| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "builder.h" | 
 |  | 
 | #include "art_field-inl.h" | 
 | #include "base/arena_bit_vector.h" | 
 | #include "base/bit_vector-inl.h" | 
 | #include "base/logging.h" | 
 | #include "class_linker.h" | 
 | #include "dex/verified_method.h" | 
 | #include "dex_file-inl.h" | 
 | #include "dex_instruction-inl.h" | 
 | #include "dex/verified_method.h" | 
 | #include "driver/compiler_driver-inl.h" | 
 | #include "driver/compiler_options.h" | 
 | #include "mirror/class_loader.h" | 
 | #include "mirror/dex_cache.h" | 
 | #include "nodes.h" | 
 | #include "primitive.h" | 
 | #include "scoped_thread_state_change.h" | 
 | #include "ssa_builder.h" | 
 | #include "thread.h" | 
 | #include "utils/dex_cache_arrays_layout-inl.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | void HGraphBuilder::InitializeLocals(uint16_t count) { | 
 |   graph_->SetNumberOfVRegs(count); | 
 |   locals_.resize(count); | 
 |   for (int i = 0; i < count; i++) { | 
 |     HLocal* local = new (arena_) HLocal(i); | 
 |     entry_block_->AddInstruction(local); | 
 |     locals_[i] = local; | 
 |   } | 
 | } | 
 |  | 
 | void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) { | 
 |   // dex_compilation_unit_ is null only when unit testing. | 
 |   if (dex_compilation_unit_ == nullptr) { | 
 |     return; | 
 |   } | 
 |  | 
 |   graph_->SetNumberOfInVRegs(number_of_parameters); | 
 |   const char* shorty = dex_compilation_unit_->GetShorty(); | 
 |   int locals_index = locals_.size() - number_of_parameters; | 
 |   int parameter_index = 0; | 
 |  | 
 |   const DexFile::MethodId& referrer_method_id = | 
 |       dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); | 
 |   if (!dex_compilation_unit_->IsStatic()) { | 
 |     // Add the implicit 'this' argument, not expressed in the signature. | 
 |     HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_, | 
 |                                                               referrer_method_id.class_idx_, | 
 |                                                               parameter_index++, | 
 |                                                               Primitive::kPrimNot, | 
 |                                                               true); | 
 |     entry_block_->AddInstruction(parameter); | 
 |     HLocal* local = GetLocalAt(locals_index++); | 
 |     entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc())); | 
 |     number_of_parameters--; | 
 |   } | 
 |  | 
 |   const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); | 
 |   const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto); | 
 |   for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { | 
 |     HParameterValue* parameter = new (arena_) HParameterValue( | 
 |         *dex_file_, | 
 |         arg_types->GetTypeItem(shorty_pos - 1).type_idx_, | 
 |         parameter_index++, | 
 |         Primitive::GetType(shorty[shorty_pos]), | 
 |         false); | 
 |     ++shorty_pos; | 
 |     entry_block_->AddInstruction(parameter); | 
 |     HLocal* local = GetLocalAt(locals_index++); | 
 |     // Store the parameter value in the local that the dex code will use | 
 |     // to reference that parameter. | 
 |     entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc())); | 
 |     bool is_wide = (parameter->GetType() == Primitive::kPrimLong) | 
 |         || (parameter->GetType() == Primitive::kPrimDouble); | 
 |     if (is_wide) { | 
 |       i++; | 
 |       locals_index++; | 
 |       parameter_index++; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { | 
 |   int32_t target_offset = instruction.GetTargetOffset(); | 
 |   HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset); | 
 |   HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); | 
 |   DCHECK(branch_target != nullptr); | 
 |   DCHECK(fallthrough_target != nullptr); | 
 |   HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc); | 
 |   HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); | 
 |   T* comparison = new (arena_) T(first, second, dex_pc); | 
 |   current_block_->AddInstruction(comparison); | 
 |   HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc); | 
 |   current_block_->AddInstruction(ifinst); | 
 |   current_block_->AddSuccessor(branch_target); | 
 |   current_block_->AddSuccessor(fallthrough_target); | 
 |   current_block_ = nullptr; | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { | 
 |   int32_t target_offset = instruction.GetTargetOffset(); | 
 |   HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset); | 
 |   HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); | 
 |   DCHECK(branch_target != nullptr); | 
 |   DCHECK(fallthrough_target != nullptr); | 
 |   HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc); | 
 |   T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); | 
 |   current_block_->AddInstruction(comparison); | 
 |   HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc); | 
 |   current_block_->AddInstruction(ifinst); | 
 |   current_block_->AddSuccessor(branch_target); | 
 |   current_block_->AddSuccessor(fallthrough_target); | 
 |   current_block_ = nullptr; | 
 | } | 
 |  | 
 | void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) { | 
 |   if (compilation_stats_ != nullptr) { | 
 |     compilation_stats_->RecordStat(compilation_stat); | 
 |   } | 
 | } | 
 |  | 
 | bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item, | 
 |                                     size_t number_of_branches) { | 
 |   const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions(); | 
 |   CompilerFilter::Filter compiler_filter = compiler_options.GetCompilerFilter(); | 
 |   if (compiler_filter == CompilerFilter::kEverything) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) { | 
 |     VLOG(compiler) << "Skip compilation of huge method " | 
 |                    << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) | 
 |                    << ": " << code_item.insns_size_in_code_units_ << " code units"; | 
 |     MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If it's large and contains no branches, it's likely to be machine generated initialization. | 
 |   if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_) | 
 |       && (number_of_branches == 0)) { | 
 |     VLOG(compiler) << "Skip compilation of large method with no branch " | 
 |                    << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) | 
 |                    << ": " << code_item.insns_size_in_code_units_ << " code units"; | 
 |     MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void HGraphBuilder::CreateBlocksForTryCatch(const DexFile::CodeItem& code_item) { | 
 |   if (code_item.tries_size_ == 0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Create branch targets at the start/end of the TryItem range. These are | 
 |   // places where the program might fall through into/out of the a block and | 
 |   // where TryBoundary instructions will be inserted later. Other edges which | 
 |   // enter/exit the try blocks are a result of branches/switches. | 
 |   for (size_t idx = 0; idx < code_item.tries_size_; ++idx) { | 
 |     const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx); | 
 |     uint32_t dex_pc_start = try_item->start_addr_; | 
 |     uint32_t dex_pc_end = dex_pc_start + try_item->insn_count_; | 
 |     FindOrCreateBlockStartingAt(dex_pc_start); | 
 |     if (dex_pc_end < code_item.insns_size_in_code_units_) { | 
 |       // TODO: Do not create block if the last instruction cannot fall through. | 
 |       FindOrCreateBlockStartingAt(dex_pc_end); | 
 |     } else { | 
 |       // The TryItem spans until the very end of the CodeItem (or beyond if | 
 |       // invalid) and therefore cannot have any code afterwards. | 
 |     } | 
 |   } | 
 |  | 
 |   // Create branch targets for exception handlers. | 
 |   const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0); | 
 |   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); | 
 |   for (uint32_t idx = 0; idx < handlers_size; ++idx) { | 
 |     CatchHandlerIterator iterator(handlers_ptr); | 
 |     for (; iterator.HasNext(); iterator.Next()) { | 
 |       uint32_t address = iterator.GetHandlerAddress(); | 
 |       HBasicBlock* block = FindOrCreateBlockStartingAt(address); | 
 |       block->SetTryCatchInformation( | 
 |         new (arena_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_)); | 
 |     } | 
 |     handlers_ptr = iterator.EndDataPointer(); | 
 |   } | 
 | } | 
 |  | 
 | // Returns the TryItem stored for `block` or nullptr if there is no info for it. | 
 | static const DexFile::TryItem* GetTryItem( | 
 |     HBasicBlock* block, | 
 |     const ArenaSafeMap<uint32_t, const DexFile::TryItem*>& try_block_info) { | 
 |   auto iterator = try_block_info.find(block->GetBlockId()); | 
 |   return (iterator == try_block_info.end()) ? nullptr : iterator->second; | 
 | } | 
 |  | 
 | void HGraphBuilder::LinkToCatchBlocks(HTryBoundary* try_boundary, | 
 |                                       const DexFile::CodeItem& code_item, | 
 |                                       const DexFile::TryItem* try_item) { | 
 |   for (CatchHandlerIterator it(code_item, *try_item); it.HasNext(); it.Next()) { | 
 |     try_boundary->AddExceptionHandler(FindBlockStartingAt(it.GetHandlerAddress())); | 
 |   } | 
 | } | 
 |  | 
 | void HGraphBuilder::InsertTryBoundaryBlocks(const DexFile::CodeItem& code_item) { | 
 |   if (code_item.tries_size_ == 0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Keep a map of all try blocks and their respective TryItems. We do not use | 
 |   // the block's pointer but rather its id to ensure deterministic iteration. | 
 |   ArenaSafeMap<uint32_t, const DexFile::TryItem*> try_block_info( | 
 |       std::less<uint32_t>(), arena_->Adapter(kArenaAllocGraphBuilder)); | 
 |  | 
 |   // Obtain TryItem information for blocks with throwing instructions, and split | 
 |   // blocks which are both try & catch to simplify the graph. | 
 |   // NOTE: We are appending new blocks inside the loop, so we need to use index | 
 |   // because iterators can be invalidated. We remember the initial size to avoid | 
 |   // iterating over the new blocks which cannot throw. | 
 |   for (size_t i = 0, e = graph_->GetBlocks().size(); i < e; ++i) { | 
 |     HBasicBlock* block = graph_->GetBlocks()[i]; | 
 |  | 
 |     // Do not bother creating exceptional edges for try blocks which have no | 
 |     // throwing instructions. In that case we simply assume that the block is | 
 |     // not covered by a TryItem. This prevents us from creating a throw-catch | 
 |     // loop for synchronized blocks. | 
 |     if (block->HasThrowingInstructions()) { | 
 |       // Try to find a TryItem covering the block. | 
 |       DCHECK_NE(block->GetDexPc(), kNoDexPc) << "Block must have a dex_pc to find its TryItem."; | 
 |       const int32_t try_item_idx = DexFile::FindTryItem(code_item, block->GetDexPc()); | 
 |       if (try_item_idx != -1) { | 
 |         // Block throwing and in a TryItem. Store the try block information. | 
 |         HBasicBlock* throwing_block = block; | 
 |         if (block->IsCatchBlock()) { | 
 |           // Simplify blocks which are both try and catch, otherwise we would | 
 |           // need a strategy for splitting exceptional edges. We split the block | 
 |           // after the move-exception (if present) and mark the first part not | 
 |           // throwing. The normal-flow edge between them will be split later. | 
 |           throwing_block = block->SplitCatchBlockAfterMoveException(); | 
 |           // Move-exception does not throw and the block has throwing insructions | 
 |           // so it must have been possible to split it. | 
 |           DCHECK(throwing_block != nullptr); | 
 |         } | 
 |  | 
 |         try_block_info.Put(throwing_block->GetBlockId(), | 
 |                            DexFile::GetTryItems(code_item, try_item_idx)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Do a pass over the try blocks and insert entering TryBoundaries where at | 
 |   // least one predecessor is not covered by the same TryItem as the try block. | 
 |   // We do not split each edge separately, but rather create one boundary block | 
 |   // that all predecessors are relinked to. This preserves loop headers (b/23895756). | 
 |   for (auto entry : try_block_info) { | 
 |     HBasicBlock* try_block = graph_->GetBlocks()[entry.first]; | 
 |     for (HBasicBlock* predecessor : try_block->GetPredecessors()) { | 
 |       if (GetTryItem(predecessor, try_block_info) != entry.second) { | 
 |         // Found a predecessor not covered by the same TryItem. Insert entering | 
 |         // boundary block. | 
 |         HTryBoundary* try_entry = | 
 |             new (arena_) HTryBoundary(HTryBoundary::BoundaryKind::kEntry, try_block->GetDexPc()); | 
 |         try_block->CreateImmediateDominator()->AddInstruction(try_entry); | 
 |         LinkToCatchBlocks(try_entry, code_item, entry.second); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Do a second pass over the try blocks and insert exit TryBoundaries where | 
 |   // the successor is not in the same TryItem. | 
 |   for (auto entry : try_block_info) { | 
 |     HBasicBlock* try_block = graph_->GetBlocks()[entry.first]; | 
 |     // NOTE: Do not use iterators because SplitEdge would invalidate them. | 
 |     for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) { | 
 |       HBasicBlock* successor = try_block->GetSuccessors()[i]; | 
 |  | 
 |       // If the successor is a try block, all of its predecessors must be | 
 |       // covered by the same TryItem. Otherwise the previous pass would have | 
 |       // created a non-throwing boundary block. | 
 |       if (GetTryItem(successor, try_block_info) != nullptr) { | 
 |         DCHECK_EQ(entry.second, GetTryItem(successor, try_block_info)); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Preserve the invariant that Return(Void) always jumps to Exit by moving | 
 |       // it outside the try block if necessary. | 
 |       HInstruction* last_instruction = try_block->GetLastInstruction(); | 
