| /* | 
 |  * Copyright (C) 2014 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "code_generator_x86.h" | 
 |  | 
 | #include "art_method.h" | 
 | #include "code_generator_utils.h" | 
 | #include "compiled_method.h" | 
 | #include "entrypoints/quick/quick_entrypoints.h" | 
 | #include "entrypoints/quick/quick_entrypoints_enum.h" | 
 | #include "gc/accounting/card_table.h" | 
 | #include "intrinsics.h" | 
 | #include "intrinsics_x86.h" | 
 | #include "mirror/array-inl.h" | 
 | #include "mirror/class-inl.h" | 
 | #include "thread.h" | 
 | #include "utils/assembler.h" | 
 | #include "utils/stack_checks.h" | 
 | #include "utils/x86/assembler_x86.h" | 
 | #include "utils/x86/managed_register_x86.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | template<class MirrorType> | 
 | class GcRoot; | 
 |  | 
 | namespace x86 { | 
 |  | 
 | static constexpr int kCurrentMethodStackOffset = 0; | 
 | static constexpr Register kMethodRegisterArgument = EAX; | 
 | static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI }; | 
 |  | 
 | static constexpr int kC2ConditionMask = 0x400; | 
 |  | 
 | static constexpr int kFakeReturnRegister = Register(8); | 
 |  | 
 | #define __ down_cast<X86Assembler*>(codegen->GetAssembler())-> | 
 | #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86WordSize, x).Int32Value() | 
 |  | 
 | class NullCheckSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     if (instruction_->CanThrowIntoCatchBlock()) { | 
 |       // Live registers will be restored in the catch block if caught. | 
 |       SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     } | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); | 
 |   } | 
 |  | 
 |   bool IsFatal() const OVERRIDE { return true; } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86); | 
 | }; | 
 |  | 
 | class DivZeroCheckSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     if (instruction_->CanThrowIntoCatchBlock()) { | 
 |       // Live registers will be restored in the catch block if caught. | 
 |       SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     } | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); | 
 |   } | 
 |  | 
 |   bool IsFatal() const OVERRIDE { return true; } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86); | 
 | }; | 
 |  | 
 | class DivRemMinusOneSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div) | 
 |       : SlowPathCode(instruction), reg_(reg), is_div_(is_div) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     __ Bind(GetEntryLabel()); | 
 |     if (is_div_) { | 
 |       __ negl(reg_); | 
 |     } else { | 
 |       __ movl(reg_, Immediate(0)); | 
 |     } | 
 |     __ jmp(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   Register reg_; | 
 |   bool is_div_; | 
 |   DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86); | 
 | }; | 
 |  | 
 | class BoundsCheckSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     // We're moving two locations to locations that could overlap, so we need a parallel | 
 |     // move resolver. | 
 |     if (instruction_->CanThrowIntoCatchBlock()) { | 
 |       // Live registers will be restored in the catch block if caught. | 
 |       SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     } | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     x86_codegen->EmitParallelMoves( | 
 |         locations->InAt(0), | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |         Primitive::kPrimInt, | 
 |         locations->InAt(1), | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
 |         Primitive::kPrimInt); | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); | 
 |   } | 
 |  | 
 |   bool IsFatal() const OVERRIDE { return true; } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86); | 
 | }; | 
 |  | 
 | class SuspendCheckSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor) | 
 |       : SlowPathCode(instruction), successor_(successor) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes<kQuickTestSuspend, void, void>(); | 
 |     RestoreLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     if (successor_ == nullptr) { | 
 |       __ jmp(GetReturnLabel()); | 
 |     } else { | 
 |       __ jmp(x86_codegen->GetLabelOf(successor_)); | 
 |     } | 
 |   } | 
 |  | 
 |   Label* GetReturnLabel() { | 
 |     DCHECK(successor_ == nullptr); | 
 |     return &return_label_; | 
 |   } | 
 |  | 
 |   HBasicBlock* GetSuccessor() const { | 
 |     return successor_; | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   HBasicBlock* const successor_; | 
 |   Label return_label_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86); | 
 | }; | 
 |  | 
 | class LoadStringSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
 |  | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex(); | 
 |     __ movl(calling_convention.GetRegisterAt(0), Immediate(string_index)); | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); | 
 |     x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |  | 
 |     __ jmp(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86); | 
 | }; | 
 |  | 
 | class LoadClassSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   LoadClassSlowPathX86(HLoadClass* cls, | 
 |                        HInstruction* at, | 
 |                        uint32_t dex_pc, | 
 |                        bool do_clinit) | 
 |       : SlowPathCode(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) { | 
 |     DCHECK(at->IsLoadClass() || at->IsClinitCheck()); | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = at_->GetLocations(); | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     __ movl(calling_convention.GetRegisterAt(0), Immediate(cls_->GetTypeIndex())); | 
 |     x86_codegen->InvokeRuntime(do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage) | 
 |                                           : QUICK_ENTRY_POINT(pInitializeType), | 
 |                                at_, dex_pc_, this); | 
 |     if (do_clinit_) { | 
 |       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); | 
 |     } else { | 
 |       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); | 
 |     } | 
 |  | 
 |     // Move the class to the desired location. | 
 |     Location out = locations->Out(); | 
 |     if (out.IsValid()) { | 
 |       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); | 
 |       x86_codegen->Move32(out, Location::RegisterLocation(EAX)); | 
 |     } | 
 |  | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ jmp(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   // The class this slow path will load. | 
 |   HLoadClass* const cls_; | 
 |  | 
 |   // The instruction where this slow path is happening. | 
 |   // (Might be the load class or an initialization check). | 
 |   HInstruction* const at_; | 
 |  | 
 |   // The dex PC of `at_`. | 
 |   const uint32_t dex_pc_; | 
 |  | 
 |   // Whether to initialize the class. | 
 |   const bool do_clinit_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86); | 
 | }; | 
 |  | 
 | class TypeCheckSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal) | 
 |       : SlowPathCode(instruction), is_fatal_(is_fatal) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0) | 
 |                                                         : locations->Out(); | 
 |     DCHECK(instruction_->IsCheckCast() | 
 |            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
 |  | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |  | 
 |     if (!is_fatal_) { | 
 |       SaveLiveRegisters(codegen, locations); | 
 |     } | 
 |  | 
 |     // We're moving two locations to locations that could overlap, so we need a parallel | 
 |     // move resolver. | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     x86_codegen->EmitParallelMoves( | 
 |         locations->InAt(1), | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |         Primitive::kPrimNot, | 
 |         object_class, | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
 |         Primitive::kPrimNot); | 
 |  | 
 |     if (instruction_->IsInstanceOf()) { | 
 |       x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial), | 
 |                                  instruction_, | 
 |                                  instruction_->GetDexPc(), | 
 |                                  this); | 
 |       CheckEntrypointTypes< | 
 |           kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>(); | 
 |     } else { | 
 |       DCHECK(instruction_->IsCheckCast()); | 
 |       x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), | 
 |                                  instruction_, | 
 |                                  instruction_->GetDexPc(), | 
 |                                  this); | 
 |       CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>(); | 
 |     } | 
 |  | 
 |     if (!is_fatal_) { | 
 |       if (instruction_->IsInstanceOf()) { | 
 |         x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); | 
 |       } | 
 |       RestoreLiveRegisters(codegen, locations); | 
 |  | 
 |       __ jmp(GetExitLabel()); | 
 |     } | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; } | 
 |   bool IsFatal() const OVERRIDE { return is_fatal_; } | 
 |  | 
 |  private: | 
 |   const bool is_fatal_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86); | 
 | }; | 
 |  | 
 | class DeoptimizationSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   explicit DeoptimizationSlowPathX86(HDeoptimize* instruction) | 
 |     : SlowPathCode(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes<kQuickDeoptimize, void, void>(); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86); | 
 | }; | 
 |  | 
 | class ArraySetSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     HParallelMove parallel_move(codegen->GetGraph()->GetArena()); | 
 |     parallel_move.AddMove( | 
 |         locations->InAt(0), | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |         Primitive::kPrimNot, | 
 |         nullptr); | 
 |     parallel_move.AddMove( | 
 |         locations->InAt(1), | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
 |         Primitive::kPrimInt, | 
 |         nullptr); | 
 |     parallel_move.AddMove( | 
 |         locations->InAt(2), | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(2)), | 
 |         Primitive::kPrimNot, | 
 |         nullptr); | 
 |     codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |  | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ jmp(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86); | 
 | }; | 
 |  | 
 | // Slow path marking an object during a read barrier. | 
 | class ReadBarrierMarkSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   ReadBarrierMarkSlowPathX86(HInstruction* instruction, Location out, Location obj) | 
 |       : SlowPathCode(instruction), out_(out), obj_(obj) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86"; } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Register reg_out = out_.AsRegister<Register>(); | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); | 
 |     DCHECK(instruction_->IsInstanceFieldGet() || | 
 |            instruction_->IsStaticFieldGet() || | 
 |            instruction_->IsArrayGet() || | 
 |            instruction_->IsLoadClass() || | 
 |            instruction_->IsLoadString() || | 
 |            instruction_->IsInstanceOf() || | 
 |            instruction_->IsCheckCast()) | 
 |         << "Unexpected instruction in read barrier marking slow path: " | 
 |         << instruction_->DebugName(); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), obj_); | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>(); | 
 |     x86_codegen->Move32(out_, Location::RegisterLocation(EAX)); | 
 |  | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ jmp(GetExitLabel()); | 
 |   } | 
 |  | 
 |  private: | 
 |   const Location out_; | 
 |   const Location obj_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86); | 
 | }; | 
 |  | 
 | // Slow path generating a read barrier for a heap reference. | 
 | class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction, | 
 |                                          Location out, | 
 |                                          Location ref, | 
 |                                          Location obj, | 
 |                                          uint32_t offset, | 
 |                                          Location index) | 
 |       : SlowPathCode(instruction), | 
 |         out_(out), | 
 |         ref_(ref), | 
 |         obj_(obj), | 
 |         offset_(offset), | 
 |         index_(index) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |     // If `obj` is equal to `out` or `ref`, it means the initial object | 
 |     // has been overwritten by (or after) the heap object reference load | 
 |     // to be instrumented, e.g.: | 
 |     // | 
 |     //   __ movl(out, Address(out, offset)); | 
 |     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); | 
 |     // | 
 |     // In that case, we have lost the information about the original | 
 |     // object, and the emitted read barrier cannot work properly. | 
 |     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; | 
 |     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Register reg_out = out_.AsRegister<Register>(); | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); | 
 |     DCHECK(!instruction_->IsInvoke() || | 
 |            (instruction_->IsInvokeStaticOrDirect() && | 
 |             instruction_->GetLocations()->Intrinsified())) | 
 |         << "Unexpected instruction in read barrier for heap reference slow path: " | 
 |         << instruction_->DebugName(); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     // We may have to change the index's value, but as `index_` is a | 
 |     // constant member (like other "inputs" of this slow path), | 
 |     // introduce a copy of it, `index`. | 
 |     Location index = index_; | 
 |     if (index_.IsValid()) { | 
 |       // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject. | 
 |       if (instruction_->IsArrayGet()) { | 
 |         // Compute the actual memory offset and store it in `index`. | 
 |         Register index_reg = index_.AsRegister<Register>(); | 
 |         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); | 
 |         if (codegen->IsCoreCalleeSaveRegister(index_reg)) { | 
 |           // We are about to change the value of `index_reg` (see the | 
 |           // calls to art::x86::X86Assembler::shll and | 
 |           // art::x86::X86Assembler::AddImmediate below), but it has | 
 |           // not been saved by the previous call to | 
 |           // art::SlowPathCode::SaveLiveRegisters, as it is a | 
 |           // callee-save register -- | 
 |           // art::SlowPathCode::SaveLiveRegisters does not consider | 
 |           // callee-save registers, as it has been designed with the | 
 |           // assumption that callee-save registers are supposed to be | 
 |           // handled by the called function.  So, as a callee-save | 
 |           // register, `index_reg` _would_ eventually be saved onto | 
 |           // the stack, but it would be too late: we would have | 
 |           // changed its value earlier.  Therefore, we manually save | 
 |           // it here into another freely available register, | 
 |           // `free_reg`, chosen of course among the caller-save | 
 |           // registers (as a callee-save `free_reg` register would | 
 |           // exhibit the same problem). | 
 |           // | 
 |           // Note we could have requested a temporary register from | 
 |           // the register allocator instead; but we prefer not to, as | 
 |           // this is a slow path, and we know we can find a | 
 |           // caller-save register that is available. | 
 |           Register free_reg = FindAvailableCallerSaveRegister(codegen); | 
 |           __ movl(free_reg, index_reg); | 
 |           index_reg = free_reg; | 
 |           index = Location::RegisterLocation(index_reg); | 
 |         } else { | 
 |           // The initial register stored in `index_` has already been | 
 |           // saved in the call to art::SlowPathCode::SaveLiveRegisters | 
 |           // (as it is not a callee-save register), so we can freely | 
 |           // use it. | 
 |         } | 
 |         // Shifting the index value contained in `index_reg` by the scale | 
 |         // factor (2) cannot overflow in practice, as the runtime is | 
 |         // unable to allocate object arrays with a size larger than | 
 |         // 2^26 - 1 (that is, 2^28 - 4 bytes). | 
 |         __ shll(index_reg, Immediate(TIMES_4)); | 
 |         static_assert( | 
 |             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
 |             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
 |         __ AddImmediate(index_reg, Immediate(offset_)); | 
 |       } else { | 
 |         DCHECK(instruction_->IsInvoke()); | 
 |         DCHECK(instruction_->GetLocations()->Intrinsified()); | 
 |         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || | 
 |                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) | 
 |             << instruction_->AsInvoke()->GetIntrinsic(); | 
 |         DCHECK_EQ(offset_, 0U); | 
 |         DCHECK(index_.IsRegisterPair()); | 
 |         // UnsafeGet's offset location is a register pair, the low | 
 |         // part contains the correct offset. | 
 |         index = index_.ToLow(); | 
 |       } | 
 |     } | 
 |  | 
 |     // We're moving two or three locations to locations that could | 
 |     // overlap, so we need a parallel move resolver. | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     HParallelMove parallel_move(codegen->GetGraph()->GetArena()); | 
 |     parallel_move.AddMove(ref_, | 
 |                           Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |                           Primitive::kPrimNot, | 
 |                           nullptr); | 
 |     parallel_move.AddMove(obj_, | 
 |                           Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
 |                           Primitive::kPrimNot, | 
 |                           nullptr); | 
 |     if (index.IsValid()) { | 
 |       parallel_move.AddMove(index, | 
 |                             Location::RegisterLocation(calling_convention.GetRegisterAt(2)), | 
 |                             Primitive::kPrimInt, | 
 |                             nullptr); | 
 |       codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |     } else { | 
 |       codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |       __ movl(calling_convention.GetRegisterAt(2), Immediate(offset_)); | 
 |     } | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes< | 
 |         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); | 
 |     x86_codegen->Move32(out_, Location::RegisterLocation(EAX)); | 
 |  | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ jmp(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { | 
 |     size_t ref = static_cast<int>(ref_.AsRegister<Register>()); | 
 |     size_t obj = static_cast<int>(obj_.AsRegister<Register>()); | 
 |     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { | 
 |       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { | 
 |         return static_cast<Register>(i); | 
 |       } | 
 |     } | 
 |     // We shall never fail to find a free caller-save register, as | 
 |     // there are more than two core caller-save registers on x86 | 
 |     // (meaning it is possible to find one which is different from | 
 |     // `ref` and `obj`). | 
 |     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); | 
 |     LOG(FATAL) << "Could not find a free caller-save register"; | 
 |     UNREACHABLE(); | 
 |   } | 
 |  | 
 |   const Location out_; | 
 |   const Location ref_; | 
 |   const Location obj_; | 
 |   const uint32_t offset_; | 
 |   // An additional location containing an index to an array. | 
 |   // Only used for HArrayGet and the UnsafeGetObject & | 
 |   // UnsafeGetObjectVolatile intrinsics. | 
 |   const Location index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86); | 
 | }; | 
 |  | 
 | // Slow path generating a read barrier for a GC root. | 
 | class ReadBarrierForRootSlowPathX86 : public SlowPathCode { | 
 |  public: | 
 |   ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root) | 
 |       : SlowPathCode(instruction), out_(out), root_(root) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Register reg_out = out_.AsRegister<Register>(); | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); | 
 |     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) | 
 |         << "Unexpected instruction in read barrier for GC root slow path: " | 
 |         << instruction_->DebugName(); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); | 
 |     x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); | 
 |     x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow), | 
 |                                instruction_, | 
 |                                instruction_->GetDexPc(), | 
 |                                this); | 
 |     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); | 
 |     x86_codegen->Move32(out_, Location::RegisterLocation(EAX)); | 
 |  | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ jmp(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86"; } | 
 |  | 
 |  private: | 
 |   const Location out_; | 
 |   const Location root_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86); | 
 | }; | 
 |  | 
 | #undef __ | 
 | #define __ down_cast<X86Assembler*>(GetAssembler())-> | 
 |  | 
 | inline Condition X86Condition(IfCondition cond) { | 
 |   switch (cond) { | 
 |     case kCondEQ: return kEqual; | 
 |     case kCondNE: return kNotEqual; | 
 |     case kCondLT: return kLess; | 
 |     case kCondLE: return kLessEqual; | 
 |     case kCondGT: return kGreater; | 
 |     case kCondGE: return kGreaterEqual; | 
 |     case kCondB:  return kBelow; | 
 |     case kCondBE: return kBelowEqual; | 
 |     case kCondA:  return kAbove; | 
 |     case kCondAE: return kAboveEqual; | 
 |   } | 
 |   LOG(FATAL) << "Unreachable"; | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | // Maps signed condition to unsigned condition and FP condition to x86 name. | 
 | inline Condition X86UnsignedOrFPCondition(IfCondition cond) { | 
 |   switch (cond) { | 
 |     case kCondEQ: return kEqual; | 
 |     case kCondNE: return kNotEqual; | 
 |     // Signed to unsigned, and FP to x86 name. | 
 |     case kCondLT: return kBelow; | 
 |     case kCondLE: return kBelowEqual; | 
 |     case kCondGT: return kAbove; | 
 |     case kCondGE: return kAboveEqual; | 
 |     // Unsigned remain unchanged. | 
 |     case kCondB:  return kBelow; | 
 |     case kCondBE: return kBelowEqual; | 
 |     case kCondA:  return kAbove; | 
 |     case kCondAE: return kAboveEqual; | 
 |   } | 
 |   LOG(FATAL) << "Unreachable"; | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const { | 
 |   stream << Register(reg); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const { | 
 |   stream << XmmRegister(reg); | 
 | } | 
 |  | 
 | size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { | 
 |   __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id)); | 
 |   return kX86WordSize; | 
 | } | 
 |  | 
 | size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { | 
 |   __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index)); | 
 |   return kX86WordSize; | 
 | } | 
 |  | 
 | size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { | 
 |   __ movsd(Address(ESP, stack_index), XmmRegister(reg_id)); | 
 |   return GetFloatingPointSpillSlotSize(); | 
 | } | 
 |  | 
 | size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { | 
 |   __ movsd(XmmRegister(reg_id), Address(ESP, stack_index)); | 
 |   return GetFloatingPointSpillSlotSize(); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint, | 
 |                                      HInstruction* instruction, | 
 |                                      uint32_t dex_pc, | 
 |                                      SlowPathCode* slow_path) { | 
 |   InvokeRuntime(GetThreadOffset<kX86WordSize>(entrypoint).Int32Value(), | 
 |                 instruction, | 
 |                 dex_pc, | 
 |                 slow_path); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::InvokeRuntime(int32_t entry_point_offset, | 
 |                                      HInstruction* instruction, | 
 |                                      uint32_t dex_pc, | 
 |                                      SlowPathCode* slow_path) { | 
 |   ValidateInvokeRuntime(instruction, slow_path); | 
 |   __ fs()->call(Address::Absolute(entry_point_offset)); | 
 |   RecordPcInfo(instruction, dex_pc, slow_path); | 
 | } | 
 |  | 
 | CodeGeneratorX86::CodeGeneratorX86(HGraph* graph, | 
 |                                    const X86InstructionSetFeatures& isa_features, | 
 |                                    const CompilerOptions& compiler_options, | 
 |                                    OptimizingCompilerStats* stats) | 
 |     : CodeGenerator(graph, | 
 |                     kNumberOfCpuRegisters, | 
 |                     kNumberOfXmmRegisters, | 
 |                     kNumberOfRegisterPairs, | 
 |                     ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), | 
 |                                         arraysize(kCoreCalleeSaves)) | 
 |                         | (1 << kFakeReturnRegister), | 
 |                     0, | 
 |                     compiler_options, | 
 |                     stats), | 
 |       block_labels_(nullptr), | 
 |       location_builder_(graph, this), | 
 |       instruction_visitor_(graph, this), | 
 |       move_resolver_(graph->GetArena(), this), | 
 |       isa_features_(isa_features), | 
 |       method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
 |       relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
 |       pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
 |       simple_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
 |       string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), | 
 |       fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { | 
 |   // Use a fake return address register to mimic Quick. | 
 |   AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister)); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::SetupBlockedRegisters() const { | 
 |   // Don't allocate the dalvik style register pair passing. | 
 |   blocked_register_pairs_[ECX_EDX] = true; | 
 |  | 
 |   // Stack register is always reserved. | 
 |   blocked_core_registers_[ESP] = true; | 
 |  | 
 |   UpdateBlockedPairRegisters(); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::UpdateBlockedPairRegisters() const { | 
 |   for (int i = 0; i < kNumberOfRegisterPairs; i++) { | 
 |     X86ManagedRegister current = | 
 |         X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i)); | 
 |     if (blocked_core_registers_[current.AsRegisterPairLow()] | 
 |         || blocked_core_registers_[current.AsRegisterPairHigh()]) { | 
 |       blocked_register_pairs_[i] = true; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen) | 
 |       : InstructionCodeGenerator(graph, codegen), | 
 |         assembler_(codegen->GetAssembler()), | 
 |         codegen_(codegen) {} | 
 |  | 
 | static dwarf::Reg DWARFReg(Register reg) { | 
 |   return dwarf::Reg::X86Core(static_cast<int>(reg)); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateFrameEntry() { | 
 |   __ cfi().SetCurrentCFAOffset(kX86WordSize);  // return address | 
 |   __ Bind(&frame_entry_label_); | 
 |   bool skip_overflow_check = | 
 |       IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86); | 
 |   DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); | 
 |  | 
 |   if (!skip_overflow_check) { | 
 |     __ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86)))); | 
 |     RecordPcInfo(nullptr, 0); | 
 |   } | 
 |  | 
 |   if (HasEmptyFrame()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { | 
 |     Register reg = kCoreCalleeSaves[i]; | 
 |     if (allocated_registers_.ContainsCoreRegister(reg)) { | 
 |       __ pushl(reg); | 
 |       __ cfi().AdjustCFAOffset(kX86WordSize); | 
 |       __ cfi().RelOffset(DWARFReg(reg), 0); | 
 |     } | 
 |   } | 
 |  | 
 |   int adjust = GetFrameSize() - FrameEntrySpillSize(); | 
 |   __ subl(ESP, Immediate(adjust)); | 
 |   __ cfi().AdjustCFAOffset(adjust); | 
 |   __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateFrameExit() { | 
 |   __ cfi().RememberState(); | 
 |   if (!HasEmptyFrame()) { | 
 |     int adjust = GetFrameSize() - FrameEntrySpillSize(); | 
 |     __ addl(ESP, Immediate(adjust)); | 
 |     __ cfi().AdjustCFAOffset(-adjust); | 
 |  | 
 |     for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { | 
 |       Register reg = kCoreCalleeSaves[i]; | 
 |       if (allocated_registers_.ContainsCoreRegister(reg)) { | 
 |         __ popl(reg); | 
 |         __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize)); | 
 |         __ cfi().Restore(DWARFReg(reg)); | 
 |       } | 
 |     } | 
 |   } | 
 |   __ ret(); | 
 |   __ cfi().RestoreState(); | 
 |   __ cfi().DefCFAOffset(GetFrameSize()); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::Bind(HBasicBlock* block) { | 
 |   __ Bind(GetLabelOf(block)); | 
 | } | 
 |  | 
 | Location CodeGeneratorX86::GetStackLocation(HLoadLocal* load) const { | 
 |   switch (load->GetType()) { | 
 |     case Primitive::kPrimLong: | 
 |     case Primitive::kPrimDouble: | 
 |       return Location::DoubleStackSlot(GetStackSlot(load->GetLocal())); | 
 |  | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimNot: | 
 |     case Primitive::kPrimFloat: | 
 |       return Location::StackSlot(GetStackSlot(load->GetLocal())); | 
 |  | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: | 
 |     case Primitive::kPrimChar: | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimVoid: | 
 |       LOG(FATAL) << "Unexpected type " << load->GetType(); | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   LOG(FATAL) << "Unreachable"; | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const { | 
 |   switch (type) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: | 
 |     case Primitive::kPrimChar: | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimNot: | 
 |       return Location::RegisterLocation(EAX); | 
 |  | 
 |     case Primitive::kPrimLong: | 
 |       return Location::RegisterPairLocation(EAX, EDX); | 
 |  | 
 |     case Primitive::kPrimVoid: | 
 |       return Location::NoLocation(); | 
 |  | 
 |     case Primitive::kPrimDouble: | 
 |     case Primitive::kPrimFloat: | 
 |       return Location::FpuRegisterLocation(XMM0); | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const { | 
 |   return Location::RegisterLocation(kMethodRegisterArgument); | 
 | } | 
 |  | 
 | Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) { | 
 |   switch (type) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: | 
 |     case Primitive::kPrimChar: | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimNot: { | 
 |       uint32_t index = gp_index_++; | 
 |       stack_index_++; | 
 |       if (index < calling_convention.GetNumberOfRegisters()) { | 
 |         return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); | 
 |       } else { | 
 |         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); | 
 |       } | 
 |     } | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       uint32_t index = gp_index_; | 
 |       gp_index_ += 2; | 
 |       stack_index_ += 2; | 
 |       if (index + 1 < calling_convention.GetNumberOfRegisters()) { | 
 |         X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair( | 
 |             calling_convention.GetRegisterPairAt(index)); | 
 |         return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh()); | 
 |       } else { | 
 |         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); | 
 |       } | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       uint32_t index = float_index_++; | 
 |       stack_index_++; | 
 |       if (index < calling_convention.GetNumberOfFpuRegisters()) { | 
 |         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); | 
 |       } else { | 
 |         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); | 
 |       } | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       uint32_t index = float_index_++; | 
 |       stack_index_ += 2; | 
 |       if (index < calling_convention.GetNumberOfFpuRegisters()) { | 
 |         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); | 
 |       } else { | 
 |         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); | 
 |       } | 
 |     } | 
 |  | 
 |     case Primitive::kPrimVoid: | 
 |       LOG(FATAL) << "Unexpected parameter type " << type; | 
 |       break; | 
 |   } | 
 |   return Location::NoLocation(); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::Move32(Location destination, Location source) { | 
 |   if (source.Equals(destination)) { | 
 |     return; | 
 |   } | 
 |   if (destination.IsRegister()) { | 
 |     if (source.IsRegister()) { | 
 |       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); | 
 |     } else if (source.IsFpuRegister()) { | 
 |       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>()); | 
 |     } else { | 
 |       DCHECK(source.IsStackSlot()); | 
 |       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); | 
 |     } | 
 |   } else if (destination.IsFpuRegister()) { | 
 |     if (source.IsRegister()) { | 
 |       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>()); | 
 |     } else if (source.IsFpuRegister()) { | 
 |       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); | 
 |     } else { | 
 |       DCHECK(source.IsStackSlot()); | 
 |       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); | 
 |     } | 
 |   } else { | 
 |     DCHECK(destination.IsStackSlot()) << destination; | 
 |     if (source.IsRegister()) { | 
 |       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); | 
 |     } else if (source.IsFpuRegister()) { | 
 |       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); | 
 |     } else if (source.IsConstant()) { | 
