blob: 0d9b9910b72a1fa14c098f1f97634d97c504dd53 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "base/stringpiece.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "class_linker-inl.h"
#include "compiler_callbacks.h"
#include "dex_file-inl.h"
#include "dex_instruction.h"
#include "disassembler.h"
#include "gc_map.h"
#include "gc/space/image_space.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "image.h"
#include "indenter.h"
#include "mapping_table.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "oat.h"
#include "object_utils.h"
#include "os.h"
#include "runtime.h"
#include "safe_map.h"
#include "scoped_thread_state_change.h"
#include "verifier/dex_gc_map.h"
#include "verifier/method_verifier.h"
#include "vmap_table.h"
namespace art {
static void usage() {
fprintf(stderr,
"Usage: oatdump [options] ...\n"
" Example: oatdump --image=$ANDROID_PRODUCT_OUT/system/framework/boot.art --host-prefix=$ANDROID_PRODUCT_OUT\n"
" Example: adb shell oatdump --image=/system/framework/boot.art\n"
"\n");
fprintf(stderr,
" --oat-file=<file.oat>: specifies an input oat filename.\n"
" Example: --oat-file=/system/framework/boot.oat\n"
"\n");
fprintf(stderr,
" --image=<file.art>: specifies an input image filename.\n"
" Example: --image=/system/framework/boot.art\n"
"\n");
fprintf(stderr,
" --boot-image=<file.art>: provide the image file for the boot class path.\n"
" Example: --boot-image=/system/framework/boot.art\n"
"\n");
fprintf(stderr,
" --host-prefix may be used to translate host paths to target paths during\n"
" cross compilation.\n"
" Example: --host-prefix=out/target/product/crespo\n"
" Default: $ANDROID_PRODUCT_OUT\n"
"\n");
fprintf(stderr,
" --output=<file> may be used to send the output to a file.\n"
" Example: --output=/tmp/oatdump.txt\n"
"\n");
fprintf(stderr,
" --dump:[raw_mapping_table|raw_gc_map]\n"
" Example: --dump:raw_gc_map\n"
" Default: neither\n"
"\n");
exit(EXIT_FAILURE);
}
const char* image_roots_descriptions_[] = {
"kResolutionMethod",
"kImtConflictMethod",
"kDefaultImt",
"kCalleeSaveMethod",
"kRefsOnlySaveMethod",
"kRefsAndArgsSaveMethod",
"kOatLocation",
"kDexCaches",
"kClassRoots",
};
class OatDumper {
public:
explicit OatDumper(const std::string& host_prefix, const OatFile& oat_file, bool dump_raw_mapping_table, bool dump_raw_gc_map)
: host_prefix_(host_prefix),
oat_file_(oat_file),
oat_dex_files_(oat_file.GetOatDexFiles()),
dump_raw_mapping_table_(dump_raw_mapping_table),
dump_raw_gc_map_(dump_raw_gc_map),
disassembler_(Disassembler::Create(oat_file_.GetOatHeader().GetInstructionSet())) {
AddAllOffsets();
}
void Dump(std::ostream& os) {
const OatHeader& oat_header = oat_file_.GetOatHeader();
os << "MAGIC:\n";
os << oat_header.GetMagic() << "\n\n";
os << "CHECKSUM:\n";
os << StringPrintf("0x%08x\n\n", oat_header.GetChecksum());
os << "INSTRUCTION SET:\n";
os << oat_header.GetInstructionSet() << "\n\n";
os << "INSTRUCTION SET FEATURES:\n";
os << oat_header.GetInstructionSetFeatures().GetFeatureString() << "\n\n";
os << "DEX FILE COUNT:\n";
os << oat_header.GetDexFileCount() << "\n\n";
os << "EXECUTABLE OFFSET:\n";
os << StringPrintf("0x%08x\n\n", oat_header.GetExecutableOffset());
os << "IMAGE FILE LOCATION OAT CHECKSUM:\n";
os << StringPrintf("0x%08x\n\n", oat_header.GetImageFileLocationOatChecksum());
os << "IMAGE FILE LOCATION OAT BEGIN:\n";
os << StringPrintf("0x%08x\n\n", oat_header.GetImageFileLocationOatDataBegin());
os << "IMAGE FILE LOCATION:\n";
const std::string image_file_location(oat_header.GetImageFileLocation());
os << image_file_location;
if (!image_file_location.empty() && !host_prefix_.empty()) {
os << " (" << host_prefix_ << image_file_location << ")";
}
os << "\n\n";
os << "BEGIN:\n";
os << reinterpret_cast<const void*>(oat_file_.Begin()) << "\n\n";
os << "END:\n";
os << reinterpret_cast<const void*>(oat_file_.End()) << "\n\n";
os << std::flush;
for (size_t i = 0; i < oat_dex_files_.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i];
CHECK(oat_dex_file != NULL);
DumpOatDexFile(os, *oat_dex_file);
}
}
size_t ComputeSize(const void* oat_data) {
if (reinterpret_cast<const byte*>(oat_data) < oat_file_.Begin() ||
reinterpret_cast<const byte*>(oat_data) > oat_file_.End()) {
return 0; // Address not in oat file
}
uintptr_t begin_offset = reinterpret_cast<uintptr_t>(oat_data) -
