { | 
 |  public: | 
 |   HNewArray(HInstruction* length, | 
 |             HCurrentMethod* current_method, | 
 |             uint32_t dex_pc, | 
 |             uint16_t type_index, | 
 |             const DexFile& dex_file, | 
 |             QuickEntrypointEnum entrypoint) | 
 |       : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc), | 
 |         type_index_(type_index), | 
 |         dex_file_(dex_file), | 
 |         entrypoint_(entrypoint) { | 
 |     SetRawInputAt(0, length); | 
 |     SetRawInputAt(1, current_method); | 
 |   } | 
 |  | 
 |   uint16_t GetTypeIndex() const { return type_index_; } | 
 |   const DexFile& GetDexFile() const { return dex_file_; } | 
 |  | 
 |   // Calls runtime so needs an environment. | 
 |   bool NeedsEnvironment() const OVERRIDE { return true; } | 
 |  | 
 |   // May throw NegativeArraySizeException, OutOfMemoryError, etc. | 
 |   bool CanThrow() const OVERRIDE { return true; } | 
 |  | 
 |   bool CanBeNull() const OVERRIDE { return false; } | 
 |  | 
 |   QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(NewArray); | 
 |  | 
 |  private: | 
 |   const uint16_t type_index_; | 
 |   const DexFile& dex_file_; | 
 |   const QuickEntrypointEnum entrypoint_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HNewArray); | 
 | }; | 
 |  | 
 | class HAdd : public HBinaryOperation { | 
 |  public: | 
 |   HAdd(Primitive::Type result_type, | 
 |        HInstruction* left, | 
 |        HInstruction* right, | 
 |        uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool IsCommutative() const OVERRIDE { return true; } | 
 |  | 
 |   template <typename T> T Compute(T x, T y) const { return x + y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Add); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HAdd); | 
 | }; | 
 |  | 
 | class HSub : public HBinaryOperation { | 
 |  public: | 
 |   HSub(Primitive::Type result_type, | 
 |        HInstruction* left, | 
 |        HInstruction* right, | 
 |        uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   template <typename T> T Compute(T x, T y) const { return x - y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Sub); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HSub); | 
 | }; | 
 |  | 
 | class HMul : public HBinaryOperation { | 
 |  public: | 
 |   HMul(Primitive::Type result_type, | 
 |        HInstruction* left, | 
 |        HInstruction* right, | 
 |        uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool IsCommutative() const OVERRIDE { return true; } | 
 |  | 
 |   template <typename T> T Compute(T x, T y) const { return x * y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Mul); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HMul); | 
 | }; | 
 |  | 
 | class HDiv : public HBinaryOperation { | 
 |  public: | 
 |   HDiv(Primitive::Type result_type, | 
 |        HInstruction* left, | 
 |        HInstruction* right, | 
 |        uint32_t dex_pc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {} | 
 |  | 
 |   template <typename T> | 
 |   T Compute(T x, T y) const { | 
 |     // Our graph structure ensures we never have 0 for `y` during | 
 |     // constant folding. | 
 |     DCHECK_NE(y, 0); | 
 |     // Special case -1 to avoid getting a SIGFPE on x86(_64). | 
 |     return (y == -1) ? -x : x / y; | 
 |   } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   static SideEffects SideEffectsForArchRuntimeCalls() { | 
 |     // The generated code can use a runtime call. | 
 |     return SideEffects::CanTriggerGC(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Div); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HDiv); | 
 | }; | 
 |  | 
 | class HRem : public HBinaryOperation { | 
 |  public: | 
 |   HRem(Primitive::Type result_type, | 
 |        HInstruction* left, | 
 |        HInstruction* right, | 
 |        uint32_t dex_pc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {} | 
 |  | 
 |   template <typename T> | 
 |   T Compute(T x, T y) const { | 
 |     // Our graph structure ensures we never have 0 for `y` during | 
 |     // constant folding. | 
 |     DCHECK_NE(y, 0); | 
 |     // Special case -1 to avoid getting a SIGFPE on x86(_64). | 
 |     return (y == -1) ? 0 : x % y; | 
 |   } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |  | 
 |   static SideEffects SideEffectsForArchRuntimeCalls() { | 
 |     return SideEffects::CanTriggerGC(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Rem); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HRem); | 
 | }; | 
 |  | 
 | class HDivZeroCheck : public HExpression<1> { | 
 |  public: | 
 |   HDivZeroCheck(HInstruction* value, uint32_t dex_pc) | 
 |       : HExpression(value->GetType(), SideEffects::None(), dex_pc) { | 
 |     SetRawInputAt(0, value); | 
 |   } | 
 |  | 
 |   Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { return true; } | 
 |   bool CanThrow() const OVERRIDE { return true; } | 
 |  | 
 |   DECLARE_INSTRUCTION(DivZeroCheck); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck); | 
 | }; | 
 |  | 
 | class HShl : public HBinaryOperation { | 
 |  public: | 
 |   HShl(Primitive::Type result_type, | 
 |        HInstruction* left, | 
 |        HInstruction* right, | 
 |        uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   template <typename T, typename U, typename V> | 
 |   T Compute(T x, U y, V max_shift_value) const { | 
 |     static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value, | 
 |                   "V is not the unsigned integer type corresponding to T"); | 
 |     return x << (y & max_shift_value); | 
 |   } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc()); | 
 |   } | 
 |   // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this | 
 |   // case is handled as `x << static_cast<int>(y)`. | 
 |   HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Shl); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HShl); | 
 | }; | 
 |  | 
 | class HShr : public HBinaryOperation { | 
 |  public: | 
 |   HShr(Primitive::Type result_type, | 
 |        HInstruction* left, | 
 |        HInstruction* right, | 
 |        uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   template <typename T, typename U, typename V> | 
 |   T Compute(T x, U y, V max_shift_value) const { | 
 |     static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value, | 
 |                   "V is not the unsigned integer type corresponding to T"); | 
 |     return x >> (y & max_shift_value); | 
 |   } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc()); | 
 |   } | 
 |   // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this | 
 |   // case is handled as `x >> static_cast<int>(y)`. | 
 |   HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Shr); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HShr); | 
 | }; | 
 |  | 
 | class HUShr : public HBinaryOperation { | 
 |  public: | 
 |   HUShr(Primitive::Type result_type, | 
 |         HInstruction* left, | 
 |         HInstruction* right, | 
 |         uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   template <typename T, typename U, typename V> | 
 |   T Compute(T x, U y, V max_shift_value) const { | 
 |     static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value, | 
 |                   "V is not the unsigned integer type corresponding to T"); | 