 |       HConstant* constant = source.GetConstant(); | 
 |       int32_t value = GetInt32ValueOf(constant); | 
 |       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); | 
 |     } else { | 
 |       DCHECK(source.IsStackSlot()); | 
 |       __ pushl(Address(ESP, source.GetStackIndex())); | 
 |       __ popl(Address(ESP, destination.GetStackIndex())); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorX86::Move64(Location destination, Location source) { | 
 |   if (source.Equals(destination)) { | 
 |     return; | 
 |   } | 
 |   if (destination.IsRegisterPair()) { | 
 |     if (source.IsRegisterPair()) { | 
 |       EmitParallelMoves( | 
 |           Location::RegisterLocation(source.AsRegisterPairHigh<Register>()), | 
 |           Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()), | 
 |           Primitive::kPrimInt, | 
 |           Location::RegisterLocation(source.AsRegisterPairLow<Register>()), | 
 |           Location::RegisterLocation(destination.AsRegisterPairLow<Register>()), | 
 |           Primitive::kPrimInt); | 
 |     } else if (source.IsFpuRegister()) { | 
 |       XmmRegister src_reg = source.AsFpuRegister<XmmRegister>(); | 
 |       __ movd(destination.AsRegisterPairLow<Register>(), src_reg); | 
 |       __ psrlq(src_reg, Immediate(32)); | 
 |       __ movd(destination.AsRegisterPairHigh<Register>(), src_reg); | 
 |     } else { | 
 |       // No conflict possible, so just do the moves. | 
 |       DCHECK(source.IsDoubleStackSlot()); | 
 |       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex())); | 
 |       __ movl(destination.AsRegisterPairHigh<Register>(), | 
 |               Address(ESP, source.GetHighStackIndex(kX86WordSize))); | 
 |     } | 
 |   } else if (destination.IsFpuRegister()) { | 
 |     if (source.IsFpuRegister()) { | 
 |       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); | 
 |     } else if (source.IsDoubleStackSlot()) { | 
 |       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); | 
 |     } else if (source.IsRegisterPair()) { | 
 |       size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt); | 
 |       // Create stack space for 2 elements. | 
 |       __ subl(ESP, Immediate(2 * elem_size)); | 
 |       __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>()); | 
 |       __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>()); | 
 |       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); | 
 |       // And remove the temporary stack space we allocated. | 
 |       __ addl(ESP, Immediate(2 * elem_size)); | 
 |     } else { | 
 |       LOG(FATAL) << "Unimplemented"; | 
 |     } | 
 |   } else { | 
 |     DCHECK(destination.IsDoubleStackSlot()) << destination; | 
 |     if (source.IsRegisterPair()) { | 
 |       // No conflict possible, so just do the moves. | 
 |       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>()); | 
 |       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), | 
 |               source.AsRegisterPairHigh<Register>()); | 
 |     } else if (source.IsFpuRegister()) { | 
 |       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); | 
 |     } else if (source.IsConstant()) { | 
 |       HConstant* constant = source.GetConstant(); | 
 |       int64_t value; | 
 |       if (constant->IsLongConstant()) { | 
 |         value = constant->AsLongConstant()->GetValue(); | 
 |       } else { | 
 |         DCHECK(constant->IsDoubleConstant()); | 
 |         value = bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue()); | 
 |       } | 
 |       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value))); | 
 |       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), Immediate(High32Bits(value))); | 
 |     } else { | 
 |       DCHECK(source.IsDoubleStackSlot()) << source; | 
 |       EmitParallelMoves( | 
 |           Location::StackSlot(source.GetStackIndex()), | 
 |           Location::StackSlot(destination.GetStackIndex()), | 
 |           Primitive::kPrimInt, | 
 |           Location::StackSlot(source.GetHighStackIndex(kX86WordSize)), | 
 |           Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)), | 
 |           Primitive::kPrimInt); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorX86::MoveConstant(Location location, int32_t value) { | 
 |   DCHECK(location.IsRegister()); | 
 |   __ movl(location.AsRegister<Register>(), Immediate(value)); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::MoveLocation(Location dst, Location src, Primitive::Type dst_type) { | 
 |   HParallelMove move(GetGraph()->GetArena()); | 
 |   if (dst_type == Primitive::kPrimLong && !src.IsConstant() && !src.IsFpuRegister()) { | 
 |     move.AddMove(src.ToLow(), dst.ToLow(), Primitive::kPrimInt, nullptr); | 
 |     move.AddMove(src.ToHigh(), dst.ToHigh(), Primitive::kPrimInt, nullptr); | 
 |   } else { | 
 |     move.AddMove(src, dst, dst_type, nullptr); | 
 |   } | 
 |   GetMoveResolver()->EmitNativeCode(&move); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) { | 
 |   if (location.IsRegister()) { | 
 |     locations->AddTemp(location); | 
 |   } else if (location.IsRegisterPair()) { | 
 |     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>())); | 
 |     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>())); | 
 |   } else { | 
 |     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) { | 
 |   DCHECK(!successor->IsExitBlock()); | 
 |  | 
 |   HBasicBlock* block = got->GetBlock(); | 
 |   HInstruction* previous = got->GetPrevious(); | 
 |  | 
 |   HLoopInformation* info = block->GetLoopInformation(); | 
 |   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { | 
 |     GenerateSuspendCheck(info->GetSuspendCheck(), successor); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { | 
 |     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); | 
 |   } | 
 |   if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { | 
 |     __ jmp(codegen_->GetLabelOf(successor)); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitGoto(HGoto* got) { | 
 |   got->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) { | 
 |   HandleGoto(got, got->GetSuccessor()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) { | 
 |   try_boundary->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) { | 
 |   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); | 
 |   if (!successor->IsExitBlock()) { | 
 |     HandleGoto(try_boundary, successor); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitExit(HExit* exit) { | 
 |   exit->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { | 
 | } | 
 |  | 
 | template<class LabelType> | 
 | void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond, | 
 |                                                   LabelType* true_label, | 
 |                                                   LabelType* false_label) { | 
 |   if (cond->IsFPConditionTrueIfNaN()) { | 
 |     __ j(kUnordered, true_label); | 
 |   } else if (cond->IsFPConditionFalseIfNaN()) { | 
 |     __ j(kUnordered, false_label); | 
 |   } | 
 |   __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label); | 
 | } | 
 |  | 
 | template<class LabelType> | 
 | void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond, | 
 |                                                                LabelType* true_label, | 
 |                                                                LabelType* false_label) { | 
 |   LocationSummary* locations = cond->GetLocations(); | 
 |   Location left = locations->InAt(0); | 
 |   Location right = locations->InAt(1); | 
 |   IfCondition if_cond = cond->GetCondition(); | 
 |  | 
 |   Register left_high = left.AsRegisterPairHigh<Register>(); | 
 |   Register left_low = left.AsRegisterPairLow<Register>(); | 
 |   IfCondition true_high_cond = if_cond; | 
 |   IfCondition false_high_cond = cond->GetOppositeCondition(); | 
 |   Condition final_condition = X86UnsignedOrFPCondition(if_cond);  // unsigned on lower part | 
 |  | 
 |   // Set the conditions for the test, remembering that == needs to be | 
 |   // decided using the low words. | 
 |   switch (if_cond) { | 
 |     case kCondEQ: | 
 |     case kCondNE: | 
 |       // Nothing to do. | 
 |       break; | 
 |     case kCondLT: | 
 |       false_high_cond = kCondGT; | 
 |       break; | 
 |     case kCondLE: | 
 |       true_high_cond = kCondLT; | 
 |       break; | 
 |     case kCondGT: | 
 |       false_high_cond = kCondLT; | 
 |       break; | 
 |     case kCondGE: | 
 |       true_high_cond = kCondGT; | 
 |       break; | 
 |     case kCondB: | 
 |       false_high_cond = kCondA; | 
 |       break; | 
 |     case kCondBE: | 
 |       true_high_cond = kCondB; | 
 |       break; | 
 |     case kCondA: | 
 |       false_high_cond = kCondB; | 
 |       break; | 
 |     case kCondAE: | 
 |       true_high_cond = kCondA; | 
 |       break; | 
 |   } | 
 |  | 
 |   if (right.IsConstant()) { | 
 |     int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); | 
 |     int32_t val_high = High32Bits(value); | 
 |     int32_t val_low = Low32Bits(value); | 
 |  | 
 |     codegen_->Compare32BitValue(left_high, val_high); | 
 |     if (if_cond == kCondNE) { | 
 |       __ j(X86Condition(true_high_cond), true_label); | 
 |     } else if (if_cond == kCondEQ) { | 
 |       __ j(X86Condition(false_high_cond), false_label); | 
 |     } else { | 
 |       __ j(X86Condition(true_high_cond), true_label); | 
 |       __ j(X86Condition(false_high_cond), false_label); | 
 |     } | 
 |     // Must be equal high, so compare the lows. | 
 |     codegen_->Compare32BitValue(left_low, val_low); | 
 |   } else if (right.IsRegisterPair()) { | 
 |     Register right_high = right.AsRegisterPairHigh<Register>(); | 
 |     Register right_low = right.AsRegisterPairLow<Register>(); | 
 |  | 
 |     __ cmpl(left_high, right_high); | 
 |     if (if_cond == kCondNE) { | 
 |       __ j(X86Condition(true_high_cond), true_label); | 
 |     } else if (if_cond == kCondEQ) { | 
 |       __ j(X86Condition(false_high_cond), false_label); | 
 |     } else { | 
 |       __ j(X86Condition(true_high_cond), true_label); | 
 |       __ j(X86Condition(false_high_cond), false_label); | 
 |     } | 
 |     // Must be equal high, so compare the lows. | 
 |     __ cmpl(left_low, right_low); | 
 |   } else { | 
 |     DCHECK(right.IsDoubleStackSlot()); | 
 |     __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize))); | 
 |     if (if_cond == kCondNE) { | 
 |       __ j(X86Condition(true_high_cond), true_label); | 
 |     } else if (if_cond == kCondEQ) { | 
 |       __ j(X86Condition(false_high_cond), false_label); | 
 |     } else { | 
 |       __ j(X86Condition(true_high_cond), true_label); | 
 |       __ j(X86Condition(false_high_cond), false_label); | 
 |     } | 
 |     // Must be equal high, so compare the lows. | 
 |     __ cmpl(left_low, Address(ESP, right.GetStackIndex())); | 
 |   } | 
 |   // The last comparison might be unsigned. | 
 |   __ j(final_condition, true_label); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs, | 
 |                                                     Location rhs, | 
 |                                                     HInstruction* insn, | 
 |                                                     bool is_double) { | 
 |   HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable(); | 
 |   if (is_double) { | 
 |     if (rhs.IsFpuRegister()) { | 
 |       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); | 
 |     } else if (const_area != nullptr) { | 
 |       DCHECK(const_area->IsEmittedAtUseSite()); | 
 |       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralDoubleAddress( | 
 |                    const_area->GetConstant()->AsDoubleConstant()->GetValue(), | 
 |                    const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |     } else { | 
 |       DCHECK(rhs.IsDoubleStackSlot()); | 
 |       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex())); | 
 |     } | 
 |   } else { | 
 |     if (rhs.IsFpuRegister()) { | 
 |       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); | 
 |     } else if (const_area != nullptr) { | 
 |       DCHECK(const_area->IsEmittedAtUseSite()); | 
 |       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralFloatAddress( | 
 |                    const_area->GetConstant()->AsFloatConstant()->GetValue(), | 
 |                    const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |     } else { | 
 |       DCHECK(rhs.IsStackSlot()); | 
 |       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex())); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template<class LabelType> | 
 | void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition, | 
 |                                                                LabelType* true_target_in, | 
 |                                                                LabelType* false_target_in) { | 
 |   // Generated branching requires both targets to be explicit. If either of the | 
 |   // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. | 
 |   LabelType fallthrough_target; | 
 |   LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; | 
 |   LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; | 
 |  | 
 |   LocationSummary* locations = condition->GetLocations(); | 
 |   Location left = locations->InAt(0); | 
 |   Location right = locations->InAt(1); | 
 |  | 
 |   Primitive::Type type = condition->InputAt(0)->GetType(); | 
 |   switch (type) { | 
 |     case Primitive::kPrimLong: | 
 |       GenerateLongComparesAndJumps(condition, true_target, false_target); | 
 |       break; | 
 |     case Primitive::kPrimFloat: | 
 |       GenerateFPCompare(left, right, condition, false); | 
 |       GenerateFPJumps(condition, true_target, false_target); | 
 |       break; | 
 |     case Primitive::kPrimDouble: | 
 |       GenerateFPCompare(left, right, condition, true); | 
 |       GenerateFPJumps(condition, true_target, false_target); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected compare type " << type; | 
 |   } | 
 |  | 
 |   if (false_target != &fallthrough_target) { | 
 |     __ jmp(false_target); | 
 |   } | 
 |  | 
 |   if (fallthrough_target.IsLinked()) { | 
 |     __ Bind(&fallthrough_target); | 
 |   } | 
 | } | 
 |  | 
 | static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) { | 
 |   // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS | 
 |   // are set only strictly before `branch`. We can't use the eflags on long/FP | 
 |   // conditions if they are materialized due to the complex branching. | 
 |   return cond->IsCondition() && | 
 |          cond->GetNext() == branch && | 
 |          cond->InputAt(0)->GetType() != Primitive::kPrimLong && | 
 |          !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType()); | 
 | } | 
 |  | 
 | template<class LabelType> | 
 | void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction, | 
 |                                                         size_t condition_input_index, | 
 |                                                         LabelType* true_target, | 
 |                                                         LabelType* false_target) { | 
 |   HInstruction* cond = instruction->InputAt(condition_input_index); | 
 |  | 
 |   if (true_target == nullptr && false_target == nullptr) { | 
 |     // Nothing to do. The code always falls through. | 
 |     return; | 
 |   } else if (cond->IsIntConstant()) { | 
 |     // Constant condition, statically compared against "true" (integer value 1). | 
 |     if (cond->AsIntConstant()->IsTrue()) { | 
 |       if (true_target != nullptr) { | 
 |         __ jmp(true_target); | 
 |       } | 
 |     } else { | 
 |       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); | 
 |       if (false_target != nullptr) { | 
 |         __ jmp(false_target); | 
 |       } | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // The following code generates these patterns: | 
 |   //  (1) true_target == nullptr && false_target != nullptr | 
 |   //        - opposite condition true => branch to false_target | 
 |   //  (2) true_target != nullptr && false_target == nullptr | 
 |   //        - condition true => branch to true_target | 
 |   //  (3) true_target != nullptr && false_target != nullptr | 
 |   //        - condition true => branch to true_target | 
 |   //        - branch to false_target | 
 |   if (IsBooleanValueOrMaterializedCondition(cond)) { | 
 |     if (AreEflagsSetFrom(cond, instruction)) { | 
 |       if (true_target == nullptr) { | 
 |         __ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target); | 
 |       } else { | 
 |         __ j(X86Condition(cond->AsCondition()->GetCondition()), true_target); | 
 |       } | 
 |     } else { | 
 |       // Materialized condition, compare against 0. | 
 |       Location lhs = instruction->GetLocations()->InAt(condition_input_index); | 
 |       if (lhs.IsRegister()) { | 
 |         __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>()); | 
 |       } else { | 
 |         __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0)); | 
 |       } | 
 |       if (true_target == nullptr) { | 
 |         __ j(kEqual, false_target); | 
 |       } else { | 
 |         __ j(kNotEqual, true_target); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     // Condition has not been materialized, use its inputs as the comparison and | 
 |     // its condition as the branch condition. | 
 |     HCondition* condition = cond->AsCondition(); | 
 |  | 
 |     // If this is a long or FP comparison that has been folded into | 
 |     // the HCondition, generate the comparison directly. | 
 |     Primitive::Type type = condition->InputAt(0)->GetType(); | 
 |     if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { | 
 |       GenerateCompareTestAndBranch(condition, true_target, false_target); | 
 |       return; | 
 |     } | 
 |  | 
 |     Location lhs = condition->GetLocations()->InAt(0); | 
 |     Location rhs = condition->GetLocations()->InAt(1); | 
 |     // LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition). | 
 |     if (rhs.IsRegister()) { | 
 |       __ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>()); | 
 |     } else if (rhs.IsConstant()) { | 
 |       int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); | 
 |       codegen_->Compare32BitValue(lhs.AsRegister<Register>(), constant); | 
 |     } else { | 
 |       __ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex())); | 
 |     } | 
 |     if (true_target == nullptr) { | 
 |       __ j(X86Condition(condition->GetOppositeCondition()), false_target); | 
 |     } else { | 
 |       __ j(X86Condition(condition->GetCondition()), true_target); | 
 |     } | 
 |   } | 
 |  | 
 |   // If neither branch falls through (case 3), the conditional branch to `true_target` | 
 |   // was already emitted (case 2) and we need to emit a jump to `false_target`. | 
 |   if (true_target != nullptr && false_target != nullptr) { | 
 |     __ jmp(false_target); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitIf(HIf* if_instr) { | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); | 
 |   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { | 
 |     locations->SetInAt(0, Location::Any()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) { | 
 |   HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); | 
 |   HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); | 
 |   Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? | 
 |       nullptr : codegen_->GetLabelOf(true_successor); | 
 |   Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? | 
 |       nullptr : codegen_->GetLabelOf(false_successor); | 
 |   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) { | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) | 
 |       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); | 
 |   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { | 
 |     locations->SetInAt(0, Location::Any()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) { | 
 |   SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize); | 
 |   GenerateTestAndBranch<Label>(deoptimize, | 
 |                                /* condition_input_index */ 0, | 
 |                                slow_path->GetEntryLabel(), | 
 |                                /* false_target */ nullptr); | 
 | } | 
 |  | 
 | static bool SelectCanUseCMOV(HSelect* select) { | 
 |   // There are no conditional move instructions for XMMs. | 
 |   if (Primitive::IsFloatingPointType(select->GetType())) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // A FP condition doesn't generate the single CC that we need. | 
 |   // In 32 bit mode, a long condition doesn't generate a single CC either. | 
 |   HInstruction* condition = select->GetCondition(); | 
 |   if (condition->IsCondition()) { | 
 |     Primitive::Type compare_type = condition->InputAt(0)->GetType(); | 
 |     if (compare_type == Primitive::kPrimLong || | 
 |         Primitive::IsFloatingPointType(compare_type)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // We can generate a CMOV for this Select. | 
 |   return true; | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitSelect(HSelect* select) { | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); | 
 |   if (Primitive::IsFloatingPointType(select->GetType())) { | 
 |     locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |     locations->SetInAt(1, Location::Any()); | 
 |   } else { | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |     if (SelectCanUseCMOV(select)) { | 
 |       if (select->InputAt(1)->IsConstant()) { | 
 |         // Cmov can't handle a constant value. | 
 |         locations->SetInAt(1, Location::RequiresRegister()); | 
 |       } else { | 
 |         locations->SetInAt(1, Location::Any()); | 
 |       } | 
 |     } else { | 
 |       locations->SetInAt(1, Location::Any()); | 
 |     } | 
 |   } | 
 |   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { | 
 |     locations->SetInAt(2, Location::RequiresRegister()); | 
 |   } | 
 |   locations->SetOut(Location::SameAsFirstInput()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) { | 
 |   Register lhs_reg = lhs.AsRegister<Register>(); | 
 |   if (rhs.IsConstant()) { | 
 |     int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); | 
 |     codegen_->Compare32BitValue(lhs_reg, value); | 
 |   } else if (rhs.IsStackSlot()) { | 
 |     __ cmpl(lhs_reg, Address(ESP, rhs.GetStackIndex())); | 
 |   } else { | 
 |     __ cmpl(lhs_reg, rhs.AsRegister<Register>()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) { | 
 |   LocationSummary* locations = select->GetLocations(); | 
 |   DCHECK(locations->InAt(0).Equals(locations->Out())); | 
 |   if (SelectCanUseCMOV(select)) { | 
 |     // If both the condition and the source types are integer, we can generate | 
 |     // a CMOV to implement Select. | 
 |  | 
 |     HInstruction* select_condition = select->GetCondition(); | 
 |     Condition cond = kNotEqual; | 
 |  | 
 |     // Figure out how to test the 'condition'. | 
 |     if (select_condition->IsCondition()) { | 
 |       HCondition* condition = select_condition->AsCondition(); | 
 |       if (!condition->IsEmittedAtUseSite()) { | 
 |         // This was a previously materialized condition. | 
 |         // Can we use the existing condition code? | 
 |         if (AreEflagsSetFrom(condition, select)) { | 
 |           // Materialization was the previous instruction. Condition codes are right. | 
 |           cond = X86Condition(condition->GetCondition()); | 
 |         } else { | 
 |           // No, we have to recreate the condition code. | 
 |           Register cond_reg = locations->InAt(2).AsRegister<Register>(); | 
 |           __ testl(cond_reg, cond_reg); | 
 |         } | 
 |       } else { | 
 |         // We can't handle FP or long here. | 
 |         DCHECK_NE(condition->InputAt(0)->GetType(), Primitive::kPrimLong); | 
 |         DCHECK(!Primitive::IsFloatingPointType(condition->InputAt(0)->GetType())); | 
 |         LocationSummary* cond_locations = condition->GetLocations(); | 
 |         GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1)); | 
 |         cond = X86Condition(condition->GetCondition()); | 
 |       } | 
 |     } else { | 
 |       // Must be a boolean condition, which needs to be compared to 0. | 
 |       Register cond_reg = locations->InAt(2).AsRegister<Register>(); | 
 |       __ testl(cond_reg, cond_reg); | 
 |     } | 
 |  | 
 |     // If the condition is true, overwrite the output, which already contains false. | 
 |     Location false_loc = locations->InAt(0); | 
 |     Location true_loc = locations->InAt(1); | 
 |     if (select->GetType() == Primitive::kPrimLong) { | 
 |       // 64 bit conditional move. | 
 |       Register false_high = false_loc.AsRegisterPairHigh<Register>(); | 
 |       Register false_low = false_loc.AsRegisterPairLow<Register>(); | 
 |       if (true_loc.IsRegisterPair()) { | 
 |         __ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>()); | 
 |         __ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>()); | 
 |       } else { | 
 |         __ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize))); | 
 |         __ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex())); | 
 |       } | 
 |     } else { | 
 |       // 32 bit conditional move. | 
 |       Register false_reg = false_loc.AsRegister<Register>(); | 
 |       if (true_loc.IsRegister()) { | 
 |         __ cmovl(cond, false_reg, true_loc.AsRegister<Register>()); | 
 |       } else { | 
 |         __ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex())); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     NearLabel false_target; | 
 |     GenerateTestAndBranch<NearLabel>( | 
 |         select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target); | 
 |     codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); | 
 |     __ Bind(&false_target); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) { | 
 |   new (GetGraph()->GetArena()) LocationSummary(info); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) { | 
 |   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateNop() { | 
 |   __ nop(); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitLocal(HLocal* local) { | 
 |   local->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitLocal(HLocal* local) { | 
 |   DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitLoadLocal(HLoadLocal* local) { | 
 |   local->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitLoadLocal(HLoadLocal* load ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, this is driven by the code generator. | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitStoreLocal(HStoreLocal* store) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(store, LocationSummary::kNoCall); | 
 |   switch (store->InputAt(1)->GetType()) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: | 
 |     case Primitive::kPrimChar: | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimNot: | 
 |     case Primitive::kPrimFloat: | 
 |       locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal()))); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimLong: | 
 |     case Primitive::kPrimDouble: | 
 |       locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal()))); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unknown local type " << store->InputAt(1)->GetType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitStoreLocal(HStoreLocal* store ATTRIBUTE_UNUSED) { | 
 | } | 
 |  | 
 | void LocationsBuilderX86::HandleCondition(HCondition* cond) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); | 
 |   // Handle the long/FP comparisons made in instruction simplification. | 
 |   switch (cond->InputAt(0)->GetType()) { | 
 |     case Primitive::kPrimLong: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::Any()); | 
 |       if (!cond->IsEmittedAtUseSite()) { | 
 |         locations->SetOut(Location::RequiresRegister()); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimFloat: | 
 |     case Primitive::kPrimDouble: { | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       if (cond->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         DCHECK(cond->InputAt(1)->IsEmittedAtUseSite()); | 
 |       } else if (cond->InputAt(1)->IsConstant()) { | 
 |         locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       } else { | 
 |         locations->SetInAt(1, Location::Any()); | 
 |       } | 
 |       if (!cond->IsEmittedAtUseSite()) { | 
 |         locations->SetOut(Location::RequiresRegister()); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::Any()); | 
 |       if (!cond->IsEmittedAtUseSite()) { | 
 |         // We need a byte register. | 
 |         locations->SetOut(Location::RegisterLocation(ECX)); | 
 |       } | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) { | 
 |   if (cond->IsEmittedAtUseSite()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   LocationSummary* locations = cond->GetLocations(); | 
 |   Location lhs = locations->InAt(0); | 
 |   Location rhs = locations->InAt(1); | 
 |   Register reg = locations->Out().AsRegister<Register>(); | 
 |   NearLabel true_label, false_label; | 
 |  | 
 |   switch (cond->InputAt(0)->GetType()) { | 
 |     default: { | 
 |       // Integer case. | 
 |  | 
 |       // Clear output register: setb only sets the low byte. | 
 |       __ xorl(reg, reg); | 
 |       GenerateIntCompare(lhs, rhs); | 
 |       __ setb(X86Condition(cond->GetCondition()), reg); | 
 |       return; | 
 |     } | 
 |     case Primitive::kPrimLong: | 
 |       GenerateLongComparesAndJumps(cond, &true_label, &false_label); | 
 |       break; | 
 |     case Primitive::kPrimFloat: | 
 |       GenerateFPCompare(lhs, rhs, cond, false); | 
 |       GenerateFPJumps(cond, &true_label, &false_label); | 
 |       break; | 
 |     case Primitive::kPrimDouble: | 
 |       GenerateFPCompare(lhs, rhs, cond, true); | 
 |       GenerateFPJumps(cond, &true_label, &false_label); | 
 |       break; | 
 |   } | 
 |  | 
 |   // Convert the jumps into the result. | 
 |   NearLabel done_label; | 
 |  | 
 |   // False case: result = 0. | 
 |   __ Bind(&false_label); | 
 |   __ xorl(reg, reg); | 
 |   __ jmp(&done_label); | 
 |  | 
 |   // True case: result = 1. | 
 |   __ Bind(&true_label); | 
 |   __ movl(reg, Immediate(1)); | 
 |   __ Bind(&done_label); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitEqual(HEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitLessThan(HLessThan* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitBelow(HBelow* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitAbove(HAbove* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
 |   memory_barrier->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
 |   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) { | 
 |   ret->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { | 
 |   codegen_->GenerateFrameExit(); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitReturn(HReturn* ret) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); | 
 |   switch (ret->InputAt(0)->GetType()) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: | 
 |     case Primitive::kPrimChar: | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimNot: | 
 |       locations->SetInAt(0, Location::RegisterLocation(EAX)); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimLong: | 
 |       locations->SetInAt( | 
 |           0, Location::RegisterPairLocation(EAX, EDX)); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimFloat: | 
 |     case Primitive::kPrimDouble: | 
 |       locations->SetInAt( | 
 |           0, Location::FpuRegisterLocation(XMM0)); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) { | 
 |   if (kIsDebugBuild) { | 
 |     switch (ret->InputAt(0)->GetType()) { | 
 |       case Primitive::kPrimBoolean: | 
 |       case Primitive::kPrimByte: | 
 |       case Primitive::kPrimChar: | 
 |       case Primitive::kPrimShort: | 
 |       case Primitive::kPrimInt: | 
 |       case Primitive::kPrimNot: | 
 |         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX); | 
 |         break; | 
 |  | 
 |       case Primitive::kPrimLong: | 
 |         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX); | 
 |         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX); | 
 |         break; | 
 |  | 
 |       case Primitive::kPrimFloat: | 
 |       case Primitive::kPrimDouble: | 
 |         DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0); | 
 |         break; | 
 |  | 
 |       default: | 
 |         LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); | 
 |     } | 
 |   } | 
 |   codegen_->GenerateFrameExit(); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
 |   // The trampoline uses the same calling convention as dex calling conventions, | 
 |   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain | 
 |   // the method_idx. | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
 |   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
 |   // Explicit clinit checks triggered by static invokes must have been pruned by | 
 |   // art::PrepareForRegisterAllocation. | 
 |   DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
 |  | 
 |   IntrinsicLocationsBuilderX86 intrinsic(codegen_); | 
 |   if (intrinsic.TryDispatch(invoke)) { | 
 |     if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) { | 
 |       invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   HandleInvoke(invoke); | 
 |  | 
 |   // For PC-relative dex cache the invoke has an extra input, the PC-relative address base. | 
 |   if (invoke->HasPcRelativeDexCache()) { | 
 |     invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) { | 
 |   if (invoke->GetLocations()->Intrinsified()) { | 
 |     IntrinsicCodeGeneratorX86 intrinsic(codegen); | 
 |     intrinsic.Dispatch(invoke); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
 |   // Explicit clinit checks triggered by static invokes must have been pruned by | 
 |   // art::PrepareForRegisterAllocation. | 
 |   DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
 |  | 
 |   if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |   codegen_->GenerateStaticOrDirectCall( | 