reinterpret_cast<uintptr_t>(oat_file_.Begin());
auto it = offsets_.upper_bound(begin_offset);
CHECK(it != offsets_.end());
uintptr_t end_offset = *it;
return end_offset - begin_offset;
}
InstructionSet GetInstructionSet() {
return oat_file_.GetOatHeader().GetInstructionSet();
}
const void* GetQuickOatCode(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
MethodHelper mh(m);
for (size_t i = 0; i < oat_dex_files_.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i];
CHECK(oat_dex_file != nullptr);
std::string error_msg;
UniquePtr<const DexFile> dex_file(oat_dex_file->OpenDexFile(&error_msg));
if (dex_file.get() == nullptr) {
LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation()
<< "': " << error_msg;
} else {
const DexFile::ClassDef* class_def =
dex_file->FindClassDef(mh.GetDeclaringClassDescriptor());
if (class_def != NULL) {
uint16_t class_def_index = dex_file->GetIndexForClassDef(*class_def);
const OatFile::OatClass* oat_class = oat_dex_file->GetOatClass(class_def_index);
CHECK(oat_class != NULL);
size_t method_index = m->GetMethodIndex();
return oat_class->GetOatMethod(method_index).GetQuickCode();
}
}
}
return NULL;
}
private:
void AddAllOffsets() {
// We don't know the length of the code for each method, but we need to know where to stop
// when disassembling. What we do know is that a region of code will be followed by some other
// region, so if we keep a sorted sequence of the start of each region, we can infer the length
// of a piece of code by using upper_bound to find the start of the next region.
for (size_t i = 0; i < oat_dex_files_.size(); i++) {
const OatFile::OatDexFile* oat_dex_file = oat_dex_files_[i];
CHECK(oat_dex_file != NULL);
std::string error_msg;
UniquePtr<const DexFile> dex_file(oat_dex_file->OpenDexFile(&error_msg));
if (dex_file.get() == nullptr) {
LOG(WARNING) << "Failed to open dex file '" << oat_dex_file->GetDexFileLocation()
<< "': " << error_msg;
continue;
}
offsets_.insert(reinterpret_cast<uintptr_t>(&dex_file->GetHeader()));
for (size_t class_def_index = 0; class_def_index < dex_file->NumClassDefs(); class_def_index++) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
UniquePtr<const OatFile::OatClass> oat_class(oat_dex_file->GetOatClass(class_def_index));
const byte* class_data = dex_file->GetClassData(class_def);
if (class_data != NULL) {
ClassDataItemIterator it(*dex_file, class_data);
SkipAllFields(it);
uint32_t class_method_index = 0;
while (it.HasNextDirectMethod()) {
AddOffsets(oat_class->GetOatMethod(class_method_index++));
it.Next();
}
while (it.HasNextVirtualMethod()) {
AddOffsets(oat_class->GetOatMethod(class_method_index++));
it.Next();
}
}
}
}
// If the last thing in the file is code for a method, there won't be an offset for the "next"
// thing. Instead of having a special case in the upper_bound code, let's just add an entry
// for the end of the file.
offsets_.insert(oat_file_.Size());
}
void AddOffsets(const OatFile::OatMethod& oat_method) {
uint32_t code_offset = oat_method.GetCodeOffset();
if (oat_file_.GetOatHeader().GetInstructionSet() == kThumb2) {
code_offset &= ~0x1;
}
offsets_.insert(code_offset);
offsets_.insert(oat_method.GetMappingTableOffset());
offsets_.insert(oat_method.GetVmapTableOffset());
offsets_.insert(oat_method.GetNativeGcMapOffset());
}
void DumpOatDexFile(std::ostream& os, const OatFile::OatDexFile& oat_dex_file) {
os << "OAT DEX FILE:\n";
os << StringPrintf("location: %s\n", oat_dex_file.GetDexFileLocation().c_str());
os << StringPrintf("checksum: 0x%08x\n", oat_dex_file.GetDexFileLocationChecksum());
// Create the verifier early.
std::string error_msg;
UniquePtr<const DexFile> dex_file(oat_dex_file.OpenDexFile(&error_msg));
if (dex_file.get() == NULL) {
os << "NOT FOUND: " << error_msg << "\n\n";
return;
}
for (size_t class_def_index = 0; class_def_index < dex_file->NumClassDefs(); class_def_index++) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
const char* descriptor = dex_file->GetClassDescriptor(class_def);
UniquePtr<const OatFile::OatClass> oat_class(oat_dex_file.GetOatClass(class_def_index));
CHECK(oat_class.get() != NULL);
os << StringPrintf("%zd: %s (type_idx=%d)", class_def_index, descriptor, class_def.class_idx_)
<< " (" << oat_class->GetStatus() << ")"
<< " (" << oat_class->GetType() << ")\n";
// TODO: include bitmap here if type is kOatClassBitmap?
Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indented_os(&indent_filter);
DumpOatClass(indented_os, *oat_class.get(), *(dex_file.get()), class_def);
}
os << std::flush;
}
static void SkipAllFields(ClassDataItemIterator& it) {
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
}
void DumpOatClass(std::ostream& os, const OatFile::OatClass& oat_class, const DexFile& dex_file,
const DexFile::ClassDef& class_def) {
const byte* class_data = dex_file.GetClassData(class_def);
if (class_data == NULL) { // empty class such as a marker interface?
return;
}
ClassDataItemIterator it(dex_file, class_data);
SkipAllFields(it);
uint32_t class_method_idx = 0;
while (it.HasNextDirectMethod()) {
const OatFile::OatMethod oat_method = oat_class.GetOatMethod(class_method_idx);
DumpOatMethod(os, class_def, class_method_idx, oat_method, dex_file,
it.GetMemberIndex(), it.GetMethodCodeItem(), it.GetMemberAccessFlags());
class_method_idx++;
it.Next();
}
while (it.HasNextVirtualMethod()) {
const OatFile::OatMethod oat_method = oat_class.GetOatMethod(class_method_idx);
DumpOatMethod(os, class_def, class_method_idx, oat_method, dex_file,
it.GetMemberIndex(), it.GetMethodCodeItem(), it.GetMemberAccessFlags());
class_method_idx++;
it.Next();
}
DCHECK(!it.HasNext());
os << std::flush;
}
void DumpOatMethod(std::ostream& os, const DexFile::ClassDef& class_def,
uint32_t class_method_index,
const OatFile::OatMethod& oat_method, const DexFile& dex_file,
uint32_t dex_method_idx, const DexFile::CodeItem* code_item,
uint32_t method_access_flags) {
os << StringPrintf("%d: %s (dex_method_idx=%d)\n",
class_method_index, PrettyMethod(dex_method_idx, dex_file, true).c_str(),
dex_method_idx);
Indenter indent1_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent1_os(&indent1_filter);
{
indent1_os << "DEX CODE:\n";
Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent2_os(&indent2_filter);
DumpDexCode(indent2_os, dex_file, code_item);
}
if (Runtime::Current() != NULL) {
indent1_os << "VERIFIER TYPE ANALYSIS:\n";
Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent2_os(&indent2_filter);
DumpVerifier(indent2_os, dex_method_idx, &dex_file, class_def, code_item,
method_access_flags);
}
{
indent1_os << "OAT DATA:\n";
Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent2_os(&indent2_filter);
indent2_os << StringPrintf("frame_size_in_bytes: %zd\n", oat_method.GetFrameSizeInBytes());
indent2_os << StringPrintf("core_spill_mask: 0x%08x ", oat_method.GetCoreSpillMask());
DumpSpillMask(indent2_os, oat_method.GetCoreSpillMask(), false);
indent2_os << StringPrintf("\nfp_spill_mask: 0x%08x ", oat_method.GetFpSpillMask());
DumpSpillMask(indent2_os, oat_method.GetFpSpillMask(), true);
indent2_os << StringPrintf("\nvmap_table: %p (offset=0x%08x)\n",
oat_method.GetVmapTable(), oat_method.GetVmapTableOffset());
DumpVmap(indent2_os, oat_method);
indent2_os << StringPrintf("mapping_table: %p (offset=0x%08x)\n",
oat_method.GetMappingTable(), oat_method.GetMappingTableOffset());
if (dump_raw_mapping_table_) {
Indenter indent3_filter(indent2_os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent3_os(&indent3_filter);
DumpMappingTable(indent3_os, oat_method);
}
indent2_os << StringPrintf("gc_map: %p (offset=0x%08x)\n",
oat_method.GetNativeGcMap(), oat_method.GetNativeGcMapOffset());
if (dump_raw_gc_map_) {
Indenter indent3_filter(indent2_os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent3_os(&indent3_filter);
DumpGcMap(indent3_os, oat_method, code_item);
}
}
{
const void* code = oat_method.GetQuickCode();
uint32_t code_size = oat_method.GetQuickCodeSize();
if (code == nullptr) {
code = oat_method.GetPortableCode();
code_size = oat_method.GetPortableCodeSize();
}
indent1_os << StringPrintf("CODE: %p (offset=0x%08x size=%d)%s\n",
code,
oat_method.GetCodeOffset(),
code_size,
code != nullptr ? "..." : "");
Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent2_os(&indent2_filter);
Runtime* runtime = Runtime::Current();
if (runtime != nullptr) {
ScopedObjectAccess soa(Thread::Current());
SirtRef<mirror::DexCache> dex_cache(
soa.Self(), runtime->GetClassLinker()->FindDexCache(dex_file));
SirtRef<mirror::ClassLoader> class_loader(soa.Self(), nullptr);
verifier::MethodVerifier verifier(&dex_file, &dex_cache, &class_loader, &class_def, code_item,
dex_method_idx, nullptr, method_access_flags, true, true);
verifier.Verify();
DumpCode(indent2_os, &verifier, oat_method, code_item);
} else {
DumpCode(indent2_os, nullptr, oat_method, code_item);
}
}
}