 |     V ux = static_cast<V>(x); | 
 |     return static_cast<T>(ux >> (y & max_shift_value)); | 
 |   } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc()); | 
 |   } | 
 |   // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this | 
 |   // case is handled as `x >>> static_cast<int>(y)`. | 
 |   HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(UShr); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HUShr); | 
 | }; | 
 |  | 
 | class HAnd : public HBinaryOperation { | 
 |  public: | 
 |   HAnd(Primitive::Type result_type, | 
 |        HInstruction* left, | 
 |        HInstruction* right, | 
 |        uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool IsCommutative() const OVERRIDE { return true; } | 
 |  | 
 |   template <typename T, typename U> | 
 |   auto Compute(T x, U y) const -> decltype(x & y) { return x & y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(And); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HAnd); | 
 | }; | 
 |  | 
 | class HOr : public HBinaryOperation { | 
 |  public: | 
 |   HOr(Primitive::Type result_type, | 
 |       HInstruction* left, | 
 |       HInstruction* right, | 
 |       uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool IsCommutative() const OVERRIDE { return true; } | 
 |  | 
 |   template <typename T, typename U> | 
 |   auto Compute(T x, U y) const -> decltype(x | y) { return x | y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Or); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HOr); | 
 | }; | 
 |  | 
 | class HXor : public HBinaryOperation { | 
 |  public: | 
 |   HXor(Primitive::Type result_type, | 
 |        HInstruction* left, | 
 |        HInstruction* right, | 
 |        uint32_t dex_pc = kNoDexPc) | 
 |       : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool IsCommutative() const OVERRIDE { return true; } | 
 |  | 
 |   template <typename T, typename U> | 
 |   auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant( | 
 |         Compute(x->GetValue(), y->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Xor); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HXor); | 
 | }; | 
 |  | 
 | // The value of a parameter in this method. Its location depends on | 
 | // the calling convention. | 
 | class HParameterValue : public HExpression<0> { | 
 |  public: | 
 |   HParameterValue(uint8_t index, | 
 |                   Primitive::Type parameter_type, | 
 |                   bool is_this = false) | 
 |       : HExpression(parameter_type, SideEffects::None(), kNoDexPc), | 
 |         index_(index), | 
 |         is_this_(is_this), | 
 |         can_be_null_(!is_this) {} | 
 |  | 
 |   uint8_t GetIndex() const { return index_; } | 
 |  | 
 |   bool CanBeNull() const OVERRIDE { return can_be_null_; } | 
 |   void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; } | 
 |  | 
 |   bool IsThis() const { return is_this_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(ParameterValue); | 
 |  | 
 |  private: | 
 |   // The index of this parameter in the parameters list. Must be less | 
 |   // than HGraph::number_of_in_vregs_. | 
 |   const uint8_t index_; | 
 |  | 
 |   // Whether or not the parameter value corresponds to 'this' argument. | 
 |   const bool is_this_; | 
 |  | 
 |   bool can_be_null_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HParameterValue); | 
 | }; | 
 |  | 
 | class HNot : public HUnaryOperation { | 
 |  public: | 
 |   HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
 |       : HUnaryOperation(result_type, input, dex_pc) {} | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |  | 
 |   template <typename T> T Compute(T x) const { return ~x; } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Not); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HNot); | 
 | }; | 
 |  | 
 | class HBooleanNot : public HUnaryOperation { | 
 |  public: | 
 |   explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc) | 
 |       : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {} | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |  | 
 |   template <typename T> bool Compute(T x) const { | 
 |     DCHECK(IsUint<1>(x)); | 
 |     return !x; | 
 |   } | 
 |  | 
 |   HConstant* Evaluate(HIntConstant* x) const OVERRIDE { | 
 |     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); | 
 |   } | 
 |   HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE { | 
 |     LOG(FATAL) << DebugName() << " is not defined for long values"; | 
 |     UNREACHABLE(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(BooleanNot); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HBooleanNot); | 
 | }; | 
 |  | 
 | class HTypeConversion : public HExpression<1> { | 
 |  public: | 
 |   // Instantiate a type conversion of `input` to `result_type`. | 
 |   HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc) | 
 |       : HExpression(result_type, | 
 |                     SideEffectsForArchRuntimeCalls(input->GetType(), result_type), | 
 |                     dex_pc) { | 
 |     SetRawInputAt(0, input); | 
 |     DCHECK_NE(input->GetType(), result_type); | 
 |   } | 
 |  | 
 |   HInstruction* GetInput() const { return InputAt(0); } | 
 |   Primitive::Type GetInputType() const { return GetInput()->GetType(); } | 
 |   Primitive::Type GetResultType() const { return GetType(); } | 
 |  | 
 |   // Required by the x86 and ARM code generators when producing calls | 
 |   // to the runtime. | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; } | 
 |  | 
 |   // Try to statically evaluate the conversion and return a HConstant | 
 |   // containing the result.  If the input cannot be converted, return nullptr. | 
 |   HConstant* TryStaticEvaluation() const; | 
 |  | 
 |   static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type, | 
 |                                                     Primitive::Type result_type) { | 
 |     // Some architectures may not require the 'GC' side effects, but at this point | 
 |     // in the compilation process we do not know what architecture we will | 
 |     // generate code for, so we must be conservative. | 
 |     if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type)) | 
 |         || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) { | 
 |       return SideEffects::CanTriggerGC(); | 
 |     } | 
 |     return SideEffects::None(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(TypeConversion); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HTypeConversion); | 
 | }; | 
 |  | 
 | static constexpr uint32_t kNoRegNumber = -1; | 
 |  | 
 | class HPhi : public HInstruction { | 
 |  public: | 
 |   HPhi(ArenaAllocator* arena, | 
 |        uint32_t reg_number, | 
 |        size_t number_of_inputs, | 
 |        Primitive::Type type, | 
 |        uint32_t dex_pc = kNoDexPc) | 
 |       : HInstruction(SideEffects::None(), dex_pc), | 
 |         inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)), | 
 |         reg_number_(reg_number), | 
 |         type_(type), | 
 |         is_live_(false), | 
 |         can_be_null_(true) { | 
 |   } | 
 |  | 
 |   // Returns a type equivalent to the given `type`, but that a `HPhi` can hold. | 
 |   static Primitive::Type ToPhiType(Primitive::Type type) { | 
 |     switch (type) { | 
 |       case Primitive::kPrimBoolean: | 