 |       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); | 
 |   codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
 |   IntrinsicLocationsBuilderX86 intrinsic(codegen_); | 
 |   if (intrinsic.TryDispatch(invoke)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) { | 
 |   InvokeDexCallingConventionVisitorX86 calling_convention_visitor; | 
 |   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
 |   if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); | 
 |   DCHECK(!codegen_->IsLeafMethod()); | 
 |   codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) { | 
 |   // This call to HandleInvoke allocates a temporary (core) register | 
 |   // which is also used to transfer the hidden argument from FP to | 
 |   // core register. | 
 |   HandleInvoke(invoke); | 
 |   // Add the hidden argument. | 
 |   invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) { | 
 |   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |   Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
 |   XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); | 
 |   uint32_t method_offset = mirror::Class::EmbeddedImTableEntryOffset( | 
 |       invoke->GetImtIndex() % mirror::Class::kImtSize, kX86PointerSize).Uint32Value(); | 
 |   Location receiver = locations->InAt(0); | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |  | 
 |   // Set the hidden argument. This is safe to do this here, as XMM7 | 
 |   // won't be modified thereafter, before the `call` instruction. | 
 |   DCHECK_EQ(XMM7, hidden_reg); | 
 |   __ movl(temp, Immediate(invoke->GetDexMethodIndex())); | 
 |   __ movd(hidden_reg, temp); | 
 |  | 
 |   if (receiver.IsStackSlot()) { | 
 |     __ movl(temp, Address(ESP, receiver.GetStackIndex())); | 
 |     // /* HeapReference<Class> */ temp = temp->klass_ | 
 |     __ movl(temp, Address(temp, class_offset)); | 
 |   } else { | 
 |     // /* HeapReference<Class> */ temp = receiver->klass_ | 
 |     __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset)); | 
 |   } | 
 |   codegen_->MaybeRecordImplicitNullCheck(invoke); | 
 |   // Instead of simply (possibly) unpoisoning `temp` here, we should | 
 |   // emit a read barrier for the previous class reference load. | 
 |   // However this is not required in practice, as this is an | 
 |   // intermediate/temporary reference and because the current | 
 |   // concurrent copying collector keeps the from-space memory | 
 |   // intact/accessible until the end of the marking phase (the | 
 |   // concurrent copying collector may not in the future). | 
 |   __ MaybeUnpoisonHeapReference(temp); | 
 |   // temp = temp->GetImtEntryAt(method_offset); | 
 |   __ movl(temp, Address(temp, method_offset)); | 
 |   // call temp->GetEntryPoint(); | 
 |   __ call(Address(temp, | 
 |                   ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value())); | 
 |  | 
 |   DCHECK(!codegen_->IsLeafMethod()); | 
 |   codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitNeg(HNeg* neg) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); | 
 |   switch (neg->GetResultType()) { | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimLong: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimFloat: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       locations->AddTemp(Location::RequiresRegister()); | 
 |       locations->AddTemp(Location::RequiresFpuRegister()); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimDouble: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       locations->AddTemp(Location::RequiresFpuRegister()); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) { | 
 |   LocationSummary* locations = neg->GetLocations(); | 
 |   Location out = locations->Out(); | 
 |   Location in = locations->InAt(0); | 
 |   switch (neg->GetResultType()) { | 
 |     case Primitive::kPrimInt: | 
 |       DCHECK(in.IsRegister()); | 
 |       DCHECK(in.Equals(out)); | 
 |       __ negl(out.AsRegister<Register>()); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimLong: | 
 |       DCHECK(in.IsRegisterPair()); | 
 |       DCHECK(in.Equals(out)); | 
 |       __ negl(out.AsRegisterPairLow<Register>()); | 
 |       // Negation is similar to subtraction from zero.  The least | 
 |       // significant byte triggers a borrow when it is different from | 
 |       // zero; to take it into account, add 1 to the most significant | 
 |       // byte if the carry flag (CF) is set to 1 after the first NEGL | 
 |       // operation. | 
 |       __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0)); | 
 |       __ negl(out.AsRegisterPairHigh<Register>()); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       DCHECK(in.Equals(out)); | 
 |       Register constant = locations->GetTemp(0).AsRegister<Register>(); | 
 |       XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); | 
 |       // Implement float negation with an exclusive or with value | 
 |       // 0x80000000 (mask for bit 31, representing the sign of a | 
 |       // single-precision floating-point number). | 
 |       __ movl(constant, Immediate(INT32_C(0x80000000))); | 
 |       __ movd(mask, constant); | 
 |       __ xorps(out.AsFpuRegister<XmmRegister>(), mask); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       DCHECK(in.Equals(out)); | 
 |       XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); | 
 |       // Implement double negation with an exclusive or with value | 
 |       // 0x8000000000000000 (mask for bit 63, representing the sign of | 
 |       // a double-precision floating-point number). | 
 |       __ LoadLongConstant(mask, INT64_C(0x8000000000000000)); | 
 |       __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); | 
 |   DCHECK(Primitive::IsFloatingPointType(neg->GetType())); | 
 |   locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::SameAsFirstInput()); | 
 |   locations->AddTemp(Location::RequiresFpuRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) { | 
 |   LocationSummary* locations = neg->GetLocations(); | 
 |   Location out = locations->Out(); | 
 |   DCHECK(locations->InAt(0).Equals(out)); | 
 |  | 
 |   Register constant_area = locations->InAt(1).AsRegister<Register>(); | 
 |   XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); | 
 |   if (neg->GetType() == Primitive::kPrimFloat) { | 
 |     __ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000), constant_area)); | 
 |     __ xorps(out.AsFpuRegister<XmmRegister>(), mask); | 
 |   } else { | 
 |      __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000), constant_area)); | 
 |      __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) { | 
 |   Primitive::Type result_type = conversion->GetResultType(); | 
 |   Primitive::Type input_type = conversion->GetInputType(); | 
 |   DCHECK_NE(result_type, input_type); | 
 |  | 
 |   // The float-to-long and double-to-long type conversions rely on a | 
 |   // call to the runtime. | 
 |   LocationSummary::CallKind call_kind = | 
 |       ((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) | 
 |        && result_type == Primitive::kPrimLong) | 
 |       ? LocationSummary::kCall | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); | 
 |  | 
 |   // The Java language does not allow treating boolean as an integral type but | 
 |   // our bit representation makes it safe. | 
 |  | 
 |   switch (result_type) { | 
 |     case Primitive::kPrimByte: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimLong: { | 
 |           // Type conversion from long to byte is a result of code transformations. | 
 |           HInstruction* input = conversion->InputAt(0); | 
 |           Location input_location = input->IsConstant() | 
 |               ? Location::ConstantLocation(input->AsConstant()) | 
 |               : Location::RegisterPairLocation(EAX, EDX); | 
 |           locations->SetInAt(0, input_location); | 
 |           // Make the output overlap to please the register allocator. This greatly simplifies | 
 |           // the validation of the linear scan implementation | 
 |           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
 |           break; | 
 |         } | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-byte' instruction. | 
 |           locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0))); | 
 |           // Make the output overlap to please the register allocator. This greatly simplifies | 
 |           // the validation of the linear scan implementation | 
 |           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimShort: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimLong: | 
 |           // Type conversion from long to short is a result of code transformations. | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-short' instruction. | 
 |           locations->SetInAt(0, Location::Any()); | 
 |           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimInt: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimLong: | 
 |           // Processing a Dex `long-to-int' instruction. | 
 |           locations->SetInAt(0, Location::Any()); | 
 |           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimFloat: | 
 |           // Processing a Dex `float-to-int' instruction. | 
 |           locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |           locations->SetOut(Location::RequiresRegister()); | 
 |           locations->AddTemp(Location::RequiresFpuRegister()); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimDouble: | 
 |           // Processing a Dex `double-to-int' instruction. | 
 |           locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |           locations->SetOut(Location::RequiresRegister()); | 
 |           locations->AddTemp(Location::RequiresFpuRegister()); | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimLong: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-long' instruction. | 
 |           locations->SetInAt(0, Location::RegisterLocation(EAX)); | 
 |           locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimFloat: | 
 |         case Primitive::kPrimDouble: { | 
 |           // Processing a Dex `float-to-long' or 'double-to-long' instruction. | 
 |           InvokeRuntimeCallingConvention calling_convention; | 
 |           XmmRegister parameter = calling_convention.GetFpuRegisterAt(0); | 
 |           locations->SetInAt(0, Location::FpuRegisterLocation(parameter)); | 
 |  | 
 |           // The runtime helper puts the result in EAX, EDX. | 
 |           locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); | 
 |         } | 
 |         break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimChar: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimLong: | 
 |           // Type conversion from long to char is a result of code transformations. | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |           // Processing a Dex `int-to-char' instruction. | 
 |           locations->SetInAt(0, Location::Any()); | 
 |           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimFloat: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-float' instruction. | 
 |           locations->SetInAt(0, Location::RequiresRegister()); | 
 |           locations->SetOut(Location::RequiresFpuRegister()); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimLong: | 
 |           // Processing a Dex `long-to-float' instruction. | 
 |           locations->SetInAt(0, Location::Any()); | 
 |           locations->SetOut(Location::Any()); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimDouble: | 
 |           // Processing a Dex `double-to-float' instruction. | 
 |           locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       }; | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimDouble: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-double' instruction. | 
 |           locations->SetInAt(0, Location::RequiresRegister()); | 
 |           locations->SetOut(Location::RequiresFpuRegister()); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimLong: | 
 |           // Processing a Dex `long-to-double' instruction. | 
 |           locations->SetInAt(0, Location::Any()); | 
 |           locations->SetOut(Location::Any()); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimFloat: | 
 |           // Processing a Dex `float-to-double' instruction. | 
 |           locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                  << " to " << result_type; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) { | 
 |   LocationSummary* locations = conversion->GetLocations(); | 
 |   Location out = locations->Out(); | 
 |   Location in = locations->InAt(0); | 
 |   Primitive::Type result_type = conversion->GetResultType(); | 
 |   Primitive::Type input_type = conversion->GetInputType(); | 
 |   DCHECK_NE(result_type, input_type); | 
 |   switch (result_type) { | 
 |     case Primitive::kPrimByte: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimLong: | 
 |           // Type conversion from long to byte is a result of code transformations. | 
 |           if (in.IsRegisterPair()) { | 
 |             __ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>()); | 
 |           } else { | 
 |             DCHECK(in.GetConstant()->IsLongConstant()); | 
 |             int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); | 
 |             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value))); | 
 |           } | 
 |           break; | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-byte' instruction. | 
 |           if (in.IsRegister()) { | 
 |             __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>()); | 
 |           } else { | 
 |             DCHECK(in.GetConstant()->IsIntConstant()); | 
 |             int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); | 
 |             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value))); | 
 |           } | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimShort: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimLong: | 
 |           // Type conversion from long to short is a result of code transformations. | 
 |           if (in.IsRegisterPair()) { | 
 |             __ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); | 
 |           } else if (in.IsDoubleStackSlot()) { | 
 |             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); | 
 |           } else { | 
 |             DCHECK(in.GetConstant()->IsLongConstant()); | 
 |             int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); | 
 |             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value))); | 
 |           } | 
 |           break; | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-short' instruction. | 
 |           if (in.IsRegister()) { | 
 |             __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>()); | 
 |           } else if (in.IsStackSlot()) { | 
 |             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); | 
 |           } else { | 
 |             DCHECK(in.GetConstant()->IsIntConstant()); | 
 |             int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); | 
 |             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value))); | 
 |           } | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimInt: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimLong: | 
 |           // Processing a Dex `long-to-int' instruction. | 
 |           if (in.IsRegisterPair()) { | 
 |             __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); | 
 |           } else if (in.IsDoubleStackSlot()) { | 
 |             __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); | 
 |           } else { | 
 |             DCHECK(in.IsConstant()); | 
 |             DCHECK(in.GetConstant()->IsLongConstant()); | 
 |             int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); | 
 |             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value))); | 
 |           } | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimFloat: { | 
 |           // Processing a Dex `float-to-int' instruction. | 
 |           XmmRegister input = in.AsFpuRegister<XmmRegister>(); | 
 |           Register output = out.AsRegister<Register>(); | 
 |           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); | 
 |           NearLabel done, nan; | 
 |  | 
 |           __ movl(output, Immediate(kPrimIntMax)); | 
 |           // temp = int-to-float(output) | 
 |           __ cvtsi2ss(temp, output); | 
 |           // if input >= temp goto done | 
 |           __ comiss(input, temp); | 
 |           __ j(kAboveEqual, &done); | 
 |           // if input == NaN goto nan | 
 |           __ j(kUnordered, &nan); | 
 |           // output = float-to-int-truncate(input) | 
 |           __ cvttss2si(output, input); | 
 |           __ jmp(&done); | 
 |           __ Bind(&nan); | 
 |           //  output = 0 | 
 |           __ xorl(output, output); | 
 |           __ Bind(&done); | 
 |           break; | 
 |         } | 
 |  | 
 |         case Primitive::kPrimDouble: { | 
 |           // Processing a Dex `double-to-int' instruction. | 
 |           XmmRegister input = in.AsFpuRegister<XmmRegister>(); | 
 |           Register output = out.AsRegister<Register>(); | 
 |           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); | 
 |           NearLabel done, nan; | 
 |  | 
 |           __ movl(output, Immediate(kPrimIntMax)); | 
 |           // temp = int-to-double(output) | 
 |           __ cvtsi2sd(temp, output); | 
 |           // if input >= temp goto done | 
 |           __ comisd(input, temp); | 
 |           __ j(kAboveEqual, &done); | 
 |           // if input == NaN goto nan | 
 |           __ j(kUnordered, &nan); | 
 |           // output = double-to-int-truncate(input) | 
 |           __ cvttsd2si(output, input); | 
 |           __ jmp(&done); | 
 |           __ Bind(&nan); | 
 |           //  output = 0 | 
 |           __ xorl(output, output); | 
 |           __ Bind(&done); | 
 |           break; | 
 |         } | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimLong: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-long' instruction. | 
 |           DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX); | 
 |           DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX); | 
 |           DCHECK_EQ(in.AsRegister<Register>(), EAX); | 
 |           __ cdq(); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimFloat: | 
 |           // Processing a Dex `float-to-long' instruction. | 
 |           codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l), | 
 |                                   conversion, | 
 |                                   conversion->GetDexPc(), | 
 |                                   nullptr); | 
 |           CheckEntrypointTypes<kQuickF2l, int64_t, float>(); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimDouble: | 
 |           // Processing a Dex `double-to-long' instruction. | 
 |           codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l), | 
 |                                   conversion, | 
 |                                   conversion->GetDexPc(), | 
 |                                   nullptr); | 
 |           CheckEntrypointTypes<kQuickD2l, int64_t, double>(); | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimChar: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimLong: | 
 |           // Type conversion from long to short is a result of code transformations. | 
 |           if (in.IsRegisterPair()) { | 
 |             __ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); | 
 |           } else if (in.IsDoubleStackSlot()) { | 
 |             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); | 
 |           } else { | 
 |             DCHECK(in.GetConstant()->IsLongConstant()); | 
 |             int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); | 
 |             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value))); | 
 |           } | 
 |           break; | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |           // Processing a Dex `Process a Dex `int-to-char'' instruction. | 
 |           if (in.IsRegister()) { | 
 |             __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>()); | 
 |           } else if (in.IsStackSlot()) { | 
 |             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); | 
 |           } else { | 
 |             DCHECK(in.GetConstant()->IsIntConstant()); | 
 |             int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); | 
 |             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value))); | 
 |           } | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimFloat: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-float' instruction. | 
 |           __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimLong: { | 
 |           // Processing a Dex `long-to-float' instruction. | 
 |           size_t adjustment = 0; | 
 |  | 
 |           // Create stack space for the call to | 
 |           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below. | 
 |           // TODO: enhance register allocator to ask for stack temporaries. | 
 |           if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) { | 
 |             adjustment = Primitive::ComponentSize(Primitive::kPrimLong); | 
 |             __ subl(ESP, Immediate(adjustment)); | 
 |           } | 
 |  | 
 |           // Load the value to the FP stack, using temporaries if needed. | 
 |           PushOntoFPStack(in, 0, adjustment, false, true); | 
 |  | 
 |           if (out.IsStackSlot()) { | 
 |             __ fstps(Address(ESP, out.GetStackIndex() + adjustment)); | 
 |           } else { | 
 |             __ fstps(Address(ESP, 0)); | 
 |             Location stack_temp = Location::StackSlot(0); | 
 |             codegen_->Move32(out, stack_temp); | 
 |           } | 
 |  | 
 |           // Remove the temporary stack space we allocated. | 
 |           if (adjustment != 0) { | 
 |             __ addl(ESP, Immediate(adjustment)); | 
 |           } | 
 |           break; | 
 |         } | 
 |  | 
 |         case Primitive::kPrimDouble: | 
 |           // Processing a Dex `double-to-float' instruction. | 
 |           __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       }; | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimDouble: | 
 |       switch (input_type) { | 
 |         case Primitive::kPrimBoolean: | 
 |           // Boolean input is a result of code transformations. | 
 |         case Primitive::kPrimByte: | 
 |         case Primitive::kPrimShort: | 
 |         case Primitive::kPrimInt: | 
 |         case Primitive::kPrimChar: | 
 |           // Processing a Dex `int-to-double' instruction. | 
 |           __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); | 
 |           break; | 
 |  | 
 |         case Primitive::kPrimLong: { | 
 |           // Processing a Dex `long-to-double' instruction. | 
 |           size_t adjustment = 0; | 
 |  | 
 |           // Create stack space for the call to | 
 |           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below. | 
 |           // TODO: enhance register allocator to ask for stack temporaries. | 
 |           if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) { | 
 |             adjustment = Primitive::ComponentSize(Primitive::kPrimLong); | 
 |             __ subl(ESP, Immediate(adjustment)); | 
 |           } | 
 |  | 
 |           // Load the value to the FP stack, using temporaries if needed. | 
 |           PushOntoFPStack(in, 0, adjustment, false, true); | 
 |  | 
 |           if (out.IsDoubleStackSlot()) { | 
 |             __ fstpl(Address(ESP, out.GetStackIndex() + adjustment)); | 
 |           } else { | 
 |             __ fstpl(Address(ESP, 0)); | 
 |             Location stack_temp = Location::DoubleStackSlot(0); | 
 |             codegen_->Move64(out, stack_temp); | 
 |           } | 
 |  | 
 |           // Remove the temporary stack space we allocated. | 
 |           if (adjustment != 0) { | 
 |             __ addl(ESP, Immediate(adjustment)); | 
 |           } | 
 |           break; | 
 |         } | 
 |  | 
 |         case Primitive::kPrimFloat: | 
 |           // Processing a Dex `float-to-double' instruction. | 
 |           __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); | 
 |           break; | 
 |  | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                      << " to " << result_type; | 
 |       }; | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                  << " to " << result_type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitAdd(HAdd* add) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); | 
 |   switch (add->GetResultType()) { | 
 |     case Primitive::kPrimInt: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::Any()); | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: | 
 |     case Primitive::kPrimDouble: { | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       if (add->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         DCHECK(add->InputAt(1)->IsEmittedAtUseSite()); | 
 |       } else if (add->InputAt(1)->IsConstant()) { | 
 |         locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       } else { | 
 |         locations->SetInAt(1, Location::Any()); | 
 |       } | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected add type " << add->GetResultType(); | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) { | 
 |   LocationSummary* locations = add->GetLocations(); | 
 |   Location first = locations->InAt(0); | 
 |   Location second = locations->InAt(1); | 
 |   Location out = locations->Out(); | 
 |  | 
 |   switch (add->GetResultType()) { | 
 |     case Primitive::kPrimInt: { | 
 |       if (second.IsRegister()) { | 
 |         if (out.AsRegister<Register>() == first.AsRegister<Register>()) { | 
 |           __ addl(out.AsRegister<Register>(), second.AsRegister<Register>()); | 
 |         } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) { | 
 |           __ addl(out.AsRegister<Register>(), first.AsRegister<Register>()); | 
 |         } else { | 
 |           __ leal(out.AsRegister<Register>(), Address( | 
 |               first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0)); | 
 |           } | 
 |       } else if (second.IsConstant()) { | 
 |         int32_t value = second.GetConstant()->AsIntConstant()->GetValue(); | 
 |         if (out.AsRegister<Register>() == first.AsRegister<Register>()) { | 
 |           __ addl(out.AsRegister<Register>(), Immediate(value)); | 
 |         } else { | 
 |           __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value)); | 
 |         } | 
 |       } else { | 
 |         DCHECK(first.Equals(locations->Out())); | 
 |         __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       if (second.IsRegisterPair()) { | 
 |         __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); | 
 |         __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); | 
 |       } else if (second.IsDoubleStackSlot()) { | 
 |         __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); | 
 |         __ adcl(first.AsRegisterPairHigh<Register>(), | 
 |                 Address(ESP, second.GetHighStackIndex(kX86WordSize))); | 
 |       } else { | 
 |         DCHECK(second.IsConstant()) << second; | 
 |         int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); | 
 |         __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); | 
 |         __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       if (second.IsFpuRegister()) { | 
 |         __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); | 
 |       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); | 
 |         DCHECK(const_area->IsEmittedAtUseSite()); | 
 |         __ addss(first.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralFloatAddress( | 
 |                    const_area->GetConstant()->AsFloatConstant()->GetValue(), | 
 |                    const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |       } else { | 
 |         DCHECK(second.IsStackSlot()); | 
 |         __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       if (second.IsFpuRegister()) { | 
 |         __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); | 
 |       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); | 
 |         DCHECK(const_area->IsEmittedAtUseSite()); | 
 |         __ addsd(first.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralDoubleAddress( | 
 |                    const_area->GetConstant()->AsDoubleConstant()->GetValue(), | 
 |                    const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |       } else { | 
 |         DCHECK(second.IsDoubleStackSlot()); | 
 |         __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected add type " << add->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitSub(HSub* sub) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); | 
 |   switch (sub->GetResultType()) { | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimLong: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::Any()); | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimFloat: | 
 |     case Primitive::kPrimDouble: { | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         DCHECK(sub->InputAt(1)->IsEmittedAtUseSite()); | 
 |       } else if (sub->InputAt(1)->IsConstant()) { | 
 |         locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       } else { | 
 |         locations->SetInAt(1, Location::Any()); | 
 |       } | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitSub(HSub* sub) { | 
 |   LocationSummary* locations = sub->GetLocations(); | 
 |   Location first = locations->InAt(0); | 
 |   Location second = locations->InAt(1); | 
 |   DCHECK(first.Equals(locations->Out())); | 
 |   switch (sub->GetResultType()) { | 
 |     case Primitive::kPrimInt: { | 
 |       if (second.IsRegister()) { | 
 |         __ subl(first.AsRegister<Register>(), second.AsRegister<Register>()); | 
 |       } else if (second.IsConstant()) { | 
 |         __ subl(first.AsRegister<Register>(), | 
 |                 Immediate(second.GetConstant()->AsIntConstant()->GetValue())); | 
 |       } else { | 
 |         __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       if (second.IsRegisterPair()) { | 
 |         __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); | 
 |         __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); | 
 |       } else if (second.IsDoubleStackSlot()) { | 
 |         __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); | 
 |         __ sbbl(first.AsRegisterPairHigh<Register>(), | 
 |                 Address(ESP, second.GetHighStackIndex(kX86WordSize))); | 
 |       } else { | 
 |         DCHECK(second.IsConstant()) << second; | 
 |         int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); | 
 |         __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); | 
 |         __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       if (second.IsFpuRegister()) { | 
 |         __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); | 
 |       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); | 
 |         DCHECK(const_area->IsEmittedAtUseSite()); | 
 |         __ subss(first.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralFloatAddress( | 
 |                    const_area->GetConstant()->AsFloatConstant()->GetValue(), | 
 |                    const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |       } else { | 
 |         DCHECK(second.IsStackSlot()); | 
 |         __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       if (second.IsFpuRegister()) { | 
 |         __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); | 
 |       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); | 
 |         DCHECK(const_area->IsEmittedAtUseSite()); | 
 |         __ subsd(first.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralDoubleAddress( | 
 |                      const_area->GetConstant()->AsDoubleConstant()->GetValue(), | 
 |                      const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |       } else { | 
 |         DCHECK(second.IsDoubleStackSlot()); | 
 |         __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitMul(HMul* mul) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); | 
 |   switch (mul->GetResultType()) { | 
 |     case Primitive::kPrimInt: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::Any()); | 
 |       if (mul->InputAt(1)->IsIntConstant()) { | 
 |         // Can use 3 operand multiply. | 
 |         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       } else { | 
 |         locations->SetOut(Location::SameAsFirstInput()); | 
 |       } | 
 |       break; | 
 |     case Primitive::kPrimLong: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::Any()); | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       // Needed for imul on 32bits with 64bits output. | 
 |       locations->AddTemp(Location::RegisterLocation(EAX)); | 
 |       locations->AddTemp(Location::RegisterLocation(EDX)); | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimFloat: | 
 |     case Primitive::kPrimDouble: { | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         DCHECK(mul->InputAt(1)->IsEmittedAtUseSite()); | 
 |       } else if (mul->InputAt(1)->IsConstant()) { | 
 |         locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       } else { | 
 |         locations->SetInAt(1, Location::Any()); | 
 |       } | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitMul(HMul* mul) { | 
 |   LocationSummary* locations = mul->GetLocations(); | 
 |   Location first = locations->InAt(0); | 
 |   Location second = locations->InAt(1); | 
 |   Location out = locations->Out(); | 
 |  | 
 |   switch (mul->GetResultType()) { | 
 |     case Primitive::kPrimInt: | 
 |       // The constant may have ended up in a register, so test explicitly to avoid | 
 |       // problems where the output may not be the same as the first operand. | 
 |       if (mul->InputAt(1)->IsIntConstant()) { | 
 |         Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue()); | 