 |       if (last_instruction->IsReturn() || last_instruction->IsReturnVoid()) { | 
 |         DCHECK_EQ(successor, exit_block_); | 
 |         successor = try_block->SplitBefore(last_instruction); | 
 |       } | 
 |  | 
 |       // Insert TryBoundary and link to catch blocks. | 
 |       HTryBoundary* try_exit = | 
 |           new (arena_) HTryBoundary(HTryBoundary::BoundaryKind::kExit, successor->GetDexPc()); | 
 |       graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit); | 
 |       LinkToCatchBlocks(try_exit, code_item, entry.second); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | GraphAnalysisResult HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item, | 
 |                                               StackHandleScopeCollection* handles) { | 
 |   DCHECK(graph_->GetBlocks().empty()); | 
 |  | 
 |   const uint16_t* code_ptr = code_item.insns_; | 
 |   const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_; | 
 |   code_start_ = code_ptr; | 
 |  | 
 |   // Setup the graph with the entry block and exit block. | 
 |   entry_block_ = new (arena_) HBasicBlock(graph_, 0); | 
 |   graph_->AddBlock(entry_block_); | 
 |   exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc); | 
 |   graph_->SetEntryBlock(entry_block_); | 
 |   graph_->SetExitBlock(exit_block_); | 
 |  | 
 |   graph_->SetHasTryCatch(code_item.tries_size_ != 0); | 
 |  | 
 |   InitializeLocals(code_item.registers_size_); | 
 |   graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_); | 
 |  | 
 |   // Compute the number of dex instructions, blocks, and branches. We will | 
 |   // check these values against limits given to the compiler. | 
 |   size_t number_of_branches = 0; | 
 |  | 
 |   // To avoid splitting blocks, we compute ahead of time the instructions that | 
 |   // start a new block, and create these blocks. | 
 |   if (!ComputeBranchTargets(code_ptr, code_end, &number_of_branches)) { | 
 |     MaybeRecordStat(MethodCompilationStat::kNotCompiledBranchOutsideMethodCode); | 
 |     return kAnalysisInvalidBytecode; | 
 |   } | 
 |  | 
 |   // Note that the compiler driver is null when unit testing. | 
 |   if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) { | 
 |     return kAnalysisInvalidBytecode; | 
 |   } | 
 |  | 
 |   // Find locations where we want to generate extra stackmaps for native debugging. | 
 |   // This allows us to generate the info only at interesting points (for example, | 
 |   // at start of java statement) rather than before every dex instruction. | 
 |   const bool native_debuggable = compiler_driver_ != nullptr && | 
 |                                  compiler_driver_->GetCompilerOptions().GetNativeDebuggable(); | 
 |   ArenaBitVector* native_debug_info_locations; | 
 |   if (native_debuggable) { | 
 |     const uint32_t num_instructions = code_item.insns_size_in_code_units_; | 
 |     native_debug_info_locations = | 
 |         ArenaBitVector::Create(arena_, num_instructions, false, kArenaAllocGraphBuilder); | 
 |     FindNativeDebugInfoLocations(code_item, native_debug_info_locations); | 
 |   } | 
 |  | 
 |   CreateBlocksForTryCatch(code_item); | 
 |  | 
 |   InitializeParameters(code_item.ins_size_); | 
 |  | 
 |   size_t dex_pc = 0; | 
 |   while (code_ptr < code_end) { | 
 |     // Update the current block if dex_pc starts a new block. | 
 |     MaybeUpdateCurrentBlock(dex_pc); | 
 |     const Instruction& instruction = *Instruction::At(code_ptr); | 
 |     if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { | 
 |       if (current_block_ != nullptr) { | 
 |         current_block_->AddInstruction(new (arena_) HNativeDebugInfo(dex_pc)); | 
 |       } | 
 |     } | 
 |     if (!AnalyzeDexInstruction(instruction, dex_pc)) { | 
 |       return kAnalysisInvalidBytecode; | 
 |     } | 
 |     dex_pc += instruction.SizeInCodeUnits(); | 
 |     code_ptr += instruction.SizeInCodeUnits(); | 
 |   } | 
 |  | 
 |   // Add Exit to the exit block. | 
 |   exit_block_->AddInstruction(new (arena_) HExit()); | 
 |   // Add the suspend check to the entry block. | 
 |   entry_block_->AddInstruction(new (arena_) HSuspendCheck(0)); | 
 |   entry_block_->AddInstruction(new (arena_) HGoto()); | 
 |   // Add the exit block at the end. | 
 |   graph_->AddBlock(exit_block_); | 
 |  | 
 |   // Iterate over blocks covered by TryItems and insert TryBoundaries at entry | 
 |   // and exit points. This requires all control-flow instructions and | 
 |   // non-exceptional edges to have been created. | 
 |   InsertTryBoundaryBlocks(code_item); | 
 |  | 
 |   GraphAnalysisResult result = graph_->BuildDominatorTree(); | 
 |   if (result != kAnalysisSuccess) { | 
 |     return result; | 
 |   } | 
 |  | 
 |   graph_->InitializeInexactObjectRTI(handles); | 
 |   return SsaBuilder(graph_, handles).BuildSsa(); | 
 | } | 
 |  | 
 | void HGraphBuilder::MaybeUpdateCurrentBlock(size_t dex_pc) { | 
 |   HBasicBlock* block = FindBlockStartingAt(dex_pc); | 
 |   if (block == nullptr) { | 
 |     return; | 
 |   } | 
 |  | 
 |   if (current_block_ != nullptr) { | 
 |     // Branching instructions clear current_block, so we know | 
 |     // the last instruction of the current block is not a branching | 
 |     // instruction. We add an unconditional goto to the found block. | 
 |     current_block_->AddInstruction(new (arena_) HGoto(dex_pc)); | 
 |     current_block_->AddSuccessor(block); | 
 |   } | 
 |   graph_->AddBlock(block); | 
 |   current_block_ = block; | 
 | } | 
 |  | 
 | void HGraphBuilder::FindNativeDebugInfoLocations(const DexFile::CodeItem& code_item, | 
 |                                                  ArenaBitVector* locations) { | 
 |   // The callback gets called when the line number changes. | 
 |   // In other words, it marks the start of new java statement. | 
 |   struct Callback { | 
 |     static bool Position(void* ctx, const DexFile::PositionInfo& entry) { | 
 |       static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_); | 
 |       return false; | 
 |     } | 
 |   }; | 
 |   dex_file_->DecodeDebugPositionInfo(&code_item, Callback::Position, locations); | 
 |   // Instruction-specific tweaks. | 
 |   const Instruction* const begin = Instruction::At(code_item.insns_); | 
 |   const Instruction* const end = begin->RelativeAt(code_item.insns_size_in_code_units_); | 
 |   for (const Instruction* inst = begin; inst < end; inst = inst->Next()) { | 
 |     switch (inst->Opcode()) { | 
 |       case Instruction::MOVE_EXCEPTION: { | 
 |         // Stop in native debugger after the exception has been moved. | 
 |         // The compiler also expects the move at the start of basic block so | 
 |         // we do not want to interfere by inserting native-debug-info before it. | 
 |         locations->ClearBit(inst->GetDexPc(code_item.insns_)); | 
 |         const Instruction* next = inst->Next(); | 
 |         if (next < end) { | 
 |           locations->SetBit(next->GetDexPc(code_item.insns_)); | 
 |         } | 
 |         break; | 
 |       } | 
 |       default: | 
 |         break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr, | 
 |                                          const uint16_t* code_end, | 
 |                                          size_t* number_of_branches) { | 
 |   branch_targets_.resize(code_end - code_ptr, nullptr); | 
 |  | 
 |   // Create the first block for the dex instructions, single successor of the entry block. | 
 |   HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0); | 
 |   branch_targets_[0] = block; | 
 |   entry_block_->AddSuccessor(block); | 
 |  | 
 |   // Iterate over all instructions and find branching instructions. Create blocks for | 
 |   // the locations these instructions branch to. | 
 |   uint32_t dex_pc = 0; | 
 |   while (code_ptr < code_end) { | 
 |     const Instruction& instruction = *Instruction::At(code_ptr); | 
 |     if (instruction.IsBranch()) { | 
 |       (*number_of_branches)++; | 
 |       int32_t target = instruction.GetTargetOffset() + dex_pc; | 
 |       // Create a block for the target instruction. | 
 |       FindOrCreateBlockStartingAt(target); | 
 |  | 
 |       dex_pc += instruction.SizeInCodeUnits(); | 
 |       code_ptr += instruction.SizeInCodeUnits(); | 
 |  | 
 |       if (instruction.CanFlowThrough()) { | 
 |         if (code_ptr >= code_end) { | 
 |           // In the normal case we should never hit this but someone can artificially forge a dex | 
 |           // file to fall-through out the method code. In this case we bail out compilation. | 
 |           return false; | 
 |         } else { | 
 |           FindOrCreateBlockStartingAt(dex_pc); | 
 |         } | 
 |       } | 
 |     } else if (instruction.IsSwitch()) { | 
 |       SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH); | 
 |  | 
 |       uint16_t num_entries = table.GetNumEntries(); | 
 |  | 
 |       // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the | 
 |       // entry at index 0 is the first key, and values are after *all* keys. | 
 |       size_t offset = table.GetFirstValueIndex(); | 
 |  | 
 |       // Use a larger loop counter type to avoid overflow issues. | 
 |       for (size_t i = 0; i < num_entries; ++i) { | 
 |         // The target of the case. | 
 |         uint32_t target = dex_pc + table.GetEntryAt(i + offset); | 
 |         FindOrCreateBlockStartingAt(target); | 
 |  | 
 |         // Create a block for the switch-case logic. The block gets the dex_pc | 
 |         // of the SWITCH instruction because it is part of its semantics. | 
 |         block = new (arena_) HBasicBlock(graph_, dex_pc); | 
 |         branch_targets_[table.GetDexPcForIndex(i)] = block; | 
 |       } | 
 |  | 
 |       // Fall-through. Add a block if there is more code afterwards. | 
 |       dex_pc += instruction.SizeInCodeUnits(); | 
 |       code_ptr += instruction.SizeInCodeUnits(); | 
 |       if (code_ptr >= code_end) { | 
 |         // In the normal case we should never hit this but someone can artificially forge a dex | 
 |         // file to fall-through out the method code. In this case we bail out compilation. | 
 |         // (A switch can fall-through so we don't need to check CanFlowThrough().) | 
 |         return false; | 
 |       } else { | 
 |         FindOrCreateBlockStartingAt(dex_pc); | 
 |       } | 
 |     } else { | 
 |       code_ptr += instruction.SizeInCodeUnits(); | 
 |       dex_pc += instruction.SizeInCodeUnits(); | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t dex_pc) const { | 
 |   DCHECK_GE(dex_pc, 0); | 
 |   return branch_targets_[dex_pc]; | 
 | } | 
 |  | 
 | HBasicBlock* HGraphBuilder::FindOrCreateBlockStartingAt(int32_t dex_pc) { | 
 |   HBasicBlock* block = FindBlockStartingAt(dex_pc); | 
 |   if (block == nullptr) { | 
 |     block = new (arena_) HBasicBlock(graph_, dex_pc); | 
 |     branch_targets_[dex_pc] = block; | 
 |   } | 
 |   return block; | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HGraphBuilder::Unop_12x(const Instruction& instruction, | 
 |                              Primitive::Type type, | 
 |                              uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc); | 
 |   current_block_->AddInstruction(new (arena_) T(type, first, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | void HGraphBuilder::Conversion_12x(const Instruction& instruction, | 
 |                                    Primitive::Type input_type, | 
 |                                    Primitive::Type result_type, | 
 |                                    uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), input_type, dex_pc); | 
 |   current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HGraphBuilder::Binop_23x(const Instruction& instruction, | 
 |                               Primitive::Type type, | 
 |                               uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc); | 
 |   HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc); | 
 |   current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HGraphBuilder::Binop_23x_shift(const Instruction& instruction, | 
 |                                     Primitive::Type type, | 
 |                                     uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc); | 
 |   HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt, dex_pc); | 
 |   current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction, | 
 |                                   Primitive::Type type, | 
 |                                   ComparisonBias bias, | 
 |                                   uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc); | 
 |   HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc); | 
 |   current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type, | 
 |                                     uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc); | 
 |   HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); | 
 |   current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HGraphBuilder::Binop_12x(const Instruction& instruction, | 
 |                               Primitive::Type type, | 
 |                               uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc); | 
 |   HInstruction* second = LoadLocal(instruction.VRegB(), type, dex_pc); | 
 |   current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); | 
 |   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); | 
 |   if (reverse) { | 
 |     std::swap(first, second); | 
 |   } | 
 |   current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | template<typename T> | 
 | void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { | 
 |   HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); | 
 |   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); | 
 |   if (reverse) { | 
 |     std::swap(first, second); | 
 |   } | 
 |   current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); | 
 |   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) { | 
 |   Thread* self = Thread::Current(); | 
 |   return cu->IsConstructor() | 
 |       && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex()); | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildReturn(const Instruction& instruction, | 
