blob: 1974b10c11ab2f64d90b74686d9a99cc47912167 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_SRC_HEAP_H_
#define ART_SRC_HEAP_H_
#include <iosfwd>
#include <string>
#include <vector>
#include "card_table.h"
#include "globals.h"
#include "gtest/gtest.h"
#include "heap_bitmap.h"
#include "mutex.h"
#include "offsets.h"
#include "safe_map.h"
#define VERIFY_OBJECT_ENABLED 0
// Fast verification means we do not verify the classes of objects.
#define VERIFY_OBJECT_FAST 1
namespace art {
class AllocSpace;
class Class;
class HeapBitmap;
class ImageSpace;
class MarkStack;
class ModUnionTable;
class Object;
class Space;
class SpaceTest;
class Thread;
class TimingLogger;
typedef std::vector<Space*> Spaces;
enum GcType {
// Full GC
GC_FULL,
// Sticky mark bits "generational" GC.
GC_STICKY,
// Partial GC, over only the alloc space
GC_PARTIAL,
};
class LOCKABLE Heap {
public:
static const size_t kInitialSize = 2 * MB;
static const size_t kMaximumSize = 32 * MB;
// After how many GCs we force to do a partial GC instead of sticky mark bits GC.
static const size_t kPartialGCFrequency = 10;
// Sticky mark bits GC has some overhead, so if we have less a few megabytes of AllocSpace then
// it's probably better to just do a partial GC.
static const size_t kMinAllocSpaceSizeForStickyGC = 6 * MB;
// Minimum remaining size fo sticky GC. Since sticky GC doesn't free up as much memory as a
// normal GC, it is important to not use it when we are almost out of memory.
static const size_t kMinRemainingSpaceForStickyGC = 1 * MB;
typedef void (RootVisitor)(const Object* root, void* arg);
typedef bool (IsMarkedTester)(const Object* object, void* arg);
// Create a heap with the requested sizes. The possible empty
// image_file_names names specify Spaces to load based on
// ImageWriter output.
explicit Heap(size_t starting_size, size_t growth_limit, size_t capacity,
const std::string& image_file_name, bool concurrent_gc);
~Heap();
// Allocates and initializes storage for an object instance.
Object* AllocObject(Class* klass, size_t num_bytes)
LOCKS_EXCLUDED(statistics_lock_)
SHARED_LOCKS_REQUIRED(GlobalSynchronization::mutator_lock_);
// Check sanity of given reference. Requires the heap lock.
#if VERIFY_OBJECT_ENABLED
void VerifyObject(const Object* o);
#else
void VerifyObject(const Object*) {}
#endif
// Check sanity of all live references. Requires the heap lock.
void VerifyHeap();
// A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
// and doesn't abort on error, allowing the caller to report more
// meaningful diagnostics.
bool IsHeapAddress(const Object* obj);
// Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
// Requires the heap lock to be held.
bool IsLiveObjectLocked(const Object* obj)
SHARED_LOCKS_REQUIRED(GlobalSynchronization::heap_bitmap_lock_);
// Initiates an explicit garbage collection.
void CollectGarbage(bool clear_soft_references)
LOCKS_EXCLUDED(GlobalSynchronization::mutator_lock_);
// Does a concurrent GC, should only be called by the GC daemon thread
// through runtime.
void ConcurrentGC();
// Implements java.lang.Runtime.maxMemory.
int64_t GetMaxMemory();
// Implements java.lang.Runtime.totalMemory.
int64_t GetTotalMemory();
// Implements java.lang.Runtime.freeMemory.
int64_t GetFreeMemory() LOCKS_EXCLUDED(statistics_lock_);
// Implements VMDebug.countInstancesOfClass.
int64_t CountInstances(Class* c, bool count_assignable)
LOCKS_EXCLUDED(GlobalSynchronization::heap_bitmap_lock_)
SHARED_LOCKS_REQUIRED(GlobalSynchronization::mutator_lock_);
// Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
// implement dalvik.system.VMRuntime.clearGrowthLimit.
void ClearGrowthLimit();
// Target ideal heap utilization ratio, implements
// dalvik.system.VMRuntime.getTargetHeapUtilization.
float GetTargetHeapUtilization() {
return target_utilization_;
}
// Set target ideal heap utilization ratio, implements
// dalvik.system.VMRuntime.setTargetHeapUtilization.
void SetTargetHeapUtilization(float target) {
DCHECK_GT(target, 0.0f); // asserted in Java code
DCHECK_LT(target, 1.0f);
target_utilization_ = target;
}
// For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
// from the system. Doesn't allow the space to exceed its growth limit.