void DumpSpillMask(std::ostream& os, uint32_t spill_mask, bool is_float) {
if (spill_mask == 0) {
return;
}
os << "(";
for (size_t i = 0; i < 32; i++) {
if ((spill_mask & (1 << i)) != 0) {
if (is_float) {
os << "fr" << i;
} else {
os << "r" << i;
}
spill_mask ^= 1 << i; // clear bit
if (spill_mask != 0) {
os << ", ";
} else {
break;
}
}
}
os << ")";
}
void DumpVmap(std::ostream& os, const OatFile::OatMethod& oat_method) {
const uint8_t* raw_table = oat_method.GetVmapTable();
if (raw_table != NULL) {
const VmapTable vmap_table(raw_table);
bool first = true;
bool processing_fp = false;
uint32_t spill_mask = oat_method.GetCoreSpillMask();
for (size_t i = 0; i < vmap_table.Size(); i++) {
uint16_t dex_reg = vmap_table[i];
uint32_t cpu_reg = vmap_table.ComputeRegister(spill_mask, i,
processing_fp ? kFloatVReg : kIntVReg);
os << (first ? "v" : ", v") << dex_reg;
if (!processing_fp) {
os << "/r" << cpu_reg;
} else {
os << "/fr" << cpu_reg;
}
first = false;
if (!processing_fp && dex_reg == 0xFFFF) {
processing_fp = true;
spill_mask = oat_method.GetFpSpillMask();
}
}
os << "\n";
}
}
void DescribeVReg(std::ostream& os, const OatFile::OatMethod& oat_method,
const DexFile::CodeItem* code_item, size_t reg, VRegKind kind) {
const uint8_t* raw_table = oat_method.GetVmapTable();
if (raw_table != NULL) {
const VmapTable vmap_table(raw_table);
uint32_t vmap_offset;
if (vmap_table.IsInContext(reg, kind, &vmap_offset)) {
bool is_float = (kind == kFloatVReg) || (kind == kDoubleLoVReg) || (kind == kDoubleHiVReg);
uint32_t spill_mask = is_float ? oat_method.GetFpSpillMask()
: oat_method.GetCoreSpillMask();
os << (is_float ? "fr" : "r") << vmap_table.ComputeRegister(spill_mask, vmap_offset, kind);
} else {
uint32_t offset = StackVisitor::GetVRegOffset(code_item, oat_method.GetCoreSpillMask(),
oat_method.GetFpSpillMask(),
oat_method.GetFrameSizeInBytes(), reg);
os << "[sp + #" << offset << "]";
}
}
}
void DumpGcMapRegisters(std::ostream& os, const OatFile::OatMethod& oat_method,
const DexFile::CodeItem* code_item,
size_t num_regs, const uint8_t* reg_bitmap) {
bool first = true;
for (size_t reg = 0; reg < num_regs; reg++) {
if (((reg_bitmap[reg / 8] >> (reg % 8)) & 0x01) != 0) {
if (first) {
os << " v" << reg << " (";
DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg);
os << ")";
first = false;
} else {
os << ", v" << reg << " (";
DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg);
os << ")";
}
}
}
if (first) {
os << "No registers in GC map\n";
} else {
os << "\n";
}
}
void DumpGcMap(std::ostream& os, const OatFile::OatMethod& oat_method,
const DexFile::CodeItem* code_item) {
const uint8_t* gc_map_raw = oat_method.GetNativeGcMap();
if (gc_map_raw == nullptr) {
return; // No GC map.
}
const void* quick_code = oat_method.GetQuickCode();
if (quick_code != nullptr) {
NativePcOffsetToReferenceMap map(gc_map_raw);
for (size_t entry = 0; entry < map.NumEntries(); entry++) {
const uint8_t* native_pc = reinterpret_cast<const uint8_t*>(quick_code) +
map.GetNativePcOffset(entry);
os << StringPrintf("%p", native_pc);
DumpGcMapRegisters(os, oat_method, code_item, map.RegWidth() * 8, map.GetBitMap(entry));
}
} else {
const void* portable_code = oat_method.GetPortableCode();
CHECK(portable_code != nullptr);
verifier::DexPcToReferenceMap map(gc_map_raw);
for (size_t entry = 0; entry < map.NumEntries(); entry++) {
uint32_t dex_pc = map.GetDexPc(entry);
os << StringPrintf("0x%08x", dex_pc);
DumpGcMapRegisters(os, oat_method, code_item, map.RegWidth() * 8, map.GetBitMap(entry));
}
}
}
void DumpMappingTable(std::ostream& os, const OatFile::OatMethod& oat_method) {
const void* quick_code = oat_method.GetQuickCode();
if (quick_code == nullptr) {
return;
}
MappingTable table(oat_method.GetMappingTable());
if (table.TotalSize() != 0) {
Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent_os(&indent_filter);
if (table.PcToDexSize() != 0) {
typedef MappingTable::PcToDexIterator It;
os << "suspend point mappings {\n";
for (It cur = table.PcToDexBegin(), end = table.PcToDexEnd(); cur != end; ++cur) {
indent_os << StringPrintf("0x%04x -> 0x%04x\n", cur.NativePcOffset(), cur.DexPc());
}
os << "}\n";
}
if (table.DexToPcSize() != 0) {
typedef MappingTable::DexToPcIterator It;
os << "catch entry mappings {\n";
for (It cur = table.DexToPcBegin(), end = table.DexToPcEnd(); cur != end; ++cur) {
indent_os << StringPrintf("0x%04x -> 0x%04x\n", cur.NativePcOffset(), cur.DexPc());
}
os << "}\n";
}
}
}
uint32_t DumpMappingAtOffset(std::ostream& os, const OatFile::OatMethod& oat_method,