 |                                 Primitive::Type type, | 
 |                                 uint32_t dex_pc) { | 
 |   if (type == Primitive::kPrimVoid) { | 
 |     if (graph_->ShouldGenerateConstructorBarrier()) { | 
 |       // The compilation unit is null during testing. | 
 |       if (dex_compilation_unit_ != nullptr) { | 
 |         DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_)) | 
 |           << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier."; | 
 |       } | 
 |       current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc)); | 
 |     } | 
 |     current_block_->AddInstruction(new (arena_) HReturnVoid(dex_pc)); | 
 |   } else { | 
 |     HInstruction* value = LoadLocal(instruction.VRegA(), type, dex_pc); | 
 |     current_block_->AddInstruction(new (arena_) HReturn(value, dex_pc)); | 
 |   } | 
 |   current_block_->AddSuccessor(exit_block_); | 
 |   current_block_ = nullptr; | 
 | } | 
 |  | 
 | static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { | 
 |   switch (opcode) { | 
 |     case Instruction::INVOKE_STATIC: | 
 |     case Instruction::INVOKE_STATIC_RANGE: | 
 |       return kStatic; | 
 |     case Instruction::INVOKE_DIRECT: | 
 |     case Instruction::INVOKE_DIRECT_RANGE: | 
 |       return kDirect; | 
 |     case Instruction::INVOKE_VIRTUAL: | 
 |     case Instruction::INVOKE_VIRTUAL_QUICK: | 
 |     case Instruction::INVOKE_VIRTUAL_RANGE: | 
 |     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: | 
 |       return kVirtual; | 
 |     case Instruction::INVOKE_INTERFACE: | 
 |     case Instruction::INVOKE_INTERFACE_RANGE: | 
 |       return kInterface; | 
 |     case Instruction::INVOKE_SUPER_RANGE: | 
 |     case Instruction::INVOKE_SUPER: | 
 |       return kSuper; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected invoke opcode: " << opcode; | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | ArtMethod* HGraphBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) { | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   StackHandleScope<3> hs(soa.Self()); | 
 |  | 
 |   ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); | 
 |   Handle<mirror::ClassLoader> class_loader(hs.NewHandle( | 
 |       soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); | 
 |   Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass())); | 
 |  | 
 |   ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>( | 
 |       *dex_compilation_unit_->GetDexFile(), | 
 |       method_idx, | 
 |       dex_compilation_unit_->GetDexCache(), | 
 |       class_loader, | 
 |       /* referrer */ nullptr, | 
 |       invoke_type); | 
 |  | 
 |   if (UNLIKELY(resolved_method == nullptr)) { | 
 |     // Clean up any exception left by type resolution. | 
 |     soa.Self()->ClearException(); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Check access. The class linker has a fast path for looking into the dex cache | 
 |   // and does not check the access if it hits it. | 
 |   if (compiling_class.Get() == nullptr) { | 
 |     if (!resolved_method->IsPublic()) { | 
 |       return nullptr; | 
 |     } | 
 |   } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(), | 
 |                                                        resolved_method, | 
 |                                                        dex_compilation_unit_->GetDexCache().Get(), | 
 |                                                        method_idx)) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. | 
 |   // We need to look at the referrer's super class vtable. We need to do this to know if we need to | 
 |   // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of | 
 |   // which require runtime handling. | 
 |   if (invoke_type == kSuper) { | 
 |     if (compiling_class.Get() == nullptr) { | 
 |       // We could not determine the method's class we need to wait until runtime. | 
 |       DCHECK(Runtime::Current()->IsAotCompiler()); | 
 |       return nullptr; | 
 |     } | 
 |     ArtMethod* current_method = graph_->GetArtMethod(); | 
 |     DCHECK(current_method != nullptr); | 
 |     Handle<mirror::Class> methods_class(hs.NewHandle( | 
 |         dex_compilation_unit_->GetClassLinker()->ResolveReferencedClassOfMethod(Thread::Current(), | 
 |                                                                                 method_idx, | 
 |                                                                                 current_method))); | 
 |     if (methods_class.Get() == nullptr) { | 
 |       // Invoking a super method requires knowing the actual super class. If we did not resolve | 
 |       // the compiling method's declaring class (which only happens for ahead of time | 
 |       // compilation), bail out. | 
 |       DCHECK(Runtime::Current()->IsAotCompiler()); | 
 |       return nullptr; | 
 |     } else { | 
 |       ArtMethod* actual_method; | 
 |       if (methods_class->IsInterface()) { | 
 |         actual_method = methods_class->FindVirtualMethodForInterfaceSuper( | 
 |             resolved_method, class_linker->GetImagePointerSize()); | 
 |       } else { | 
 |         uint16_t vtable_index = resolved_method->GetMethodIndex(); | 
 |         actual_method = compiling_class->GetSuperClass()->GetVTableEntry( | 
 |             vtable_index, class_linker->GetImagePointerSize()); | 
 |       } | 
 |       if (actual_method != resolved_method && | 
 |           !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { | 
 |         // The back-end code generator relies on this check in order to ensure that it will not | 
 |         // attempt to read the dex_cache with a dex_method_index that is not from the correct | 
 |         // dex_file. If we didn't do this check then the dex_method_index will not be updated in the | 
 |         // builder, which means that the code-generator (and compiler driver during sharpening and | 
 |         // inliner, maybe) might invoke an incorrect method. | 
 |         // TODO: The actual method could still be referenced in the current dex file, so we | 
 |         //       could try locating it. | 
 |         // TODO: Remove the dex_file restriction. | 
 |         return nullptr; | 
 |       } | 
 |       if (!actual_method->IsInvokable()) { | 
 |         // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub | 
 |         // could resolve the callee to the wrong method. | 
 |         return nullptr; | 
 |       } | 
 |       resolved_method = actual_method; | 
 |     } | 
 |   } | 
 |  | 
 |   // Check for incompatible class changes. The class linker has a fast path for | 
 |   // looking into the dex cache and does not check incompatible class changes if it hits it. | 
 |   if (resolved_method->CheckIncompatibleClassChange(invoke_type)) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   return resolved_method; | 
 | } | 
 |  | 
 | bool HGraphBuilder::BuildInvoke(const Instruction& instruction, | 
 |                                 uint32_t dex_pc, | 
 |                                 uint32_t method_idx, | 
 |                                 uint32_t number_of_vreg_arguments, | 
 |                                 bool is_range, | 
 |                                 uint32_t* args, | 
 |                                 uint32_t register_index) { | 
 |   InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); | 
 |   const char* descriptor = dex_file_->GetMethodShorty(method_idx); | 
 |   Primitive::Type return_type = Primitive::GetType(descriptor[0]); | 
 |  | 
 |   // Remove the return type from the 'proto'. | 
 |   size_t number_of_arguments = strlen(descriptor) - 1; | 
 |   if (invoke_type != kStatic) {  // instance call | 
 |     // One extra argument for 'this'. | 
 |     number_of_arguments++; | 
 |   } | 
 |  | 
 |   MethodReference target_method(dex_file_, method_idx); | 
 |  | 
 |   // Special handling for string init. | 
 |   int32_t string_init_offset = 0; | 
 |   bool is_string_init = compiler_driver_->IsStringInit(method_idx, | 
 |                                                        dex_file_, | 
 |                                                        &string_init_offset); | 
 |   // Replace calls to String.<init> with StringFactory. | 
 |   if (is_string_init) { | 
 |     HInvokeStaticOrDirect::DispatchInfo dispatch_info = { | 
 |         HInvokeStaticOrDirect::MethodLoadKind::kStringInit, | 
 |         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, | 
 |         dchecked_integral_cast<uint64_t>(string_init_offset), | 
 |         0U | 
 |     }; | 
 |     HInvoke* invoke = new (arena_) HInvokeStaticOrDirect( | 
 |         arena_, | 
 |         number_of_arguments - 1, | 
 |         Primitive::kPrimNot /*return_type */, | 
 |         dex_pc, | 
 |         method_idx, | 
 |         target_method, | 
 |         dispatch_info, | 
 |         invoke_type, | 
 |         kStatic /* optimized_invoke_type */, | 
 |         HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); | 
 |     return HandleStringInit(invoke, | 
 |                             number_of_vreg_arguments, | 
 |                             args, | 
 |                             register_index, | 
 |                             is_range, | 
 |                             descriptor); | 
 |   } | 
 |  | 
 |   ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type); | 
 |  | 
 |   if (UNLIKELY(resolved_method == nullptr)) { | 
 |     MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod); | 
 |     HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_, | 
 |                                                      number_of_arguments, | 
 |                                                      return_type, | 
 |                                                      dex_pc, | 
 |                                                      method_idx, | 
 |                                                      invoke_type); | 
 |     return HandleInvoke(invoke, | 
 |                         number_of_vreg_arguments, | 
 |                         args, | 
 |                         register_index, | 
 |                         is_range, | 
 |                         descriptor, | 
 |                         nullptr /* clinit_check */); | 
 |   } | 
 |  | 
 |   // Potential class initialization check, in the case of a static method call. | 
 |   HClinitCheck* clinit_check = nullptr; | 
 |   HInvoke* invoke = nullptr; | 
 |   if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { | 
 |     // By default, consider that the called method implicitly requires | 
 |     // an initialization check of its declaring method. | 
 |     HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement | 
 |         = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; | 
 |     ScopedObjectAccess soa(Thread::Current()); | 
 |     if (invoke_type == kStatic) { | 
 |       clinit_check = ProcessClinitCheckForInvoke( | 
 |           dex_pc, resolved_method, method_idx, &clinit_check_requirement); | 
 |     } else if (invoke_type == kSuper) { | 
 |       if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { | 
 |         // Update the target method to the one resolved. Note that this may be a no-op if | 
 |         // we resolved to the method referenced by the instruction. | 
 |         method_idx = resolved_method->GetDexMethodIndex(); | 
 |         target_method = MethodReference(dex_file_, method_idx); | 
 |       } | 
 |     } | 
 |  | 
 |     HInvokeStaticOrDirect::DispatchInfo dispatch_info = { | 
 |         HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod, | 
 |         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, | 
 |         0u, | 
 |         0U | 
 |     }; | 
 |     invoke = new (arena_) HInvokeStaticOrDirect(arena_, | 
 |                                                 number_of_arguments, | 
 |                                                 return_type, | 
 |                                                 dex_pc, | 
 |                                                 method_idx, | 
 |                                                 target_method, | 
 |                                                 dispatch_info, | 
 |                                                 invoke_type, | 
 |                                                 invoke_type, | 
 |                                                 clinit_check_requirement); | 
 |   } else if (invoke_type == kVirtual) { | 
 |     ScopedObjectAccess soa(Thread::Current());  // Needed for the method index | 
 |     invoke = new (arena_) HInvokeVirtual(arena_, | 
 |                                          number_of_arguments, | 
 |                                          return_type, | 
 |                                          dex_pc, | 
 |                                          method_idx, | 
 |                                          resolved_method->GetMethodIndex()); | 
 |   } else { | 
 |     DCHECK_EQ(invoke_type, kInterface); | 
 |     ScopedObjectAccess soa(Thread::Current());  // Needed for the method index | 
 |     invoke = new (arena_) HInvokeInterface(arena_, | 
 |                                            number_of_arguments, | 
 |                                            return_type, | 
 |                                            dex_pc, | 
 |                                            method_idx, | 
 |                                            resolved_method->GetDexMethodIndex()); | 
 |   } | 
 |  | 
 |   return HandleInvoke(invoke, | 
 |                       number_of_vreg_arguments, | 
 |                       args, | 
 |                       register_index, | 
 |                       is_range, | 
 |                       descriptor, | 
 |                       clinit_check); | 
 | } | 
 |  | 
 | bool HGraphBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) { | 
 |   bool finalizable; | 
 |   bool can_throw = NeedsAccessCheck(type_index, &finalizable); | 
 |  | 
 |   // Only the non-resolved entrypoint handles the finalizable class case. If we | 
 |   // need access checks, then we haven't resolved the method and the class may | 
 |   // again be finalizable. | 