 |         __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm); | 
 |       } else if (second.IsRegister()) { | 
 |         DCHECK(first.Equals(out)); | 
 |         __ imull(first.AsRegister<Register>(), second.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(second.IsStackSlot()); | 
 |         DCHECK(first.Equals(out)); | 
 |         __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       Register in1_hi = first.AsRegisterPairHigh<Register>(); | 
 |       Register in1_lo = first.AsRegisterPairLow<Register>(); | 
 |       Register eax = locations->GetTemp(0).AsRegister<Register>(); | 
 |       Register edx = locations->GetTemp(1).AsRegister<Register>(); | 
 |  | 
 |       DCHECK_EQ(EAX, eax); | 
 |       DCHECK_EQ(EDX, edx); | 
 |  | 
 |       // input: in1 - 64 bits, in2 - 64 bits. | 
 |       // output: in1 | 
 |       // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo | 
 |       // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] | 
 |       // parts: in1.lo = (in1.lo * in2.lo)[31:0] | 
 |       if (second.IsConstant()) { | 
 |         DCHECK(second.GetConstant()->IsLongConstant()); | 
 |  | 
 |         int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); | 
 |         int32_t low_value = Low32Bits(value); | 
 |         int32_t high_value = High32Bits(value); | 
 |         Immediate low(low_value); | 
 |         Immediate high(high_value); | 
 |  | 
 |         __ movl(eax, high); | 
 |         // eax <- in1.lo * in2.hi | 
 |         __ imull(eax, in1_lo); | 
 |         // in1.hi <- in1.hi * in2.lo | 
 |         __ imull(in1_hi, low); | 
 |         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo | 
 |         __ addl(in1_hi, eax); | 
 |         // move in2_lo to eax to prepare for double precision | 
 |         __ movl(eax, low); | 
 |         // edx:eax <- in1.lo * in2.lo | 
 |         __ mull(in1_lo); | 
 |         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] | 
 |         __ addl(in1_hi, edx); | 
 |         // in1.lo <- (in1.lo * in2.lo)[31:0]; | 
 |         __ movl(in1_lo, eax); | 
 |       } else if (second.IsRegisterPair()) { | 
 |         Register in2_hi = second.AsRegisterPairHigh<Register>(); | 
 |         Register in2_lo = second.AsRegisterPairLow<Register>(); | 
 |  | 
 |         __ movl(eax, in2_hi); | 
 |         // eax <- in1.lo * in2.hi | 
 |         __ imull(eax, in1_lo); | 
 |         // in1.hi <- in1.hi * in2.lo | 
 |         __ imull(in1_hi, in2_lo); | 
 |         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo | 
 |         __ addl(in1_hi, eax); | 
 |         // move in1_lo to eax to prepare for double precision | 
 |         __ movl(eax, in1_lo); | 
 |         // edx:eax <- in1.lo * in2.lo | 
 |         __ mull(in2_lo); | 
 |         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] | 
 |         __ addl(in1_hi, edx); | 
 |         // in1.lo <- (in1.lo * in2.lo)[31:0]; | 
 |         __ movl(in1_lo, eax); | 
 |       } else { | 
 |         DCHECK(second.IsDoubleStackSlot()) << second; | 
 |         Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize)); | 
 |         Address in2_lo(ESP, second.GetStackIndex()); | 
 |  | 
 |         __ movl(eax, in2_hi); | 
 |         // eax <- in1.lo * in2.hi | 
 |         __ imull(eax, in1_lo); | 
 |         // in1.hi <- in1.hi * in2.lo | 
 |         __ imull(in1_hi, in2_lo); | 
 |         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo | 
 |         __ addl(in1_hi, eax); | 
 |         // move in1_lo to eax to prepare for double precision | 
 |         __ movl(eax, in1_lo); | 
 |         // edx:eax <- in1.lo * in2.lo | 
 |         __ mull(in2_lo); | 
 |         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] | 
 |         __ addl(in1_hi, edx); | 
 |         // in1.lo <- (in1.lo * in2.lo)[31:0]; | 
 |         __ movl(in1_lo, eax); | 
 |       } | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       DCHECK(first.Equals(locations->Out())); | 
 |       if (second.IsFpuRegister()) { | 
 |         __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); | 
 |       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); | 
 |         DCHECK(const_area->IsEmittedAtUseSite()); | 
 |         __ mulss(first.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralFloatAddress( | 
 |                      const_area->GetConstant()->AsFloatConstant()->GetValue(), | 
 |                      const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |       } else { | 
 |         DCHECK(second.IsStackSlot()); | 
 |         __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       DCHECK(first.Equals(locations->Out())); | 
 |       if (second.IsFpuRegister()) { | 
 |         __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); | 
 |       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); | 
 |         DCHECK(const_area->IsEmittedAtUseSite()); | 
 |         __ mulsd(first.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralDoubleAddress( | 
 |                      const_area->GetConstant()->AsDoubleConstant()->GetValue(), | 
 |                      const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |       } else { | 
 |         DCHECK(second.IsDoubleStackSlot()); | 
 |         __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::PushOntoFPStack(Location source, | 
 |                                                   uint32_t temp_offset, | 
 |                                                   uint32_t stack_adjustment, | 
 |                                                   bool is_fp, | 
 |                                                   bool is_wide) { | 
 |   if (source.IsStackSlot()) { | 
 |     DCHECK(!is_wide); | 
 |     if (is_fp) { | 
 |       __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment)); | 
 |     } else { | 
 |       __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment)); | 
 |     } | 
 |   } else if (source.IsDoubleStackSlot()) { | 
 |     DCHECK(is_wide); | 
 |     if (is_fp) { | 
 |       __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment)); | 
 |     } else { | 
 |       __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment)); | 
 |     } | 
 |   } else { | 
 |     // Write the value to the temporary location on the stack and load to FP stack. | 
 |     if (!is_wide) { | 
 |       Location stack_temp = Location::StackSlot(temp_offset); | 
 |       codegen_->Move32(stack_temp, source); | 
 |       if (is_fp) { | 
 |         __ flds(Address(ESP, temp_offset)); | 
 |       } else { | 
 |         __ filds(Address(ESP, temp_offset)); | 
 |       } | 
 |     } else { | 
 |       Location stack_temp = Location::DoubleStackSlot(temp_offset); | 
 |       codegen_->Move64(stack_temp, source); | 
 |       if (is_fp) { | 
 |         __ fldl(Address(ESP, temp_offset)); | 
 |       } else { | 
 |         __ fildl(Address(ESP, temp_offset)); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) { | 
 |   Primitive::Type type = rem->GetResultType(); | 
 |   bool is_float = type == Primitive::kPrimFloat; | 
 |   size_t elem_size = Primitive::ComponentSize(type); | 
 |   LocationSummary* locations = rem->GetLocations(); | 
 |   Location first = locations->InAt(0); | 
 |   Location second = locations->InAt(1); | 
 |   Location out = locations->Out(); | 
 |  | 
 |   // Create stack space for 2 elements. | 
 |   // TODO: enhance register allocator to ask for stack temporaries. | 
 |   __ subl(ESP, Immediate(2 * elem_size)); | 
 |  | 
 |   // Load the values to the FP stack in reverse order, using temporaries if needed. | 
 |   const bool is_wide = !is_float; | 
 |   PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide); | 
 |   PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide); | 
 |  | 
 |   // Loop doing FPREM until we stabilize. | 
 |   NearLabel retry; | 
 |   __ Bind(&retry); | 
 |   __ fprem(); | 
 |  | 
 |   // Move FP status to AX. | 
 |   __ fstsw(); | 
 |  | 
 |   // And see if the argument reduction is complete. This is signaled by the | 
 |   // C2 FPU flag bit set to 0. | 
 |   __ andl(EAX, Immediate(kC2ConditionMask)); | 
 |   __ j(kNotEqual, &retry); | 
 |  | 
 |   // We have settled on the final value. Retrieve it into an XMM register. | 
 |   // Store FP top of stack to real stack. | 
 |   if (is_float) { | 
 |     __ fsts(Address(ESP, 0)); | 
 |   } else { | 
 |     __ fstl(Address(ESP, 0)); | 
 |   } | 
 |  | 
 |   // Pop the 2 items from the FP stack. | 
 |   __ fucompp(); | 
 |  | 
 |   // Load the value from the stack into an XMM register. | 
 |   DCHECK(out.IsFpuRegister()) << out; | 
 |   if (is_float) { | 
 |     __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); | 
 |   } else { | 
 |     __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); | 
 |   } | 
 |  | 
 |   // And remove the temporary stack space we allocated. | 
 |   __ addl(ESP, Immediate(2 * elem_size)); | 
 | } | 
 |  | 
 |  | 
 | void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) { | 
 |   DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   DCHECK(locations->InAt(1).IsConstant()); | 
 |   DCHECK(locations->InAt(1).GetConstant()->IsIntConstant()); | 
 |  | 
 |   Register out_register = locations->Out().AsRegister<Register>(); | 
 |   Register input_register = locations->InAt(0).AsRegister<Register>(); | 
 |   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); | 
 |  | 
 |   DCHECK(imm == 1 || imm == -1); | 
 |  | 
 |   if (instruction->IsRem()) { | 
 |     __ xorl(out_register, out_register); | 
 |   } else { | 
 |     __ movl(out_register, input_register); | 
 |     if (imm == -1) { | 
 |       __ negl(out_register); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |  | 
 |   Register out_register = locations->Out().AsRegister<Register>(); | 
 |   Register input_register = locations->InAt(0).AsRegister<Register>(); | 
 |   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); | 
 |   DCHECK(IsPowerOfTwo(AbsOrMin(imm))); | 
 |   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); | 
 |  | 
 |   Register num = locations->GetTemp(0).AsRegister<Register>(); | 
 |  | 
 |   __ leal(num, Address(input_register, abs_imm - 1)); | 
 |   __ testl(input_register, input_register); | 
 |   __ cmovl(kGreaterEqual, num, input_register); | 
 |   int shift = CTZ(imm); | 
 |   __ sarl(num, Immediate(shift)); | 
 |  | 
 |   if (imm < 0) { | 
 |     __ negl(num); | 
 |   } | 
 |  | 
 |   __ movl(out_register, num); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { | 
 |   DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); | 
 |  | 
 |   Register eax = locations->InAt(0).AsRegister<Register>(); | 
 |   Register out = locations->Out().AsRegister<Register>(); | 
 |   Register num; | 
 |   Register edx; | 
 |  | 
 |   if (instruction->IsDiv()) { | 
 |     edx = locations->GetTemp(0).AsRegister<Register>(); | 
 |     num = locations->GetTemp(1).AsRegister<Register>(); | 
 |   } else { | 
 |     edx = locations->Out().AsRegister<Register>(); | 
 |     num = locations->GetTemp(0).AsRegister<Register>(); | 
 |   } | 
 |  | 
 |   DCHECK_EQ(EAX, eax); | 
 |   DCHECK_EQ(EDX, edx); | 
 |   if (instruction->IsDiv()) { | 
 |     DCHECK_EQ(EAX, out); | 
 |   } else { | 
 |     DCHECK_EQ(EDX, out); | 
 |   } | 
 |  | 
 |   int64_t magic; | 
 |   int shift; | 
 |   CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); | 
 |  | 
 |   NearLabel ndiv; | 
 |   NearLabel end; | 
 |   // If numerator is 0, the result is 0, no computation needed. | 
 |   __ testl(eax, eax); | 
 |   __ j(kNotEqual, &ndiv); | 
 |  | 
 |   __ xorl(out, out); | 
 |   __ jmp(&end); | 
 |  | 
 |   __ Bind(&ndiv); | 
 |  | 
 |   // Save the numerator. | 
 |   __ movl(num, eax); | 
 |  | 
 |   // EAX = magic | 
 |   __ movl(eax, Immediate(magic)); | 
 |  | 
 |   // EDX:EAX = magic * numerator | 
 |   __ imull(num); | 
 |  | 
 |   if (imm > 0 && magic < 0) { | 
 |     // EDX += num | 
 |     __ addl(edx, num); | 
 |   } else if (imm < 0 && magic > 0) { | 
 |     __ subl(edx, num); | 
 |   } | 
 |  | 
 |   // Shift if needed. | 
 |   if (shift != 0) { | 
 |     __ sarl(edx, Immediate(shift)); | 
 |   } | 
 |  | 
 |   // EDX += 1 if EDX < 0 | 
 |   __ movl(eax, edx); | 
 |   __ shrl(edx, Immediate(31)); | 
 |   __ addl(edx, eax); | 
 |  | 
 |   if (instruction->IsRem()) { | 
 |     __ movl(eax, num); | 
 |     __ imull(edx, Immediate(imm)); | 
 |     __ subl(eax, edx); | 
 |     __ movl(edx, eax); | 
 |   } else { | 
 |     __ movl(eax, edx); | 
 |   } | 
 |   __ Bind(&end); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) { | 
 |   DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location out = locations->Out(); | 
 |   Location first = locations->InAt(0); | 
 |   Location second = locations->InAt(1); | 
 |   bool is_div = instruction->IsDiv(); | 
 |  | 
 |   switch (instruction->GetResultType()) { | 
 |     case Primitive::kPrimInt: { | 
 |       DCHECK_EQ(EAX, first.AsRegister<Register>()); | 
 |       DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>()); | 
 |  | 
 |       if (second.IsConstant()) { | 
 |         int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); | 
 |  | 
 |         if (imm == 0) { | 
 |           // Do not generate anything for 0. DivZeroCheck would forbid any generated code. | 
 |         } else if (imm == 1 || imm == -1) { | 
 |           DivRemOneOrMinusOne(instruction); | 
 |         } else if (is_div && IsPowerOfTwo(AbsOrMin(imm))) { | 
 |           DivByPowerOfTwo(instruction->AsDiv()); | 
 |         } else { | 
 |           DCHECK(imm <= -2 || imm >= 2); | 
 |           GenerateDivRemWithAnyConstant(instruction); | 
 |         } | 
 |       } else { | 
 |         SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86( | 
 |             instruction, out.AsRegister<Register>(), is_div); | 
 |         codegen_->AddSlowPath(slow_path); | 
 |  | 
 |         Register second_reg = second.AsRegister<Register>(); | 
 |         // 0x80000000/-1 triggers an arithmetic exception! | 
 |         // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so | 
 |         // it's safe to just use negl instead of more complex comparisons. | 
 |  | 
 |         __ cmpl(second_reg, Immediate(-1)); | 
 |         __ j(kEqual, slow_path->GetEntryLabel()); | 
 |  | 
 |         // edx:eax <- sign-extended of eax | 
 |         __ cdq(); | 
 |         // eax = quotient, edx = remainder | 
 |         __ idivl(second_reg); | 
 |         __ Bind(slow_path->GetExitLabel()); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       InvokeRuntimeCallingConvention calling_convention; | 
 |       DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>()); | 
 |       DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>()); | 
 |       DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>()); | 
 |       DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>()); | 
 |       DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>()); | 
 |       DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>()); | 
 |  | 
 |       if (is_div) { | 
 |         codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv), | 
 |                                 instruction, | 
 |                                 instruction->GetDexPc(), | 
 |                                 nullptr); | 
 |         CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); | 
 |       } else { | 
 |         codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod), | 
 |                                 instruction, | 
 |                                 instruction->GetDexPc(), | 
 |                                 nullptr); | 
 |         CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitDiv(HDiv* div) { | 
 |   LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong) | 
 |       ? LocationSummary::kCall | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); | 
 |  | 
 |   switch (div->GetResultType()) { | 
 |     case Primitive::kPrimInt: { | 
 |       locations->SetInAt(0, Location::RegisterLocation(EAX)); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       // Intel uses edx:eax as the dividend. | 
 |       locations->AddTemp(Location::RegisterLocation(EDX)); | 
 |       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way | 
 |       // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as | 
 |       // output and request another temp. | 
 |       if (div->InputAt(1)->IsIntConstant()) { | 
 |         locations->AddTemp(Location::RequiresRegister()); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimLong: { | 
 |       InvokeRuntimeCallingConvention calling_convention; | 
 |       locations->SetInAt(0, Location::RegisterPairLocation( | 
 |           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); | 
 |       locations->SetInAt(1, Location::RegisterPairLocation( | 
 |           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); | 
 |       // Runtime helper puts the result in EAX, EDX. | 
 |       locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimFloat: | 
 |     case Primitive::kPrimDouble: { | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       if (div->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         DCHECK(div->InputAt(1)->IsEmittedAtUseSite()); | 
 |       } else if (div->InputAt(1)->IsConstant()) { | 
 |         locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       } else { | 
 |         locations->SetInAt(1, Location::Any()); | 
 |       } | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected div type " << div->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) { | 
 |   LocationSummary* locations = div->GetLocations(); | 
 |   Location first = locations->InAt(0); | 
 |   Location second = locations->InAt(1); | 
 |  | 
 |   switch (div->GetResultType()) { | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimLong: { | 
 |       GenerateDivRemIntegral(div); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       if (second.IsFpuRegister()) { | 
 |         __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); | 
 |       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); | 
 |         DCHECK(const_area->IsEmittedAtUseSite()); | 
 |         __ divss(first.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralFloatAddress( | 
 |                    const_area->GetConstant()->AsFloatConstant()->GetValue(), | 
 |                    const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |       } else { | 
 |         DCHECK(second.IsStackSlot()); | 
 |         __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       if (second.IsFpuRegister()) { | 
 |         __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); | 
 |       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); | 
 |         DCHECK(const_area->IsEmittedAtUseSite()); | 
 |         __ divsd(first.AsFpuRegister<XmmRegister>(), | 
 |                  codegen_->LiteralDoubleAddress( | 
 |                    const_area->GetConstant()->AsDoubleConstant()->GetValue(), | 
 |                    const_area->GetLocations()->InAt(0).AsRegister<Register>())); | 
 |       } else { | 
 |         DCHECK(second.IsDoubleStackSlot()); | 
 |         __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected div type " << div->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitRem(HRem* rem) { | 
 |   Primitive::Type type = rem->GetResultType(); | 
 |  | 
 |   LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong) | 
 |       ? LocationSummary::kCall | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); | 
 |  | 
 |   switch (type) { | 
 |     case Primitive::kPrimInt: { | 
 |       locations->SetInAt(0, Location::RegisterLocation(EAX)); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); | 
 |       locations->SetOut(Location::RegisterLocation(EDX)); | 
 |       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way | 
 |       // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as | 
 |       // output and request another temp. | 
 |       if (rem->InputAt(1)->IsIntConstant()) { | 
 |         locations->AddTemp(Location::RequiresRegister()); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimLong: { | 
 |       InvokeRuntimeCallingConvention calling_convention; | 
 |       locations->SetInAt(0, Location::RegisterPairLocation( | 
 |           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); | 
 |       locations->SetInAt(1, Location::RegisterPairLocation( | 
 |           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); | 
 |       // Runtime helper puts the result in EAX, EDX. | 
 |       locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimDouble: | 
 |     case Primitive::kPrimFloat: { | 
 |       locations->SetInAt(0, Location::Any()); | 
 |       locations->SetInAt(1, Location::Any()); | 
 |       locations->SetOut(Location::RequiresFpuRegister()); | 
 |       locations->AddTemp(Location::RegisterLocation(EAX)); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected rem type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitRem(HRem* rem) { | 
 |   Primitive::Type type = rem->GetResultType(); | 
 |   switch (type) { | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimLong: { | 
 |       GenerateDivRemIntegral(rem); | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimFloat: | 
 |     case Primitive::kPrimDouble: { | 
 |       GenerateRemFP(rem); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected rem type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
 |   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() | 
 |       ? LocationSummary::kCallOnSlowPath | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); | 
 |   switch (instruction->GetType()) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: | 
 |     case Primitive::kPrimChar: | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimInt: { | 
 |       locations->SetInAt(0, Location::Any()); | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimLong: { | 
 |       locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); | 
 |       if (!instruction->IsConstant()) { | 
 |         locations->AddTemp(Location::RequiresRegister()); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); | 
 |   } | 
 |   if (instruction->HasUses()) { | 
 |     locations->SetOut(Location::SameAsFirstInput()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
 |   SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location value = locations->InAt(0); | 
 |  | 
 |   switch (instruction->GetType()) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: | 
 |     case Primitive::kPrimChar: | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimInt: { | 
 |       if (value.IsRegister()) { | 
 |         __ testl(value.AsRegister<Register>(), value.AsRegister<Register>()); | 
 |         __ j(kEqual, slow_path->GetEntryLabel()); | 
 |       } else if (value.IsStackSlot()) { | 
 |         __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0)); | 
 |         __ j(kEqual, slow_path->GetEntryLabel()); | 
 |       } else { | 
 |         DCHECK(value.IsConstant()) << value; | 
 |         if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { | 
 |         __ jmp(slow_path->GetEntryLabel()); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimLong: { | 
 |       if (value.IsRegisterPair()) { | 
 |         Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
 |         __ movl(temp, value.AsRegisterPairLow<Register>()); | 
 |         __ orl(temp, value.AsRegisterPairHigh<Register>()); | 
 |         __ j(kEqual, slow_path->GetEntryLabel()); | 
 |       } else { | 
 |         DCHECK(value.IsConstant()) << value; | 
 |         if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { | 
 |           __ jmp(slow_path->GetEntryLabel()); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::HandleShift(HBinaryOperation* op) { | 
 |   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); | 
 |  | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); | 
 |  | 
 |   switch (op->GetResultType()) { | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimLong: { | 
 |       // Can't have Location::Any() and output SameAsFirstInput() | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       // The shift count needs to be in CL or a constant. | 
 |       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1))); | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected op type " << op->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) { | 
 |   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); | 
 |  | 
 |   LocationSummary* locations = op->GetLocations(); | 
 |   Location first = locations->InAt(0); | 
 |   Location second = locations->InAt(1); | 
 |   DCHECK(first.Equals(locations->Out())); | 
 |  | 
 |   switch (op->GetResultType()) { | 
 |     case Primitive::kPrimInt: { | 
 |       DCHECK(first.IsRegister()); | 
 |       Register first_reg = first.AsRegister<Register>(); | 
 |       if (second.IsRegister()) { | 
 |         Register second_reg = second.AsRegister<Register>(); | 
 |         DCHECK_EQ(ECX, second_reg); | 
 |         if (op->IsShl()) { | 
 |           __ shll(first_reg, second_reg); | 
 |         } else if (op->IsShr()) { | 
 |           __ sarl(first_reg, second_reg); | 
 |         } else { | 
 |           __ shrl(first_reg, second_reg); | 
 |         } | 
 |       } else { | 
 |         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance; | 
 |         if (shift == 0) { | 
 |           return; | 
 |         } | 
 |         Immediate imm(shift); | 
 |         if (op->IsShl()) { | 
 |           __ shll(first_reg, imm); | 
 |         } else if (op->IsShr()) { | 
 |           __ sarl(first_reg, imm); | 
 |         } else { | 
 |           __ shrl(first_reg, imm); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimLong: { | 
 |       if (second.IsRegister()) { | 
 |         Register second_reg = second.AsRegister<Register>(); | 
 |         DCHECK_EQ(ECX, second_reg); | 
 |         if (op->IsShl()) { | 
 |           GenerateShlLong(first, second_reg); | 
 |         } else if (op->IsShr()) { | 
 |           GenerateShrLong(first, second_reg); | 
 |         } else { | 
 |           GenerateUShrLong(first, second_reg); | 
 |         } | 
 |       } else { | 
 |         // Shift by a constant. | 
 |         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance; | 
 |         // Nothing to do if the shift is 0, as the input is already the output. | 
 |         if (shift != 0) { | 
 |           if (op->IsShl()) { | 
 |             GenerateShlLong(first, shift); | 
 |           } else if (op->IsShr()) { | 
 |             GenerateShrLong(first, shift); | 
 |           } else { | 
 |             GenerateUShrLong(first, shift); | 
 |           } | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected op type " << op->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) { | 
 |   Register low = loc.AsRegisterPairLow<Register>(); | 
 |   Register high = loc.AsRegisterPairHigh<Register>(); | 
 |   if (shift == 1) { | 
 |     // This is just an addition. | 
 |     __ addl(low, low); | 
 |     __ adcl(high, high); | 
 |   } else if (shift == 32) { | 
 |     // Shift by 32 is easy. High gets low, and low gets 0. | 
 |     codegen_->EmitParallelMoves( | 
 |         loc.ToLow(), | 
 |         loc.ToHigh(), | 
 |         Primitive::kPrimInt, | 
 |         Location::ConstantLocation(GetGraph()->GetIntConstant(0)), | 
 |         loc.ToLow(), | 
 |         Primitive::kPrimInt); | 
 |   } else if (shift > 32) { | 
 |     // Low part becomes 0.  High part is low part << (shift-32). | 
 |     __ movl(high, low); | 
 |     __ shll(high, Immediate(shift - 32)); | 
 |     __ xorl(low, low); | 
 |   } else { | 
 |     // Between 1 and 31. | 
 |     __ shld(high, low, Immediate(shift)); | 
 |     __ shll(low, Immediate(shift)); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) { | 
 |   NearLabel done; | 
 |   __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter); | 
 |   __ shll(loc.AsRegisterPairLow<Register>(), shifter); | 
 |   __ testl(shifter, Immediate(32)); | 
 |   __ j(kEqual, &done); | 
 |   __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>()); | 
 |   __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0)); | 
 |   __ Bind(&done); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) { | 
 |   Register low = loc.AsRegisterPairLow<Register>(); | 
 |   Register high = loc.AsRegisterPairHigh<Register>(); | 
 |   if (shift == 32) { | 
 |     // Need to copy the sign. | 
 |     DCHECK_NE(low, high); | 
 |     __ movl(low, high); | 
 |     __ sarl(high, Immediate(31)); | 
 |   } else if (shift > 32) { | 
 |     DCHECK_NE(low, high); | 
 |     // High part becomes sign. Low part is shifted by shift - 32. | 
 |     __ movl(low, high); | 
 |     __ sarl(high, Immediate(31)); | 
 |     __ sarl(low, Immediate(shift - 32)); | 
 |   } else { | 
 |     // Between 1 and 31. | 
 |     __ shrd(low, high, Immediate(shift)); | 
 |     __ sarl(high, Immediate(shift)); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) { | 
 |   NearLabel done; | 
 |   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); | 
 |   __ sarl(loc.AsRegisterPairHigh<Register>(), shifter); | 
 |   __ testl(shifter, Immediate(32)); | 
 |   __ j(kEqual, &done); | 
 |   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); | 
 |   __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31)); | 
 |   __ Bind(&done); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) { | 
 |   Register low = loc.AsRegisterPairLow<Register>(); | 
 |   Register high = loc.AsRegisterPairHigh<Register>(); | 
 |   if (shift == 32) { | 
 |     // Shift by 32 is easy. Low gets high, and high gets 0. | 
 |     codegen_->EmitParallelMoves( | 
 |         loc.ToHigh(), | 
 |         loc.ToLow(), | 
 |         Primitive::kPrimInt, | 
 |         Location::ConstantLocation(GetGraph()->GetIntConstant(0)), | 
 |         loc.ToHigh(), | 
 |         Primitive::kPrimInt); | 
 |   } else if (shift > 32) { | 
 |     // Low part is high >> (shift - 32). High part becomes 0. | 
 |     __ movl(low, high); | 
 |     __ shrl(low, Immediate(shift - 32)); | 
 |     __ xorl(high, high); | 
 |   } else { | 
 |     // Between 1 and 31. | 
 |     __ shrd(low, high, Immediate(shift)); | 
 |     __ shrl(high, Immediate(shift)); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) { | 
 |   NearLabel done; | 
 |   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); | 
 |   __ shrl(loc.AsRegisterPairHigh<Register>(), shifter); | 
 |   __ testl(shifter, Immediate(32)); | 
 |   __ j(kEqual, &done); | 
 |   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); | 
 |   __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0)); | 
 |   __ Bind(&done); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitRor(HRor* ror) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall); | 
 |  | 
 |   switch (ror->GetResultType()) { | 
 |     case Primitive::kPrimLong: | 
 |       // Add the temporary needed. | 
 |       locations->AddTemp(Location::RequiresRegister()); | 
 |       FALLTHROUGH_INTENDED; | 
 |     case Primitive::kPrimInt: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       // The shift count needs to be in CL (unless it is a constant). | 
 |       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1))); | 
 |       locations->SetOut(Location::SameAsFirstInput()); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitRor(HRor* ror) { | 
 |   LocationSummary* locations = ror->GetLocations(); | 
 |   Location first = locations->InAt(0); | 
 |   Location second = locations->InAt(1); | 
 |  | 
 |   if (ror->GetResultType() == Primitive::kPrimInt) { | 
 |     Register first_reg = first.AsRegister<Register>(); | 
 |     if (second.IsRegister()) { | 
 |       Register second_reg = second.AsRegister<Register>(); | 
 |       __ rorl(first_reg, second_reg); | 
 |     } else { | 
 |       Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance); | 
 |       __ rorl(first_reg, imm); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   DCHECK_EQ(ror->GetResultType(), Primitive::kPrimLong); | 
 |   Register first_reg_lo = first.AsRegisterPairLow<Register>(); | 
 |   Register first_reg_hi = first.AsRegisterPairHigh<Register>(); | 
 |   Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); | 
 |   if (second.IsRegister()) { | 
 |     Register second_reg = second.AsRegister<Register>(); | 
 |     DCHECK_EQ(second_reg, ECX); | 
 |     __ movl(temp_reg, first_reg_hi); | 
 |     __ shrd(first_reg_hi, first_reg_lo, second_reg); | 
 |     __ shrd(first_reg_lo, temp_reg, second_reg); | 
 |     __ movl(temp_reg, first_reg_hi); | 
 |     __ testl(second_reg, Immediate(32)); | 
 |     __ cmovl(kNotEqual, first_reg_hi, first_reg_lo); | 
 |     __ cmovl(kNotEqual, first_reg_lo, temp_reg); | 
 |   } else { | 
 |     int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance; | 
 |     if (shift_amt == 0) { | 
 |       // Already fine. | 
 |       return; | 
 |     } | 
 |     if (shift_amt == 32) { | 
 |       // Just swap. | 
 |       __ movl(temp_reg, first_reg_lo); | 
 |       __ movl(first_reg_lo, first_reg_hi); | 
 |       __ movl(first_reg_hi, temp_reg); | 
 |       return; | 
 |     } | 
 |  | 
 |     Immediate imm(shift_amt); | 
 |     // Save the constents of the low value. | 
 |     __ movl(temp_reg, first_reg_lo); | 
 |  | 
 |     // Shift right into low, feeding bits from high. | 
 |     __ shrd(first_reg_lo, first_reg_hi, imm); | 
 |  | 
 |     // Shift right into high, feeding bits from the original low. | 
 |     __ shrd(first_reg_hi, temp_reg, imm); | 
 |  | 
 |     // Swap if needed. | 
 |     if (shift_amt > 32) { | 
 |       __ movl(temp_reg, first_reg_lo); | 
 |       __ movl(first_reg_lo, first_reg_hi); | 
 |       __ movl(first_reg_hi, temp_reg); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitShl(HShl* shl) { | 
 |   HandleShift(shl); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitShl(HShl* shl) { | 
 |   HandleShift(shl); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitShr(HShr* shr) { | 
 |   HandleShift(shr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitShr(HShr* shr) { | 
 |   HandleShift(shr); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitUShr(HUShr* ushr) { | 