size_t offset, bool suspend_point_mapping) {
MappingTable table(oat_method.GetMappingTable());
if (suspend_point_mapping && table.PcToDexSize() > 0) {
typedef MappingTable::PcToDexIterator It;
for (It cur = table.PcToDexBegin(), end = table.PcToDexEnd(); cur != end; ++cur) {
if (offset == cur.NativePcOffset()) {
os << StringPrintf("suspend point dex PC: 0x%04x\n", cur.DexPc());
return cur.DexPc();
}
}
} else if (!suspend_point_mapping && table.DexToPcSize() > 0) {
typedef MappingTable::DexToPcIterator It;
for (It cur = table.DexToPcBegin(), end = table.DexToPcEnd(); cur != end; ++cur) {
if (offset == cur.NativePcOffset()) {
os << StringPrintf("catch entry dex PC: 0x%04x\n", cur.DexPc());
return cur.DexPc();
}
}
}
return DexFile::kDexNoIndex;
}
void DumpGcMapAtNativePcOffset(std::ostream& os, const OatFile::OatMethod& oat_method,
const DexFile::CodeItem* code_item, size_t native_pc_offset) {
const uint8_t* gc_map_raw = oat_method.GetNativeGcMap();
if (gc_map_raw != NULL) {
NativePcOffsetToReferenceMap map(gc_map_raw);
if (map.HasEntry(native_pc_offset)) {
size_t num_regs = map.RegWidth() * 8;
const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
bool first = true;
for (size_t reg = 0; reg < num_regs; reg++) {
if (((reg_bitmap[reg / 8] >> (reg % 8)) & 0x01) != 0) {
if (first) {
os << "GC map objects: v" << reg << " (";
DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg);
os << ")";
first = false;
} else {
os << ", v" << reg << " (";
DescribeVReg(os, oat_method, code_item, reg, kReferenceVReg);
os << ")";
}
}
}
if (!first) {
os << "\n";
}
}
}
}
void DumpVRegsAtDexPc(std::ostream& os, verifier::MethodVerifier* verifier,
const OatFile::OatMethod& oat_method,
const DexFile::CodeItem* code_item, uint32_t dex_pc) {
DCHECK(verifier != nullptr);
std::vector<int32_t> kinds = verifier->DescribeVRegs(dex_pc);
bool first = true;
for (size_t reg = 0; reg < code_item->registers_size_; reg++) {
VRegKind kind = static_cast<VRegKind>(kinds.at(reg * 2));
if (kind != kUndefined) {
if (first) {
os << "VRegs: v";
first = false;
} else {
os << ", v";
}
os << reg << " (";
switch (kind) {
case kImpreciseConstant:
os << "Imprecise Constant: " << kinds.at((reg * 2) + 1) << ", ";
DescribeVReg(os, oat_method, code_item, reg, kind);
break;
case kConstant:
os << "Constant: " << kinds.at((reg * 2) + 1);
break;
default:
DescribeVReg(os, oat_method, code_item, reg, kind);
break;
}
os << ")";
}
}
if (!first) {
os << "\n";
}
}
void DumpDexCode(std::ostream& os, const DexFile& dex_file, const DexFile::CodeItem* code_item) {
if (code_item != NULL) {
size_t i = 0;
while (i < code_item->insns_size_in_code_units_) {
const Instruction* instruction = Instruction::At(&code_item->insns_[i]);
os << StringPrintf("0x%04zx: %s\n", i, instruction->DumpString(&dex_file).c_str());
i += instruction->SizeInCodeUnits();
}
}
}
void DumpVerifier(std::ostream& os, uint32_t dex_method_idx, const DexFile* dex_file,
const DexFile::ClassDef& class_def, const DexFile::CodeItem* code_item,
uint32_t method_access_flags) {
if ((method_access_flags & kAccNative) == 0) {
ScopedObjectAccess soa(Thread::Current());
SirtRef<mirror::DexCache> dex_cache(soa.Self(), Runtime::Current()->GetClassLinker()->FindDexCache(*dex_file));
SirtRef<mirror::ClassLoader> class_loader(soa.Self(), nullptr);
verifier::MethodVerifier::VerifyMethodAndDump(os, dex_method_idx, dex_file, dex_cache,
class_loader, &class_def, code_item, NULL,
method_access_flags);
}
}
void DumpCode(std::ostream& os, verifier::MethodVerifier* verifier,
const OatFile::OatMethod& oat_method, const DexFile::CodeItem* code_item) {
const void* portable_code = oat_method.GetPortableCode();
const void* quick_code = oat_method.GetQuickCode();
size_t code_size = oat_method.GetQuickCodeSize();
if ((code_size == 0) || ((portable_code == nullptr) && (quick_code == nullptr))) {
os << "NO CODE!\n";
return;
} else if (quick_code != nullptr) {
const uint8_t* quick_native_pc = reinterpret_cast<const uint8_t*>(quick_code);
size_t offset = 0;
while (offset < code_size) {
DumpMappingAtOffset(os, oat_method, offset, false);
offset += disassembler_->Dump(os, quick_native_pc + offset);
uint32_t dex_pc = DumpMappingAtOffset(os, oat_method, offset, true);
if (dex_pc != DexFile::kDexNoIndex) {
DumpGcMapAtNativePcOffset(os, oat_method, code_item, offset);
if (verifier != nullptr) {
DumpVRegsAtDexPc(os, verifier, oat_method, code_item, dex_pc);
}
}
}
} else {
CHECK(portable_code != nullptr);
CHECK_EQ(code_size, 0U); // TODO: disassembly of portable is currently not supported.