 |   QuickEntrypointEnum entrypoint = (finalizable || can_throw) | 
 |       ? kQuickAllocObject | 
 |       : kQuickAllocObjectInitialized; | 
 |  | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   StackHandleScope<3> hs(soa.Self()); | 
 |   Handle<mirror::DexCache> dex_cache(hs.NewHandle( | 
 |       dex_compilation_unit_->GetClassLinker()->FindDexCache( | 
 |           soa.Self(), *dex_compilation_unit_->GetDexFile()))); | 
 |   Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); | 
 |   const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); | 
 |   Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( | 
 |       outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file))); | 
 |  | 
 |   if (outer_dex_cache.Get() != dex_cache.Get()) { | 
 |     // We currently do not support inlining allocations across dex files. | 
 |     return false; | 
 |   } | 
 |  | 
 |   HLoadClass* load_class = new (arena_) HLoadClass( | 
 |       graph_->GetCurrentMethod(), | 
 |       type_index, | 
 |       outer_dex_file, | 
 |       IsOutermostCompilingClass(type_index), | 
 |       dex_pc, | 
 |       /*needs_access_check*/ can_throw, | 
 |       compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, type_index)); | 
 |  | 
 |   current_block_->AddInstruction(load_class); | 
 |   HInstruction* cls = load_class; | 
 |   if (!IsInitialized(resolved_class)) { | 
 |     cls = new (arena_) HClinitCheck(load_class, dex_pc); | 
 |     current_block_->AddInstruction(cls); | 
 |   } | 
 |  | 
 |   current_block_->AddInstruction(new (arena_) HNewInstance( | 
 |       cls, | 
 |       graph_->GetCurrentMethod(), | 
 |       dex_pc, | 
 |       type_index, | 
 |       *dex_compilation_unit_->GetDexFile(), | 
 |       can_throw, | 
 |       finalizable, | 
 |       entrypoint)); | 
 |   return true; | 
 | } | 
 |  | 
 | static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class) | 
 |     SHARED_REQUIRES(Locks::mutator_lock_) { | 
 |   return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); | 
 | } | 
 |  | 
 | bool HGraphBuilder::IsInitialized(Handle<mirror::Class> cls) const { | 
 |   if (cls.Get() == nullptr) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // `CanAssumeClassIsLoaded` will return true if we're JITting, or will | 
 |   // check whether the class is in an image for the AOT compilation. | 
 |   if (cls->IsInitialized() && | 
 |       compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   // TODO: We should walk over the inlined methods, but we don't pass | 
 |   //       that information to the builder. | 
 |   if (IsSubClass(GetCompilingClass(), cls.Get())) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | HClinitCheck* HGraphBuilder::ProcessClinitCheckForInvoke( | 
 |       uint32_t dex_pc, | 
 |       ArtMethod* resolved_method, | 
 |       uint32_t method_idx, | 
 |       HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { | 
 |   const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); | 
 |   Thread* self = Thread::Current(); | 
 |   StackHandleScope<4> hs(self); | 
 |   Handle<mirror::DexCache> dex_cache(hs.NewHandle( | 
 |       dex_compilation_unit_->GetClassLinker()->FindDexCache( | 
 |           self, *dex_compilation_unit_->GetDexFile()))); | 
 |   Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( | 
 |       outer_compilation_unit_->GetClassLinker()->FindDexCache( | 
 |           self, outer_dex_file))); | 
 |   Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); | 
 |   Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass())); | 
 |  | 
 |   // The index at which the method's class is stored in the DexCache's type array. | 
 |   uint32_t storage_index = DexFile::kDexNoIndex; | 
 |   bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get()); | 
 |   if (is_outer_class) { | 
 |     storage_index = outer_class->GetDexTypeIndex(); | 
 |   } else if (outer_dex_cache.Get() == dex_cache.Get()) { | 
 |     // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer. | 
 |     compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(), | 
 |                                                                GetCompilingClass(), | 
 |                                                                resolved_method, | 
 |                                                                method_idx, | 
 |                                                                &storage_index); | 
 |   } | 
 |  | 
 |   HClinitCheck* clinit_check = nullptr; | 
 |  | 
 |   if (IsInitialized(resolved_method_class)) { | 
 |     *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; | 
 |   } else if (storage_index != DexFile::kDexNoIndex) { | 
 |     *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; | 
 |     HLoadClass* load_class = new (arena_) HLoadClass( | 
 |         graph_->GetCurrentMethod(), | 
 |         storage_index, | 
 |         outer_dex_file, | 
 |         is_outer_class, | 
 |         dex_pc, | 
 |         /*needs_access_check*/ false, | 
 |         compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index)); | 
 |     current_block_->AddInstruction(load_class); | 
 |     clinit_check = new (arena_) HClinitCheck(load_class, dex_pc); | 
 |     current_block_->AddInstruction(clinit_check); | 
 |   } | 
 |   return clinit_check; | 
 | } | 
 |  | 
 | bool HGraphBuilder::SetupInvokeArguments(HInvoke* invoke, | 
 |                                          uint32_t number_of_vreg_arguments, | 
 |                                          uint32_t* args, | 
 |                                          uint32_t register_index, | 
 |                                          bool is_range, | 
 |                                          const char* descriptor, | 
 |                                          size_t start_index, | 
 |                                          size_t* argument_index) { | 
 |   uint32_t descriptor_index = 1;  // Skip the return type. | 
 |   uint32_t dex_pc = invoke->GetDexPc(); | 
 |  | 
 |   for (size_t i = start_index; | 
 |        // Make sure we don't go over the expected arguments or over the number of | 
 |        // dex registers given. If the instruction was seen as dead by the verifier, | 
 |        // it hasn't been properly checked. | 
 |        (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments()); | 
 |        i++, (*argument_index)++) { | 
 |     Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]); | 
 |     bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); | 
 |     if (!is_range | 
 |         && is_wide | 
 |         && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) { | 
 |       // Longs and doubles should be in pairs, that is, sequential registers. The verifier should | 
 |       // reject any class where this is violated. However, the verifier only does these checks | 
 |       // on non trivially dead instructions, so we just bailout the compilation. | 
 |       VLOG(compiler) << "Did not compile " | 
 |                      << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) | 
 |                      << " because of non-sequential dex register pair in wide argument"; | 
 |       MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); | 
 |       return false; | 
 |     } | 
 |     HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc); | 
 |     invoke->SetArgumentAt(*argument_index, arg); | 
 |     if (is_wide) { | 
 |       i++; | 
 |     } | 
 |   } | 
 |  | 
 |   if (*argument_index != invoke->GetNumberOfArguments()) { | 
 |     VLOG(compiler) << "Did not compile " | 
 |                    << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) | 
 |                    << " because of wrong number of arguments in invoke instruction"; | 
 |     MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (invoke->IsInvokeStaticOrDirect() && | 
 |       HInvokeStaticOrDirect::NeedsCurrentMethodInput( | 
 |           invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) { | 
 |     invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod()); | 
 |     (*argument_index)++; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HGraphBuilder::HandleInvoke(HInvoke* invoke, | 
 |                                  uint32_t number_of_vreg_arguments, | 
 |                                  uint32_t* args, | 
 |                                  uint32_t register_index, | 
 |                                  bool is_range, | 
 |                                  const char* descriptor, | 
 |                                  HClinitCheck* clinit_check) { | 
 |   DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit()); | 
 |  | 
 |   size_t start_index = 0; | 
 |   size_t argument_index = 0; | 
 |   if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) {  // Instance call. | 
 |     HInstruction* arg = LoadLocal( | 
 |         is_range ? register_index : args[0], Primitive::kPrimNot, invoke->GetDexPc()); | 
 |     HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc()); | 
 |     current_block_->AddInstruction(null_check); | 
 |     invoke->SetArgumentAt(0, null_check); | 
 |     start_index = 1; | 
 |     argument_index = 1; | 
 |   } | 
 |  | 
 |   if (!SetupInvokeArguments(invoke, | 
 |                             number_of_vreg_arguments, | 
 |                             args, | 
 |                             register_index, | 
 |                             is_range, | 
 |                             descriptor, | 
 |                             start_index, | 
 |                             &argument_index)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (clinit_check != nullptr) { | 
 |     // Add the class initialization check as last input of `invoke`. | 
 |     DCHECK(invoke->IsInvokeStaticOrDirect()); | 
 |     DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement() | 
 |         == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); | 
 |     invoke->SetArgumentAt(argument_index, clinit_check); | 
 |     argument_index++; | 
 |   } | 
 |  | 
 |   current_block_->AddInstruction(invoke); | 
 |   latest_result_ = invoke; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HGraphBuilder::HandleStringInit(HInvoke* invoke, | 
 |                                      uint32_t number_of_vreg_arguments, | 
 |                                      uint32_t* args, | 
 |                                      uint32_t register_index, | 
 |                                      bool is_range, | 
 |                                      const char* descriptor) { | 
 |   DCHECK(invoke->IsInvokeStaticOrDirect()); | 
 |   DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); | 
 |  | 
 |   size_t start_index = 1; | 
 |   size_t argument_index = 0; | 
 |   if (!SetupInvokeArguments(invoke, | 
 |                             number_of_vreg_arguments, | 
 |                             args, | 
 |                             register_index, | 
 |                             is_range, | 
 |                             descriptor, | 
 |                             start_index, | 
 |                             &argument_index)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Add move-result for StringFactory method. | 
 |   uint32_t orig_this_reg = is_range ? register_index : args[0]; | 
 |   HInstruction* new_instance = LoadLocal(orig_this_reg, Primitive::kPrimNot, invoke->GetDexPc()); | 
 |   invoke->SetArgumentAt(argument_index, new_instance); | 
 |   current_block_->AddInstruction(invoke); | 
 |  | 
 |   latest_result_ = invoke; | 
 |   return true; | 
 | } | 
 |  | 
 | static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { | 
 |   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index); | 
 |   const char* type = dex_file.GetFieldTypeDescriptor(field_id); | 
 |   return Primitive::GetType(type[0]); | 
 | } | 
 |  | 
 | bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction, | 
 |                                              uint32_t dex_pc, | 
 |                                              bool is_put) { | 
 |   uint32_t source_or_dest_reg = instruction.VRegA_22c(); | 
 |   uint32_t obj_reg = instruction.VRegB_22c(); | 
 |   uint16_t field_index; | 
 |   if (instruction.IsQuickened()) { | 
 |     if (!CanDecodeQuickenedInfo()) { | 
 |       return false; | 
 |     } | 
 |     field_index = LookupQuickenedInfo(dex_pc); | 
 |   } else { | 
 |     field_index = instruction.VRegC_22c(); | 
 |   } | 
 |  | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   ArtField* resolved_field = | 
 |       compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa); | 
 |  | 
 |  | 
 |   HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot, dex_pc); | 
 |   HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc); | 
 |   current_block_->AddInstruction(null_check); | 
 |  | 
 |   Primitive::Type field_type = (resolved_field == nullptr) | 
 |       ? GetFieldAccessType(*dex_file_, field_index) | 
 |       : resolved_field->GetTypeAsPrimitiveType(); | 
 |   if (is_put) { | 
 |     HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc); | 
 |     HInstruction* field_set = nullptr; | 
 |     if (resolved_field == nullptr) { | 
 |       MaybeRecordStat(MethodCompilationStat::kUnresolvedField); | 
 |       field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check, | 
 |                                                            value, | 
 |                                                            field_type, | 
 |                                                            field_index, | 
 |                                                            dex_pc); | 
 |     } else { | 
 |       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); | 
 |       field_set = new (arena_) HInstanceFieldSet(null_check, | 
 |                                                  value, | 
 |                                                  field_type, | 
 |                                                  resolved_field->GetOffset(), | 
 |                                                  resolved_field->IsVolatile(), | 
 |                                                  field_index, | 
 |                                                  class_def_index, | 