 |   HandleShift(ushr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) { | 
 |   HandleShift(ushr); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); | 
 |   locations->SetOut(Location::RegisterLocation(EAX)); | 
 |   if (instruction->IsStringAlloc()) { | 
 |     locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); | 
 |   } else { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |     locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) { | 
 |   // Note: if heap poisoning is enabled, the entry point takes cares | 
 |   // of poisoning the reference. | 
 |   if (instruction->IsStringAlloc()) { | 
 |     // String is allocated through StringFactory. Call NewEmptyString entry point. | 
 |     Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>(); | 
 |     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize); | 
 |     __ fs()->movl(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString))); | 
 |     __ call(Address(temp, code_offset.Int32Value())); | 
 |     codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); | 
 |   } else { | 
 |     codegen_->InvokeRuntime(instruction->GetEntrypoint(), | 
 |                             instruction, | 
 |                             instruction->GetDexPc(), | 
 |                             nullptr); | 
 |     CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>(); | 
 |     DCHECK(!codegen_->IsLeafMethod()); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); | 
 |   locations->SetOut(Location::RegisterLocation(EAX)); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); | 
 |   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) { | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   __ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex())); | 
 |   // Note: if heap poisoning is enabled, the entry point takes cares | 
 |   // of poisoning the reference. | 
 |   codegen_->InvokeRuntime(instruction->GetEntrypoint(), | 
 |                           instruction, | 
 |                           instruction->GetDexPc(), | 
 |                           nullptr); | 
 |   CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>(); | 
 |   DCHECK(!codegen_->IsLeafMethod()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); | 
 |   if (location.IsStackSlot()) { | 
 |     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
 |   } else if (location.IsDoubleStackSlot()) { | 
 |     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
 |   } | 
 |   locations->SetOut(location); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitParameterValue( | 
 |     HParameterValue* instruction ATTRIBUTE_UNUSED) { | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) { | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   uint32_t method_offset = 0; | 
 |   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { | 
 |     method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
 |         instruction->GetIndex(), kX86PointerSize).SizeValue(); | 
 |   } else { | 
 |     method_offset = mirror::Class::EmbeddedImTableEntryOffset( | 
 |         instruction->GetIndex() % mirror::Class::kImtSize, kX86PointerSize).Uint32Value(); | 
 |   } | 
 |   __ movl(locations->Out().AsRegister<Register>(), | 
 |           Address(locations->InAt(0).AsRegister<Register>(), method_offset)); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitNot(HNot* not_) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::SameAsFirstInput()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitNot(HNot* not_) { | 
 |   LocationSummary* locations = not_->GetLocations(); | 
 |   Location in = locations->InAt(0); | 
 |   Location out = locations->Out(); | 
 |   DCHECK(in.Equals(out)); | 
 |   switch (not_->GetResultType()) { | 
 |     case Primitive::kPrimInt: | 
 |       __ notl(out.AsRegister<Register>()); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimLong: | 
 |       __ notl(out.AsRegisterPairLow<Register>()); | 
 |       __ notl(out.AsRegisterPairHigh<Register>()); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::SameAsFirstInput()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) { | 
 |   LocationSummary* locations = bool_not->GetLocations(); | 
 |   Location in = locations->InAt(0); | 
 |   Location out = locations->Out(); | 
 |   DCHECK(in.Equals(out)); | 
 |   __ xorl(out.AsRegister<Register>(), Immediate(1)); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitCompare(HCompare* compare) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); | 
 |   switch (compare->InputAt(0)->GetType()) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimChar: | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimLong: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::Any()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimFloat: | 
 |     case Primitive::kPrimDouble: { | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       if (compare->InputAt(1)->IsX86LoadFromConstantTable()) { | 
 |         DCHECK(compare->InputAt(1)->IsEmittedAtUseSite()); | 
 |       } else if (compare->InputAt(1)->IsConstant()) { | 
 |         locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       } else { | 
 |         locations->SetInAt(1, Location::Any()); | 
 |       } | 
 |       locations->SetOut(Location::RequiresRegister()); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) { | 
 |   LocationSummary* locations = compare->GetLocations(); | 
 |   Register out = locations->Out().AsRegister<Register>(); | 
 |   Location left = locations->InAt(0); | 
 |   Location right = locations->InAt(1); | 
 |  | 
 |   NearLabel less, greater, done; | 
 |   Condition less_cond = kLess; | 
 |  | 
 |   switch (compare->InputAt(0)->GetType()) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimChar: | 
 |     case Primitive::kPrimInt: { | 
 |       GenerateIntCompare(left, right); | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimLong: { | 
 |       Register left_low = left.AsRegisterPairLow<Register>(); | 
 |       Register left_high = left.AsRegisterPairHigh<Register>(); | 
 |       int32_t val_low = 0; | 
 |       int32_t val_high = 0; | 
 |       bool right_is_const = false; | 
 |  | 
 |       if (right.IsConstant()) { | 
 |         DCHECK(right.GetConstant()->IsLongConstant()); | 
 |         right_is_const = true; | 
 |         int64_t val = right.GetConstant()->AsLongConstant()->GetValue(); | 
 |         val_low = Low32Bits(val); | 
 |         val_high = High32Bits(val); | 
 |       } | 
 |  | 
 |       if (right.IsRegisterPair()) { | 
 |         __ cmpl(left_high, right.AsRegisterPairHigh<Register>()); | 
 |       } else if (right.IsDoubleStackSlot()) { | 
 |         __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize))); | 
 |       } else { | 
 |         DCHECK(right_is_const) << right; | 
 |         codegen_->Compare32BitValue(left_high, val_high); | 
 |       } | 
 |       __ j(kLess, &less);  // Signed compare. | 
 |       __ j(kGreater, &greater);  // Signed compare. | 
 |       if (right.IsRegisterPair()) { | 
 |         __ cmpl(left_low, right.AsRegisterPairLow<Register>()); | 
 |       } else if (right.IsDoubleStackSlot()) { | 
 |         __ cmpl(left_low, Address(ESP, right.GetStackIndex())); | 
 |       } else { | 
 |         DCHECK(right_is_const) << right; | 
 |         codegen_->Compare32BitValue(left_low, val_low); | 
 |       } | 
 |       less_cond = kBelow;  // for CF (unsigned). | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimFloat: { | 
 |       GenerateFPCompare(left, right, compare, false); | 
 |       __ j(kUnordered, compare->IsGtBias() ? &greater : &less); | 
 |       less_cond = kBelow;  // for CF (floats). | 
 |       break; | 
 |     } | 
 |     case Primitive::kPrimDouble: { | 
 |       GenerateFPCompare(left, right, compare, true); | 
 |       __ j(kUnordered, compare->IsGtBias() ? &greater : &less); | 
 |       less_cond = kBelow;  // for CF (floats). | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); | 
 |   } | 
 |  | 
 |   __ movl(out, Immediate(0)); | 
 |   __ j(kEqual, &done); | 
 |   __ j(less_cond, &less); | 
 |  | 
 |   __ Bind(&greater); | 
 |   __ movl(out, Immediate(1)); | 
 |   __ jmp(&done); | 
 |  | 
 |   __ Bind(&less); | 
 |   __ movl(out, Immediate(-1)); | 
 |  | 
 |   __ Bind(&done); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitPhi(HPhi* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { | 
 |     locations->SetInAt(i, Location::Any()); | 
 |   } | 
 |   locations->SetOut(Location::Any()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) { | 
 |   /* | 
 |    * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. | 
 |    * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. | 
 |    * For those cases, all we need to ensure is that there is a scheduling barrier in place. | 
 |    */ | 
 |   switch (kind) { | 
 |     case MemBarrierKind::kAnyAny: { | 
 |       MemoryFence(); | 
 |       break; | 
 |     } | 
 |     case MemBarrierKind::kAnyStore: | 
 |     case MemBarrierKind::kLoadAny: | 
 |     case MemBarrierKind::kStoreStore: { | 
 |       // nop | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected memory barrier " << kind; | 
 |   } | 
 | } | 
 |  | 
 | HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch( | 
 |       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, | 
 |       MethodReference target_method ATTRIBUTE_UNUSED) { | 
 |   HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info; | 
 |  | 
 |   // We disable pc-relative load when there is an irreducible loop, as the optimization | 
 |   // is incompatible with it. | 
 |   // TODO: Create as many X86ComputeBaseMethodAddress instructions | 
 |   // as needed for methods with irreducible loops. | 
 |   if (GetGraph()->HasIrreducibleLoops() && | 
 |       (dispatch_info.method_load_kind == | 
 |           HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) { | 
 |     dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod; | 
 |   } | 
 |   switch (dispatch_info.code_ptr_location) { | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: | 
 |       // For direct code, we actually prefer to call via the code pointer from ArtMethod*. | 
 |       // (Though the direct CALL ptr16:32 is available for consideration). | 
 |       return HInvokeStaticOrDirect::DispatchInfo { | 
 |         dispatch_info.method_load_kind, | 
 |         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, | 
 |         dispatch_info.method_load_data, | 
 |         0u | 
 |       }; | 
 |     default: | 
 |       return dispatch_info; | 
 |   } | 
 | } | 
 |  | 
 | Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, | 
 |                                                                  Register temp) { | 
 |   DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); | 
 |   Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); | 
 |   if (!invoke->GetLocations()->Intrinsified()) { | 
 |     return location.AsRegister<Register>(); | 
 |   } | 
 |   // For intrinsics we allow any location, so it may be on the stack. | 
 |   if (!location.IsRegister()) { | 
 |     __ movl(temp, Address(ESP, location.GetStackIndex())); | 
 |     return temp; | 
 |   } | 
 |   // For register locations, check if the register was saved. If so, get it from the stack. | 
 |   // Note: There is a chance that the register was saved but not overwritten, so we could | 
 |   // save one load. However, since this is just an intrinsic slow path we prefer this | 
 |   // simple and more robust approach rather that trying to determine if that's the case. | 
 |   SlowPathCode* slow_path = GetCurrentSlowPath(); | 
 |   DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path. | 
 |   if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) { | 
 |     int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>()); | 
 |     __ movl(temp, Address(ESP, stack_offset)); | 
 |     return temp; | 
 |   } | 
 |   return location.AsRegister<Register>(); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { | 
 |   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp. | 
 |   switch (invoke->GetMethodLoadKind()) { | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: | 
 |       // temp = thread->string_init_entrypoint | 
 |       __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(invoke->GetStringInitOffset())); | 
 |       break; | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: | 
 |       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); | 
 |       break; | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: | 
 |       __ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress())); | 
 |       break; | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: | 
 |       __ movl(temp.AsRegister<Register>(), Immediate(/* placeholder */ 0)); | 
 |       method_patches_.emplace_back(invoke->GetTargetMethod()); | 
 |       __ Bind(&method_patches_.back().label);  // Bind the label at the end of the "movl" insn. | 
 |       break; | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { | 
 |       Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke, | 
 |                                                                 temp.AsRegister<Register>()); | 
 |       __ movl(temp.AsRegister<Register>(), Address(base_reg, kDummy32BitOffset)); | 
 |       // Bind a new fixup label at the end of the "movl" insn. | 
 |       uint32_t offset = invoke->GetDexCacheArrayOffset(); | 
 |       __ Bind(NewPcRelativeDexCacheArrayPatch(*invoke->GetTargetMethod().dex_file, offset)); | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { | 
 |       Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); | 
 |       Register method_reg; | 
 |       Register reg = temp.AsRegister<Register>(); | 
 |       if (current_method.IsRegister()) { | 
 |         method_reg = current_method.AsRegister<Register>(); | 
 |       } else { | 
 |         DCHECK(invoke->GetLocations()->Intrinsified()); | 
 |         DCHECK(!current_method.IsValid()); | 
 |         method_reg = reg; | 
 |         __ movl(reg, Address(ESP, kCurrentMethodStackOffset)); | 
 |       } | 
 |       // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; | 
 |       __ movl(reg, Address(method_reg, | 
 |                            ArtMethod::DexCacheResolvedMethodsOffset(kX86PointerSize).Int32Value())); | 
 |       // temp = temp[index_in_cache] | 
 |       uint32_t index_in_cache = invoke->GetTargetMethod().dex_method_index; | 
 |       __ movl(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache))); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   switch (invoke->GetCodePtrLocation()) { | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: | 
 |       __ call(GetFrameEntryLabel()); | 
 |       break; | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: { | 
 |       relative_call_patches_.emplace_back(invoke->GetTargetMethod()); | 
 |       Label* label = &relative_call_patches_.back().label; | 
 |       __ call(label);  // Bind to the patch label, override at link time. | 
 |       __ Bind(label);  // Bind the label at the end of the "call" insn. | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup: | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect: | 
 |       // Filtered out by GetSupportedInvokeStaticOrDirectDispatch(). | 
 |       LOG(FATAL) << "Unsupported"; | 
 |       UNREACHABLE(); | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: | 
 |       // (callee_method + offset_of_quick_compiled_code)() | 
 |       __ call(Address(callee_method.AsRegister<Register>(), | 
 |                       ArtMethod::EntryPointFromQuickCompiledCodeOffset( | 
 |                           kX86WordSize).Int32Value())); | 
 |       break; | 
 |   } | 
 |  | 
 |   DCHECK(!IsLeafMethod()); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) { | 
 |   Register temp = temp_in.AsRegister<Register>(); | 
 |   uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
 |       invoke->GetVTableIndex(), kX86PointerSize).Uint32Value(); | 
 |  | 
 |   // Use the calling convention instead of the location of the receiver, as | 
 |   // intrinsics may have put the receiver in a different register. In the intrinsics | 
 |   // slow path, the arguments have been moved to the right place, so here we are | 
 |   // guaranteed that the receiver is the first register of the calling convention. | 
 |   InvokeDexCallingConvention calling_convention; | 
 |   Register receiver = calling_convention.GetRegisterAt(0); | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   // /* HeapReference<Class> */ temp = receiver->klass_ | 
 |   __ movl(temp, Address(receiver, class_offset)); | 
 |   MaybeRecordImplicitNullCheck(invoke); | 
 |   // Instead of simply (possibly) unpoisoning `temp` here, we should | 
 |   // emit a read barrier for the previous class reference load. | 
 |   // However this is not required in practice, as this is an | 
 |   // intermediate/temporary reference and because the current | 
 |   // concurrent copying collector keeps the from-space memory | 
 |   // intact/accessible until the end of the marking phase (the | 
 |   // concurrent copying collector may not in the future). | 
 |   __ MaybeUnpoisonHeapReference(temp); | 
 |   // temp = temp->GetMethodAt(method_offset); | 
 |   __ movl(temp, Address(temp, method_offset)); | 
 |   // call temp->GetEntryPoint(); | 
 |   __ call(Address( | 
 |       temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value())); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::RecordSimplePatch() { | 
 |   if (GetCompilerOptions().GetIncludePatchInformation()) { | 
 |     simple_patches_.emplace_back(); | 
 |     __ Bind(&simple_patches_.back()); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorX86::RecordStringPatch(HLoadString* load_string) { | 
 |   string_patches_.emplace_back(load_string->GetDexFile(), load_string->GetStringIndex()); | 
 |   __ Bind(&string_patches_.back().label); | 
 | } | 
 |  | 
 | Label* CodeGeneratorX86::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file, | 
 |                                                          uint32_t element_offset) { | 
 |   // Add the patch entry and bind its label at the end of the instruction. | 
 |   pc_relative_dex_cache_patches_.emplace_back(dex_file, element_offset); | 
 |   return &pc_relative_dex_cache_patches_.back().label; | 
 | } | 
 |  | 
 | void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { | 
 |   DCHECK(linker_patches->empty()); | 
 |   size_t size = | 
 |       method_patches_.size() + | 
 |       relative_call_patches_.size() + | 
 |       pc_relative_dex_cache_patches_.size() + | 
 |       simple_patches_.size() + | 
 |       string_patches_.size(); | 
 |   linker_patches->reserve(size); | 
 |   // The label points to the end of the "movl" insn but the literal offset for method | 
 |   // patch needs to point to the embedded constant which occupies the last 4 bytes. | 
 |   constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u; | 
 |   for (const MethodPatchInfo<Label>& info : method_patches_) { | 
 |     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; | 
 |     linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset, | 
 |                                                        info.target_method.dex_file, | 
 |                                                        info.target_method.dex_method_index)); | 
 |   } | 
 |   for (const MethodPatchInfo<Label>& info : relative_call_patches_) { | 
 |     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; | 
 |     linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset, | 
 |                                                              info.target_method.dex_file, | 
 |                                                              info.target_method.dex_method_index)); | 
 |   } | 
 |   for (const PcRelativeDexCacheAccessInfo& info : pc_relative_dex_cache_patches_) { | 
 |     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; | 
 |     linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(literal_offset, | 
 |                                                               &info.target_dex_file, | 
 |                                                               GetMethodAddressOffset(), | 
 |                                                               info.element_offset)); | 
 |   } | 
 |   for (const Label& label : simple_patches_) { | 
 |     uint32_t literal_offset = label.Position() - kLabelPositionToLiteralOffsetAdjustment; | 
 |     linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset)); | 
 |   } | 
 |   if (GetCompilerOptions().GetCompilePic()) { | 
 |     for (const StringPatchInfo<Label>& info : string_patches_) { | 
 |       uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; | 
 |       linker_patches->push_back(LinkerPatch::RelativeStringPatch(literal_offset, | 
 |                                                                  &info.dex_file, | 
 |                                                                  GetMethodAddressOffset(), | 
 |                                                                  info.string_index)); | 
 |     } | 
 |   } else { | 
 |     for (const StringPatchInfo<Label>& info : string_patches_) { | 
 |       uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; | 
 |       linker_patches->push_back(LinkerPatch::StringPatch(literal_offset, | 
 |                                                          &info.dex_file, | 
 |                                                          info.string_index)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorX86::MarkGCCard(Register temp, | 
 |                                   Register card, | 
 |                                   Register object, | 
 |                                   Register value, | 
 |                                   bool value_can_be_null) { | 
 |   NearLabel is_null; | 
 |   if (value_can_be_null) { | 
 |     __ testl(value, value); | 
 |     __ j(kEqual, &is_null); | 
 |   } | 
 |   __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86WordSize>().Int32Value())); | 
 |   __ movl(temp, object); | 
 |   __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift)); | 
 |   __ movb(Address(temp, card, TIMES_1, 0), | 
 |           X86ManagedRegister::FromCpuRegister(card).AsByteRegister()); | 
 |   if (value_can_be_null) { | 
 |     __ Bind(&is_null); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { | 
 |   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); | 
 |  | 
 |   bool object_field_get_with_read_barrier = | 
 |       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, | 
 |                                                    kEmitCompilerReadBarrier ? | 
 |                                                        LocationSummary::kCallOnSlowPath : | 
 |                                                        LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |  | 
 |   if (Primitive::IsFloatingPointType(instruction->GetType())) { | 
 |     locations->SetOut(Location::RequiresFpuRegister()); | 
 |   } else { | 
 |     // The output overlaps in case of long: we don't want the low move | 
 |     // to overwrite the object's location.  Likewise, in the case of | 
 |     // an object field get with read barriers enabled, we do not want | 
 |     // the move to overwrite the object's location, as we need it to emit | 
 |     // the read barrier. | 
 |     locations->SetOut( | 
 |         Location::RequiresRegister(), | 
 |         (object_field_get_with_read_barrier || instruction->GetType() == Primitive::kPrimLong) ? | 
 |             Location::kOutputOverlap : | 
 |             Location::kNoOutputOverlap); | 
 |   } | 
 |  | 
 |   if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) { | 
 |     // Long values can be loaded atomically into an XMM using movsd. | 
 |     // So we use an XMM register as a temp to achieve atomicity (first | 
 |     // load the temp into the XMM and then copy the XMM into the | 
 |     // output, 32 bits at a time). | 
 |     locations->AddTemp(Location::RequiresFpuRegister()); | 
 |   } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { | 
 |     // We need a temporary register for the read barrier marking slow | 
 |     // path in CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier. | 
 |     locations->AddTemp(Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction, | 
 |                                                  const FieldInfo& field_info) { | 
 |   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location base_loc = locations->InAt(0); | 
 |   Register base = base_loc.AsRegister<Register>(); | 
 |   Location out = locations->Out(); | 
 |   bool is_volatile = field_info.IsVolatile(); | 
 |   Primitive::Type field_type = field_info.GetFieldType(); | 
 |   uint32_t offset = field_info.GetFieldOffset().Uint32Value(); | 
 |  | 
 |   switch (field_type) { | 
 |     case Primitive::kPrimBoolean: { | 
 |       __ movzxb(out.AsRegister<Register>(), Address(base, offset)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimByte: { | 
 |       __ movsxb(out.AsRegister<Register>(), Address(base, offset)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimShort: { | 
 |       __ movsxw(out.AsRegister<Register>(), Address(base, offset)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimChar: { | 
 |       __ movzxw(out.AsRegister<Register>(), Address(base, offset)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimInt: | 
 |       __ movl(out.AsRegister<Register>(), Address(base, offset)); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimNot: { | 
 |       // /* HeapReference<Object> */ out = *(base + offset) | 
 |       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |         Location temp_loc = locations->GetTemp(0); | 
 |         // Note that a potential implicit null check is handled in this | 
 |         // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call. | 
 |         codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |             instruction, out, base, offset, temp_loc, /* needs_null_check */ true); | 
 |         if (is_volatile) { | 
 |           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
 |         } | 
 |       } else { | 
 |         __ movl(out.AsRegister<Register>(), Address(base, offset)); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         if (is_volatile) { | 
 |           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
 |         } | 
 |         // If read barriers are enabled, emit read barriers other than | 
 |         // Baker's using a slow path (and also unpoison the loaded | 
 |         // reference, if heap poisoning is enabled). | 
 |         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       if (is_volatile) { | 
 |         XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); | 
 |         __ movsd(temp, Address(base, offset)); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         __ movd(out.AsRegisterPairLow<Register>(), temp); | 
 |         __ psrlq(temp, Immediate(32)); | 
 |         __ movd(out.AsRegisterPairHigh<Register>(), temp); | 
 |       } else { | 
 |         DCHECK_NE(base, out.AsRegisterPairLow<Register>()); | 
 |         __ movl(out.AsRegisterPairLow<Register>(), Address(base, offset)); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         __ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset)); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimVoid: | 
 |       LOG(FATAL) << "Unreachable type " << field_type; | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimLong) { | 
 |     // Potential implicit null checks, in the case of reference or | 
 |     // long fields, are handled in the previous switch statement. | 
 |   } else { | 
 |     codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |   } | 
 |  | 
 |   if (is_volatile) { | 
 |     if (field_type == Primitive::kPrimNot) { | 
 |       // Memory barriers, in the case of references, are also handled | 
 |       // in the previous switch statement. | 
 |     } else { | 
 |       codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { | 
 |   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); | 
 |  | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   bool is_volatile = field_info.IsVolatile(); | 
 |   Primitive::Type field_type = field_info.GetFieldType(); | 
 |   bool is_byte_type = (field_type == Primitive::kPrimBoolean) | 
 |     || (field_type == Primitive::kPrimByte); | 
 |  | 
 |   // The register allocator does not support multiple | 
 |   // inputs that die at entry with one in a specific register. | 
 |   if (is_byte_type) { | 
 |     // Ensure the value is in a byte register. | 
 |     locations->SetInAt(1, Location::RegisterLocation(EAX)); | 
 |   } else if (Primitive::IsFloatingPointType(field_type)) { | 
 |     if (is_volatile && field_type == Primitive::kPrimDouble) { | 
 |       // In order to satisfy the semantics of volatile, this must be a single instruction store. | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |     } else { | 
 |       locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1))); | 
 |     } | 
 |   } else if (is_volatile && field_type == Primitive::kPrimLong) { | 
 |     // In order to satisfy the semantics of volatile, this must be a single instruction store. | 
 |     locations->SetInAt(1, Location::RequiresRegister()); | 
 |  | 
 |     // 64bits value can be atomically written to an address with movsd and an XMM register. | 
 |     // We need two XMM registers because there's no easier way to (bit) copy a register pair | 
 |     // into a single XMM register (we copy each pair part into the XMMs and then interleave them). | 
 |     // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the | 
 |     // isolated cases when we need this it isn't worth adding the extra complexity. | 
 |     locations->AddTemp(Location::RequiresFpuRegister()); | 
 |     locations->AddTemp(Location::RequiresFpuRegister()); | 
 |   } else { | 
 |     locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |  | 
 |     if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { | 
 |       // Temporary registers for the write barrier. | 
 |       locations->AddTemp(Location::RequiresRegister());  // May be used for reference poisoning too. | 
 |       // Ensure the card is in a byte register. | 
 |       locations->AddTemp(Location::RegisterLocation(ECX)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction, | 
 |                                                  const FieldInfo& field_info, | 
 |                                                  bool value_can_be_null) { | 
 |   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Register base = locations->InAt(0).AsRegister<Register>(); | 
 |   Location value = locations->InAt(1); | 
 |   bool is_volatile = field_info.IsVolatile(); | 
 |   Primitive::Type field_type = field_info.GetFieldType(); | 
 |   uint32_t offset = field_info.GetFieldOffset().Uint32Value(); | 
 |   bool needs_write_barrier = | 
 |       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); | 
 |  | 
 |   if (is_volatile) { | 
 |     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); | 
 |   } | 
 |  | 
 |   bool maybe_record_implicit_null_check_done = false; | 
 |  | 
 |   switch (field_type) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: { | 
 |       __ movb(Address(base, offset), value.AsRegister<ByteRegister>()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimChar: { | 
 |       if (value.IsConstant()) { | 
 |         int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); | 
 |         __ movw(Address(base, offset), Immediate(v)); | 
 |       } else { | 
 |         __ movw(Address(base, offset), value.AsRegister<Register>()); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimInt: | 
 |     case Primitive::kPrimNot: { | 
 |       if (kPoisonHeapReferences && needs_write_barrier) { | 
 |         // Note that in the case where `value` is a null reference, | 
 |         // we do not enter this block, as the reference does not | 
 |         // need poisoning. | 
 |         DCHECK_EQ(field_type, Primitive::kPrimNot); | 
 |         Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
 |         __ movl(temp, value.AsRegister<Register>()); | 
 |         __ PoisonHeapReference(temp); | 
 |         __ movl(Address(base, offset), temp); | 
 |       } else if (value.IsConstant()) { | 
 |         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); | 
 |         __ movl(Address(base, offset), Immediate(v)); | 
 |       } else { | 
 |         DCHECK(value.IsRegister()) << value; | 
 |         __ movl(Address(base, offset), value.AsRegister<Register>()); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       if (is_volatile) { | 
 |         XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); | 
 |         XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); | 
 |         __ movd(temp1, value.AsRegisterPairLow<Register>()); | 
 |         __ movd(temp2, value.AsRegisterPairHigh<Register>()); | 
 |         __ punpckldq(temp1, temp2); | 
 |         __ movsd(Address(base, offset), temp1); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |       } else if (value.IsConstant()) { | 
 |         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant()); | 
 |         __ movl(Address(base, offset), Immediate(Low32Bits(v))); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v))); | 
 |       } else { | 
 |         __ movl(Address(base, offset), value.AsRegisterPairLow<Register>()); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         __ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>()); | 
 |       } | 
 |       maybe_record_implicit_null_check_done = true; | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       if (value.IsConstant()) { | 
 |         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); | 
 |         __ movl(Address(base, offset), Immediate(v)); | 
 |       } else { | 
 |         __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>()); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       if (value.IsConstant()) { | 
 |         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant()); | 
 |         __ movl(Address(base, offset), Immediate(Low32Bits(v))); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v))); | 