 |       case Primitive::kPrimByte: | 
 |       case Primitive::kPrimShort: | 
 |       case Primitive::kPrimChar: | 
 |         return Primitive::kPrimInt; | 
 |       default: | 
 |         return type; | 
 |     } | 
 |   } | 
 |  | 
 |   bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); } | 
 |  | 
 |   size_t InputCount() const OVERRIDE { return inputs_.size(); } | 
 |  | 
 |   void AddInput(HInstruction* input); | 
 |   void RemoveInputAt(size_t index); | 
 |  | 
 |   Primitive::Type GetType() const OVERRIDE { return type_; } | 
 |   void SetType(Primitive::Type type) { type_ = type; } | 
 |  | 
 |   bool CanBeNull() const OVERRIDE { return can_be_null_; } | 
 |   void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; } | 
 |  | 
 |   uint32_t GetRegNumber() const { return reg_number_; } | 
 |  | 
 |   void SetDead() { is_live_ = false; } | 
 |   void SetLive() { is_live_ = true; } | 
 |   bool IsDead() const { return !is_live_; } | 
 |   bool IsLive() const { return is_live_; } | 
 |  | 
 |   bool IsVRegEquivalentOf(HInstruction* other) const { | 
 |     return other != nullptr | 
 |         && other->IsPhi() | 
 |         && other->AsPhi()->GetBlock() == GetBlock() | 
 |         && other->AsPhi()->GetRegNumber() == GetRegNumber(); | 
 |   } | 
 |  | 
 |   // Returns the next equivalent phi (starting from the current one) or null if there is none. | 
 |   // An equivalent phi is a phi having the same dex register and type. | 
 |   // It assumes that phis with the same dex register are adjacent. | 
 |   HPhi* GetNextEquivalentPhiWithSameType() { | 
 |     HInstruction* next = GetNext(); | 
 |     while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) { | 
 |       if (next->GetType() == GetType()) { | 
 |         return next->AsPhi(); | 
 |       } | 
 |       next = next->GetNext(); | 
 |     } | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Phi); | 
 |  | 
 |  protected: | 
 |   const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE { | 
 |     DCHECK_LE(index, InputCount()); | 
 |     return inputs_[index]; | 
 |   } | 
 |  | 
 |   void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE { | 
 |     DCHECK_LE(index, InputCount()); | 
 |     inputs_[index] = input; | 
 |   } | 
 |  | 
 |  private: | 
 |   ArenaVector<HUserRecord<HInstruction*> > inputs_; | 
 |   const uint32_t reg_number_; | 
 |   Primitive::Type type_; | 
 |   bool is_live_; | 
 |   bool can_be_null_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HPhi); | 
 | }; | 
 |  | 
 | class HNullCheck : public HExpression<1> { | 
 |  public: | 
 |   HNullCheck(HInstruction* value, uint32_t dex_pc) | 
 |       : HExpression(value->GetType(), SideEffects::None(), dex_pc) { | 
 |     SetRawInputAt(0, value); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { return true; } | 
 |  | 
 |   bool CanThrow() const OVERRIDE { return true; } | 
 |  | 
 |   bool CanBeNull() const OVERRIDE { return false; } | 
 |  | 
 |  | 
 |   DECLARE_INSTRUCTION(NullCheck); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HNullCheck); | 
 | }; | 
 |  | 
 | class FieldInfo : public ValueObject { | 
 |  public: | 
 |   FieldInfo(MemberOffset field_offset, | 
 |             Primitive::Type field_type, | 
 |             bool is_volatile, | 
 |             uint32_t index, | 
 |             const DexFile& dex_file, | 
 |             Handle<mirror::DexCache> dex_cache) | 
 |       : field_offset_(field_offset), | 
 |         field_type_(field_type), | 
 |         is_volatile_(is_volatile), | 
 |         index_(index), | 
 |         dex_file_(dex_file), | 
 |         dex_cache_(dex_cache) {} | 
 |  | 
 |   MemberOffset GetFieldOffset() const { return field_offset_; } | 
 |   Primitive::Type GetFieldType() const { return field_type_; } | 
 |   uint32_t GetFieldIndex() const { return index_; } | 
 |   const DexFile& GetDexFile() const { return dex_file_; } | 
 |   bool IsVolatile() const { return is_volatile_; } | 
 |   Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; } | 
 |  | 
 |  private: | 
 |   const MemberOffset field_offset_; | 
 |   const Primitive::Type field_type_; | 
 |   const bool is_volatile_; | 
 |   const uint32_t index_; | 
 |   const DexFile& dex_file_; | 
 |   const Handle<mirror::DexCache> dex_cache_; | 
 | }; | 
 |  | 
 | class HInstanceFieldGet : public HExpression<1> { | 
 |  public: | 
 |   HInstanceFieldGet(HInstruction* value, | 
 |                     Primitive::Type field_type, | 
 |                     MemberOffset field_offset, | 
 |                     bool is_volatile, | 
 |                     uint32_t field_idx, | 
 |                     const DexFile& dex_file, | 
 |                     Handle<mirror::DexCache> dex_cache, | 
 |                     uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression( | 
 |             field_type, | 
 |             SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc), | 
 |         field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache) { | 
 |     SetRawInputAt(0, value); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     HInstanceFieldGet* other_get = other->AsInstanceFieldGet(); | 
 |     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); | 
 |   } | 
 |  | 
 |   bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
 |     return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize; | 
 |   } | 
 |  | 
 |   size_t ComputeHashCode() const OVERRIDE { | 
 |     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); | 
 |   } | 
 |  | 
 |   const FieldInfo& GetFieldInfo() const { return field_info_; } | 
 |   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } | 
 |   Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } | 
 |   bool IsVolatile() const { return field_info_.IsVolatile(); } | 
 |  | 
 |   DECLARE_INSTRUCTION(InstanceFieldGet); | 
 |  | 
 |  private: | 
 |   const FieldInfo field_info_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet); | 
 | }; | 
 |  | 
 | class HInstanceFieldSet : public HTemplateInstruction<2> { | 
 |  public: | 
 |   HInstanceFieldSet(HInstruction* object, | 
 |                     HInstruction* value, | 
 |                     Primitive::Type field_type, | 
 |                     MemberOffset field_offset, | 
 |                     bool is_volatile, | 
 |                     uint32_t field_idx, | 
 |                     const DexFile& dex_file, | 
 |                     Handle<mirror::DexCache> dex_cache, | 
 |                     uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction( | 
 |           SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc), | 
 |         field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache), | 
 |         value_can_be_null_(true) { | 
 |     SetRawInputAt(0, object); | 
 |     SetRawInputAt(1, value); | 
 |   } | 
 |  | 
 |   bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
 |     return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize; | 
 |   } | 
 |  | 
 |   const FieldInfo& GetFieldInfo() const { return field_info_; } | 
 |   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } | 
 |   Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } | 
 |   bool IsVolatile() const { return field_info_.IsVolatile(); } | 
 |   HInstruction* GetValue() const { return InputAt(1); } | 