}
}
const std::string host_prefix_;
const OatFile& oat_file_;
std::vector<const OatFile::OatDexFile*> oat_dex_files_;
bool dump_raw_mapping_table_;
bool dump_raw_gc_map_;
std::set<uintptr_t> offsets_;
UniquePtr<Disassembler> disassembler_;
};
class ImageDumper {
public:
explicit ImageDumper(std::ostream* os, const std::string& image_filename,
const std::string& host_prefix, gc::space::ImageSpace& image_space,
const ImageHeader& image_header, bool dump_raw_mapping_table,
bool dump_raw_gc_map)
: os_(os), image_filename_(image_filename), host_prefix_(host_prefix),
image_space_(image_space), image_header_(image_header),
dump_raw_mapping_table_(dump_raw_mapping_table),
dump_raw_gc_map_(dump_raw_gc_map) {}
void Dump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
std::ostream& os = *os_;
os << "MAGIC: " << image_header_.GetMagic() << "\n\n";
os << "IMAGE BEGIN: " << reinterpret_cast<void*>(image_header_.GetImageBegin()) << "\n\n";
os << "IMAGE BITMAP OFFSET: " << reinterpret_cast<void*>(image_header_.GetImageBitmapOffset())
<< " SIZE: " << reinterpret_cast<void*>(image_header_.GetImageBitmapSize()) << "\n\n";
os << "OAT CHECKSUM: " << StringPrintf("0x%08x\n\n", image_header_.GetOatChecksum());
os << "OAT FILE BEGIN:" << reinterpret_cast<void*>(image_header_.GetOatFileBegin()) << "\n\n";
os << "OAT DATA BEGIN:" << reinterpret_cast<void*>(image_header_.GetOatDataBegin()) << "\n\n";
os << "OAT DATA END:" << reinterpret_cast<void*>(image_header_.GetOatDataEnd()) << "\n\n";
os << "OAT FILE END:" << reinterpret_cast<void*>(image_header_.GetOatFileEnd()) << "\n\n";
{
os << "ROOTS: " << reinterpret_cast<void*>(image_header_.GetImageRoots()) << "\n";
Indenter indent1_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent1_os(&indent1_filter);
CHECK_EQ(arraysize(image_roots_descriptions_), size_t(ImageHeader::kImageRootsMax));
for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
ImageHeader::ImageRoot image_root = static_cast<ImageHeader::ImageRoot>(i);
const char* image_root_description = image_roots_descriptions_[i];
mirror::Object* image_root_object = image_header_.GetImageRoot(image_root);
indent1_os << StringPrintf("%s: %p\n", image_root_description, image_root_object);
if (image_root_object->IsObjectArray()) {
Indenter indent2_filter(indent1_os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent2_os(&indent2_filter);
mirror::ObjectArray<mirror::Object>* image_root_object_array
= image_root_object->AsObjectArray<mirror::Object>();
for (int i = 0; i < image_root_object_array->GetLength(); i++) {
mirror::Object* value = image_root_object_array->Get(i);
size_t run = 0;
for (int32_t j = i + 1; j < image_root_object_array->GetLength(); j++) {
if (value == image_root_object_array->Get(j)) {
run++;
} else {
break;
}
}
if (run == 0) {
indent2_os << StringPrintf("%d: ", i);
} else {
indent2_os << StringPrintf("%d to %zd: ", i, i + run);
i = i + run;
}
if (value != NULL) {
PrettyObjectValue(indent2_os, value->GetClass(), value);
} else {
indent2_os << i << ": null\n";
}
}
}
}
}
os << "\n";
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
mirror::Object* oat_location_object = image_header_.GetImageRoot(ImageHeader::kOatLocation);
std::string oat_location(oat_location_object->AsString()->ToModifiedUtf8());
os << "OAT LOCATION: " << oat_location;
if (!host_prefix_.empty()) {
oat_location = host_prefix_ + oat_location;
os << " (" << oat_location << ")";
}
os << "\n";
std::string error_msg;
const OatFile* oat_file = class_linker->FindOatFileFromOatLocation(oat_location, &error_msg);
if (oat_file == NULL) {
os << "NOT FOUND: " << error_msg << "\n";
return;
}
os << "\n";
stats_.oat_file_bytes = oat_file->Size();
oat_dumper_.reset(new OatDumper(host_prefix_, *oat_file, dump_raw_mapping_table_,
dump_raw_gc_map_));
for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
CHECK(oat_dex_file != NULL);
stats_.oat_dex_file_sizes.push_back(std::make_pair(oat_dex_file->GetDexFileLocation(),
oat_dex_file->FileSize()));
}
os << "OBJECTS:\n" << std::flush;
// Loop through all the image spaces and dump their objects.