 |                                                  *dex_file_, | 
 |                                                  dex_compilation_unit_->GetDexCache(), | 
 |                                                  dex_pc); | 
 |     } | 
 |     current_block_->AddInstruction(field_set); | 
 |   } else { | 
 |     HInstruction* field_get = nullptr; | 
 |     if (resolved_field == nullptr) { | 
 |       MaybeRecordStat(MethodCompilationStat::kUnresolvedField); | 
 |       field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check, | 
 |                                                            field_type, | 
 |                                                            field_index, | 
 |                                                            dex_pc); | 
 |     } else { | 
 |       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); | 
 |       field_get = new (arena_) HInstanceFieldGet(null_check, | 
 |                                                  field_type, | 
 |                                                  resolved_field->GetOffset(), | 
 |                                                  resolved_field->IsVolatile(), | 
 |                                                  field_index, | 
 |                                                  class_def_index, | 
 |                                                  *dex_file_, | 
 |                                                  dex_compilation_unit_->GetDexCache(), | 
 |                                                  dex_pc); | 
 |     } | 
 |     current_block_->AddInstruction(field_get); | 
 |     UpdateLocal(source_or_dest_reg, field_get, dex_pc); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static mirror::Class* GetClassFrom(CompilerDriver* driver, | 
 |                                    const DexCompilationUnit& compilation_unit) { | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   StackHandleScope<2> hs(soa.Self()); | 
 |   const DexFile& dex_file = *compilation_unit.GetDexFile(); | 
 |   Handle<mirror::ClassLoader> class_loader(hs.NewHandle( | 
 |       soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader()))); | 
 |   Handle<mirror::DexCache> dex_cache(hs.NewHandle( | 
 |       compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file))); | 
 |  | 
 |   return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit); | 
 | } | 
 |  | 
 | mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const { | 
 |   return GetClassFrom(compiler_driver_, *outer_compilation_unit_); | 
 | } | 
 |  | 
 | mirror::Class* HGraphBuilder::GetCompilingClass() const { | 
 |   return GetClassFrom(compiler_driver_, *dex_compilation_unit_); | 
 | } | 
 |  | 
 | bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const { | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   StackHandleScope<4> hs(soa.Self()); | 
 |   Handle<mirror::DexCache> dex_cache(hs.NewHandle( | 
 |       dex_compilation_unit_->GetClassLinker()->FindDexCache( | 
 |           soa.Self(), *dex_compilation_unit_->GetDexFile()))); | 
 |   Handle<mirror::ClassLoader> class_loader(hs.NewHandle( | 
 |       soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); | 
 |   Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass( | 
 |       soa, dex_cache, class_loader, type_index, dex_compilation_unit_))); | 
 |   Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); | 
 |  | 
 |   // GetOutermostCompilingClass returns null when the class is unresolved | 
 |   // (e.g. if it derives from an unresolved class). This is bogus knowing that | 
 |   // we are compiling it. | 
 |   // When this happens we cannot establish a direct relation between the current | 
 |   // class and the outer class, so we return false. | 
 |   // (Note that this is only used for optimizing invokes and field accesses) | 
 |   return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get()); | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, | 
 |                                                      uint32_t dex_pc, | 
 |                                                      bool is_put, | 
 |                                                      Primitive::Type field_type) { | 
 |   uint32_t source_or_dest_reg = instruction.VRegA_21c(); | 
 |   uint16_t field_index = instruction.VRegB_21c(); | 
 |  | 
 |   if (is_put) { | 
 |     HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc); | 
 |     current_block_->AddInstruction( | 
 |         new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); | 
 |   } else { | 
 |     current_block_->AddInstruction( | 
 |         new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); | 
 |     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc); | 
 |   } | 
 | } | 
 | bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction, | 
 |                                            uint32_t dex_pc, | 
 |                                            bool is_put) { | 
 |   uint32_t source_or_dest_reg = instruction.VRegA_21c(); | 
 |   uint16_t field_index = instruction.VRegB_21c(); | 
 |  | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   StackHandleScope<5> hs(soa.Self()); | 
 |   Handle<mirror::DexCache> dex_cache(hs.NewHandle( | 
 |       dex_compilation_unit_->GetClassLinker()->FindDexCache( | 
 |           soa.Self(), *dex_compilation_unit_->GetDexFile()))); | 
 |   Handle<mirror::ClassLoader> class_loader(hs.NewHandle( | 
 |       soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader()))); | 
 |   ArtField* resolved_field = compiler_driver_->ResolveField( | 
 |       soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true); | 
 |  | 
 |   if (resolved_field == nullptr) { | 
 |     MaybeRecordStat(MethodCompilationStat::kUnresolvedField); | 
 |     Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index); | 
 |     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); | 
 |     return true; | 
 |   } | 
 |  | 
 |   Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType(); | 
 |   const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile(); | 
 |   Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle( | 
 |       outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file))); | 
 |   Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); | 
 |  | 
 |   // The index at which the field's class is stored in the DexCache's type array. | 
 |   uint32_t storage_index; | 
 |   bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass()); | 
 |   if (is_outer_class) { | 
 |     storage_index = outer_class->GetDexTypeIndex(); | 
 |   } else if (outer_dex_cache.Get() != dex_cache.Get()) { | 
 |     // The compiler driver cannot currently understand multiple dex caches involved. Just bailout. | 
 |     return false; | 
 |   } else { | 
 |     // TODO: This is rather expensive. Perf it and cache the results if needed. | 
 |     std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField( | 
 |         outer_dex_cache.Get(), | 
 |         GetCompilingClass(), | 
 |         resolved_field, | 
 |         field_index, | 
 |         &storage_index); | 
 |     bool can_easily_access = is_put ? pair.second : pair.first; | 
 |     if (!can_easily_access) { | 
 |       MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess); | 
 |       BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   bool is_in_cache = | 
 |       compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index); | 
 |   HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(), | 
 |                                                  storage_index, | 
 |                                                  outer_dex_file, | 
 |                                                  is_outer_class, | 
 |                                                  dex_pc, | 
 |                                                  /*needs_access_check*/ false, | 
 |                                                  is_in_cache); | 
 |   current_block_->AddInstruction(constant); | 
 |  | 
 |   HInstruction* cls = constant; | 
 |  | 
 |   Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass())); | 
 |   if (!IsInitialized(klass)) { | 
 |     cls = new (arena_) HClinitCheck(constant, dex_pc); | 
 |     current_block_->AddInstruction(cls); | 
 |   } | 
 |  | 
 |   uint16_t class_def_index = klass->GetDexClassDefIndex(); | 
 |   if (is_put) { | 
 |     // We need to keep the class alive before loading the value. | 
 |     HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc); | 
 |     DCHECK_EQ(value->GetType(), field_type); | 
 |     current_block_->AddInstruction(new (arena_) HStaticFieldSet(cls, | 
 |                                                                 value, | 
 |                                                                 field_type, | 
 |                                                                 resolved_field->GetOffset(), | 
 |                                                                 resolved_field->IsVolatile(), | 
 |                                                                 field_index, | 
 |                                                                 class_def_index, | 
 |                                                                 *dex_file_, | 
 |                                                                 dex_cache_, | 
 |                                                                 dex_pc)); | 
 |   } else { | 
 |     current_block_->AddInstruction(new (arena_) HStaticFieldGet(cls, | 
 |                                                                 field_type, | 
 |                                                                 resolved_field->GetOffset(), | 
 |                                                                 resolved_field->IsVolatile(), | 
 |                                                                 field_index, | 
 |                                                                 class_def_index, | 
 |                                                                 *dex_file_, | 
 |                                                                 dex_cache_, | 
 |                                                                 dex_pc)); | 
 |     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg, | 
 |                                        uint16_t first_vreg, | 
 |                                        int64_t second_vreg_or_constant, | 
 |                                        uint32_t dex_pc, | 
 |                                        Primitive::Type type, | 
 |                                        bool second_is_constant, | 
 |                                        bool isDiv) { | 
 |   DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); | 
 |  | 
 |   HInstruction* first = LoadLocal(first_vreg, type, dex_pc); | 
 |   HInstruction* second = nullptr; | 
 |   if (second_is_constant) { | 
 |     if (type == Primitive::kPrimInt) { | 
 |       second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); | 
 |     } else { | 
 |       second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); | 
 |     } | 
 |   } else { | 
 |     second = LoadLocal(second_vreg_or_constant, type, dex_pc); | 
 |   } | 
 |  | 
 |   if (!second_is_constant | 
 |       || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0) | 
 |       || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) { | 
 |     second = new (arena_) HDivZeroCheck(second, dex_pc); | 
 |     current_block_->AddInstruction(second); | 
 |   } | 
 |  | 
 |   if (isDiv) { | 
 |     current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc)); | 
 |   } else { | 
 |     current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc)); | 
 |   } | 
 |   UpdateLocal(out_vreg, current_block_->GetLastInstruction(), dex_pc); | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildArrayAccess(const Instruction& instruction, | 
 |                                      uint32_t dex_pc, | 
 |                                      bool is_put, | 
 |                                      Primitive::Type anticipated_type) { | 
 |   uint8_t source_or_dest_reg = instruction.VRegA_23x(); | 
 |   uint8_t array_reg = instruction.VRegB_23x(); | 
 |   uint8_t index_reg = instruction.VRegC_23x(); | 
 |  | 
 |   HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot, dex_pc); | 
 |   object = new (arena_) HNullCheck(object, dex_pc); | 
 |   current_block_->AddInstruction(object); | 
 |  | 
 |   HInstruction* length = new (arena_) HArrayLength(object, dex_pc); | 
 |   current_block_->AddInstruction(length); | 
 |   HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt, dex_pc); | 
 |   index = new (arena_) HBoundsCheck(index, length, dex_pc); | 
 |   current_block_->AddInstruction(index); | 
 |   if (is_put) { | 
 |     HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type, dex_pc); | 
 |     // TODO: Insert a type check node if the type is Object. | 
 |     current_block_->AddInstruction(new (arena_) HArraySet( | 
 |         object, index, value, anticipated_type, dex_pc)); | 
 |   } else { | 
 |     current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type, dex_pc)); | 
 |     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc); | 
 |   } | 
 |   graph_->SetHasBoundsChecks(true); | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc, | 
 |                                         uint32_t type_index, | 
 |                                         uint32_t number_of_vreg_arguments, | 
 |                                         bool is_range, | 
 |                                         uint32_t* args, | 
 |                                         uint32_t register_index) { | 
 |   HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc); | 
 |   bool finalizable; | 
 |   QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) | 
 |       ? kQuickAllocArrayWithAccessCheck | 
 |       : kQuickAllocArray; | 
 |   HInstruction* object = new (arena_) HNewArray(length, | 
 |                                                 graph_->GetCurrentMethod(), | 
 |                                                 dex_pc, | 
 |                                                 type_index, | 