 |   bool GetValueCanBeNull() const { return value_can_be_null_; } | 
 |   void ClearValueCanBeNull() { value_can_be_null_ = false; } | 
 |  | 
 |   DECLARE_INSTRUCTION(InstanceFieldSet); | 
 |  | 
 |  private: | 
 |   const FieldInfo field_info_; | 
 |   bool value_can_be_null_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet); | 
 | }; | 
 |  | 
 | class HArrayGet : public HExpression<2> { | 
 |  public: | 
 |   HArrayGet(HInstruction* array, | 
 |             HInstruction* index, | 
 |             Primitive::Type type, | 
 |             uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression(type, SideEffects::ArrayReadOfType(type), dex_pc) { | 
 |     SetRawInputAt(0, array); | 
 |     SetRawInputAt(1, index); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |   bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
 |     UNUSED(obj); | 
 |     // TODO: We can be smarter here. | 
 |     // Currently, the array access is always preceded by an ArrayLength or a NullCheck | 
 |     // which generates the implicit null check. There are cases when these can be removed | 
 |     // to produce better code. If we ever add optimizations to do so we should allow an | 
 |     // implicit check here (as long as the address falls in the first page). | 
 |     return false; | 
 |   } | 
 |  | 
 |   void SetType(Primitive::Type type) { type_ = type; } | 
 |  | 
 |   HInstruction* GetArray() const { return InputAt(0); } | 
 |   HInstruction* GetIndex() const { return InputAt(1); } | 
 |  | 
 |   DECLARE_INSTRUCTION(ArrayGet); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HArrayGet); | 
 | }; | 
 |  | 
 | class HArraySet : public HTemplateInstruction<3> { | 
 |  public: | 
 |   HArraySet(HInstruction* array, | 
 |             HInstruction* index, | 
 |             HInstruction* value, | 
 |             Primitive::Type expected_component_type, | 
 |             uint32_t dex_pc) | 
 |       : HTemplateInstruction( | 
 |             SideEffects::ArrayWriteOfType(expected_component_type).Union( | 
 |                 SideEffectsForArchRuntimeCalls(value->GetType())), dex_pc), | 
 |         expected_component_type_(expected_component_type), | 
 |         needs_type_check_(value->GetType() == Primitive::kPrimNot), | 
 |         value_can_be_null_(true) { | 
 |     SetRawInputAt(0, array); | 
 |     SetRawInputAt(1, index); | 
 |     SetRawInputAt(2, value); | 
 |   } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { | 
 |     // We currently always call a runtime method to catch array store | 
 |     // exceptions. | 
 |     return needs_type_check_; | 
 |   } | 
 |  | 
 |   // Can throw ArrayStoreException. | 
 |   bool CanThrow() const OVERRIDE { return needs_type_check_; } | 
 |  | 
 |   bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
 |     UNUSED(obj); | 
 |     // TODO: Same as for ArrayGet. | 
 |     return false; | 
 |   } | 
 |  | 
 |   void ClearNeedsTypeCheck() { | 
 |     needs_type_check_ = false; | 
 |   } | 
 |  | 
 |   void ClearValueCanBeNull() { | 
 |     value_can_be_null_ = false; | 
 |   } | 
 |  | 
 |   bool GetValueCanBeNull() const { return value_can_be_null_; } | 
 |   bool NeedsTypeCheck() const { return needs_type_check_; } | 
 |  | 
 |   HInstruction* GetArray() const { return InputAt(0); } | 
 |   HInstruction* GetIndex() const { return InputAt(1); } | 
 |   HInstruction* GetValue() const { return InputAt(2); } | 
 |  | 
 |   Primitive::Type GetComponentType() const { | 
 |     // The Dex format does not type floating point index operations. Since the | 
 |     // `expected_component_type_` is set during building and can therefore not | 
 |     // be correct, we also check what is the value type. If it is a floating | 
 |     // point type, we must use that type. | 
 |     Primitive::Type value_type = GetValue()->GetType(); | 
 |     return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble)) | 
 |         ? value_type | 
 |         : expected_component_type_; | 
 |   } | 
 |  | 
 |   static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) { | 
 |     return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(ArraySet); | 
 |  | 
 |  private: | 
 |   const Primitive::Type expected_component_type_; | 
 |   bool needs_type_check_; | 
 |   bool value_can_be_null_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HArraySet); | 
 | }; | 
 |  | 
 | class HArrayLength : public HExpression<1> { | 
 |  public: | 
 |   explicit HArrayLength(HInstruction* array, uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) { | 
 |     // Note that arrays do not change length, so the instruction does not | 
 |     // depend on any write. | 
 |     SetRawInputAt(0, array); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |   bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE { | 
 |     return obj == InputAt(0); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(ArrayLength); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HArrayLength); | 
 | }; | 
 |  | 
 | class HBoundsCheck : public HExpression<2> { | 
 |  public: | 
 |   HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc) | 
 |       : HExpression(index->GetType(), SideEffects::None(), dex_pc) { | 
 |     DCHECK(index->GetType() == Primitive::kPrimInt); | 
 |     SetRawInputAt(0, index); | 
 |     SetRawInputAt(1, length); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { return true; } | 
 |  | 
 |   bool CanThrow() const OVERRIDE { return true; } | 
 |  | 
 |  | 
 |   DECLARE_INSTRUCTION(BoundsCheck); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HBoundsCheck); | 
 | }; | 
 |  | 
 | /** | 
 |  * Some DEX instructions are folded into multiple HInstructions that need | 
 |  * to stay live until the last HInstruction. This class | 
 |  * is used as a marker for the baseline compiler to ensure its preceding | 
 |  * HInstruction stays live. `index` represents the stack location index of the | 
 |  * instruction (the actual offset is computed as index * vreg_size). | 
 |  */ | 
 | class HTemporary : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {} | 
 |  | 
 |   size_t GetIndex() const { return index_; } | 
 |  | 
 |   Primitive::Type GetType() const OVERRIDE { | 
 |     // The previous instruction is the one that will be stored in the temporary location. | 
 |     DCHECK(GetPrevious() != nullptr); | 
 |     return GetPrevious()->GetType(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(Temporary); | 
 |  | 
 |  private: | 
 |   const size_t index_; | 
 |   DISALLOW_COPY_AND_ASSIGN(HTemporary); | 
 | }; | 
 |  | 
 | class HSuspendCheck : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HSuspendCheck(uint32_t dex_pc) | 
 |       : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {} | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { | 
 |     return true; | 
 |   } | 
 |  | 
 |   void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; } | 
 |   SlowPathCode* GetSlowPath() const { return slow_path_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(SuspendCheck); | 
 |  | 
 |  private: | 
 |   // Only used for code generation, in order to share the same slow path between back edges | 
 |   // of a same loop. | 
 |   SlowPathCode* slow_path_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HSuspendCheck); | 
 | }; | 
 |  | 
 | /** | 
 |  * Instruction to load a Class object. | 