void SetIdealFootprint(size_t max_allowed_footprint);
// Blocks the caller until the garbage collector becomes idle and returns
// true if we waited for the GC to complete.
bool WaitForConcurrentGcToComplete();
const Spaces& GetSpaces() {
return spaces_;
}
void SetReferenceOffsets(MemberOffset reference_referent_offset,
MemberOffset reference_queue_offset,
MemberOffset reference_queueNext_offset,
MemberOffset reference_pendingNext_offset,
MemberOffset finalizer_reference_zombie_offset);
Object* GetReferenceReferent(Object* reference);
void ClearReferenceReferent(Object* reference);
// Returns true if the reference object has not yet been enqueued.
bool IsEnqueuable(const Object* ref);
void EnqueueReference(Object* ref, Object** list);
void EnqueuePendingReference(Object* ref, Object** list);
Object* DequeuePendingReference(Object** list);
MemberOffset GetReferencePendingNextOffset() {
DCHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
return reference_pendingNext_offset_;
}
MemberOffset GetFinalizerReferenceZombieOffset() {
DCHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
return finalizer_reference_zombie_offset_;
}
void EnableObjectValidation() {
#if VERIFY_OBJECT_ENABLED
VerifyHeap();
#endif
verify_objects_ = true;
}
void DisableObjectValidation() {
verify_objects_ = false;
}
void RecordFree(size_t freed_objects, size_t freed_bytes) LOCKS_EXCLUDED(statistics_lock_);
// Must be called if a field of an Object in the heap changes, and before any GC safe-point.
// The call is not needed if NULL is stored in the field.
void WriteBarrierField(const Object* dst, MemberOffset /*offset*/, const Object* /*new_value*/) {
if (!card_marking_disabled_) {
card_table_->MarkCard(dst);
}
}
// Write barrier for array operations that update many field positions
void WriteBarrierArray(const Object* dst, int /*start_offset*/,
size_t /*length TODO: element_count or byte_count?*/) {
if (UNLIKELY(!card_marking_disabled_)) {
card_table_->MarkCard(dst);
}
}
CardTable* GetCardTable() {
return card_table_.get();
}
void DisableCardMarking() {
// TODO: we shouldn't need to disable card marking, this is here to help the image_writer
card_marking_disabled_ = true;
}
void AddFinalizerReference(Thread* self, Object* object);
size_t GetBytesAllocated() const LOCKS_EXCLUDED(statistics_lock_);
size_t GetObjectsAllocated() const LOCKS_EXCLUDED(statistics_lock_);
size_t GetConcurrentStartSize() const LOCKS_EXCLUDED(statistics_lock_);
size_t GetConcurrentMinFree() const LOCKS_EXCLUDED(statistics_lock_);
// Functions for getting the bitmap which corresponds to an object's address.
// This is probably slow, TODO: use better data structure like binary tree .
Space* FindSpaceFromObject(const Object*) const;
void DumpForSigQuit(std::ostream& os) LOCKS_EXCLUDED(statistics_lock_);
void Trim(AllocSpace* alloc_space);
HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(GlobalSynchronization::heap_bitmap_lock_) {
return live_bitmap_.get();
}
HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(GlobalSynchronization::heap_bitmap_lock_) {
return mark_bitmap_.get();
}
void PreZygoteFork();
// Mark and empty stack.
void FlushAllocStack()
EXCLUSIVE_LOCKS_REQUIRED(GlobalSynchronization::heap_bitmap_lock_);
// Mark all the objects in the allocation stack as live.
void MarkStackAsLive(MarkStack* alloc_stack);
// Un-mark all the objects in the allocation stack.
void UnMarkStack(MarkStack* alloc_stack);
// DEPRECATED: Should remove in "near" future when support for multiple image spaces is added.
// Assumes there is only one image space.
ImageSpace* GetImageSpace();
AllocSpace* GetAllocSpace();
void DumpSpaces();
private:
// Allocates uninitialized storage.
Object* Allocate(size_t num_bytes)
SHARED_LOCKS_REQUIRED(GlobalSynchronization::mutator_lock_);
Object* Allocate(AllocSpace* space, size_t num_bytes)
LOCKS_EXCLUDED(GlobalSynchronization::thread_suspend_count_lock_)
SHARED_LOCKS_REQUIRED(GlobalSynchronization::mutator_lock_);
// Pushes a list of cleared references out to the managed heap.