 |         maybe_record_implicit_null_check_done = true; | 
 |       } else { | 
 |         __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>()); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimVoid: | 
 |       LOG(FATAL) << "Unreachable type " << field_type; | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   if (!maybe_record_implicit_null_check_done) { | 
 |     codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |   } | 
 |  | 
 |   if (needs_write_barrier) { | 
 |     Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
 |     Register card = locations->GetTemp(1).AsRegister<Register>(); | 
 |     codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null); | 
 |   } | 
 |  | 
 |   if (is_volatile) { | 
 |     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet( | 
 |     HUnresolvedInstanceFieldGet* instruction) { | 
 |   FieldAccessCallingConventionX86 calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary( | 
 |       instruction, instruction->GetFieldType(), calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet( | 
 |     HUnresolvedInstanceFieldGet* instruction) { | 
 |   FieldAccessCallingConventionX86 calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet( | 
 |     HUnresolvedInstanceFieldSet* instruction) { | 
 |   FieldAccessCallingConventionX86 calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary( | 
 |       instruction, instruction->GetFieldType(), calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet( | 
 |     HUnresolvedInstanceFieldSet* instruction) { | 
 |   FieldAccessCallingConventionX86 calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitUnresolvedStaticFieldGet( | 
 |     HUnresolvedStaticFieldGet* instruction) { | 
 |   FieldAccessCallingConventionX86 calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary( | 
 |       instruction, instruction->GetFieldType(), calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet( | 
 |     HUnresolvedStaticFieldGet* instruction) { | 
 |   FieldAccessCallingConventionX86 calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitUnresolvedStaticFieldSet( | 
 |     HUnresolvedStaticFieldSet* instruction) { | 
 |   FieldAccessCallingConventionX86 calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary( | 
 |       instruction, instruction->GetFieldType(), calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet( | 
 |     HUnresolvedStaticFieldSet* instruction) { | 
 |   FieldAccessCallingConventionX86 calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) { | 
 |   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() | 
 |       ? LocationSummary::kCallOnSlowPath | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); | 
 |   Location loc = codegen_->IsImplicitNullCheckAllowed(instruction) | 
 |       ? Location::RequiresRegister() | 
 |       : Location::Any(); | 
 |   locations->SetInAt(0, loc); | 
 |   if (instruction->HasUses()) { | 
 |     locations->SetOut(Location::SameAsFirstInput()); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) { | 
 |   if (CanMoveNullCheckToUser(instruction)) { | 
 |     return; | 
 |   } | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj = locations->InAt(0); | 
 |  | 
 |   __ testl(EAX, Address(obj.AsRegister<Register>(), 0)); | 
 |   RecordPcInfo(instruction, instruction->GetDexPc()); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) { | 
 |   SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj = locations->InAt(0); | 
 |  | 
 |   if (obj.IsRegister()) { | 
 |     __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>()); | 
 |   } else if (obj.IsStackSlot()) { | 
 |     __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0)); | 
 |   } else { | 
 |     DCHECK(obj.IsConstant()) << obj; | 
 |     DCHECK(obj.GetConstant()->IsNullConstant()); | 
 |     __ jmp(slow_path->GetEntryLabel()); | 
 |     return; | 
 |   } | 
 |   __ j(kEqual, slow_path->GetEntryLabel()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) { | 
 |   codegen_->GenerateNullCheck(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) { | 
 |   bool object_array_get_with_read_barrier = | 
 |       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, | 
 |                                                    object_array_get_with_read_barrier ? | 
 |                                                        LocationSummary::kCallOnSlowPath : | 
 |                                                        LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |   if (Primitive::IsFloatingPointType(instruction->GetType())) { | 
 |     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |   } else { | 
 |     // The output overlaps in case of long: we don't want the low move | 
 |     // to overwrite the array's location.  Likewise, in the case of an | 
 |     // object array get with read barriers enabled, we do not want the | 
 |     // move to overwrite the array's location, as we need it to emit | 
 |     // the read barrier. | 
 |     locations->SetOut( | 
 |         Location::RequiresRegister(), | 
 |         (instruction->GetType() == Primitive::kPrimLong || object_array_get_with_read_barrier) ? | 
 |             Location::kOutputOverlap : | 
 |             Location::kNoOutputOverlap); | 
 |   } | 
 |   // We need a temporary register for the read barrier marking slow | 
 |   // path in CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier. | 
 |   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { | 
 |     locations->AddTemp(Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj_loc = locations->InAt(0); | 
 |   Register obj = obj_loc.AsRegister<Register>(); | 
 |   Location index = locations->InAt(1); | 
 |   Location out_loc = locations->Out(); | 
 |  | 
 |   Primitive::Type type = instruction->GetType(); | 
 |   switch (type) { | 
 |     case Primitive::kPrimBoolean: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         __ movzxb(out, Address(obj, | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); | 
 |       } else { | 
 |         __ movzxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset)); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimByte: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value(); | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         __ movsxb(out, Address(obj, | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset)); | 
 |       } else { | 
 |         __ movsxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset)); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimShort: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value(); | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         __ movsxw(out, Address(obj, | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); | 
 |       } else { | 
 |         __ movsxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset)); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimChar: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         __ movzxw(out, Address(obj, | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset)); | 
 |       } else { | 
 |         __ movzxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset)); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimInt: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         __ movl(out, Address(obj, | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); | 
 |       } else { | 
 |         __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset)); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimNot: { | 
 |       static_assert( | 
 |           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
 |           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); | 
 |       // /* HeapReference<Object> */ out = | 
 |       //     *(obj + data_offset + index * sizeof(HeapReference<Object>)) | 
 |       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |         Location temp = locations->GetTemp(0); | 
 |         // Note that a potential implicit null check is handled in this | 
 |         // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call. | 
 |         codegen_->GenerateArrayLoadWithBakerReadBarrier( | 
 |             instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true); | 
 |       } else { | 
 |         Register out = out_loc.AsRegister<Register>(); | 
 |         if (index.IsConstant()) { | 
 |           uint32_t offset = | 
 |               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
 |           __ movl(out, Address(obj, offset)); | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |           // If read barriers are enabled, emit read barriers other than | 
 |           // Baker's using a slow path (and also unpoison the loaded | 
 |           // reference, if heap poisoning is enabled). | 
 |           codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); | 
 |         } else { | 
 |           __ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset)); | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |           // If read barriers are enabled, emit read barriers other than | 
 |           // Baker's using a slow path (and also unpoison the loaded | 
 |           // reference, if heap poisoning is enabled). | 
 |           codegen_->MaybeGenerateReadBarrierSlow( | 
 |               instruction, out_loc, out_loc, obj_loc, data_offset, index); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); | 
 |       DCHECK_NE(obj, out_loc.AsRegisterPairLow<Register>()); | 
 |       if (index.IsConstant()) { | 
 |         size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; | 
 |         __ movl(out_loc.AsRegisterPairLow<Register>(), Address(obj, offset)); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         __ movl(out_loc.AsRegisterPairHigh<Register>(), Address(obj, offset + kX86WordSize)); | 
 |       } else { | 
 |         __ movl(out_loc.AsRegisterPairLow<Register>(), | 
 |                 Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset)); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         __ movl(out_loc.AsRegisterPairHigh<Register>(), | 
 |                 Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize)); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); | 
 |       XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); | 
 |       if (index.IsConstant()) { | 
 |         __ movss(out, Address(obj, | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset)); | 
 |       } else { | 
 |         __ movss(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset)); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); | 
 |       XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); | 
 |       if (index.IsConstant()) { | 
 |         __ movsd(out, Address(obj, | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset)); | 
 |       } else { | 
 |         __ movsd(out, Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset)); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimVoid: | 
 |       LOG(FATAL) << "Unreachable type " << type; | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   if (type == Primitive::kPrimNot || type == Primitive::kPrimLong) { | 
 |     // Potential implicit null checks, in the case of reference or | 
 |     // long arrays, are handled in the previous switch statement. | 
 |   } else { | 
 |     codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) { | 
 |   Primitive::Type value_type = instruction->GetComponentType(); | 
 |  | 
 |   bool needs_write_barrier = | 
 |       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); | 
 |   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); | 
 |   bool object_array_set_with_read_barrier = | 
 |       kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot); | 
 |  | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( | 
 |       instruction, | 
 |       (may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ? | 
 |           LocationSummary::kCallOnSlowPath : | 
 |           LocationSummary::kNoCall); | 
 |  | 
 |   bool is_byte_type = (value_type == Primitive::kPrimBoolean) | 
 |       || (value_type == Primitive::kPrimByte); | 
 |   // We need the inputs to be different than the output in case of long operation. | 
 |   // In case of a byte operation, the register allocator does not support multiple | 
 |   // inputs that die at entry with one in a specific register. | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |   if (is_byte_type) { | 
 |     // Ensure the value is in a byte register. | 
 |     locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2))); | 
 |   } else if (Primitive::IsFloatingPointType(value_type)) { | 
 |     locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2))); | 
 |   } else { | 
 |     locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2))); | 
 |   } | 
 |   if (needs_write_barrier) { | 
 |     // Temporary registers for the write barrier. | 
 |     locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too. | 
 |     // Ensure the card is in a byte register. | 
 |     locations->AddTemp(Location::RegisterLocation(ECX)); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location array_loc = locations->InAt(0); | 
 |   Register array = array_loc.AsRegister<Register>(); | 
 |   Location index = locations->InAt(1); | 
 |   Location value = locations->InAt(2); | 
 |   Primitive::Type value_type = instruction->GetComponentType(); | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); | 
 |   bool needs_write_barrier = | 
 |       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); | 
 |  | 
 |   switch (value_type) { | 
 |     case Primitive::kPrimBoolean: | 
 |     case Primitive::kPrimByte: { | 
 |       uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); | 
 |       Address address = index.IsConstant() | 
 |           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + offset) | 
 |           : Address(array, index.AsRegister<Register>(), TIMES_1, offset); | 
 |       if (value.IsRegister()) { | 
 |         __ movb(address, value.AsRegister<ByteRegister>()); | 
 |       } else { | 
 |         __ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); | 
 |       } | 
 |       codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimShort: | 
 |     case Primitive::kPrimChar: { | 
 |       uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); | 
 |       Address address = index.IsConstant() | 
 |           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + offset) | 
 |           : Address(array, index.AsRegister<Register>(), TIMES_2, offset); | 
 |       if (value.IsRegister()) { | 
 |         __ movw(address, value.AsRegister<Register>()); | 
 |       } else { | 
 |         __ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); | 
 |       } | 
 |       codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimNot: { | 
 |       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); | 
 |       Address address = index.IsConstant() | 
 |           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset) | 
 |           : Address(array, index.AsRegister<Register>(), TIMES_4, offset); | 
 |  | 
 |       if (!value.IsRegister()) { | 
 |         // Just setting null. | 
 |         DCHECK(instruction->InputAt(2)->IsNullConstant()); | 
 |         DCHECK(value.IsConstant()) << value; | 
 |         __ movl(address, Immediate(0)); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         DCHECK(!needs_write_barrier); | 
 |         DCHECK(!may_need_runtime_call_for_type_check); | 
 |         break; | 
 |       } | 
 |  | 
 |       DCHECK(needs_write_barrier); | 
 |       Register register_value = value.AsRegister<Register>(); | 
 |       NearLabel done, not_null, do_put; | 
 |       SlowPathCode* slow_path = nullptr; | 
 |       Register temp = locations->GetTemp(0).AsRegister<Register>(); | 
 |       if (may_need_runtime_call_for_type_check) { | 
 |         slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86(instruction); | 
 |         codegen_->AddSlowPath(slow_path); | 
 |         if (instruction->GetValueCanBeNull()) { | 
 |           __ testl(register_value, register_value); | 
 |           __ j(kNotEqual, ¬_null); | 
 |           __ movl(address, Immediate(0)); | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |           __ jmp(&done); | 
 |           __ Bind(¬_null); | 
 |         } | 
 |  | 
 |         if (kEmitCompilerReadBarrier) { | 
 |           // When read barriers are enabled, the type checking | 
 |           // instrumentation requires two read barriers: | 
 |           // | 
 |           //   __ movl(temp2, temp); | 
 |           //   // /* HeapReference<Class> */ temp = temp->component_type_ | 
 |           //   __ movl(temp, Address(temp, component_offset)); | 
 |           //   codegen_->GenerateReadBarrierSlow( | 
 |           //       instruction, temp_loc, temp_loc, temp2_loc, component_offset); | 
 |           // | 
 |           //   // /* HeapReference<Class> */ temp2 = register_value->klass_ | 
 |           //   __ movl(temp2, Address(register_value, class_offset)); | 
 |           //   codegen_->GenerateReadBarrierSlow( | 
 |           //       instruction, temp2_loc, temp2_loc, value, class_offset, temp_loc); | 
 |           // | 
 |           //   __ cmpl(temp, temp2); | 
 |           // | 
 |           // However, the second read barrier may trash `temp`, as it | 
 |           // is a temporary register, and as such would not be saved | 
 |           // along with live registers before calling the runtime (nor | 
 |           // restored afterwards).  So in this case, we bail out and | 
 |           // delegate the work to the array set slow path. | 
 |           // | 
 |           // TODO: Extend the register allocator to support a new | 
 |           // "(locally) live temp" location so as to avoid always | 
 |           // going into the slow path when read barriers are enabled. | 
 |           __ jmp(slow_path->GetEntryLabel()); | 
 |         } else { | 
 |           // /* HeapReference<Class> */ temp = array->klass_ | 
 |           __ movl(temp, Address(array, class_offset)); | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |           __ MaybeUnpoisonHeapReference(temp); | 
 |  | 
 |           // /* HeapReference<Class> */ temp = temp->component_type_ | 
 |           __ movl(temp, Address(temp, component_offset)); | 
 |           // If heap poisoning is enabled, no need to unpoison `temp` | 
 |           // nor the object reference in `register_value->klass`, as | 
 |           // we are comparing two poisoned references. | 
 |           __ cmpl(temp, Address(register_value, class_offset)); | 
 |  | 
 |           if (instruction->StaticTypeOfArrayIsObjectArray()) { | 
 |             __ j(kEqual, &do_put); | 
 |             // If heap poisoning is enabled, the `temp` reference has | 
 |             // not been unpoisoned yet; unpoison it now. | 
 |             __ MaybeUnpoisonHeapReference(temp); | 
 |  | 
 |             // /* HeapReference<Class> */ temp = temp->super_class_ | 
 |             __ movl(temp, Address(temp, super_offset)); | 
 |             // If heap poisoning is enabled, no need to unpoison | 
 |             // `temp`, as we are comparing against null below. | 
 |             __ testl(temp, temp); | 
 |             __ j(kNotEqual, slow_path->GetEntryLabel()); | 
 |             __ Bind(&do_put); | 
 |           } else { | 
 |             __ j(kNotEqual, slow_path->GetEntryLabel()); | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       if (kPoisonHeapReferences) { | 
 |         __ movl(temp, register_value); | 
 |         __ PoisonHeapReference(temp); | 
 |         __ movl(address, temp); | 
 |       } else { | 
 |         __ movl(address, register_value); | 
 |       } | 
 |       if (!may_need_runtime_call_for_type_check) { | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |       } | 
 |  | 
 |       Register card = locations->GetTemp(1).AsRegister<Register>(); | 
 |       codegen_->MarkGCCard( | 
 |           temp, card, array, value.AsRegister<Register>(), instruction->GetValueCanBeNull()); | 
 |       __ Bind(&done); | 
 |  | 
 |       if (slow_path != nullptr) { | 
 |         __ Bind(slow_path->GetExitLabel()); | 
 |       } | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimInt: { | 
 |       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); | 
 |       Address address = index.IsConstant() | 
 |           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset) | 
 |           : Address(array, index.AsRegister<Register>(), TIMES_4, offset); | 
 |       if (value.IsRegister()) { | 
 |         __ movl(address, value.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(value.IsConstant()) << value; | 
 |         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); | 
 |         __ movl(address, Immediate(v)); | 
 |       } | 
 |       codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimLong: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); | 
 |       if (index.IsConstant()) { | 
 |         size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; | 
 |         if (value.IsRegisterPair()) { | 
 |           __ movl(Address(array, offset), value.AsRegisterPairLow<Register>()); | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |           __ movl(Address(array, offset + kX86WordSize), value.AsRegisterPairHigh<Register>()); | 
 |         } else { | 
 |           DCHECK(value.IsConstant()); | 
 |           int64_t val = value.GetConstant()->AsLongConstant()->GetValue(); | 
 |           __ movl(Address(array, offset), Immediate(Low32Bits(val))); | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |           __ movl(Address(array, offset + kX86WordSize), Immediate(High32Bits(val))); | 
 |         } | 
 |       } else { | 
 |         if (value.IsRegisterPair()) { | 
 |           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset), | 
 |                   value.AsRegisterPairLow<Register>()); | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize), | 
 |                   value.AsRegisterPairHigh<Register>()); | 
 |         } else { | 
 |           DCHECK(value.IsConstant()); | 
 |           int64_t val = value.GetConstant()->AsLongConstant()->GetValue(); | 
 |           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset), | 
 |                   Immediate(Low32Bits(val))); | 
 |           codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |           __ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize), | 
 |                   Immediate(High32Bits(val))); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimFloat: { | 
 |       uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); | 
 |       Address address = index.IsConstant() | 
 |           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset) | 
 |           : Address(array, index.AsRegister<Register>(), TIMES_4, offset); | 
 |       if (value.IsFpuRegister()) { | 
 |         __ movss(address, value.AsFpuRegister<XmmRegister>()); | 
 |       } else { | 
 |         DCHECK(value.IsConstant()); | 
 |         int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue()); | 
 |         __ movl(address, Immediate(v)); | 
 |       } | 
 |       codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimDouble: { | 
 |       uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); | 
 |       Address address = index.IsConstant() | 
 |           ? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset) | 
 |           : Address(array, index.AsRegister<Register>(), TIMES_8, offset); | 
 |       if (value.IsFpuRegister()) { | 
 |         __ movsd(address, value.AsFpuRegister<XmmRegister>()); | 
 |       } else { | 
 |         DCHECK(value.IsConstant()); | 
 |         Address address_hi = index.IsConstant() ? | 
 |             Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + | 
 |                            offset + kX86WordSize) : | 
 |             Address(array, index.AsRegister<Register>(), TIMES_8, offset + kX86WordSize); | 
 |         int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue()); | 
 |         __ movl(address, Immediate(Low32Bits(v))); | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |         __ movl(address_hi, Immediate(High32Bits(v))); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case Primitive::kPrimVoid: | 
 |       LOG(FATAL) << "Unreachable type " << instruction->GetType(); | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   uint32_t offset = mirror::Array::LengthOffset().Uint32Value(); | 
 |   Register obj = locations->InAt(0).AsRegister<Register>(); | 
 |   Register out = locations->Out().AsRegister<Register>(); | 
 |   __ movl(out, Address(obj, offset)); | 
 |   codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) { | 
 |   LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock() | 
 |       ? LocationSummary::kCallOnSlowPath | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); | 
 |   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); | 
 |   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |   if (instruction->HasUses()) { | 
 |     locations->SetOut(Location::SameAsFirstInput()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location index_loc = locations->InAt(0); | 
 |   Location length_loc = locations->InAt(1); | 
 |   SlowPathCode* slow_path = | 
 |     new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction); | 
 |  | 
 |   if (length_loc.IsConstant()) { | 
 |     int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant()); | 
 |     if (index_loc.IsConstant()) { | 
 |       // BCE will remove the bounds check if we are guarenteed to pass. | 
 |       int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); | 
 |       if (index < 0 || index >= length) { | 
 |         codegen_->AddSlowPath(slow_path); | 
 |         __ jmp(slow_path->GetEntryLabel()); | 
 |       } else { | 
 |         // Some optimization after BCE may have generated this, and we should not | 
 |         // generate a bounds check if it is a valid range. | 
 |       } | 
 |       return; | 
 |     } | 
 |  | 
 |     // We have to reverse the jump condition because the length is the constant. | 
 |     Register index_reg = index_loc.AsRegister<Register>(); | 
 |     __ cmpl(index_reg, Immediate(length)); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     __ j(kAboveEqual, slow_path->GetEntryLabel()); | 
 |   } else { | 
 |     Register length = length_loc.AsRegister<Register>(); | 
 |     if (index_loc.IsConstant()) { | 
 |       int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); | 
 |       __ cmpl(length, Immediate(value)); | 
 |     } else { | 
 |       __ cmpl(length, index_loc.AsRegister<Register>()); | 
 |     } | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     __ j(kBelowEqual, slow_path->GetEntryLabel()); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) { | 
 |   codegen_->GetMoveResolver()->EmitNativeCode(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) { | 
 |   new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) { | 
 |   HBasicBlock* block = instruction->GetBlock(); | 
 |   if (block->GetLoopInformation() != nullptr) { | 
 |     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); | 
 |     // The back edge will generate the suspend check. | 
 |     return; | 
 |   } | 
 |   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { | 
 |     // The goto will generate the suspend check. | 
 |     return; | 
 |   } | 
 |   GenerateSuspendCheck(instruction, nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction, | 
 |                                                        HBasicBlock* successor) { | 
 |   SuspendCheckSlowPathX86* slow_path = | 
 |       down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath()); | 
 |   if (slow_path == nullptr) { | 
 |     slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor); | 
 |     instruction->SetSlowPath(slow_path); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     if (successor != nullptr) { | 
 |       DCHECK(successor->IsLoopHeader()); | 
 |       codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(slow_path->GetSuccessor(), successor); | 
 |   } | 
 |  | 
 |   __ fs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86WordSize>().Int32Value()), | 
 |                 Immediate(0)); | 
 |   if (successor == nullptr) { | 
 |     __ j(kNotEqual, slow_path->GetEntryLabel()); | 
 |     __ Bind(slow_path->GetReturnLabel()); | 
 |   } else { | 
 |     __ j(kEqual, codegen_->GetLabelOf(successor)); | 
 |     __ jmp(slow_path->GetEntryLabel()); | 
 |   } | 
 | } | 
 |  | 
 | X86Assembler* ParallelMoveResolverX86::GetAssembler() const { | 
 |   return codegen_->GetAssembler(); | 
 | } | 
 |  | 
 | void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) { | 
 |   ScratchRegisterScope ensure_scratch( | 
 |       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); | 
 |   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); | 
 |   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; | 
 |   __ movl(temp_reg, Address(ESP, src + stack_offset)); | 
 |   __ movl(Address(ESP, dst + stack_offset), temp_reg); | 
 | } | 
 |  | 
 | void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) { | 
 |   ScratchRegisterScope ensure_scratch( | 
 |       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); | 
 |   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); | 
 |   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; | 
 |   __ movl(temp_reg, Address(ESP, src + stack_offset)); | 
 |   __ movl(Address(ESP, dst + stack_offset), temp_reg); | 
 |   __ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize)); | 
 |   __ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg); | 
 | } | 
 |  | 
 | void ParallelMoveResolverX86::EmitMove(size_t index) { | 
 |   MoveOperands* move = moves_[index]; | 
 |   Location source = move->GetSource(); | 
 |   Location destination = move->GetDestination(); | 
 |  | 
 |   if (source.IsRegister()) { | 
 |     if (destination.IsRegister()) { | 
 |       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); | 
 |     } else if (destination.IsFpuRegister()) { | 
 |       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>()); | 
 |     } else { | 
 |       DCHECK(destination.IsStackSlot()); | 
 |       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); | 
 |     } | 
 |   } else if (source.IsRegisterPair()) { | 
 |       size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt); | 
 |       // Create stack space for 2 elements. | 
 |       __ subl(ESP, Immediate(2 * elem_size)); | 
 |       __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>()); | 
 |       __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>()); | 
 |       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); | 
 |       // And remove the temporary stack space we allocated. | 
 |       __ addl(ESP, Immediate(2 * elem_size)); | 
 |   } else if (source.IsFpuRegister()) { | 
 |     if (destination.IsRegister()) { | 
 |       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>()); | 
 |     } else if (destination.IsFpuRegister()) { | 
 |       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); | 
 |     } else if (destination.IsRegisterPair()) { | 
 |       XmmRegister src_reg = source.AsFpuRegister<XmmRegister>(); | 
 |       __ movd(destination.AsRegisterPairLow<Register>(), src_reg); | 
 |       __ psrlq(src_reg, Immediate(32)); | 
 |       __ movd(destination.AsRegisterPairHigh<Register>(), src_reg); | 
 |     } else if (destination.IsStackSlot()) { | 
 |       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); | 
 |     } else { | 
 |       DCHECK(destination.IsDoubleStackSlot()); | 
 |       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); | 
 |     } | 
 |   } else if (source.IsStackSlot()) { | 
 |     if (destination.IsRegister()) { | 
 |       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); | 
 |     } else if (destination.IsFpuRegister()) { | 
 |       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); | 
 |     } else { | 
 |       DCHECK(destination.IsStackSlot()); | 
 |       MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex()); | 
 |     } | 
 |   } else if (source.IsDoubleStackSlot()) { | 
 |     if (destination.IsRegisterPair()) { | 
 |       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex())); | 
 |       __ movl(destination.AsRegisterPairHigh<Register>(), | 
 |               Address(ESP, source.GetHighStackIndex(kX86WordSize))); | 
 |     } else if (destination.IsFpuRegister()) { | 
 |       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); | 
 |     } else { | 
 |       DCHECK(destination.IsDoubleStackSlot()) << destination; | 
 |       MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex()); | 
 |     } | 
 |   } else if (source.IsConstant()) { | 
 |     HConstant* constant = source.GetConstant(); | 
 |     if (constant->IsIntConstant() || constant->IsNullConstant()) { | 
 |       int32_t value = CodeGenerator::GetInt32ValueOf(constant); | 
 |       if (destination.IsRegister()) { | 
 |         if (value == 0) { | 
 |           __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>()); | 
 |         } else { | 
 |           __ movl(destination.AsRegister<Register>(), Immediate(value)); | 
 |         } | 
 |       } else { | 
 |         DCHECK(destination.IsStackSlot()) << destination; | 
 |         __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); | 
 |       } | 
 |     } else if (constant->IsFloatConstant()) { | 
 |       float fp_value = constant->AsFloatConstant()->GetValue(); | 
 |       int32_t value = bit_cast<int32_t, float>(fp_value); | 
 |       Immediate imm(value); | 
 |       if (destination.IsFpuRegister()) { | 
 |         XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); | 
 |         if (value == 0) { | 
 |           // Easy handling of 0.0. | 
 |           __ xorps(dest, dest); | 
 |         } else { | 
 |           ScratchRegisterScope ensure_scratch( | 
 |               this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); | 
 |           Register temp = static_cast<Register>(ensure_scratch.GetRegister()); | 
 |           __ movl(temp, Immediate(value)); | 