 |  */ | 
 | class HLoadClass : public HExpression<1> { | 
 |  public: | 
 |   HLoadClass(HCurrentMethod* current_method, | 
 |              uint16_t type_index, | 
 |              const DexFile& dex_file, | 
 |              bool is_referrers_class, | 
 |              uint32_t dex_pc) | 
 |       : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc), | 
 |         type_index_(type_index), | 
 |         dex_file_(dex_file), | 
 |         is_referrers_class_(is_referrers_class), | 
 |         generate_clinit_check_(false), | 
 |         loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) { | 
 |     SetRawInputAt(0, current_method); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     return other->AsLoadClass()->type_index_ == type_index_; | 
 |   } | 
 |  | 
 |   size_t ComputeHashCode() const OVERRIDE { return type_index_; } | 
 |  | 
 |   uint16_t GetTypeIndex() const { return type_index_; } | 
 |   bool IsReferrersClass() const { return is_referrers_class_; } | 
 |   bool CanBeNull() const OVERRIDE { return false; } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { | 
 |     // Will call runtime and load the class if the class is not loaded yet. | 
 |     // TODO: finer grain decision. | 
 |     return !is_referrers_class_; | 
 |   } | 
 |  | 
 |   bool MustGenerateClinitCheck() const { | 
 |     return generate_clinit_check_; | 
 |   } | 
 |  | 
 |   void SetMustGenerateClinitCheck(bool generate_clinit_check) { | 
 |     generate_clinit_check_ = generate_clinit_check; | 
 |   } | 
 |  | 
 |   bool CanCallRuntime() const { | 
 |     return MustGenerateClinitCheck() || !is_referrers_class_; | 
 |   } | 
 |  | 
 |   bool CanThrow() const OVERRIDE { | 
 |     // May call runtime and and therefore can throw. | 
 |     // TODO: finer grain decision. | 
 |     return CanCallRuntime(); | 
 |   } | 
 |  | 
 |   ReferenceTypeInfo GetLoadedClassRTI() { | 
 |     return loaded_class_rti_; | 
 |   } | 
 |  | 
 |   void SetLoadedClassRTI(ReferenceTypeInfo rti) { | 
 |     // Make sure we only set exact types (the loaded class should never be merged). | 
 |     DCHECK(rti.IsExact()); | 
 |     loaded_class_rti_ = rti; | 
 |   } | 
 |  | 
 |   const DexFile& GetDexFile() { return dex_file_; } | 
 |  | 
 |   bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; } | 
 |  | 
 |   static SideEffects SideEffectsForArchRuntimeCalls() { | 
 |     return SideEffects::CanTriggerGC(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(LoadClass); | 
 |  | 
 |  private: | 
 |   const uint16_t type_index_; | 
 |   const DexFile& dex_file_; | 
 |   const bool is_referrers_class_; | 
 |   // Whether this instruction must generate the initialization check. | 
 |   // Used for code generation. | 
 |   bool generate_clinit_check_; | 
 |  | 
 |   ReferenceTypeInfo loaded_class_rti_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HLoadClass); | 
 | }; | 
 |  | 
 | class HLoadString : public HExpression<1> { | 
 |  public: | 
 |   HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc) | 
 |       : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc), | 
 |         string_index_(string_index) { | 
 |     SetRawInputAt(0, current_method); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     return other->AsLoadString()->string_index_ == string_index_; | 
 |   } | 
 |  | 
 |   size_t ComputeHashCode() const OVERRIDE { return string_index_; } | 
 |  | 
 |   uint32_t GetStringIndex() const { return string_index_; } | 
 |  | 
 |   // TODO: Can we deopt or debug when we resolve a string? | 
 |   bool NeedsEnvironment() const OVERRIDE { return false; } | 
 |   bool NeedsDexCache() const OVERRIDE { return true; } | 
 |   bool CanBeNull() const OVERRIDE { return false; } | 
 |  | 
 |   static SideEffects SideEffectsForArchRuntimeCalls() { | 
 |     return SideEffects::CanTriggerGC(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(LoadString); | 
 |  | 
 |  private: | 
 |   const uint32_t string_index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HLoadString); | 
 | }; | 
 |  | 
 | /** | 
 |  * Performs an initialization check on its Class object input. | 
 |  */ | 
 | class HClinitCheck : public HExpression<1> { | 
 |  public: | 
 |   HClinitCheck(HLoadClass* constant, uint32_t dex_pc) | 
 |       : HExpression( | 
 |             Primitive::kPrimNot, | 
 |             SideEffects::AllChanges(),  // Assume write/read on all fields/arrays. | 
 |             dex_pc) { | 
 |     SetRawInputAt(0, constant); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     UNUSED(other); | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { | 
 |     // May call runtime to initialize the class. | 
 |     return true; | 
 |   } | 
 |  | 
 |  | 
 |   HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); } | 
 |  | 
 |   DECLARE_INSTRUCTION(ClinitCheck); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HClinitCheck); | 
 | }; | 
 |  | 
 | class HStaticFieldGet : public HExpression<1> { | 
 |  public: | 
 |   HStaticFieldGet(HInstruction* cls, | 
 |                   Primitive::Type field_type, | 
 |                   MemberOffset field_offset, | 
 |                   bool is_volatile, | 
 |                   uint32_t field_idx, | 
 |                   const DexFile& dex_file, | 
 |                   Handle<mirror::DexCache> dex_cache, | 
 |                   uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression( | 
 |             field_type, | 
 |             SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc), | 
 |         field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache) { | 
 |     SetRawInputAt(0, cls); | 
 |   } | 
 |  | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return !IsVolatile(); } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other) const OVERRIDE { | 
 |     HStaticFieldGet* other_get = other->AsStaticFieldGet(); | 
 |     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); | 
 |   } | 
 |  | 
 |   size_t ComputeHashCode() const OVERRIDE { | 
 |     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); | 
 |   } | 
 |  | 
 |   const FieldInfo& GetFieldInfo() const { return field_info_; } | 
 |   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } | 
 |   Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } | 
 |   bool IsVolatile() const { return field_info_.IsVolatile(); } | 
 |  | 
 |   DECLARE_INSTRUCTION(StaticFieldGet); | 
 |  | 
 |  private: | 
 |   const FieldInfo field_info_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet); | 
 | }; | 
 |  | 
 | class HStaticFieldSet : public HTemplateInstruction<2> { | 
 |  public: | 
 |   HStaticFieldSet(HInstruction* cls, | 
 |                   HInstruction* value, | 
 |                   Primitive::Type field_type, | 
 |                   MemberOffset field_offset, | 
 |                   bool is_volatile, | 
 |                   uint32_t field_idx, | 
 |                   const DexFile& dex_file, | 
 |                   Handle<mirror::DexCache> dex_cache, | 
 |                   uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction( | 
 |           SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc), | 
 |         field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache), | 
 |         value_can_be_null_(true) { | 
 |     SetRawInputAt(0, cls); | 