void EnqueueClearedReferences(Object** cleared_references);
void RequestHeapTrim();
void RequestConcurrentGC();
void RecordAllocation(AllocSpace* space, const Object* object)
LOCKS_EXCLUDED(statistics_lock_, GlobalSynchronization::heap_bitmap_lock_);
void CollectGarbageInternal(GcType gc_plan, bool clear_soft_references)
LOCKS_EXCLUDED(gc_complete_lock_,
GlobalSynchronization::heap_bitmap_lock_,
GlobalSynchronization::mutator_lock_,
GlobalSynchronization::thread_suspend_count_lock_);
void CollectGarbageMarkSweepPlan(GcType gc_plan, bool clear_soft_references)
LOCKS_EXCLUDED(GlobalSynchronization::heap_bitmap_lock_,
GlobalSynchronization::mutator_lock_);
void CollectGarbageConcurrentMarkSweepPlan(GcType gc_plan, bool clear_soft_references)
LOCKS_EXCLUDED(GlobalSynchronization::heap_bitmap_lock_,
GlobalSynchronization::mutator_lock_);
// Given the current contents of the alloc space, increase the allowed heap footprint to match
// the target utilization ratio. This should only be called immediately after a full garbage
// collection.
void GrowForUtilization();
size_t GetPercentFree();
void AddSpace(Space* space) LOCKS_EXCLUDED(GlobalSynchronization::heap_bitmap_lock_);
// No thread saftey analysis since we call this everywhere and it is impossible to find a proper
// lock ordering for it.
void VerifyObjectBody(const Object *obj)
NO_THREAD_SAFETY_ANALYSIS;
static void VerificationCallback(Object* obj, void* arg)
SHARED_LOCKS_REQUIRED(GlobalSychronization::heap_bitmap_lock_);
Spaces spaces_;
// The alloc space which we are currently allocating into.
AllocSpace* alloc_space_;
// The mod-union table remembers all of the references from the image space to the alloc /
// zygote spaces.
UniquePtr<ModUnionTable> mod_union_table_;
// This table holds all of the references from the zygote space to the alloc space.
UniquePtr<ModUnionTable> zygote_mod_union_table_;
UniquePtr<CardTable> card_table_;
// True for concurrent mark sweep GC, false for mark sweep.
const bool concurrent_gc_;
// If we have a zygote space.
bool have_zygote_space_;
// Used by the image writer to disable card marking on copied objects
// TODO: remove
bool card_marking_disabled_;
// Guards access to the state of GC, associated conditional variable is used to signal when a GC
// completes.
Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
UniquePtr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
// True while the garbage collector is running.
volatile bool is_gc_running_ GUARDED_BY(gc_complete_lock_);;
// Bytes until concurrent GC starts.
volatile size_t concurrent_start_bytes_;
size_t concurrent_start_size_;
size_t concurrent_min_free_;
size_t sticky_gc_count_;
// Number of bytes allocated. Adjusted after each allocation and free.
volatile size_t num_bytes_allocated_;
// Number of objects allocated. Adjusted after each allocation and free.
volatile size_t num_objects_allocated_;
// Last trim time
uint64_t last_trim_time_;
UniquePtr<HeapBitmap> live_bitmap_ GUARDED_BY(GlobalSynchronization::heap_bitmap_lock_);
UniquePtr<HeapBitmap> mark_bitmap_ GUARDED_BY(GlobalSynchronization::heap_bitmap_lock_);
// True while the garbage collector is trying to signal the GC daemon thread.
// This flag is needed to prevent recursion from occurring when the JNI calls
// allocate memory and request another GC.
bool try_running_gc_;
// Used to ensure that we don't ever recursively request GC.
volatile bool requesting_gc_;
// Mark stack that we reuse to avoid re-allocating the mark stack
UniquePtr<MarkStack> mark_stack_;
// Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
// to use the live bitmap as the old mark bitmap.
UniquePtr<MarkStack> allocation_stack_;
// Second allocation stack so that we can process allocation with the heap unlocked.
UniquePtr<MarkStack> live_stack_;
// offset of java.lang.ref.Reference.referent
MemberOffset reference_referent_offset_;
// offset of java.lang.ref.Reference.queue
MemberOffset reference_queue_offset_;
// offset of java.lang.ref.Reference.queueNext
MemberOffset reference_queueNext_offset_;
// offset of java.lang.ref.Reference.pendingNext
MemberOffset reference_pendingNext_offset_;
// offset of java.lang.ref.FinalizerReference.zombie
MemberOffset finalizer_reference_zombie_offset_;
// Target ideal heap utilization ratio
float target_utilization_;
bool verify_objects_;
friend class ScopedHeapLock;
FRIEND_TEST(SpaceTest, AllocAndFree);
FRIEND_TEST(SpaceTest, AllocAndFreeList);
FRIEND_TEST(SpaceTest, ZygoteSpace);
friend class SpaceTest;
DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
};
} // namespace art
#endif // ART_SRC_HEAP_H_