 |           __ movd(dest, temp); | 
 |         } | 
 |       } else { | 
 |         DCHECK(destination.IsStackSlot()) << destination; | 
 |         __ movl(Address(ESP, destination.GetStackIndex()), imm); | 
 |       } | 
 |     } else if (constant->IsLongConstant()) { | 
 |       int64_t value = constant->AsLongConstant()->GetValue(); | 
 |       int32_t low_value = Low32Bits(value); | 
 |       int32_t high_value = High32Bits(value); | 
 |       Immediate low(low_value); | 
 |       Immediate high(high_value); | 
 |       if (destination.IsDoubleStackSlot()) { | 
 |         __ movl(Address(ESP, destination.GetStackIndex()), low); | 
 |         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); | 
 |       } else { | 
 |         __ movl(destination.AsRegisterPairLow<Register>(), low); | 
 |         __ movl(destination.AsRegisterPairHigh<Register>(), high); | 
 |       } | 
 |     } else { | 
 |       DCHECK(constant->IsDoubleConstant()); | 
 |       double dbl_value = constant->AsDoubleConstant()->GetValue(); | 
 |       int64_t value = bit_cast<int64_t, double>(dbl_value); | 
 |       int32_t low_value = Low32Bits(value); | 
 |       int32_t high_value = High32Bits(value); | 
 |       Immediate low(low_value); | 
 |       Immediate high(high_value); | 
 |       if (destination.IsFpuRegister()) { | 
 |         XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); | 
 |         if (value == 0) { | 
 |           // Easy handling of 0.0. | 
 |           __ xorpd(dest, dest); | 
 |         } else { | 
 |           __ pushl(high); | 
 |           __ pushl(low); | 
 |           __ movsd(dest, Address(ESP, 0)); | 
 |           __ addl(ESP, Immediate(8)); | 
 |         } | 
 |       } else { | 
 |         DCHECK(destination.IsDoubleStackSlot()) << destination; | 
 |         __ movl(Address(ESP, destination.GetStackIndex()), low); | 
 |         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source; | 
 |   } | 
 | } | 
 |  | 
 | void ParallelMoveResolverX86::Exchange(Register reg, int mem) { | 
 |   Register suggested_scratch = reg == EAX ? EBX : EAX; | 
 |   ScratchRegisterScope ensure_scratch( | 
 |       this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters()); | 
 |  | 
 |   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; | 
 |   __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset)); | 
 |   __ movl(Address(ESP, mem + stack_offset), reg); | 
 |   __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister())); | 
 | } | 
 |  | 
 | void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) { | 
 |   ScratchRegisterScope ensure_scratch( | 
 |       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); | 
 |  | 
 |   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); | 
 |   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; | 
 |   __ movl(temp_reg, Address(ESP, mem + stack_offset)); | 
 |   __ movss(Address(ESP, mem + stack_offset), reg); | 
 |   __ movd(reg, temp_reg); | 
 | } | 
 |  | 
 | void ParallelMoveResolverX86::Exchange(int mem1, int mem2) { | 
 |   ScratchRegisterScope ensure_scratch1( | 
 |       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); | 
 |  | 
 |   Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX; | 
 |   ScratchRegisterScope ensure_scratch2( | 
 |       this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters()); | 
 |  | 
 |   int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0; | 
 |   stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0; | 
 |   __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset)); | 
 |   __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset)); | 
 |   __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister())); | 
 |   __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister())); | 
 | } | 
 |  | 
 | void ParallelMoveResolverX86::EmitSwap(size_t index) { | 
 |   MoveOperands* move = moves_[index]; | 
 |   Location source = move->GetSource(); | 
 |   Location destination = move->GetDestination(); | 
 |  | 
 |   if (source.IsRegister() && destination.IsRegister()) { | 
 |     // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary. | 
 |     DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>()); | 
 |     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); | 
 |     __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>()); | 
 |     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); | 
 |   } else if (source.IsRegister() && destination.IsStackSlot()) { | 
 |     Exchange(source.AsRegister<Register>(), destination.GetStackIndex()); | 
 |   } else if (source.IsStackSlot() && destination.IsRegister()) { | 
 |     Exchange(destination.AsRegister<Register>(), source.GetStackIndex()); | 
 |   } else if (source.IsStackSlot() && destination.IsStackSlot()) { | 
 |     Exchange(destination.GetStackIndex(), source.GetStackIndex()); | 
 |   } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { | 
 |     // Use XOR Swap algorithm to avoid a temporary. | 
 |     DCHECK_NE(source.reg(), destination.reg()); | 
 |     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); | 
 |     __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>()); | 
 |     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); | 
 |   } else if (source.IsFpuRegister() && destination.IsStackSlot()) { | 
 |     Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); | 
 |   } else if (destination.IsFpuRegister() && source.IsStackSlot()) { | 
 |     Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); | 
 |   } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) { | 
 |     // Take advantage of the 16 bytes in the XMM register. | 
 |     XmmRegister reg = source.AsFpuRegister<XmmRegister>(); | 
 |     Address stack(ESP, destination.GetStackIndex()); | 
 |     // Load the double into the high doubleword. | 
 |     __ movhpd(reg, stack); | 
 |  | 
 |     // Store the low double into the destination. | 
 |     __ movsd(stack, reg); | 
 |  | 
 |     // Move the high double to the low double. | 
 |     __ psrldq(reg, Immediate(8)); | 
 |   } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) { | 
 |     // Take advantage of the 16 bytes in the XMM register. | 
 |     XmmRegister reg = destination.AsFpuRegister<XmmRegister>(); | 
 |     Address stack(ESP, source.GetStackIndex()); | 
 |     // Load the double into the high doubleword. | 
 |     __ movhpd(reg, stack); | 
 |  | 
 |     // Store the low double into the destination. | 
 |     __ movsd(stack, reg); | 
 |  | 
 |     // Move the high double to the low double. | 
 |     __ psrldq(reg, Immediate(8)); | 
 |   } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) { | 
 |     Exchange(destination.GetStackIndex(), source.GetStackIndex()); | 
 |     Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize)); | 
 |   } else { | 
 |     LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination; | 
 |   } | 
 | } | 
 |  | 
 | void ParallelMoveResolverX86::SpillScratch(int reg) { | 
 |   __ pushl(static_cast<Register>(reg)); | 
 | } | 
 |  | 
 | void ParallelMoveResolverX86::RestoreScratch(int reg) { | 
 |   __ popl(static_cast<Register>(reg)); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) { | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   CodeGenerator::CreateLoadClassLocationSummary( | 
 |       cls, | 
 |       Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |       Location::RegisterLocation(EAX), | 
 |       /* code_generator_supports_read_barrier */ true); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) { | 
 |   LocationSummary* locations = cls->GetLocations(); | 
 |   if (cls->NeedsAccessCheck()) { | 
 |     codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex()); | 
 |     codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess), | 
 |                             cls, | 
 |                             cls->GetDexPc(), | 
 |                             nullptr); | 
 |     CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>(); | 
 |     return; | 
 |   } | 
 |  | 
 |   Location out_loc = locations->Out(); | 
 |   Register out = out_loc.AsRegister<Register>(); | 
 |   Register current_method = locations->InAt(0).AsRegister<Register>(); | 
 |  | 
 |   if (cls->IsReferrersClass()) { | 
 |     DCHECK(!cls->CanCallRuntime()); | 
 |     DCHECK(!cls->MustGenerateClinitCheck()); | 
 |     // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ | 
 |     GenerateGcRootFieldLoad( | 
 |         cls, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value())); | 
 |   } else { | 
 |     // /* GcRoot<mirror::Class>[] */ out = | 
 |     //        current_method.ptr_sized_fields_->dex_cache_resolved_types_ | 
 |     __ movl(out, Address(current_method, | 
 |                          ArtMethod::DexCacheResolvedTypesOffset(kX86PointerSize).Int32Value())); | 
 |     // /* GcRoot<mirror::Class> */ out = out[type_index] | 
 |     GenerateGcRootFieldLoad( | 
 |         cls, out_loc, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex()))); | 
 |  | 
 |     if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) { | 
 |       DCHECK(cls->CanCallRuntime()); | 
 |       SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86( | 
 |           cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |  | 
 |       if (!cls->IsInDexCache()) { | 
 |         __ testl(out, out); | 
 |         __ j(kEqual, slow_path->GetEntryLabel()); | 
 |       } | 
 |  | 
 |       if (cls->MustGenerateClinitCheck()) { | 
 |         GenerateClassInitializationCheck(slow_path, out); | 
 |       } else { | 
 |         __ Bind(slow_path->GetExitLabel()); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (check->HasUses()) { | 
 |     locations->SetOut(Location::SameAsFirstInput()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) { | 
 |   // We assume the class to not be null. | 
 |   SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86( | 
 |       check->GetLoadClass(), check, check->GetDexPc(), true); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |   GenerateClassInitializationCheck(slow_path, | 
 |                                    check->GetLocations()->InAt(0).AsRegister<Register>()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateClassInitializationCheck( | 
 |     SlowPathCode* slow_path, Register class_reg) { | 
 |   __ cmpl(Address(class_reg,  mirror::Class::StatusOffset().Int32Value()), | 
 |           Immediate(mirror::Class::kStatusInitialized)); | 
 |   __ j(kLess, slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 |   // No need for memory fence, thanks to the X86 memory model. | 
 | } | 
 |  | 
 | HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind( | 
 |     HLoadString::LoadKind desired_string_load_kind) { | 
 |   if (kEmitCompilerReadBarrier) { | 
 |     switch (desired_string_load_kind) { | 
 |       case HLoadString::LoadKind::kBootImageLinkTimeAddress: | 
 |       case HLoadString::LoadKind::kBootImageLinkTimePcRelative: | 
 |       case HLoadString::LoadKind::kBootImageAddress: | 
 |         // TODO: Implement for read barrier. | 
 |         return HLoadString::LoadKind::kDexCacheViaMethod; | 
 |       default: | 
 |         break; | 
 |     } | 
 |   } | 
 |   switch (desired_string_load_kind) { | 
 |     case HLoadString::LoadKind::kBootImageLinkTimeAddress: | 
 |       DCHECK(!GetCompilerOptions().GetCompilePic()); | 
 |       break; | 
 |     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: | 
 |       DCHECK(GetCompilerOptions().GetCompilePic()); | 
 |       FALLTHROUGH_INTENDED; | 
 |     case HLoadString::LoadKind::kDexCachePcRelative: | 
 |       DCHECK(!Runtime::Current()->UseJit());  // Note: boot image is also non-JIT. | 
 |       // We disable pc-relative load when there is an irreducible loop, as the optimization | 
 |       // is incompatible with it. | 
 |       // TODO: Create as many X86ComputeBaseMethodAddress instructions as needed for methods | 
 |       // with irreducible loops. | 
 |       if (GetGraph()->HasIrreducibleLoops()) { | 
 |         return HLoadString::LoadKind::kDexCacheViaMethod; | 
 |       } | 
 |       break; | 
 |     case HLoadString::LoadKind::kBootImageAddress: | 
 |       break; | 
 |     case HLoadString::LoadKind::kDexCacheAddress: | 
 |       DCHECK(Runtime::Current()->UseJit()); | 
 |       break; | 
 |     case HLoadString::LoadKind::kDexCacheViaMethod: | 
 |       break; | 
 |   } | 
 |   return desired_string_load_kind; | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitLoadString(HLoadString* load) { | 
 |   LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier) | 
 |       ? LocationSummary::kCallOnSlowPath | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); | 
 |   HLoadString::LoadKind load_kind = load->GetLoadKind(); | 
 |   if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod || | 
 |       load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative || | 
 |       load_kind == HLoadString::LoadKind::kDexCachePcRelative) { | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |   } | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) { | 
 |   LocationSummary* locations = load->GetLocations(); | 
 |   Location out_loc = locations->Out(); | 
 |   Register out = out_loc.AsRegister<Register>(); | 
 |  | 
 |   switch (load->GetLoadKind()) { | 
 |     case HLoadString::LoadKind::kBootImageLinkTimeAddress: { | 
 |       DCHECK(!kEmitCompilerReadBarrier); | 
 |       __ movl(out, Immediate(/* placeholder */ 0)); | 
 |       codegen_->RecordStringPatch(load); | 
 |       return;  // No dex cache slow path. | 
 |     } | 
 |     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { | 
 |       DCHECK(!kEmitCompilerReadBarrier); | 
 |       Register method_address = locations->InAt(0).AsRegister<Register>(); | 
 |       __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset)); | 
 |       codegen_->RecordStringPatch(load); | 
 |       return;  // No dex cache slow path. | 
 |     } | 
 |     case HLoadString::LoadKind::kBootImageAddress: { | 
 |       DCHECK(!kEmitCompilerReadBarrier); | 
 |       DCHECK_NE(load->GetAddress(), 0u); | 
 |       uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress()); | 
 |       __ movl(out, Immediate(address)); | 
 |       codegen_->RecordSimplePatch(); | 
 |       return;  // No dex cache slow path. | 
 |     } | 
 |     case HLoadString::LoadKind::kDexCacheAddress: { | 
 |       DCHECK_NE(load->GetAddress(), 0u); | 
 |       uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress()); | 
 |       GenerateGcRootFieldLoad(load, out_loc, Address::Absolute(address)); | 
 |       break; | 
 |     } | 
 |     case HLoadString::LoadKind::kDexCachePcRelative: { | 
 |       Register base_reg = locations->InAt(0).AsRegister<Register>(); | 
 |       uint32_t offset = load->GetDexCacheElementOffset(); | 
 |       Label* fixup_label = codegen_->NewPcRelativeDexCacheArrayPatch(load->GetDexFile(), offset); | 
 |       GenerateGcRootFieldLoad( | 
 |           load, out_loc, Address(base_reg, CodeGeneratorX86::kDummy32BitOffset), fixup_label); | 
 |       break; | 
 |     } | 
 |     case HLoadString::LoadKind::kDexCacheViaMethod: { | 
 |       Register current_method = locations->InAt(0).AsRegister<Register>(); | 
 |  | 
 |       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ | 
 |       GenerateGcRootFieldLoad( | 
 |           load, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value())); | 
 |  | 
 |       // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_ | 
 |       __ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value())); | 
 |       // /* GcRoot<mirror::String> */ out = out[string_index] | 
 |       GenerateGcRootFieldLoad( | 
 |           load, out_loc, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex()))); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind(); | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   if (!load->IsInDexCache()) { | 
 |     SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     __ testl(out, out); | 
 |     __ j(kEqual, slow_path->GetEntryLabel()); | 
 |     __ Bind(slow_path->GetExitLabel()); | 
 |   } | 
 | } | 
 |  | 
 | static Address GetExceptionTlsAddress() { | 
 |   return Address::Absolute(Thread::ExceptionOffset<kX86WordSize>().Int32Value()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitLoadException(HLoadException* load) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) { | 
 |   __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitClearException(HClearException* clear) { | 
 |   new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { | 
 |   __ fs()->movl(GetExceptionTlsAddress(), Immediate(0)); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitThrow(HThrow* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) { | 
 |   codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException), | 
 |                           instruction, | 
 |                           instruction->GetDexPc(), | 
 |                           nullptr); | 
 |   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); | 
 | } | 
 |  | 
 | static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) { | 
 |   return kEmitCompilerReadBarrier && | 
 |       (kUseBakerReadBarrier || | 
 |        type_check_kind == TypeCheckKind::kAbstractClassCheck || | 
 |        type_check_kind == TypeCheckKind::kClassHierarchyCheck || | 
 |        type_check_kind == TypeCheckKind::kArrayObjectCheck); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) { | 
 |   LocationSummary::CallKind call_kind = LocationSummary::kNoCall; | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: | 
 |     case TypeCheckKind::kAbstractClassCheck: | 
 |     case TypeCheckKind::kClassHierarchyCheck: | 
 |     case TypeCheckKind::kArrayObjectCheck: | 
 |       call_kind = | 
 |           kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; | 
 |       break; | 
 |     case TypeCheckKind::kArrayCheck: | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |     case TypeCheckKind::kInterfaceCheck: | 
 |       call_kind = LocationSummary::kCallOnSlowPath; | 
 |       break; | 
 |   } | 
 |  | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::Any()); | 
 |   // Note that TypeCheckSlowPathX86 uses this "out" register too. | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 |   // When read barriers are enabled, we need a temporary register for | 
 |   // some cases. | 
 |   if (TypeCheckNeedsATemporary(type_check_kind)) { | 
 |     locations->AddTemp(Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) { | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj_loc = locations->InAt(0); | 
 |   Register obj = obj_loc.AsRegister<Register>(); | 
 |   Location cls = locations->InAt(1); | 
 |   Location out_loc = locations->Out(); | 
 |   Register out = out_loc.AsRegister<Register>(); | 
 |   Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ? | 
 |       locations->GetTemp(0) : | 
 |       Location::NoLocation(); | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
 |   SlowPathCode* slow_path = nullptr; | 
 |   NearLabel done, zero; | 
 |  | 
 |   // Return 0 if `obj` is null. | 
 |   // Avoid null check if we know obj is not null. | 
 |   if (instruction->MustDoNullCheck()) { | 
 |     __ testl(obj, obj); | 
 |     __ j(kEqual, &zero); | 
 |   } | 
 |  | 
 |   // /* HeapReference<Class> */ out = obj->klass_ | 
 |   GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc); | 
 |  | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: { | 
 |       if (cls.IsRegister()) { | 
 |         __ cmpl(out, cls.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(cls.IsStackSlot()) << cls; | 
 |         __ cmpl(out, Address(ESP, cls.GetStackIndex())); | 
 |       } | 
 |  | 
 |       // Classes must be equal for the instanceof to succeed. | 
 |       __ j(kNotEqual, &zero); | 
 |       __ movl(out, Immediate(1)); | 
 |       __ jmp(&done); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kAbstractClassCheck: { | 
 |       // If the class is abstract, we eagerly fetch the super class of the | 
 |       // object to avoid doing a comparison we know will fail. | 
 |       NearLabel loop; | 
 |       __ Bind(&loop); | 
 |       // /* HeapReference<Class> */ out = out->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc); | 
 |       __ testl(out, out); | 
 |       // If `out` is null, we use it for the result, and jump to `done`. | 
 |       __ j(kEqual, &done); | 
 |       if (cls.IsRegister()) { | 
 |         __ cmpl(out, cls.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(cls.IsStackSlot()) << cls; | 
 |         __ cmpl(out, Address(ESP, cls.GetStackIndex())); | 
 |       } | 
 |       __ j(kNotEqual, &loop); | 
 |       __ movl(out, Immediate(1)); | 
 |       if (zero.IsLinked()) { | 
 |         __ jmp(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kClassHierarchyCheck: { | 
 |       // Walk over the class hierarchy to find a match. | 
 |       NearLabel loop, success; | 
 |       __ Bind(&loop); | 
 |       if (cls.IsRegister()) { | 
 |         __ cmpl(out, cls.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(cls.IsStackSlot()) << cls; | 
 |         __ cmpl(out, Address(ESP, cls.GetStackIndex())); | 
 |       } | 
 |       __ j(kEqual, &success); | 
 |       // /* HeapReference<Class> */ out = out->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc); | 
 |       __ testl(out, out); | 
 |       __ j(kNotEqual, &loop); | 
 |       // If `out` is null, we use it for the result, and jump to `done`. | 
 |       __ jmp(&done); | 
 |       __ Bind(&success); | 
 |       __ movl(out, Immediate(1)); | 
 |       if (zero.IsLinked()) { | 
 |         __ jmp(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kArrayObjectCheck: { | 
 |       // Do an exact check. | 
 |       NearLabel exact_check; | 
 |       if (cls.IsRegister()) { | 
 |         __ cmpl(out, cls.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(cls.IsStackSlot()) << cls; | 
 |         __ cmpl(out, Address(ESP, cls.GetStackIndex())); | 
 |       } | 
 |       __ j(kEqual, &exact_check); | 
 |       // Otherwise, we need to check that the object's class is a non-primitive array. | 
 |       // /* HeapReference<Class> */ out = out->component_type_ | 
 |       GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc); | 
 |       __ testl(out, out); | 
 |       // If `out` is null, we use it for the result, and jump to `done`. | 
 |       __ j(kEqual, &done); | 
 |       __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot)); | 
 |       __ j(kNotEqual, &zero); | 
 |       __ Bind(&exact_check); | 
 |       __ movl(out, Immediate(1)); | 
 |       __ jmp(&done); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kArrayCheck: { | 
 |       if (cls.IsRegister()) { | 
 |         __ cmpl(out, cls.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(cls.IsStackSlot()) << cls; | 
 |         __ cmpl(out, Address(ESP, cls.GetStackIndex())); | 
 |       } | 
 |       DCHECK(locations->OnlyCallsOnSlowPath()); | 
 |       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction, | 
 |                                                                     /* is_fatal */ false); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |       __ j(kNotEqual, slow_path->GetEntryLabel()); | 
 |       __ movl(out, Immediate(1)); | 
 |       if (zero.IsLinked()) { | 
 |         __ jmp(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |     case TypeCheckKind::kInterfaceCheck: { | 
 |       // Note that we indeed only call on slow path, but we always go | 
 |       // into the slow path for the unresolved and interface check | 
 |       // cases. | 
 |       // | 
 |       // We cannot directly call the InstanceofNonTrivial runtime | 
 |       // entry point without resorting to a type checking slow path | 
 |       // here (i.e. by calling InvokeRuntime directly), as it would | 
 |       // require to assign fixed registers for the inputs of this | 
 |       // HInstanceOf instruction (following the runtime calling | 
 |       // convention), which might be cluttered by the potential first | 
 |       // read barrier emission at the beginning of this method. | 
 |       // | 
 |       // TODO: Introduce a new runtime entry point taking the object | 
 |       // to test (instead of its class) as argument, and let it deal | 
 |       // with the read barrier issues. This will let us refactor this | 
 |       // case of the `switch` code as it was previously (with a direct | 
 |       // call to the runtime not using a type checking slow path). | 
 |       // This should also be beneficial for the other cases above. | 
 |       DCHECK(locations->OnlyCallsOnSlowPath()); | 
 |       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction, | 
 |                                                                     /* is_fatal */ false); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |       __ jmp(slow_path->GetEntryLabel()); | 
 |       if (zero.IsLinked()) { | 
 |         __ jmp(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (zero.IsLinked()) { | 
 |     __ Bind(&zero); | 
 |     __ xorl(out, out); | 
 |   } | 
 |  | 
 |   if (done.IsLinked()) { | 
 |     __ Bind(&done); | 
 |   } | 
 |  | 
 |   if (slow_path != nullptr) { | 
 |     __ Bind(slow_path->GetExitLabel()); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) { | 
 |   LocationSummary::CallKind call_kind = LocationSummary::kNoCall; | 
 |   bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: | 
 |     case TypeCheckKind::kAbstractClassCheck: | 
 |     case TypeCheckKind::kClassHierarchyCheck: | 
 |     case TypeCheckKind::kArrayObjectCheck: | 
 |       call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ? | 
 |           LocationSummary::kCallOnSlowPath : | 
 |           LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path. | 
 |       break; | 
 |     case TypeCheckKind::kArrayCheck: | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |     case TypeCheckKind::kInterfaceCheck: | 
 |       call_kind = LocationSummary::kCallOnSlowPath; | 
 |       break; | 
 |   } | 
 |   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::Any()); | 
 |   // Note that TypeCheckSlowPathX86 uses this "temp" register too. | 
 |   locations->AddTemp(Location::RequiresRegister()); | 
 |   // When read barriers are enabled, we need an additional temporary | 
 |   // register for some cases. | 
 |   if (TypeCheckNeedsATemporary(type_check_kind)) { | 
 |     locations->AddTemp(Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) { | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj_loc = locations->InAt(0); | 
 |   Register obj = obj_loc.AsRegister<Register>(); | 
 |   Location cls = locations->InAt(1); | 
 |   Location temp_loc = locations->GetTemp(0); | 
 |   Register temp = temp_loc.AsRegister<Register>(); | 
 |   Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ? | 
 |       locations->GetTemp(1) : | 
 |       Location::NoLocation(); | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
 |  | 
 |   bool is_type_check_slow_path_fatal = | 
 |       (type_check_kind == TypeCheckKind::kExactCheck || | 
 |        type_check_kind == TypeCheckKind::kAbstractClassCheck || | 
 |        type_check_kind == TypeCheckKind::kClassHierarchyCheck || | 
 |        type_check_kind == TypeCheckKind::kArrayObjectCheck) && | 
 |       !instruction->CanThrowIntoCatchBlock(); | 
 |   SlowPathCode* type_check_slow_path = | 
 |       new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction, | 
 |                                                         is_type_check_slow_path_fatal); | 
 |   codegen_->AddSlowPath(type_check_slow_path); | 
 |  | 
 |   NearLabel done; | 
 |   // Avoid null check if we know obj is not null. | 
 |   if (instruction->MustDoNullCheck()) { | 
 |     __ testl(obj, obj); | 
 |     __ j(kEqual, &done); | 
 |   } | 
 |  | 
 |   // /* HeapReference<Class> */ temp = obj->klass_ | 
 |   GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); | 
 |  | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: | 
 |     case TypeCheckKind::kArrayCheck: { | 
 |       if (cls.IsRegister()) { | 
 |         __ cmpl(temp, cls.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(cls.IsStackSlot()) << cls; | 
 |         __ cmpl(temp, Address(ESP, cls.GetStackIndex())); | 
 |       } | 
 |       // Jump to slow path for throwing the exception or doing a | 
 |       // more involved array check. | 
 |       __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kAbstractClassCheck: { | 
 |       // If the class is abstract, we eagerly fetch the super class of the | 
 |       // object to avoid doing a comparison we know will fail. | 
 |       NearLabel loop, compare_classes; | 
 |       __ Bind(&loop); | 
 |       // /* HeapReference<Class> */ temp = temp->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc); | 
 |  | 
 |       // If the class reference currently in `temp` is not null, jump | 
 |       // to the `compare_classes` label to compare it with the checked | 
 |       // class. | 
 |       __ testl(temp, temp); | 
 |       __ j(kNotEqual, &compare_classes); | 
 |       // Otherwise, jump to the slow path to throw the exception. | 
 |       // | 
 |       // But before, move back the object's class into `temp` before | 
 |       // going into the slow path, as it has been overwritten in the | 
 |       // meantime. | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters( | 
 |           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); | 
 |       __ jmp(type_check_slow_path->GetEntryLabel()); | 
 |  | 
 |       __ Bind(&compare_classes); | 
 |       if (cls.IsRegister()) { | 
 |         __ cmpl(temp, cls.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(cls.IsStackSlot()) << cls; | 
 |         __ cmpl(temp, Address(ESP, cls.GetStackIndex())); | 
 |       } | 
 |       __ j(kNotEqual, &loop); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kClassHierarchyCheck: { | 
 |       // Walk over the class hierarchy to find a match. | 
 |       NearLabel loop; | 
 |       __ Bind(&loop); | 
 |       if (cls.IsRegister()) { | 
 |         __ cmpl(temp, cls.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(cls.IsStackSlot()) << cls; | 
 |         __ cmpl(temp, Address(ESP, cls.GetStackIndex())); | 
 |       } | 
 |       __ j(kEqual, &done); | 
 |  | 
 |       // /* HeapReference<Class> */ temp = temp->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc); | 
 |  | 
 |       // If the class reference currently in `temp` is not null, jump | 
 |       // back at the beginning of the loop. | 
 |       __ testl(temp, temp); | 
 |       __ j(kNotEqual, &loop); | 
 |       // Otherwise, jump to the slow path to throw the exception. | 
 |       // | 
 |       // But before, move back the object's class into `temp` before | 
 |       // going into the slow path, as it has been overwritten in the | 
 |       // meantime. | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters( | 
 |           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); | 
 |       __ jmp(type_check_slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kArrayObjectCheck: { | 
 |       // Do an exact check. | 
 |       NearLabel check_non_primitive_component_type; | 
 |       if (cls.IsRegister()) { | 
 |         __ cmpl(temp, cls.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(cls.IsStackSlot()) << cls; | 
 |         __ cmpl(temp, Address(ESP, cls.GetStackIndex())); | 
 |       } | 
 |       __ j(kEqual, &done); | 
 |  | 
 |       // Otherwise, we need to check that the object's class is a non-primitive array. | 
 |       // /* HeapReference<Class> */ temp = temp->component_type_ | 
 |       GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc); | 
 |  | 
 |       // If the component type is not null (i.e. the object is indeed | 
 |       // an array), jump to label `check_non_primitive_component_type` | 
 |       // to further check that this component type is not a primitive | 
 |       // type. | 
 |       __ testl(temp, temp); | 
 |       __ j(kNotEqual, &check_non_primitive_component_type); | 
 |       // Otherwise, jump to the slow path to throw the exception. | 
 |       // | 
 |       // But before, move back the object's class into `temp` before | 
 |       // going into the slow path, as it has been overwritten in the | 
 |       // meantime. | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters( | 
 |           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); | 
 |       __ jmp(type_check_slow_path->GetEntryLabel()); | 
 |  | 
 |       __ Bind(&check_non_primitive_component_type); | 
 |       __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot)); | 
 |       __ j(kEqual, &done); | 
 |       // Same comment as above regarding `temp` and the slow path. | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters( | 
 |           instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc); | 
 |       __ jmp(type_check_slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |     case TypeCheckKind::kInterfaceCheck: | 
 |       // We always go into the type check slow path for the unresolved | 
 |       // and interface check cases. | 
 |       // | 
 |       // We cannot directly call the CheckCast runtime entry point | 
 |       // without resorting to a type checking slow path here (i.e. by | 
 |       // calling InvokeRuntime directly), as it would require to | 
 |       // assign fixed registers for the inputs of this HInstanceOf | 
 |       // instruction (following the runtime calling convention), which | 
 |       // might be cluttered by the potential first read barrier | 
 |       // emission at the beginning of this method. | 
 |       // | 
 |       // TODO: Introduce a new runtime entry point taking the object | 
 |       // to test (instead of its class) as argument, and let it deal | 
 |       // with the read barrier issues. This will let us refactor this | 
 |       // case of the `switch` code as it was previously (with a direct | 
 |       // call to the runtime not using a type checking slow path). | 
 |       // This should also be beneficial for the other cases above. | 
 |       __ jmp(type_check_slow_path->GetEntryLabel()); | 
 |       break; | 