 |     SetRawInputAt(1, value); | 
 |   } | 
 |  | 
 |   const FieldInfo& GetFieldInfo() const { return field_info_; } | 
 |   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } | 
 |   Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); } | 
 |   bool IsVolatile() const { return field_info_.IsVolatile(); } | 
 |  | 
 |   HInstruction* GetValue() const { return InputAt(1); } | 
 |   bool GetValueCanBeNull() const { return value_can_be_null_; } | 
 |   void ClearValueCanBeNull() { value_can_be_null_ = false; } | 
 |  | 
 |   DECLARE_INSTRUCTION(StaticFieldSet); | 
 |  | 
 |  private: | 
 |   const FieldInfo field_info_; | 
 |   bool value_can_be_null_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet); | 
 | }; | 
 |  | 
 | // Implement the move-exception DEX instruction. | 
 | class HLoadException : public HExpression<0> { | 
 |  public: | 
 |   explicit HLoadException(uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {} | 
 |  | 
 |   bool CanBeNull() const OVERRIDE { return false; } | 
 |  | 
 |   DECLARE_INSTRUCTION(LoadException); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HLoadException); | 
 | }; | 
 |  | 
 | // Implicit part of move-exception which clears thread-local exception storage. | 
 | // Must not be removed because the runtime expects the TLS to get cleared. | 
 | class HClearException : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HClearException(uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {} | 
 |  | 
 |   DECLARE_INSTRUCTION(ClearException); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HClearException); | 
 | }; | 
 |  | 
 | class HThrow : public HTemplateInstruction<1> { | 
 |  public: | 
 |   HThrow(HInstruction* exception, uint32_t dex_pc) | 
 |       : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) { | 
 |     SetRawInputAt(0, exception); | 
 |   } | 
 |  | 
 |   bool IsControlFlow() const OVERRIDE { return true; } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { return true; } | 
 |  | 
 |   bool CanThrow() const OVERRIDE { return true; } | 
 |  | 
 |  | 
 |   DECLARE_INSTRUCTION(Throw); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HThrow); | 
 | }; | 
 |  | 
 | class HInstanceOf : public HExpression<2> { | 
 |  public: | 
 |   HInstanceOf(HInstruction* object, | 
 |               HLoadClass* constant, | 
 |               bool class_is_final, | 
 |               uint32_t dex_pc) | 
 |       : HExpression(Primitive::kPrimBoolean, | 
 |                     SideEffectsForArchRuntimeCalls(class_is_final), | 
 |                     dex_pc), | 
 |         class_is_final_(class_is_final), | 
 |         must_do_null_check_(true) { | 
 |     SetRawInputAt(0, object); | 
 |     SetRawInputAt(1, constant); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool IsClassFinal() const { return class_is_final_; } | 
 |  | 
 |   // Used only in code generation. | 
 |   bool MustDoNullCheck() const { return must_do_null_check_; } | 
 |   void ClearMustDoNullCheck() { must_do_null_check_ = false; } | 
 |  | 
 |   static SideEffects SideEffectsForArchRuntimeCalls(bool class_is_final) { | 
 |     return class_is_final ? SideEffects::None() : SideEffects::CanTriggerGC(); | 
 |   } | 
 |  | 
 |   DECLARE_INSTRUCTION(InstanceOf); | 
 |  | 
 |  private: | 
 |   const bool class_is_final_; | 
 |   bool must_do_null_check_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInstanceOf); | 
 | }; | 
 |  | 
 | class HBoundType : public HExpression<1> { | 
 |  public: | 
 |   // Constructs an HBoundType with the given upper_bound. | 
 |   // Ensures that the upper_bound is valid. | 
 |   HBoundType(HInstruction* input, | 
 |              ReferenceTypeInfo upper_bound, | 
 |              bool upper_can_be_null, | 
 |              uint32_t dex_pc = kNoDexPc) | 
 |       : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc), | 
 |         upper_bound_(upper_bound), | 
 |         upper_can_be_null_(upper_can_be_null), | 
 |         can_be_null_(upper_can_be_null) { | 
 |     DCHECK_EQ(input->GetType(), Primitive::kPrimNot); | 
 |     SetRawInputAt(0, input); | 
 |     SetReferenceTypeInfo(upper_bound_); | 
 |   } | 
 |  | 
 |   // GetUpper* should only be used in reference type propagation. | 
 |   const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; } | 
 |   bool GetUpperCanBeNull() const { return upper_can_be_null_; } | 
 |  | 
 |   void SetCanBeNull(bool can_be_null) { | 
 |     DCHECK(upper_can_be_null_ || !can_be_null); | 
 |     can_be_null_ = can_be_null; | 
 |   } | 
 |  | 
 |   bool CanBeNull() const OVERRIDE { return can_be_null_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(BoundType); | 
 |  | 
 |  private: | 
 |   // Encodes the most upper class that this instruction can have. In other words | 
 |   // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()). | 
 |   // It is used to bound the type in cases like: | 
 |   //   if (x instanceof ClassX) { | 
 |   //     // uper_bound_ will be ClassX | 
 |   //   } | 
 |   const ReferenceTypeInfo upper_bound_; | 
 |   // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this | 
 |   // is false then can_be_null_ cannot be true). | 
 |   const bool upper_can_be_null_; | 
 |   bool can_be_null_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HBoundType); | 
 | }; | 
 |  | 
 | class HCheckCast : public HTemplateInstruction<2> { | 
 |  public: | 
 |   HCheckCast(HInstruction* object, | 
 |              HLoadClass* constant, | 
 |              bool class_is_final, | 
 |              uint32_t dex_pc) | 
 |       : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), | 
 |         class_is_final_(class_is_final), | 
 |         must_do_null_check_(true) { | 
 |     SetRawInputAt(0, object); | 
 |     SetRawInputAt(1, constant); | 
 |   } | 
 |  | 
 |   bool CanBeMoved() const OVERRIDE { return true; } | 
 |  | 
 |   bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool NeedsEnvironment() const OVERRIDE { | 
 |     // Instruction may throw a CheckCastError. | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool CanThrow() const OVERRIDE { return true; } | 
 |  | 
 |   bool MustDoNullCheck() const { return must_do_null_check_; } | 
 |   void ClearMustDoNullCheck() { must_do_null_check_ = false; } | 
 |  | 
 |  | 
 |   bool IsClassFinal() const { return class_is_final_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(CheckCast); | 
 |  | 
 |  private: | 
 |   const bool class_is_final_; | 
 |   bool must_do_null_check_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HCheckCast); | 
 | }; | 
 |  | 
 | class HMemoryBarrier : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction( | 
 |             SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays. | 
 |         barrier_kind_(barrier_kind) {} | 
 |  | 
 |   MemBarrierKind GetBarrierKind() { return barrier_kind_; } | 
 |  | 
 |   DECLARE_INSTRUCTION(MemoryBarrier); | 
 |  | 
 |  private: | 
 |   const MemBarrierKind barrier_kind_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier); | 
 | }; | 
 |  | 
 | class HMonitorOperation : public HTemplateInstruction<1> { | 
 |  public: | 
 |   enum OperationKind { | 
 |     kEnter, | 
 |     kExit, | 
 |   }; | 
 |  | 
 |   HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc) | 
 |     : HTemplateInstruction( | 