 |                                                 *dex_compilation_unit_->GetDexFile(), | 
 |                                                 entrypoint); | 
 |   current_block_->AddInstruction(object); | 
 |  | 
 |   const char* descriptor = dex_file_->StringByTypeIdx(type_index); | 
 |   DCHECK_EQ(descriptor[0], '[') << descriptor; | 
 |   char primitive = descriptor[1]; | 
 |   DCHECK(primitive == 'I' | 
 |       || primitive == 'L' | 
 |       || primitive == '[') << descriptor; | 
 |   bool is_reference_array = (primitive == 'L') || (primitive == '['); | 
 |   Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt; | 
 |  | 
 |   for (size_t i = 0; i < number_of_vreg_arguments; ++i) { | 
 |     HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc); | 
 |     HInstruction* index = graph_->GetIntConstant(i, dex_pc); | 
 |     current_block_->AddInstruction( | 
 |         new (arena_) HArraySet(object, index, value, type, dex_pc)); | 
 |   } | 
 |   latest_result_ = object; | 
 | } | 
 |  | 
 | template <typename T> | 
 | void HGraphBuilder::BuildFillArrayData(HInstruction* object, | 
 |                                        const T* data, | 
 |                                        uint32_t element_count, | 
 |                                        Primitive::Type anticipated_type, | 
 |                                        uint32_t dex_pc) { | 
 |   for (uint32_t i = 0; i < element_count; ++i) { | 
 |     HInstruction* index = graph_->GetIntConstant(i, dex_pc); | 
 |     HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); | 
 |     current_block_->AddInstruction(new (arena_) HArraySet( | 
 |       object, index, value, anticipated_type, dex_pc)); | 
 |   } | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { | 
 |   HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot, dex_pc); | 
 |   HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc); | 
 |   current_block_->AddInstruction(null_check); | 
 |  | 
 |   HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc); | 
 |   current_block_->AddInstruction(length); | 
 |  | 
 |   int32_t payload_offset = instruction.VRegB_31t() + dex_pc; | 
 |   const Instruction::ArrayDataPayload* payload = | 
 |       reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset); | 
 |   const uint8_t* data = payload->data; | 
 |   uint32_t element_count = payload->element_count; | 
 |  | 
 |   // Implementation of this DEX instruction seems to be that the bounds check is | 
 |   // done before doing any stores. | 
 |   HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); | 
 |   current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc)); | 
 |  | 
 |   switch (payload->element_width) { | 
 |     case 1: | 
 |       BuildFillArrayData(null_check, | 
 |                          reinterpret_cast<const int8_t*>(data), | 
 |                          element_count, | 
 |                          Primitive::kPrimByte, | 
 |                          dex_pc); | 
 |       break; | 
 |     case 2: | 
 |       BuildFillArrayData(null_check, | 
 |                          reinterpret_cast<const int16_t*>(data), | 
 |                          element_count, | 
 |                          Primitive::kPrimShort, | 
 |                          dex_pc); | 
 |       break; | 
 |     case 4: | 
 |       BuildFillArrayData(null_check, | 
 |                          reinterpret_cast<const int32_t*>(data), | 
 |                          element_count, | 
 |                          Primitive::kPrimInt, | 
 |                          dex_pc); | 
 |       break; | 
 |     case 8: | 
 |       BuildFillWideArrayData(null_check, | 
 |                              reinterpret_cast<const int64_t*>(data), | 
 |                              element_count, | 
 |                              dex_pc); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unknown element width for " << payload->element_width; | 
 |   } | 
 |   graph_->SetHasBoundsChecks(true); | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildFillWideArrayData(HInstruction* object, | 
 |                                            const int64_t* data, | 
 |                                            uint32_t element_count, | 
 |                                            uint32_t dex_pc) { | 
 |   for (uint32_t i = 0; i < element_count; ++i) { | 
 |     HInstruction* index = graph_->GetIntConstant(i, dex_pc); | 
 |     HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); | 
 |     current_block_->AddInstruction(new (arena_) HArraySet( | 
 |       object, index, value, Primitive::kPrimLong, dex_pc)); | 
 |   } | 
 | } | 
 |  | 
 | static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls) | 
 |     SHARED_REQUIRES(Locks::mutator_lock_) { | 
 |   if (cls.Get() == nullptr) { | 
 |     return TypeCheckKind::kUnresolvedCheck; | 
 |   } else if (cls->IsInterface()) { | 
 |     return TypeCheckKind::kInterfaceCheck; | 
 |   } else if (cls->IsArrayClass()) { | 
 |     if (cls->GetComponentType()->IsObjectClass()) { | 
 |       return TypeCheckKind::kArrayObjectCheck; | 
 |     } else if (cls->CannotBeAssignedFromOtherTypes()) { | 
 |       return TypeCheckKind::kExactCheck; | 
 |     } else { | 
 |       return TypeCheckKind::kArrayCheck; | 
 |     } | 
 |   } else if (cls->IsFinal()) { | 
 |     return TypeCheckKind::kExactCheck; | 
 |   } else if (cls->IsAbstract()) { | 
 |     return TypeCheckKind::kAbstractClassCheck; | 
 |   } else { | 
 |     return TypeCheckKind::kClassHierarchyCheck; | 
 |   } | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildTypeCheck(const Instruction& instruction, | 
 |                                    uint8_t destination, | 
 |                                    uint8_t reference, | 
 |                                    uint16_t type_index, | 
 |                                    uint32_t dex_pc) { | 
 |   bool type_known_final, type_known_abstract, use_declaring_class; | 
 |   bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( | 
 |       dex_compilation_unit_->GetDexMethodIndex(), | 
 |       *dex_compilation_unit_->GetDexFile(), | 
 |       type_index, | 
 |       &type_known_final, | 
 |       &type_known_abstract, | 
 |       &use_declaring_class); | 
 |  | 
 |   ScopedObjectAccess soa(Thread::Current()); | 
 |   StackHandleScope<2> hs(soa.Self()); | 
 |   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); | 
 |   Handle<mirror::DexCache> dex_cache(hs.NewHandle( | 
 |       dex_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), dex_file))); | 
 |   Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index))); | 
 |  | 
 |   HInstruction* object = LoadLocal(reference, Primitive::kPrimNot, dex_pc); | 
 |   HLoadClass* cls = new (arena_) HLoadClass( | 
 |       graph_->GetCurrentMethod(), | 
 |       type_index, | 
 |       dex_file, | 
 |       IsOutermostCompilingClass(type_index), | 
 |       dex_pc, | 
 |       !can_access, | 
 |       compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_file, type_index)); | 
 |   current_block_->AddInstruction(cls); | 
 |  | 
 |   TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class); | 
 |   if (instruction.Opcode() == Instruction::INSTANCE_OF) { | 
 |     current_block_->AddInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc)); | 
 |     UpdateLocal(destination, current_block_->GetLastInstruction(), dex_pc); | 
 |   } else { | 
 |     DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); | 
 |     // We emit a CheckCast followed by a BoundType. CheckCast is a statement | 
 |     // which may throw. If it succeeds BoundType sets the new type of `object` | 
 |     // for all subsequent uses. | 
 |     current_block_->AddInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc)); | 
 |     current_block_->AddInstruction(new (arena_) HBoundType(object, dex_pc)); | 
 |     UpdateLocal(reference, current_block_->GetLastInstruction(), dex_pc); | 
 |   } | 
 | } | 
 |  | 
 | bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const { | 
 |   return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks( | 
 |       dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, finalizable); | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildSwitchJumpTable(const SwitchTable& table, | 
 |                                          const Instruction& instruction, | 
 |                                          HInstruction* value, | 
 |                                          uint32_t dex_pc) { | 
 |   // Add the successor blocks to the current block. | 
 |   uint16_t num_entries = table.GetNumEntries(); | 
 |   for (size_t i = 1; i <= num_entries; i++) { | 
 |     int32_t target_offset = table.GetEntryAt(i); | 
 |     HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset); | 
 |     DCHECK(case_target != nullptr); | 
 |  | 
 |     // Add the target block as a successor. | 
 |     current_block_->AddSuccessor(case_target); | 
 |   } | 
 |  | 
 |   // Add the default target block as the last successor. | 
 |   HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); | 
 |   DCHECK(default_target != nullptr); | 
 |   current_block_->AddSuccessor(default_target); | 
 |  | 
 |   // Now add the Switch instruction. | 
 |   int32_t starting_key = table.GetEntryAt(0); | 
 |   current_block_->AddInstruction( | 
 |       new (arena_) HPackedSwitch(starting_key, num_entries, value, dex_pc)); | 
 |   // This block ends with control flow. | 
 |   current_block_ = nullptr; | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) { | 
 |   // Verifier guarantees that the payload for PackedSwitch contains: | 
 |   //   (a) number of entries (may be zero) | 
 |   //   (b) first and lowest switch case value (entry 0, always present) | 
 |   //   (c) list of target pcs (entries 1 <= i <= N) | 
 |   SwitchTable table(instruction, dex_pc, false); | 
 |  | 
 |   // Value to test against. | 
 |   HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc); | 
 |  | 
 |   // Starting key value. | 
 |   int32_t starting_key = table.GetEntryAt(0); | 
 |  | 
 |   // Retrieve number of entries. | 
 |   uint16_t num_entries = table.GetNumEntries(); | 
 |   if (num_entries == 0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Don't use a packed switch if there are very few entries. | 
 |   if (num_entries > kSmallSwitchThreshold) { | 
 |     BuildSwitchJumpTable(table, instruction, value, dex_pc); | 
 |   } else { | 
 |     // Chained cmp-and-branch, starting from starting_key. | 
 |     for (size_t i = 1; i <= num_entries; i++) { | 
 |       BuildSwitchCaseHelper(instruction, | 
 |                             i, | 
 |                             i == num_entries, | 
 |                             table, | 
 |                             value, | 
 |                             starting_key + i - 1, | 
 |                             table.GetEntryAt(i), | 
 |                             dex_pc); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) { | 
 |   // Verifier guarantees that the payload for SparseSwitch contains: | 
 |   //   (a) number of entries (may be zero) | 
 |   //   (b) sorted key values (entries 0 <= i < N) | 
 |   //   (c) target pcs corresponding to the switch values (entries N <= i < 2*N) | 
 |   SwitchTable table(instruction, dex_pc, true); | 
 |  | 
 |   // Value to test against. | 
 |   HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc); | 
 |  | 
 |   uint16_t num_entries = table.GetNumEntries(); | 
 |  | 
 |   for (size_t i = 0; i < num_entries; i++) { | 
 |     BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value, | 
 |                           table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc); | 
 |   } | 
 | } | 
 |  | 
 | void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index, | 
 |                                           bool is_last_case, const SwitchTable& table, | 
 |                                           HInstruction* value, int32_t case_value_int, | 
 |                                           int32_t target_offset, uint32_t dex_pc) { | 
 |   HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset); | 
 |   DCHECK(case_target != nullptr); | 
 |  | 
 |   // The current case's value. | 
 |   HInstruction* this_case_value = graph_->GetIntConstant(case_value_int, dex_pc); | 
 |  | 
 |   // Compare value and this_case_value. | 
 |   HEqual* comparison = new (arena_) HEqual(value, this_case_value, dex_pc); | 
 |   current_block_->AddInstruction(comparison); | 
 |   HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc); | 
 |   current_block_->AddInstruction(ifinst); | 
 |  | 
 |   // Case hit: use the target offset to determine where to go. | 
 |   current_block_->AddSuccessor(case_target); | 
 |  | 
 |   // Case miss: go to the next case (or default fall-through). | 
 |   // When there is a next case, we use the block stored with the table offset representing this | 
 |   // case (that is where we registered them in ComputeBranchTargets). | 
 |   // When there is no next case, we use the following instruction. | 
 |   // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use. | 
 |   if (!is_last_case) { | 
 |     HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index)); | 
 |     DCHECK(next_case_target != nullptr); | 
 |     current_block_->AddSuccessor(next_case_target); | 
 |  | 
 |     // Need to manually add the block, as there is no dex-pc transition for the cases. | 
 |     graph_->AddBlock(next_case_target); | 
 |  | 
 |     current_block_ = next_case_target; | 
 |   } else { | 
 |     HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits()); | 
 |     DCHECK(default_target != nullptr); | 
 |     current_block_->AddSuccessor(default_target); | 
 |     current_block_ = nullptr; | 
 |   } | 
 | } | 
 |  | 
 | bool HGraphBuilder::CanDecodeQuickenedInfo() const { | 
 |   return interpreter_metadata_ != nullptr; | 
 | } | 
 |  | 
 | uint16_t HGraphBuilder::LookupQuickenedInfo(uint32_t dex_pc) { | 
 |   DCHECK(interpreter_metadata_ != nullptr); | 
 |   uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_); | 
 |   DCHECK_EQ(dex_pc, dex_pc_in_map); | 
 |   return DecodeUnsignedLeb128(&interpreter_metadata_); | 
 | } | 
 |  | 
 | bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) { | 
 |   if (current_block_ == nullptr) { | 
 |     return true;  // Dead code | 
 |   } | 
 |  | 
 |   switch (instruction.Opcode()) { | 
 |     case Instruction::CONST_4: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); | 
 |       UpdateLocal(register_index, constant, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_16: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); | 
 |       UpdateLocal(register_index, constant, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); | 
 |       UpdateLocal(register_index, constant, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_HIGH16: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); | 
 |       UpdateLocal(register_index, constant, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_WIDE_16: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       // Get 16 bits of constant value, sign extended to 64 bits. | 
 |       int64_t value = instruction.VRegB_21s(); | 
 |       value <<= 48; | 
 |       value >>= 48; | 
 |       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); | 
 |       UpdateLocal(register_index, constant, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_WIDE_32: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       // Get 32 bits of constant value, sign extended to 64 bits. | 
 |       int64_t value = instruction.VRegB_31i(); | 
 |       value <<= 32; | 
 |       value >>= 32; | 
 |       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); | 
 |       UpdateLocal(register_index, constant, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_WIDE: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); | 
 |       UpdateLocal(register_index, constant, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_WIDE_HIGH16: { | 
 |       int32_t register_index = instruction.VRegA(); | 
 |       int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48; | 
 |       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); | 
 |       UpdateLocal(register_index, constant, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     // Note that the SSA building will refine the types. | 
 |     case Instruction::MOVE: | 
 |     case Instruction::MOVE_FROM16: | 
 |     case Instruction::MOVE_16: { | 
 |       HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc); | 
 |       UpdateLocal(instruction.VRegA(), value, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     // Note that the SSA building will refine the types. | 
 |     case Instruction::MOVE_WIDE: | 
 |     case Instruction::MOVE_WIDE_FROM16: | 
 |     case Instruction::MOVE_WIDE_16: { | 
 |       HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong, dex_pc); | 
 |       UpdateLocal(instruction.VRegA(), value, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MOVE_OBJECT: | 
 |     case Instruction::MOVE_OBJECT_16: | 
 |     case Instruction::MOVE_OBJECT_FROM16: { | 
 |       HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot, dex_pc); | 
 |       UpdateLocal(instruction.VRegA(), value, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RETURN_VOID_NO_BARRIER: | 
 |     case Instruction::RETURN_VOID: { | 
 |       BuildReturn(instruction, Primitive::kPrimVoid, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 | #define IF_XX(comparison, cond) \ | 
 |     case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \ | 
 |     case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break | 
 |  | 
 |     IF_XX(HEqual, EQ); | 
 |     IF_XX(HNotEqual, NE); | 
 |     IF_XX(HLessThan, LT); | 
 |     IF_XX(HLessThanOrEqual, LE); | 
 |     IF_XX(HGreaterThan, GT); | 
 |     IF_XX(HGreaterThanOrEqual, GE); | 
 |  | 
 |     case Instruction::GOTO: | 
 |     case Instruction::GOTO_16: | 
 |     case Instruction::GOTO_32: { | 
 |       int32_t offset = instruction.GetTargetOffset(); | 
 |       HBasicBlock* target = FindBlockStartingAt(offset + dex_pc); | 
 |       DCHECK(target != nullptr); | 
 |       current_block_->AddInstruction(new (arena_) HGoto(dex_pc)); | 
 |       current_block_->AddSuccessor(target); | 
 |       current_block_ = nullptr; | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RETURN: { | 
 |       BuildReturn(instruction, return_type_, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RETURN_OBJECT: { | 
 |       BuildReturn(instruction, return_type_, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RETURN_WIDE: { | 
 |       BuildReturn(instruction, return_type_, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INVOKE_DIRECT: | 
 |     case Instruction::INVOKE_INTERFACE: | 
 |     case Instruction::INVOKE_STATIC: | 
 |     case Instruction::INVOKE_SUPER: | 
 |     case Instruction::INVOKE_VIRTUAL: | 
 |     case Instruction::INVOKE_VIRTUAL_QUICK: { | 
 |       uint16_t method_idx; | 
 |       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) { | 
 |         if (!CanDecodeQuickenedInfo()) { | 
 |           return false; | 
 |         } | 
 |         method_idx = LookupQuickenedInfo(dex_pc); | 
 |       } else { | 
 |         method_idx = instruction.VRegB_35c(); | 
 |       } | 
 |       uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); | 
 |       uint32_t args[5]; | 
 |       instruction.GetVarArgs(args); | 
 |       if (!BuildInvoke(instruction, dex_pc, method_idx, | 
 |                        number_of_vreg_arguments, false, args, -1)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INVOKE_DIRECT_RANGE: | 
 |     case Instruction::INVOKE_INTERFACE_RANGE: | 
 |     case Instruction::INVOKE_STATIC_RANGE: | 
 |     case Instruction::INVOKE_SUPER_RANGE: | 
 |     case Instruction::INVOKE_VIRTUAL_RANGE: | 
 |     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { | 
 |       uint16_t method_idx; | 
 |       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) { | 
 |         if (!CanDecodeQuickenedInfo()) { | 
 |           return false; | 
 |         } | 
 |         method_idx = LookupQuickenedInfo(dex_pc); | 
 |       } else { | 
 |         method_idx = instruction.VRegB_3rc(); | 
 |       } | 
 |       uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); | 
 |       uint32_t register_index = instruction.VRegC(); | 
 |       if (!BuildInvoke(instruction, dex_pc, method_idx, | 
 |                        number_of_vreg_arguments, true, nullptr, register_index)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEG_INT: { | 
 |       Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEG_LONG: { | 
 |       Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEG_FLOAT: { | 
 |       Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEG_DOUBLE: { | 
 |       Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NOT_INT: { | 
 |       Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NOT_LONG: { | 
 |       Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_LONG: { | 
 |       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_FLOAT: { | 
 |       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_DOUBLE: { | 
 |       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::LONG_TO_INT: { | 
 |       Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::LONG_TO_FLOAT: { | 
 |       Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::LONG_TO_DOUBLE: { | 
 |       Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FLOAT_TO_INT: { | 
 |       Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FLOAT_TO_LONG: { | 
 |       Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FLOAT_TO_DOUBLE: { | 
 |       Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DOUBLE_TO_INT: { | 
 |       Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DOUBLE_TO_LONG: { | 
 |       Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DOUBLE_TO_FLOAT: { | 
 |       Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_BYTE: { | 
 |       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_SHORT: { | 
 |       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INT_TO_CHAR: { | 
 |       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_INT: { | 
 |       Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_LONG: { | 
 |       Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_DOUBLE: { | 
 |       Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_FLOAT: { | 
 |       Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_INT: { | 
 |       Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_LONG: { | 
 |       Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_FLOAT: { | 
 |       Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_DOUBLE: { | 
 |       Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_INT_2ADDR: { | 
 |       Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_INT: { | 
 |       Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_LONG: { | 
 |       Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_FLOAT: { | 
 |       Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_DOUBLE: { | 
 |       Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_INT: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, Primitive::kPrimInt, false, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_LONG: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, Primitive::kPrimLong, false, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_FLOAT: { | 
 |       Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_DOUBLE: { | 
 |       Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_INT: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, Primitive::kPrimInt, false, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_LONG: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, Primitive::kPrimLong, false, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_FLOAT: { | 
 |       Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_DOUBLE: { | 
 |       Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_INT: { | 
 |       Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_LONG: { | 
 |       Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_INT: { | 
 |       Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_LONG: { | 
 |       Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_INT: { | 
 |       Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_LONG: { | 
 |       Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_INT: { | 
 |       Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_LONG: { | 
 |       Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_INT: { | 
 |       Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_LONG: { | 
 |       Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_INT: { | 
 |       Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_LONG: { | 
 |       Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_LONG_2ADDR: { | 
 |       Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_DOUBLE_2ADDR: { | 
 |       Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_FLOAT_2ADDR: { | 
 |       Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_INT_2ADDR: { | 
 |       Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_LONG_2ADDR: { | 
 |       Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_FLOAT_2ADDR: { | 
 |       Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SUB_DOUBLE_2ADDR: { | 
 |       Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_INT_2ADDR: { | 
 |       Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_LONG_2ADDR: { | 
 |       Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_FLOAT_2ADDR: { | 
 |       Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_DOUBLE_2ADDR: { | 
 |       Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_INT_2ADDR: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), | 
 |                          dex_pc, Primitive::kPrimInt, false, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_LONG_2ADDR: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), | 
 |                          dex_pc, Primitive::kPrimLong, false, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_INT_2ADDR: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), | 
 |                          dex_pc, Primitive::kPrimInt, false, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_LONG_2ADDR: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), | 
 |                          dex_pc, Primitive::kPrimLong, false, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_FLOAT_2ADDR: { | 
 |       Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_DOUBLE_2ADDR: { | 
 |       Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_INT_2ADDR: { | 
 |       Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_LONG_2ADDR: { | 
 |       Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_INT_2ADDR: { | 
 |       Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_LONG_2ADDR: { | 
 |       Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_INT_2ADDR: { | 
 |       Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_LONG_2ADDR: { | 
 |       Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_FLOAT_2ADDR: { | 
 |       Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_DOUBLE_2ADDR: { | 
 |       Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_INT_2ADDR: { | 
 |       Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_LONG_2ADDR: { | 
 |       Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_INT_2ADDR: { | 
 |       Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_LONG_2ADDR: { | 
 |       Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_INT_2ADDR: { | 
 |       Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_LONG_2ADDR: { | 
 |       Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_INT_LIT16: { | 
 |       Binop_22s<HAdd>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_INT_LIT16: { | 
 |       Binop_22s<HAnd>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_INT_LIT16: { | 
 |       Binop_22s<HOr>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_INT_LIT16: { | 
 |       Binop_22s<HXor>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RSUB_INT: { | 
 |       Binop_22s<HSub>(instruction, true, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_INT_LIT16: { | 