 |   } | 
 |   __ Bind(&done); | 
 |  | 
 |   __ Bind(type_check_slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) { | 
 |   codegen_->InvokeRuntime(instruction->IsEnter() ? QUICK_ENTRY_POINT(pLockObject) | 
 |                                                  : QUICK_ENTRY_POINT(pUnlockObject), | 
 |                           instruction, | 
 |                           instruction->GetDexPc(), | 
 |                           nullptr); | 
 |   if (instruction->IsEnter()) { | 
 |     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); | 
 |   } else { | 
 |     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } | 
 | void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } | 
 | void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } | 
 |  | 
 | void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   DCHECK(instruction->GetResultType() == Primitive::kPrimInt | 
 |          || instruction->GetResultType() == Primitive::kPrimLong); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::Any()); | 
 |   locations->SetOut(Location::SameAsFirstInput()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) { | 
 |   HandleBitwiseOperation(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) { | 
 |   HandleBitwiseOperation(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) { | 
 |   HandleBitwiseOperation(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location first = locations->InAt(0); | 
 |   Location second = locations->InAt(1); | 
 |   DCHECK(first.Equals(locations->Out())); | 
 |  | 
 |   if (instruction->GetResultType() == Primitive::kPrimInt) { | 
 |     if (second.IsRegister()) { | 
 |       if (instruction->IsAnd()) { | 
 |         __ andl(first.AsRegister<Register>(), second.AsRegister<Register>()); | 
 |       } else if (instruction->IsOr()) { | 
 |         __ orl(first.AsRegister<Register>(), second.AsRegister<Register>()); | 
 |       } else { | 
 |         DCHECK(instruction->IsXor()); | 
 |         __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>()); | 
 |       } | 
 |     } else if (second.IsConstant()) { | 
 |       if (instruction->IsAnd()) { | 
 |         __ andl(first.AsRegister<Register>(), | 
 |                 Immediate(second.GetConstant()->AsIntConstant()->GetValue())); | 
 |       } else if (instruction->IsOr()) { | 
 |         __ orl(first.AsRegister<Register>(), | 
 |                Immediate(second.GetConstant()->AsIntConstant()->GetValue())); | 
 |       } else { | 
 |         DCHECK(instruction->IsXor()); | 
 |         __ xorl(first.AsRegister<Register>(), | 
 |                 Immediate(second.GetConstant()->AsIntConstant()->GetValue())); | 
 |       } | 
 |     } else { | 
 |       if (instruction->IsAnd()) { | 
 |         __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); | 
 |       } else if (instruction->IsOr()) { | 
 |         __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); | 
 |       } else { | 
 |         DCHECK(instruction->IsXor()); | 
 |         __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); | 
 |     if (second.IsRegisterPair()) { | 
 |       if (instruction->IsAnd()) { | 
 |         __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); | 
 |         __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); | 
 |       } else if (instruction->IsOr()) { | 
 |         __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); | 
 |         __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); | 
 |       } else { | 
 |         DCHECK(instruction->IsXor()); | 
 |         __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); | 
 |         __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); | 
 |       } | 
 |     } else if (second.IsDoubleStackSlot()) { | 
 |       if (instruction->IsAnd()) { | 
 |         __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); | 
 |         __ andl(first.AsRegisterPairHigh<Register>(), | 
 |                 Address(ESP, second.GetHighStackIndex(kX86WordSize))); | 
 |       } else if (instruction->IsOr()) { | 
 |         __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); | 
 |         __ orl(first.AsRegisterPairHigh<Register>(), | 
 |                 Address(ESP, second.GetHighStackIndex(kX86WordSize))); | 
 |       } else { | 
 |         DCHECK(instruction->IsXor()); | 
 |         __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); | 
 |         __ xorl(first.AsRegisterPairHigh<Register>(), | 
 |                 Address(ESP, second.GetHighStackIndex(kX86WordSize))); | 
 |       } | 
 |     } else { | 
 |       DCHECK(second.IsConstant()) << second; | 
 |       int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); | 
 |       int32_t low_value = Low32Bits(value); | 
 |       int32_t high_value = High32Bits(value); | 
 |       Immediate low(low_value); | 
 |       Immediate high(high_value); | 
 |       Register first_low = first.AsRegisterPairLow<Register>(); | 
 |       Register first_high = first.AsRegisterPairHigh<Register>(); | 
 |       if (instruction->IsAnd()) { | 
 |         if (low_value == 0) { | 
 |           __ xorl(first_low, first_low); | 
 |         } else if (low_value != -1) { | 
 |           __ andl(first_low, low); | 
 |         } | 
 |         if (high_value == 0) { | 
 |           __ xorl(first_high, first_high); | 
 |         } else if (high_value != -1) { | 
 |           __ andl(first_high, high); | 
 |         } | 
 |       } else if (instruction->IsOr()) { | 
 |         if (low_value != 0) { | 
 |           __ orl(first_low, low); | 
 |         } | 
 |         if (high_value != 0) { | 
 |           __ orl(first_high, high); | 
 |         } | 
 |       } else { | 
 |         DCHECK(instruction->IsXor()); | 
 |         if (low_value != 0) { | 
 |           __ xorl(first_low, low); | 
 |         } | 
 |         if (high_value != 0) { | 
 |           __ xorl(first_high, high); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister(HInstruction* instruction, | 
 |                                                                    Location out, | 
 |                                                                    uint32_t offset, | 
 |                                                                    Location maybe_temp) { | 
 |   Register out_reg = out.AsRegister<Register>(); | 
 |   if (kEmitCompilerReadBarrier) { | 
 |     DCHECK(maybe_temp.IsRegister()) << maybe_temp; | 
 |     if (kUseBakerReadBarrier) { | 
 |       // Load with fast path based Baker's read barrier. | 
 |       // /* HeapReference<Object> */ out = *(out + offset) | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |           instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false); | 
 |     } else { | 
 |       // Load with slow path based read barrier. | 
 |       // Save the value of `out` into `maybe_temp` before overwriting it | 
 |       // in the following move operation, as we will need it for the | 
 |       // read barrier below. | 
 |       __ movl(maybe_temp.AsRegister<Register>(), out_reg); | 
 |       // /* HeapReference<Object> */ out = *(out + offset) | 
 |       __ movl(out_reg, Address(out_reg, offset)); | 
 |       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); | 
 |     } | 
 |   } else { | 
 |     // Plain load with no read barrier. | 
 |     // /* HeapReference<Object> */ out = *(out + offset) | 
 |     __ movl(out_reg, Address(out_reg, offset)); | 
 |     __ MaybeUnpoisonHeapReference(out_reg); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters(HInstruction* instruction, | 
 |                                                                     Location out, | 
 |                                                                     Location obj, | 
 |                                                                     uint32_t offset, | 
 |                                                                     Location maybe_temp) { | 
 |   Register out_reg = out.AsRegister<Register>(); | 
 |   Register obj_reg = obj.AsRegister<Register>(); | 
 |   if (kEmitCompilerReadBarrier) { | 
 |     if (kUseBakerReadBarrier) { | 
 |       DCHECK(maybe_temp.IsRegister()) << maybe_temp; | 
 |       // Load with fast path based Baker's read barrier. | 
 |       // /* HeapReference<Object> */ out = *(obj + offset) | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier( | 
 |           instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false); | 
 |     } else { | 
 |       // Load with slow path based read barrier. | 
 |       // /* HeapReference<Object> */ out = *(obj + offset) | 
 |       __ movl(out_reg, Address(obj_reg, offset)); | 
 |       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); | 
 |     } | 
 |   } else { | 
 |     // Plain load with no read barrier. | 
 |     // /* HeapReference<Object> */ out = *(obj + offset) | 
 |     __ movl(out_reg, Address(obj_reg, offset)); | 
 |     __ MaybeUnpoisonHeapReference(out_reg); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad(HInstruction* instruction, | 
 |                                                           Location root, | 
 |                                                           const Address& address, | 
 |                                                           Label* fixup_label) { | 
 |   Register root_reg = root.AsRegister<Register>(); | 
 |   if (kEmitCompilerReadBarrier) { | 
 |     if (kUseBakerReadBarrier) { | 
 |       // Fast path implementation of art::ReadBarrier::BarrierForRoot when | 
 |       // Baker's read barrier are used: | 
 |       // | 
 |       //   root = *address; | 
 |       //   if (Thread::Current()->GetIsGcMarking()) { | 
 |       //     root = ReadBarrier::Mark(root) | 
 |       //   } | 
 |  | 
 |       // /* GcRoot<mirror::Object> */ root = *address | 
 |       __ movl(root_reg, address); | 
 |       if (fixup_label != nullptr) { | 
 |         __ Bind(fixup_label); | 
 |       } | 
 |       static_assert( | 
 |           sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), | 
 |           "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " | 
 |           "have different sizes."); | 
 |       static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), | 
 |                     "art::mirror::CompressedReference<mirror::Object> and int32_t " | 
 |                     "have different sizes."); | 
 |  | 
 |       // Slow path used to mark the GC root `root`. | 
 |       SlowPathCode* slow_path = | 
 |           new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, root, root); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |  | 
 |       __ fs()->cmpl(Address::Absolute(Thread::IsGcMarkingOffset<kX86WordSize>().Int32Value()), | 
 |                     Immediate(0)); | 
 |       __ j(kNotEqual, slow_path->GetEntryLabel()); | 
 |       __ Bind(slow_path->GetExitLabel()); | 
 |     } else { | 
 |       // GC root loaded through a slow path for read barriers other | 
 |       // than Baker's. | 
 |       // /* GcRoot<mirror::Object>* */ root = address | 
 |       __ leal(root_reg, address); | 
 |       if (fixup_label != nullptr) { | 
 |         __ Bind(fixup_label); | 
 |       } | 
 |       // /* mirror::Object* */ root = root->Read() | 
 |       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); | 
 |     } | 
 |   } else { | 
 |     // Plain GC root load with no read barrier. | 
 |     // /* GcRoot<mirror::Object> */ root = *address | 
 |     __ movl(root_reg, address); | 
 |     if (fixup_label != nullptr) { | 
 |       __ Bind(fixup_label); | 
 |     } | 
 |     // Note that GC roots are not affected by heap poisoning, thus we | 
 |     // do not have to unpoison `root_reg` here. | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, | 
 |                                                              Location ref, | 
 |                                                              Register obj, | 
 |                                                              uint32_t offset, | 
 |                                                              Location temp, | 
 |                                                              bool needs_null_check) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |   DCHECK(kUseBakerReadBarrier); | 
 |  | 
 |   // /* HeapReference<Object> */ ref = *(obj + offset) | 
 |   Address src(obj, offset); | 
 |   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, | 
 |                                                              Location ref, | 
 |                                                              Register obj, | 
 |                                                              uint32_t data_offset, | 
 |                                                              Location index, | 
 |                                                              Location temp, | 
 |                                                              bool needs_null_check) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |   DCHECK(kUseBakerReadBarrier); | 
 |  | 
 |   // /* HeapReference<Object> */ ref = | 
 |   //     *(obj + data_offset + index * sizeof(HeapReference<Object>)) | 
 |   Address src = index.IsConstant() ? | 
 |       Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset) : | 
 |       Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset); | 
 |   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, | 
 |                                                                  Location ref, | 
 |                                                                  Register obj, | 
 |                                                                  const Address& src, | 
 |                                                                  Location temp, | 
 |                                                                  bool needs_null_check) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |   DCHECK(kUseBakerReadBarrier); | 
 |  | 
 |   // In slow path based read barriers, the read barrier call is | 
 |   // inserted after the original load. However, in fast path based | 
 |   // Baker's read barriers, we need to perform the load of | 
 |   // mirror::Object::monitor_ *before* the original reference load. | 
 |   // This load-load ordering is required by the read barrier. | 
 |   // The fast path/slow path (for Baker's algorithm) should look like: | 
 |   // | 
 |   //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); | 
 |   //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering | 
 |   //   HeapReference<Object> ref = *src;  // Original reference load. | 
 |   //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_); | 
 |   //   if (is_gray) { | 
 |   //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path. | 
 |   //   } | 
 |   // | 
 |   // Note: the original implementation in ReadBarrier::Barrier is | 
 |   // slightly more complex as: | 
 |   // - it implements the load-load fence using a data dependency on | 
 |   //   the high-bits of rb_state, which are expected to be all zeroes | 
 |   //   (we use CodeGeneratorX86::GenerateMemoryBarrier instead here, | 
 |   //   which is a no-op thanks to the x86 memory model); | 
 |   // - it performs additional checks that we do not do here for | 
 |   //   performance reasons. | 
 |  | 
 |   Register ref_reg = ref.AsRegister<Register>(); | 
 |   Register temp_reg = temp.AsRegister<Register>(); | 
 |   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); | 
 |  | 
 |   // /* int32_t */ monitor = obj->monitor_ | 
 |   __ movl(temp_reg, Address(obj, monitor_offset)); | 
 |   if (needs_null_check) { | 
 |     MaybeRecordImplicitNullCheck(instruction); | 
 |   } | 
 |   // /* LockWord */ lock_word = LockWord(monitor) | 
 |   static_assert(sizeof(LockWord) == sizeof(int32_t), | 
 |                 "art::LockWord and int32_t have different sizes."); | 
 |   // /* uint32_t */ rb_state = lock_word.ReadBarrierState() | 
 |   __ shrl(temp_reg, Immediate(LockWord::kReadBarrierStateShift)); | 
 |   __ andl(temp_reg, Immediate(LockWord::kReadBarrierStateMask)); | 
 |   static_assert( | 
 |       LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_, | 
 |       "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_."); | 
 |  | 
 |   // Load fence to prevent load-load reordering. | 
 |   // Note that this is a no-op, thanks to the x86 memory model. | 
 |   GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
 |  | 
 |   // The actual reference load. | 
 |   // /* HeapReference<Object> */ ref = *src | 
 |   __ movl(ref_reg, src); | 
 |  | 
 |   // Object* ref = ref_addr->AsMirrorPtr() | 
 |   __ MaybeUnpoisonHeapReference(ref_reg); | 
 |  | 
 |   // Slow path used to mark the object `ref` when it is gray. | 
 |   SlowPathCode* slow_path = | 
 |       new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, ref, ref); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   // if (rb_state == ReadBarrier::gray_ptr_) | 
 |   //   ref = ReadBarrier::Mark(ref); | 
 |   __ cmpl(temp_reg, Immediate(ReadBarrier::gray_ptr_)); | 
 |   __ j(kEqual, slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction, | 
 |                                                Location out, | 
 |                                                Location ref, | 
 |                                                Location obj, | 
 |                                                uint32_t offset, | 
 |                                                Location index) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |  | 
 |   // Insert a slow path based read barrier *after* the reference load. | 
 |   // | 
 |   // If heap poisoning is enabled, the unpoisoning of the loaded | 
 |   // reference will be carried out by the runtime within the slow | 
 |   // path. | 
 |   // | 
 |   // Note that `ref` currently does not get unpoisoned (when heap | 
 |   // poisoning is enabled), which is alright as the `ref` argument is | 
 |   // not used by the artReadBarrierSlow entry point. | 
 |   // | 
 |   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. | 
 |   SlowPathCode* slow_path = new (GetGraph()->GetArena()) | 
 |       ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   __ jmp(slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction, | 
 |                                                     Location out, | 
 |                                                     Location ref, | 
 |                                                     Location obj, | 
 |                                                     uint32_t offset, | 
 |                                                     Location index) { | 
 |   if (kEmitCompilerReadBarrier) { | 
 |     // Baker's read barriers shall be handled by the fast path | 
 |     // (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier). | 
 |     DCHECK(!kUseBakerReadBarrier); | 
 |     // If heap poisoning is enabled, unpoisoning will be taken care of | 
 |     // by the runtime within the slow path. | 
 |     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); | 
 |   } else if (kPoisonHeapReferences) { | 
 |     __ UnpoisonHeapReference(out.AsRegister<Register>()); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction, | 
 |                                                       Location out, | 
 |                                                       Location root) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |  | 
 |   // Insert a slow path based read barrier *after* the GC root load. | 
 |   // | 
 |   // Note that GC roots are not affected by heap poisoning, so we do | 
 |   // not need to do anything special for this here. | 
 |   SlowPathCode* slow_path = | 
 |       new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86(instruction, out, root); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   __ jmp(slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, this should be removed during prepare for register allocator. | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, this should be removed during prepare for register allocator. | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | // Simple implementation of packed switch - generate cascaded compare/jumps. | 
 | void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg, | 
 |                                                               int32_t lower_bound, | 
 |                                                               uint32_t num_entries, | 
 |                                                               HBasicBlock* switch_block, | 
 |                                                               HBasicBlock* default_block) { | 
 |   // Figure out the correct compare values and jump conditions. | 
 |   // Handle the first compare/branch as a special case because it might | 
 |   // jump to the default case. | 
 |   DCHECK_GT(num_entries, 2u); | 
 |   Condition first_condition; | 
 |   uint32_t index; | 
 |   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); | 
 |   if (lower_bound != 0) { | 
 |     first_condition = kLess; | 
 |     __ cmpl(value_reg, Immediate(lower_bound)); | 
 |     __ j(first_condition, codegen_->GetLabelOf(default_block)); | 
 |     __ j(kEqual, codegen_->GetLabelOf(successors[0])); | 
 |  | 
 |     index = 1; | 
 |   } else { | 
 |     // Handle all the compare/jumps below. | 
 |     first_condition = kBelow; | 
 |     index = 0; | 
 |   } | 
 |  | 
 |   // Handle the rest of the compare/jumps. | 
 |   for (; index + 1 < num_entries; index += 2) { | 
 |     int32_t compare_to_value = lower_bound + index + 1; | 
 |     __ cmpl(value_reg, Immediate(compare_to_value)); | 
 |     // Jump to successors[index] if value < case_value[index]. | 
 |     __ j(first_condition, codegen_->GetLabelOf(successors[index])); | 
 |     // Jump to successors[index + 1] if value == case_value[index + 1]. | 
 |     __ j(kEqual, codegen_->GetLabelOf(successors[index + 1])); | 
 |   } | 
 |  | 
 |   if (index != num_entries) { | 
 |     // There are an odd number of entries. Handle the last one. | 
 |     DCHECK_EQ(index + 1, num_entries); | 
 |     __ cmpl(value_reg, Immediate(lower_bound + index)); | 
 |     __ j(kEqual, codegen_->GetLabelOf(successors[index])); | 
 |   } | 
 |  | 
 |   // And the default for any other value. | 
 |   if (!codegen_->GoesToNextBlock(switch_block, default_block)) { | 
 |     __ jmp(codegen_->GetLabelOf(default_block)); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
 |   int32_t lower_bound = switch_instr->GetStartValue(); | 
 |   uint32_t num_entries = switch_instr->GetNumEntries(); | 
 |   LocationSummary* locations = switch_instr->GetLocations(); | 
 |   Register value_reg = locations->InAt(0).AsRegister<Register>(); | 
 |  | 
 |   GenPackedSwitchWithCompares(value_reg, | 
 |                               lower_bound, | 
 |                               num_entries, | 
 |                               switch_instr->GetBlock(), | 
 |                               switch_instr->GetDefaultBlock()); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |  | 
 |   // Constant area pointer. | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 |  | 
 |   // And the temporary we need. | 
 |   locations->AddTemp(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) { | 
 |   int32_t lower_bound = switch_instr->GetStartValue(); | 
 |   uint32_t num_entries = switch_instr->GetNumEntries(); | 
 |   LocationSummary* locations = switch_instr->GetLocations(); | 
 |   Register value_reg = locations->InAt(0).AsRegister<Register>(); | 
 |   HBasicBlock* default_block = switch_instr->GetDefaultBlock(); | 
 |  | 
 |   if (num_entries <= kPackedSwitchJumpTableThreshold) { | 
 |     GenPackedSwitchWithCompares(value_reg, | 
 |                                 lower_bound, | 
 |                                 num_entries, | 
 |                                 switch_instr->GetBlock(), | 
 |                                 default_block); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Optimizing has a jump area. | 
 |   Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); | 
 |   Register constant_area = locations->InAt(1).AsRegister<Register>(); | 
 |  | 
 |   // Remove the bias, if needed. | 
 |   if (lower_bound != 0) { | 
 |     __ leal(temp_reg, Address(value_reg, -lower_bound)); | 
 |     value_reg = temp_reg; | 
 |   } | 
 |  | 
 |   // Is the value in range? | 
 |   DCHECK_GE(num_entries, 1u); | 
 |   __ cmpl(value_reg, Immediate(num_entries - 1)); | 
 |   __ j(kAbove, codegen_->GetLabelOf(default_block)); | 
 |  | 
 |   // We are in the range of the table. | 
 |   // Load (target-constant_area) from the jump table, indexing by the value. | 
 |   __ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg)); | 
 |  | 
 |   // Compute the actual target address by adding in constant_area. | 
 |   __ addl(temp_reg, constant_area); | 
 |  | 
 |   // And jump. | 
 |   __ jmp(temp_reg); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress( | 
 |     HX86ComputeBaseMethodAddress* insn) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress( | 
 |     HX86ComputeBaseMethodAddress* insn) { | 
 |   LocationSummary* locations = insn->GetLocations(); | 
 |   Register reg = locations->Out().AsRegister<Register>(); | 
 |  | 
 |   // Generate call to next instruction. | 
 |   Label next_instruction; | 
 |   __ call(&next_instruction); | 
 |   __ Bind(&next_instruction); | 
 |  | 
 |   // Remember this offset for later use with constant area. | 
 |   codegen_->SetMethodAddressOffset(GetAssembler()->CodeSize()); | 
 |  | 
 |   // Grab the return address off the stack. | 
 |   __ popl(reg); | 
 | } | 
 |  | 
 | void LocationsBuilderX86::VisitX86LoadFromConstantTable( | 
 |     HX86LoadFromConstantTable* insn) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall); | 
 |  | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant())); | 
 |  | 
 |   // If we don't need to be materialized, we only need the inputs to be set. | 
 |   if (insn->IsEmittedAtUseSite()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (insn->GetType()) { | 
 |     case Primitive::kPrimFloat: | 
 |     case Primitive::kPrimDouble: | 
 |       locations->SetOut(Location::RequiresFpuRegister()); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimInt: | 
 |       locations->SetOut(Location::RequiresRegister()); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) { | 
 |   if (insn->IsEmittedAtUseSite()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   LocationSummary* locations = insn->GetLocations(); | 
 |   Location out = locations->Out(); | 
 |   Register const_area = locations->InAt(0).AsRegister<Register>(); | 
 |   HConstant *value = insn->GetConstant(); | 
 |  | 
 |   switch (insn->GetType()) { | 
 |     case Primitive::kPrimFloat: | 
 |       __ movss(out.AsFpuRegister<XmmRegister>(), | 
 |                codegen_->LiteralFloatAddress(value->AsFloatConstant()->GetValue(), const_area)); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimDouble: | 
 |       __ movsd(out.AsFpuRegister<XmmRegister>(), | 
 |                codegen_->LiteralDoubleAddress(value->AsDoubleConstant()->GetValue(), const_area)); | 
 |       break; | 
 |  | 
 |     case Primitive::kPrimInt: | 
 |       __ movl(out.AsRegister<Register>(), | 
 |               codegen_->LiteralInt32Address(value->AsIntConstant()->GetValue(), const_area)); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); | 
 |   } | 
 | } | 
 |  | 
 | /** | 
 |  * Class to handle late fixup of offsets into constant area. | 
 |  */ | 
 | class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> { | 
 |  public: | 
 |   RIPFixup(CodeGeneratorX86& codegen, size_t offset) | 
 |       : codegen_(&codegen), offset_into_constant_area_(offset) {} | 
 |  | 
 |  protected: | 
 |   void SetOffset(size_t offset) { offset_into_constant_area_ = offset; } | 
 |  | 
 |   CodeGeneratorX86* codegen_; | 
 |  | 
 |  private: | 
 |   void Process(const MemoryRegion& region, int pos) OVERRIDE { | 
 |     // Patch the correct offset for the instruction.  The place to patch is the | 
 |     // last 4 bytes of the instruction. | 
 |     // The value to patch is the distance from the offset in the constant area | 
 |     // from the address computed by the HX86ComputeBaseMethodAddress instruction. | 
 |     int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_; | 
 |     int32_t relative_position = constant_offset - codegen_->GetMethodAddressOffset();; | 
 |  | 
 |     // Patch in the right value. | 
 |     region.StoreUnaligned<int32_t>(pos - 4, relative_position); | 
 |   } | 
 |  | 
 |   // Location in constant area that the fixup refers to. | 
 |   int32_t offset_into_constant_area_; | 
 | }; | 
 |  | 
 | /** | 
 |  * Class to handle late fixup of offsets to a jump table that will be created in the | 
 |  * constant area. | 
 |  */ | 
 | class JumpTableRIPFixup : public RIPFixup { | 
 |  public: | 
 |   JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr) | 
 |       : RIPFixup(codegen, static_cast<size_t>(-1)), switch_instr_(switch_instr) {} | 
 |  | 
 |   void CreateJumpTable() { | 
 |     X86Assembler* assembler = codegen_->GetAssembler(); | 
 |  | 
 |     // Ensure that the reference to the jump table has the correct offset. | 
 |     const int32_t offset_in_constant_table = assembler->ConstantAreaSize(); | 
 |     SetOffset(offset_in_constant_table); | 
 |  | 
 |     // The label values in the jump table are computed relative to the | 
 |     // instruction addressing the constant area. | 
 |     const int32_t relative_offset = codegen_->GetMethodAddressOffset(); | 
 |  | 
 |     // Populate the jump table with the correct values for the jump table. | 
 |     int32_t num_entries = switch_instr_->GetNumEntries(); | 
 |     HBasicBlock* block = switch_instr_->GetBlock(); | 
 |     const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors(); | 
 |     // The value that we want is the target offset - the position of the table. | 
 |     for (int32_t i = 0; i < num_entries; i++) { | 
 |       HBasicBlock* b = successors[i]; | 
 |       Label* l = codegen_->GetLabelOf(b); | 
 |       DCHECK(l->IsBound()); | 
 |       int32_t offset_to_block = l->Position() - relative_offset; | 
 |       assembler->AppendInt32(offset_to_block); | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   const HX86PackedSwitch* switch_instr_; | 
 | }; | 
 |  | 
 | void CodeGeneratorX86::Finalize(CodeAllocator* allocator) { | 
 |   // Generate the constant area if needed. | 
 |   X86Assembler* assembler = GetAssembler(); | 
 |   if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) { | 
 |     // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8 | 
 |     // byte values. | 
 |     assembler->Align(4, 0); | 
 |     constant_area_start_ = assembler->CodeSize(); | 
 |  | 
 |     // Populate any jump tables. | 
 |     for (auto jump_table : fixups_to_jump_tables_) { | 
 |       jump_table->CreateJumpTable(); | 
 |     } | 
 |  | 
 |     // And now add the constant area to the generated code. | 
 |     assembler->AddConstantArea(); | 
 |   } | 
 |  | 
 |   // And finish up. | 
 |   CodeGenerator::Finalize(allocator); | 
 | } | 
 |  | 
 | Address CodeGeneratorX86::LiteralDoubleAddress(double v, Register reg) { | 
 |   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v)); | 
 |   return Address(reg, kDummy32BitOffset, fixup); | 
 | } | 
 |  | 
 | Address CodeGeneratorX86::LiteralFloatAddress(float v, Register reg) { | 
 |   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v)); | 
 |   return Address(reg, kDummy32BitOffset, fixup); | 
 | } | 
 |  | 
 | Address CodeGeneratorX86::LiteralInt32Address(int32_t v, Register reg) { | 
 |   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v)); | 
 |   return Address(reg, kDummy32BitOffset, fixup); | 
 | } | 
 |  | 
 | Address CodeGeneratorX86::LiteralInt64Address(int64_t v, Register reg) { | 
 |   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v)); | 
 |   return Address(reg, kDummy32BitOffset, fixup); | 
 | } | 
 |  | 
 | void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) { | 
 |   if (value == 0) { | 
 |     __ xorl(dest, dest); | 
 |   } else { | 
 |     __ movl(dest, Immediate(value)); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) { | 
 |   if (value == 0) { | 
 |     __ testl(dest, dest); | 
 |   } else { | 
 |     __ cmpl(dest, Immediate(value)); | 
 |   } | 
 | } | 
 |  | 
 | Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr, | 
 |                                            Register reg, | 
 |                                            Register value) { | 
 |   // Create a fixup to be used to create and address the jump table. | 
 |   JumpTableRIPFixup* table_fixup = | 
 |       new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr); | 
 |  | 
 |   // We have to populate the jump tables. | 
 |   fixups_to_jump_tables_.push_back(table_fixup); | 
 |  | 
 |   // We want a scaled address, as we are extracting the correct offset from the table. | 
 |   return Address(reg, value, TIMES_4, kDummy32BitOffset, table_fixup); | 
 | } | 
 |  | 
 | // TODO: target as memory. | 
 | void CodeGeneratorX86::MoveFromReturnRegister(Location target, Primitive::Type type) { | 
 |   if (!target.IsValid()) { | 
 |     DCHECK_EQ(type, Primitive::kPrimVoid); | 
 |     return; | 
 |   } | 
 |  | 
 |   DCHECK_NE(type, Primitive::kPrimVoid); | 
 |  | 
 |   Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type); | 
 |   if (target.Equals(return_loc)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged | 
 |   //       with the else branch. | 
 |   if (type == Primitive::kPrimLong) { | 
 |     HParallelMove parallel_move(GetGraph()->GetArena()); | 
 |     parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), Primitive::kPrimInt, nullptr); | 
 |     parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), Primitive::kPrimInt, nullptr); | 
 |     GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |   } else { | 
 |     // Let the parallel move resolver take care of all of this. | 
 |     HParallelMove parallel_move(GetGraph()->GetArena()); | 
 |     parallel_move.AddMove(return_loc, target, type, nullptr); | 
 |     GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |   } | 
 | } | 
 |  | 
 | #undef __ | 
 |  | 
 | }  // namespace x86 | 
 | }  // namespace art |