 |           SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays. | 
 |       kind_(kind) { | 
 |     SetRawInputAt(0, object); | 
 |   } | 
 |  | 
 |   // Instruction may throw a Java exception, so we need an environment. | 
 |   bool NeedsEnvironment() const OVERRIDE { return CanThrow(); } | 
 |  | 
 |   bool CanThrow() const OVERRIDE { | 
 |     // Verifier guarantees that monitor-exit cannot throw. | 
 |     // This is important because it allows the HGraphBuilder to remove | 
 |     // a dead throw-catch loop generated for `synchronized` blocks/methods. | 
 |     return IsEnter(); | 
 |   } | 
 |  | 
 |  | 
 |   bool IsEnter() const { return kind_ == kEnter; } | 
 |  | 
 |   DECLARE_INSTRUCTION(MonitorOperation); | 
 |  | 
 |  private: | 
 |   const OperationKind kind_; | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HMonitorOperation); | 
 | }; | 
 |  | 
 | /** | 
 |  * A HInstruction used as a marker for the replacement of new + <init> | 
 |  * of a String to a call to a StringFactory. Only baseline will see | 
 |  * the node at code generation, where it will be be treated as null. | 
 |  * When compiling non-baseline, `HFakeString` instructions are being removed | 
 |  * in the instruction simplifier. | 
 |  */ | 
 | class HFakeString : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HFakeString(uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction(SideEffects::None(), dex_pc) {} | 
 |  | 
 |   Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; } | 
 |  | 
 |   DECLARE_INSTRUCTION(FakeString); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HFakeString); | 
 | }; | 
 |  | 
 | class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> { | 
 |  public: | 
 |   MoveOperands(Location source, | 
 |                Location destination, | 
 |                Primitive::Type type, | 
 |                HInstruction* instruction) | 
 |       : source_(source), destination_(destination), type_(type), instruction_(instruction) {} | 
 |  | 
 |   Location GetSource() const { return source_; } | 
 |   Location GetDestination() const { return destination_; } | 
 |  | 
 |   void SetSource(Location value) { source_ = value; } | 
 |   void SetDestination(Location value) { destination_ = value; } | 
 |  | 
 |   // The parallel move resolver marks moves as "in-progress" by clearing the | 
 |   // destination (but not the source). | 
 |   Location MarkPending() { | 
 |     DCHECK(!IsPending()); | 
 |     Location dest = destination_; | 
 |     destination_ = Location::NoLocation(); | 
 |     return dest; | 
 |   } | 
 |  | 
 |   void ClearPending(Location dest) { | 
 |     DCHECK(IsPending()); | 
 |     destination_ = dest; | 
 |   } | 
 |  | 
 |   bool IsPending() const { | 
 |     DCHECK(!source_.IsInvalid() || destination_.IsInvalid()); | 
 |     return destination_.IsInvalid() && !source_.IsInvalid(); | 
 |   } | 
 |  | 
 |   // True if this blocks a move from the given location. | 
 |   bool Blocks(Location loc) const { | 
 |     return !IsEliminated() && source_.OverlapsWith(loc); | 
 |   } | 
 |  | 
 |   // A move is redundant if it's been eliminated, if its source and | 
 |   // destination are the same, or if its destination is unneeded. | 
 |   bool IsRedundant() const { | 
 |     return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_); | 
 |   } | 
 |  | 
 |   // We clear both operands to indicate move that's been eliminated. | 
 |   void Eliminate() { | 
 |     source_ = destination_ = Location::NoLocation(); | 
 |   } | 
 |  | 
 |   bool IsEliminated() const { | 
 |     DCHECK(!source_.IsInvalid() || destination_.IsInvalid()); | 
 |     return source_.IsInvalid(); | 
 |   } | 
 |  | 
 |   Primitive::Type GetType() const { return type_; } | 
 |  | 
 |   bool Is64BitMove() const { | 
 |     return Primitive::Is64BitType(type_); | 
 |   } | 
 |  | 
 |   HInstruction* GetInstruction() const { return instruction_; } | 
 |  | 
 |  private: | 
 |   Location source_; | 
 |   Location destination_; | 
 |   // The type this move is for. | 
 |   Primitive::Type type_; | 
 |   // The instruction this move is assocatied with. Null when this move is | 
 |   // for moving an input in the expected locations of user (including a phi user). | 
 |   // This is only used in debug mode, to ensure we do not connect interval siblings | 
 |   // in the same parallel move. | 
 |   HInstruction* instruction_; | 
 | }; | 
 |  | 
 | static constexpr size_t kDefaultNumberOfMoves = 4; | 
 |  | 
 | class HParallelMove : public HTemplateInstruction<0> { | 
 |  public: | 
 |   explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc) | 
 |       : HTemplateInstruction(SideEffects::None(), dex_pc), moves_(arena, kDefaultNumberOfMoves) {} | 
 |  | 
 |   void AddMove(Location source, | 
 |                Location destination, | 
 |                Primitive::Type type, | 
 |                HInstruction* instruction) { | 
 |     DCHECK(source.IsValid()); | 
 |     DCHECK(destination.IsValid()); | 
 |     if (kIsDebugBuild) { | 
 |       if (instruction != nullptr) { | 
 |         for (size_t i = 0, e = moves_.Size(); i < e; ++i) { | 
 |           if (moves_.Get(i).GetInstruction() == instruction) { | 
 |             // Special case the situation where the move is for the spill slot | 
 |             // of the instruction. | 
 |             if ((GetPrevious() == instruction) | 
 |                 || ((GetPrevious() == nullptr) | 
 |                     && instruction->IsPhi() | 
 |                     && instruction->GetBlock() == GetBlock())) { | 
 |               DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind()) | 
 |                   << "Doing parallel moves for the same instruction."; | 
 |             } else { | 
 |               DCHECK(false) << "Doing parallel moves for the same instruction."; | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |       for (size_t i = 0, e = moves_.Size(); i < e; ++i) { | 
 |         DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination())) | 
 |             << "Overlapped destination for two moves in a parallel move: " | 
 |             << moves_.Get(i).GetSource() << " ==> " << moves_.Get(i).GetDestination() << " and " | 
 |             << source << " ==> " << destination; | 
 |       } | 
 |     } | 
 |     moves_.Add(MoveOperands(source, destination, type, instruction)); | 
 |   } | 
 |  | 
 |   MoveOperands* MoveOperandsAt(size_t index) const { | 
 |     return moves_.GetRawStorage() + index; | 
 |   } | 
 |  | 
 |   size_t NumMoves() const { return moves_.Size(); } | 
 |  | 
 |   DECLARE_INSTRUCTION(ParallelMove); | 
 |  | 
 |  private: | 
 |   GrowableArray<MoveOperands> moves_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HParallelMove); | 
 | }; | 
 |  | 
 | }  // namespace art | 
 |  | 
 | #ifdef ART_ENABLE_CODEGEN_x86 | 
 | #include "nodes_x86.h" | 
 | #endif | 
 |  | 
 | namespace art { | 
 |  | 
 | class HGraphVisitor : public ValueObject { | 
 |  public: | 
 |   explicit HGraphVisitor(HGraph* graph) : graph_(graph) {} | 
 |   virtual ~HGraphVisitor() {} | 
 |  | 
 |   virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); } | 
 |   virtual void VisitBasicBlock(HBasicBlock* block); | 
 |  | 
 |   // Visit the graph following basic block insertion order. | 
 |   void VisitInsertionOrder(); | 