gc::Heap* heap = Runtime::Current()->GetHeap();
const std::vector<gc::space::ContinuousSpace*>& spaces = heap->GetContinuousSpaces();
Thread* self = Thread::Current();
{
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
heap->FlushAllocStack();
// Since FlushAllocStack() above resets the (active) allocation
// stack. Need to revoke the thread-local allocation stacks that
// point into it.
heap->RevokeAllThreadLocalAllocationStacks(self);
}
{
std::ostream* saved_os = os_;
Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent_os(&indent_filter);
os_ = &indent_os;
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
for (const auto& space : spaces) {
if (space->IsImageSpace()) {
gc::space::ImageSpace* image_space = space->AsImageSpace();
image_space->GetLiveBitmap()->Walk(ImageDumper::Callback, this);
indent_os << "\n";
}
}
// Dump the large objects separately.
heap->GetLargeObjectsSpace()->GetLiveObjects()->Walk(ImageDumper::Callback, this);
indent_os << "\n";
os_ = saved_os;
}
os << "STATS:\n" << std::flush;
UniquePtr<File> file(OS::OpenFileForReading(image_filename_.c_str()));
if (file.get() == NULL) {
std::string cache_location(GetDalvikCacheFilenameOrDie(image_filename_.c_str()));
file.reset(OS::OpenFileForReading(cache_location.c_str()));
if (file.get() == NULL) {
LOG(WARNING) << "Failed to find image in " << image_filename_
<< " and " << cache_location;
}
}
if (file.get() != NULL) {
stats_.file_bytes = file->GetLength();
}
size_t header_bytes = sizeof(ImageHeader);
stats_.header_bytes = header_bytes;
size_t alignment_bytes = RoundUp(header_bytes, kObjectAlignment) - header_bytes;
stats_.alignment_bytes += alignment_bytes;
stats_.alignment_bytes += image_header_.GetImageBitmapOffset() - image_header_.GetImageSize();
stats_.bitmap_bytes += image_header_.GetImageBitmapSize();
stats_.Dump(os);
os << "\n";
os << std::flush;
oat_dumper_->Dump(os);
}
private:
static void PrettyObjectValue(std::ostream& os, mirror::Class* type, mirror::Object* value)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
CHECK(type != NULL);
if (value == NULL) {
os << StringPrintf("null %s\n", PrettyDescriptor(type).c_str());
} else if (type->IsStringClass()) {
mirror::String* string = value->AsString();
os << StringPrintf("%p String: %s\n", string,
PrintableString(string->ToModifiedUtf8()).c_str());
} else if (type->IsClassClass()) {
mirror::Class* klass = value->AsClass();
os << StringPrintf("%p Class: %s\n", klass, PrettyDescriptor(klass).c_str());
} else if (type->IsArtFieldClass()) {
mirror::ArtField* field = value->AsArtField();
os << StringPrintf("%p Field: %s\n", field, PrettyField(field).c_str());
} else if (type->IsArtMethodClass()) {
mirror::ArtMethod* method = value->AsArtMethod();
os << StringPrintf("%p Method: %s\n", method, PrettyMethod(method).c_str());
} else {
os << StringPrintf("%p %s\n", value, PrettyDescriptor(type).c_str());
}
}
static void PrintField(std::ostream& os, mirror::ArtField* field, mirror::Object* obj)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
FieldHelper fh(field);
const char* descriptor = fh.GetTypeDescriptor();
os << StringPrintf("%s: ", fh.GetName());
if (descriptor[0] != 'L' && descriptor[0] != '[') {
mirror::Class* type = fh.GetType();
if (type->IsPrimitiveLong()) {
os << StringPrintf("%" PRId64 " (0x%" PRIx64 ")\n", field->Get64(obj), field->Get64(obj));
} else if (type->IsPrimitiveDouble()) {
os << StringPrintf("%f (%a)\n", field->GetDouble(obj), field->GetDouble(obj));
} else if (type->IsPrimitiveFloat()) {
os << StringPrintf("%f (%a)\n", field->GetFloat(obj), field->GetFloat(obj));
} else {
DCHECK(type->IsPrimitive());
os << StringPrintf("%d (0x%x)\n", field->Get32(obj), field->Get32(obj));
}
} else {
// Get the value, don't compute the type unless it is non-null as we don't want
// to cause class loading.
mirror::Object* value = field->GetObj(obj);
if (value == NULL) {
os << StringPrintf("null %s\n", PrettyDescriptor(descriptor).c_str());
} else {
// Grab the field type without causing resolution.