 |       Binop_22s<HMul>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::ADD_INT_LIT8: { | 
 |       Binop_22b<HAdd>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::AND_INT_LIT8: { | 
 |       Binop_22b<HAnd>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::OR_INT_LIT8: { | 
 |       Binop_22b<HOr>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::XOR_INT_LIT8: { | 
 |       Binop_22b<HXor>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::RSUB_INT_LIT8: { | 
 |       Binop_22b<HSub>(instruction, true, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MUL_INT_LIT8: { | 
 |       Binop_22b<HMul>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::DIV_INT_LIT16: | 
 |     case Instruction::DIV_INT_LIT8: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, Primitive::kPrimInt, true, true); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::REM_INT_LIT16: | 
 |     case Instruction::REM_INT_LIT8: { | 
 |       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), | 
 |                          dex_pc, Primitive::kPrimInt, true, false); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHL_INT_LIT8: { | 
 |       Binop_22b<HShl>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SHR_INT_LIT8: { | 
 |       Binop_22b<HShr>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::USHR_INT_LIT8: { | 
 |       Binop_22b<HUShr>(instruction, false, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEW_INSTANCE: { | 
 |       if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) { | 
 |         return false; | 
 |       } | 
 |       UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NEW_ARRAY: { | 
 |       uint16_t type_index = instruction.VRegC_22c(); | 
 |       HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt, dex_pc); | 
 |       bool finalizable; | 
 |       QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable) | 
 |           ? kQuickAllocArrayWithAccessCheck | 
 |           : kQuickAllocArray; | 
 |       current_block_->AddInstruction(new (arena_) HNewArray(length, | 
 |                                                             graph_->GetCurrentMethod(), | 
 |                                                             dex_pc, | 
 |                                                             type_index, | 
 |                                                             *dex_compilation_unit_->GetDexFile(), | 
 |                                                             entrypoint)); | 
 |       UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction(), dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FILLED_NEW_ARRAY: { | 
 |       uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); | 
 |       uint32_t type_index = instruction.VRegB_35c(); | 
 |       uint32_t args[5]; | 
 |       instruction.GetVarArgs(args); | 
 |       BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FILLED_NEW_ARRAY_RANGE: { | 
 |       uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); | 
 |       uint32_t type_index = instruction.VRegB_3rc(); | 
 |       uint32_t register_index = instruction.VRegC_3rc(); | 
 |       BuildFilledNewArray( | 
 |           dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::FILL_ARRAY_DATA: { | 
 |       BuildFillArrayData(instruction, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MOVE_RESULT: | 
 |     case Instruction::MOVE_RESULT_WIDE: | 
 |     case Instruction::MOVE_RESULT_OBJECT: { | 
 |       if (latest_result_ == nullptr) { | 
 |         // Only dead code can lead to this situation, where the verifier | 
 |         // does not reject the method. | 
 |       } else { | 
 |         // An Invoke/FilledNewArray and its MoveResult could have landed in | 
 |         // different blocks if there was a try/catch block boundary between | 
 |         // them. For Invoke, we insert a StoreLocal after the instruction. For | 
 |         // FilledNewArray, the local needs to be updated after the array was | 
 |         // filled, otherwise we might overwrite an input vreg. | 
 |         HStoreLocal* update_local = | 
 |             new (arena_) HStoreLocal(GetLocalAt(instruction.VRegA()), latest_result_, dex_pc); | 
 |         HBasicBlock* block = latest_result_->GetBlock(); | 
 |         if (block == current_block_) { | 
 |           // MoveResult and the previous instruction are in the same block. | 
 |           current_block_->AddInstruction(update_local); | 
 |         } else { | 
 |           // The two instructions are in different blocks. Insert the MoveResult | 
 |           // before the final control-flow instruction of the previous block. | 
 |           DCHECK(block->EndsWithControlFlowInstruction()); | 
 |           DCHECK(current_block_->GetInstructions().IsEmpty()); | 
 |           block->InsertInstructionBefore(update_local, block->GetLastInstruction()); | 
 |         } | 
 |         latest_result_ = nullptr; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMP_LONG: { | 
 |       Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMPG_FLOAT: { | 
 |       Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMPG_DOUBLE: { | 
 |       Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMPL_FLOAT: { | 
 |       Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CMPL_DOUBLE: { | 
 |       Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::NOP: | 
 |       break; | 
 |  | 
 |     case Instruction::IGET: | 
 |     case Instruction::IGET_QUICK: | 
 |     case Instruction::IGET_WIDE: | 
 |     case Instruction::IGET_WIDE_QUICK: | 
 |     case Instruction::IGET_OBJECT: | 
 |     case Instruction::IGET_OBJECT_QUICK: | 
 |     case Instruction::IGET_BOOLEAN: | 
 |     case Instruction::IGET_BOOLEAN_QUICK: | 
 |     case Instruction::IGET_BYTE: | 
 |     case Instruction::IGET_BYTE_QUICK: | 
 |     case Instruction::IGET_CHAR: | 
 |     case Instruction::IGET_CHAR_QUICK: | 
 |     case Instruction::IGET_SHORT: | 
 |     case Instruction::IGET_SHORT_QUICK: { | 
 |       if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::IPUT: | 
 |     case Instruction::IPUT_QUICK: | 
 |     case Instruction::IPUT_WIDE: | 
 |     case Instruction::IPUT_WIDE_QUICK: | 
 |     case Instruction::IPUT_OBJECT: | 
 |     case Instruction::IPUT_OBJECT_QUICK: | 
 |     case Instruction::IPUT_BOOLEAN: | 
 |     case Instruction::IPUT_BOOLEAN_QUICK: | 
 |     case Instruction::IPUT_BYTE: | 
 |     case Instruction::IPUT_BYTE_QUICK: | 
 |     case Instruction::IPUT_CHAR: | 
 |     case Instruction::IPUT_CHAR_QUICK: | 
 |     case Instruction::IPUT_SHORT: | 
 |     case Instruction::IPUT_SHORT_QUICK: { | 
 |       if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SGET: | 
 |     case Instruction::SGET_WIDE: | 
 |     case Instruction::SGET_OBJECT: | 
 |     case Instruction::SGET_BOOLEAN: | 
 |     case Instruction::SGET_BYTE: | 
 |     case Instruction::SGET_CHAR: | 
 |     case Instruction::SGET_SHORT: { | 
 |       if (!BuildStaticFieldAccess(instruction, dex_pc, false)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SPUT: | 
 |     case Instruction::SPUT_WIDE: | 
 |     case Instruction::SPUT_OBJECT: | 
 |     case Instruction::SPUT_BOOLEAN: | 
 |     case Instruction::SPUT_BYTE: | 
 |     case Instruction::SPUT_CHAR: | 
 |     case Instruction::SPUT_SHORT: { | 
 |       if (!BuildStaticFieldAccess(instruction, dex_pc, true)) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 | #define ARRAY_XX(kind, anticipated_type)                                          \ | 
 |     case Instruction::AGET##kind: {                                               \ | 
 |       BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \ | 
 |       break;                                                                      \ | 
 |     }                                                                             \ | 
 |     case Instruction::APUT##kind: {                                               \ | 
 |       BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \ | 
 |       break;                                                                      \ | 
 |     } | 
 |  | 
 |     ARRAY_XX(, Primitive::kPrimInt); | 
 |     ARRAY_XX(_WIDE, Primitive::kPrimLong); | 
 |     ARRAY_XX(_OBJECT, Primitive::kPrimNot); | 
 |     ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean); | 
 |     ARRAY_XX(_BYTE, Primitive::kPrimByte); | 
 |     ARRAY_XX(_CHAR, Primitive::kPrimChar); | 
 |     ARRAY_XX(_SHORT, Primitive::kPrimShort); | 
 |  | 
 |     case Instruction::ARRAY_LENGTH: { | 
 |       HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot, dex_pc); | 
 |       object = new (arena_) HNullCheck(object, dex_pc); | 
 |       current_block_->AddInstruction(object); | 
 |       current_block_->AddInstruction(new (arena_) HArrayLength(object, dex_pc)); | 
 |       UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction(), dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_STRING: { | 
 |       uint32_t string_index = instruction.VRegB_21c(); | 
 |       current_block_->AddInstruction( | 
 |           new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); | 
 |       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_STRING_JUMBO: { | 
 |       uint32_t string_index = instruction.VRegB_31c(); | 
 |       current_block_->AddInstruction( | 
 |           new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); | 
 |       UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction(), dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CONST_CLASS: { | 
 |       uint16_t type_index = instruction.VRegB_21c(); | 
 |       bool type_known_final; | 
 |       bool type_known_abstract; | 
 |       bool dont_use_is_referrers_class; | 
 |       // `CanAccessTypeWithoutChecks` will tell whether the method being | 
 |       // built is trying to access its own class, so that the generated | 
 |       // code can optimize for this case. However, the optimization does not | 
 |       // work for inlining, so we use `IsOutermostCompilingClass` instead. | 
 |       bool can_access = compiler_driver_->CanAccessTypeWithoutChecks( | 
 |           dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, | 
 |           &type_known_final, &type_known_abstract, &dont_use_is_referrers_class); | 
 |       current_block_->AddInstruction(new (arena_) HLoadClass( | 
 |           graph_->GetCurrentMethod(), | 
 |           type_index, | 
 |           *dex_file_, | 
 |           IsOutermostCompilingClass(type_index), | 
 |           dex_pc, | 
 |           !can_access, | 
 |           compiler_driver_->CanAssumeTypeIsPresentInDexCache(*dex_file_, type_index))); | 
 |       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MOVE_EXCEPTION: { | 
 |       current_block_->AddInstruction(new (arena_) HLoadException(dex_pc)); | 
 |       UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction(), dex_pc); | 
 |       current_block_->AddInstruction(new (arena_) HClearException(dex_pc)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::THROW: { | 
 |       HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc); | 
 |       current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc)); | 
 |       // A throw instruction must branch to the exit block. | 
 |       current_block_->AddSuccessor(exit_block_); | 
 |       // We finished building this block. Set the current block to null to avoid | 
 |       // adding dead instructions to it. | 
 |       current_block_ = nullptr; | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::INSTANCE_OF: { | 
 |       uint8_t destination = instruction.VRegA_22c(); | 
 |       uint8_t reference = instruction.VRegB_22c(); | 
 |       uint16_t type_index = instruction.VRegC_22c(); | 
 |       BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::CHECK_CAST: { | 
 |       uint8_t reference = instruction.VRegA_21c(); | 
 |       uint16_t type_index = instruction.VRegB_21c(); | 
 |       BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MONITOR_ENTER: { | 
 |       current_block_->AddInstruction(new (arena_) HMonitorOperation( | 
 |           LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc), | 
 |           HMonitorOperation::OperationKind::kEnter, | 
 |           dex_pc)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::MONITOR_EXIT: { | 
 |       current_block_->AddInstruction(new (arena_) HMonitorOperation( | 
 |           LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc), | 
 |           HMonitorOperation::OperationKind::kExit, | 
 |           dex_pc)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::PACKED_SWITCH: { | 
 |       BuildPackedSwitch(instruction, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Instruction::SPARSE_SWITCH: { | 
 |       BuildSparseSwitch(instruction, dex_pc); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       VLOG(compiler) << "Did not compile " | 
 |                      << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_) | 
 |                      << " because of unhandled instruction " | 
 |                      << instruction.Name(); | 
 |       MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction); | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | }  // NOLINT(readability/fn_size) | 
 |  | 
 | HLocal* HGraphBuilder::GetLocalAt(uint32_t register_index) const { | 
 |   return locals_[register_index]; | 
 | } | 
 |  | 
 | void HGraphBuilder::UpdateLocal(uint32_t register_index, | 
 |                                 HInstruction* instruction, | 
 |                                 uint32_t dex_pc) const { | 
 |   HLocal* local = GetLocalAt(register_index); | 
 |   current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction, dex_pc)); | 
 | } | 
 |  | 
 | HInstruction* HGraphBuilder::LoadLocal(uint32_t register_index, | 
 |                                        Primitive::Type type, | 
 |                                        uint32_t dex_pc) const { | 
 |   HLocal* local = GetLocalAt(register_index); | 
 |   current_block_->AddInstruction(new (arena_) HLoadLocal(local, type, dex_pc)); | 
 |   return current_block_->GetLastInstruction(); | 
 | } | 
 |  | 
 | }  // namespace art |