 |  | 
 |   // Visit the graph following dominator tree reverse post-order. | 
 |   void VisitReversePostOrder(); | 
 |  | 
 |   HGraph* GetGraph() const { return graph_; } | 
 |  | 
 |   // Visit functions for instruction classes. | 
 | #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \ | 
 |   virtual void Visit##name(H##name* instr) { VisitInstruction(instr); } | 
 |  | 
 |   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) | 
 |  | 
 | #undef DECLARE_VISIT_INSTRUCTION | 
 |  | 
 |  private: | 
 |   HGraph* const graph_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HGraphVisitor); | 
 | }; | 
 |  | 
 | class HGraphDelegateVisitor : public HGraphVisitor { | 
 |  public: | 
 |   explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {} | 
 |   virtual ~HGraphDelegateVisitor() {} | 
 |  | 
 |   // Visit functions that delegate to to super class. | 
 | #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \ | 
 |   void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); } | 
 |  | 
 |   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) | 
 |  | 
 | #undef DECLARE_VISIT_INSTRUCTION | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor); | 
 | }; | 
 |  | 
 | class HInsertionOrderIterator : public ValueObject { | 
 |  public: | 
 |   explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {} | 
 |  | 
 |   bool Done() const { return index_ == graph_.GetBlocks().size(); } | 
 |   HBasicBlock* Current() const { return graph_.GetBlock(index_); } | 
 |   void Advance() { ++index_; } | 
 |  | 
 |  private: | 
 |   const HGraph& graph_; | 
 |   size_t index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator); | 
 | }; | 
 |  | 
 | class HReversePostOrderIterator : public ValueObject { | 
 |  public: | 
 |   explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) { | 
 |     // Check that reverse post order of the graph has been built. | 
 |     DCHECK(!graph.GetReversePostOrder().empty()); | 
 |   } | 
 |  | 
 |   bool Done() const { return index_ == graph_.GetReversePostOrder().size(); } | 
 |   HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; } | 
 |   void Advance() { ++index_; } | 
 |  | 
 |  private: | 
 |   const HGraph& graph_; | 
 |   size_t index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator); | 
 | }; | 
 |  | 
 | class HPostOrderIterator : public ValueObject { | 
 |  public: | 
 |   explicit HPostOrderIterator(const HGraph& graph) | 
 |       : graph_(graph), index_(graph_.GetReversePostOrder().size()) { | 
 |     // Check that reverse post order of the graph has been built. | 
 |     DCHECK(!graph.GetReversePostOrder().empty()); | 
 |   } | 
 |  | 
 |   bool Done() const { return index_ == 0; } | 
 |   HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; } | 
 |   void Advance() { --index_; } | 
 |  | 
 |  private: | 
 |   const HGraph& graph_; | 
 |   size_t index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator); | 
 | }; | 
 |  | 
 | class HLinearPostOrderIterator : public ValueObject { | 
 |  public: | 
 |   explicit HLinearPostOrderIterator(const HGraph& graph) | 
 |       : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {} | 
 |  | 
 |   bool Done() const { return index_ == 0; } | 
 |  | 
 |   HBasicBlock* Current() const { return order_[index_ - 1u]; } | 
 |  | 
 |   void Advance() { | 
 |     --index_; | 
 |     DCHECK_GE(index_, 0U); | 
 |   } | 
 |  | 
 |  private: | 
 |   const ArenaVector<HBasicBlock*>& order_; | 
 |   size_t index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator); | 
 | }; | 
 |  | 
 | class HLinearOrderIterator : public ValueObject { | 
 |  public: | 
 |   explicit HLinearOrderIterator(const HGraph& graph) | 
 |       : order_(graph.GetLinearOrder()), index_(0) {} | 
 |  | 
 |   bool Done() const { return index_ == order_.size(); } | 
 |   HBasicBlock* Current() const { return order_[index_]; } | 
 |   void Advance() { ++index_; } | 
 |  | 
 |  private: | 
 |   const ArenaVector<HBasicBlock*>& order_; | 
 |   size_t index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator); | 
 | }; | 
 |  | 
 | // Iterator over the blocks that art part of the loop. Includes blocks part | 
 | // of an inner loop. The order in which the blocks are iterated is on their | 
 | // block id. | 
 | class HBlocksInLoopIterator : public ValueObject { | 
 |  public: | 
 |   explicit HBlocksInLoopIterator(const HLoopInformation& info) | 
 |       : blocks_in_loop_(info.GetBlocks()), | 
 |         blocks_(info.GetHeader()->GetGraph()->GetBlocks()), | 
 |         index_(0) { | 
 |     if (!blocks_in_loop_.IsBitSet(index_)) { | 
 |       Advance(); | 
 |     } | 
 |   } | 
 |  | 
 |   bool Done() const { return index_ == blocks_.size(); } | 
 |   HBasicBlock* Current() const { return blocks_[index_]; } | 
 |   void Advance() { | 
 |     ++index_; | 
 |     for (size_t e = blocks_.size(); index_ < e; ++index_) { | 
 |       if (blocks_in_loop_.IsBitSet(index_)) { | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   const BitVector& blocks_in_loop_; | 
 |   const ArenaVector<HBasicBlock*>& blocks_; | 
 |   size_t index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator); | 
 | }; | 
 |  | 
 | // Iterator over the blocks that art part of the loop. Includes blocks part | 
 | // of an inner loop. The order in which the blocks are iterated is reverse | 
 | // post order. | 
 | class HBlocksInLoopReversePostOrderIterator : public ValueObject { | 
 |  public: | 
 |   explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info) | 
 |       : blocks_in_loop_(info.GetBlocks()), | 
 |         blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()), | 
 |         index_(0) { | 
 |     DCHECK(!blocks_.empty()); | 
 |     if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { | 
 |       Advance(); | 
 |     } | 
 |   } | 
 |  | 
 |   bool Done() const { return index_ == blocks_.size(); } | 
 |   HBasicBlock* Current() const { return blocks_[index_]; } | 
 |   void Advance() { | 
 |     ++index_; | 
 |     for (size_t e = blocks_.size(); index_ < e; ++index_) { | 
 |       if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   const BitVector& blocks_in_loop_; | 
 |   const ArenaVector<HBasicBlock*>& blocks_; | 
 |   size_t index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator); | 
 | }; | 
 |  | 
 | inline int64_t Int64FromConstant(HConstant* constant) { | 
 |   DCHECK(constant->IsIntConstant() || constant->IsLongConstant()); | 
 |   return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue() | 
 |                                    : constant->AsLongConstant()->GetValue(); | 
 | } | 
 |  | 
 | inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) { | 
 |   // For the purposes of the compiler, the dex files must actually be the same object | 
 |   // if we want to safely treat them as the same. This is especially important for JIT | 
 |   // as custom class loaders can open the same underlying file (or memory) multiple | 
 |   // times and provide different class resolution but no two class loaders should ever | 
 |   // use the same DexFile object - doing so is an unsupported hack that can lead to | 
 |   // all sorts of weird failures. | 
 |   return &lhs == &rhs; | 
 | } | 
 |  | 
 | }  // namespace art | 
 |  | 
 | #endif  // ART_COMPILER_OPTIMIZING_NODES_H_ |