mirror::Class* field_type = fh.GetType(false);
if (field_type != NULL) {
PrettyObjectValue(os, field_type, value);
} else {
os << StringPrintf("%p %s\n", value, PrettyDescriptor(descriptor).c_str());
}
}
}
}
static void DumpFields(std::ostream& os, mirror::Object* obj, mirror::Class* klass)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
mirror::Class* super = klass->GetSuperClass();
if (super != NULL) {
DumpFields(os, obj, super);
}
mirror::ObjectArray<mirror::ArtField>* fields = klass->GetIFields();
if (fields != NULL) {
for (int32_t i = 0; i < fields->GetLength(); i++) {
mirror::ArtField* field = fields->Get(i);
PrintField(os, field, obj);
}
}
}
bool InDumpSpace(const mirror::Object* object) {
return image_space_.Contains(object);
}
const void* GetQuickOatCodeBegin(mirror::ArtMethod* m)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const void* quick_code = m->GetEntryPointFromQuickCompiledCode();
if (quick_code == GetQuickResolutionTrampoline(Runtime::Current()->GetClassLinker())) {
quick_code = oat_dumper_->GetQuickOatCode(m);
}
if (oat_dumper_->GetInstructionSet() == kThumb2) {
quick_code = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(quick_code) & ~0x1);
}
return quick_code;
}
uint32_t GetQuickOatCodeSize(mirror::ArtMethod* m)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const uint32_t* oat_code_begin = reinterpret_cast<const uint32_t*>(GetQuickOatCodeBegin(m));
if (oat_code_begin == nullptr) {
return 0;
}
return oat_code_begin[-1];
}
const void* GetQuickOatCodeEnd(mirror::ArtMethod* m)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
const uint8_t* oat_code_begin = reinterpret_cast<const uint8_t*>(GetQuickOatCodeBegin(m));
if (oat_code_begin == NULL) {
return NULL;
}
return oat_code_begin + GetQuickOatCodeSize(m);
}
static void Callback(mirror::Object* obj, void* arg)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(obj != NULL);
DCHECK(arg != NULL);
ImageDumper* state = reinterpret_cast<ImageDumper*>(arg);
if (!state->InDumpSpace(obj)) {
return;
}
size_t object_bytes = obj->SizeOf();
size_t alignment_bytes = RoundUp(object_bytes, kObjectAlignment) - object_bytes;
state->stats_.object_bytes += object_bytes;
state->stats_.alignment_bytes += alignment_bytes;
std::ostream& os = *state->os_;
mirror::Class* obj_class = obj->GetClass();
if (obj_class->IsArrayClass()) {
os << StringPrintf("%p: %s length:%d\n", obj, PrettyDescriptor(obj_class).c_str(),
obj->AsArray()->GetLength());
} else if (obj->IsClass()) {
mirror::Class* klass = obj->AsClass();
os << StringPrintf("%p: java.lang.Class \"%s\" (", obj, PrettyDescriptor(klass).c_str())
<< klass->GetStatus() << ")\n";
} else if (obj->IsArtField()) {
os << StringPrintf("%p: java.lang.reflect.ArtField %s\n", obj,
PrettyField(obj->AsArtField()).c_str());
} else if (obj->IsArtMethod()) {
os << StringPrintf("%p: java.lang.reflect.ArtMethod %s\n", obj,
PrettyMethod(obj->AsArtMethod()).c_str());
} else if (obj_class->IsStringClass()) {
os << StringPrintf("%p: java.lang.String %s\n", obj,
PrintableString(obj->AsString()->ToModifiedUtf8()).c_str());
} else {
os << StringPrintf("%p: %s\n", obj, PrettyDescriptor(obj_class).c_str());
}
Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent_os(&indent_filter);
DumpFields(indent_os, obj, obj_class);
if (obj->IsObjectArray()) {
mirror::ObjectArray<mirror::Object>* obj_array = obj->AsObjectArray<mirror::Object>();
int32_t length = obj_array->GetLength();
for (int32_t i = 0; i < length; i++) {
mirror::Object* value = obj_array->Get(i);
size_t run = 0;
for (int32_t j = i + 1; j < length; j++) {
if (value == obj_array->Get(j)) {
run++;
} else {
break;
}
}
if (run == 0) {
indent_os << StringPrintf("%d: ", i);
} else {
indent_os << StringPrintf("%d to %zd: ", i, i + run);
i = i + run;
}
mirror::Class* value_class = value == NULL ? obj_class->GetComponentType() : value->GetClass();
PrettyObjectValue(indent_os, value_class, value);
}
} else if (obj->IsClass()) {
mirror::ObjectArray<mirror::ArtField>* sfields = obj->AsClass()->GetSFields();
if (sfields != NULL) {
indent_os << "STATICS:\n";
Indenter indent2_filter(indent_os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent2_os(&indent2_filter);
for (int32_t i = 0; i < sfields->GetLength(); i++) {
mirror::ArtField* field = sfields->Get(i);
PrintField(indent2_os, field, field->GetDeclaringClass());
}
}
} else if (obj->IsArtMethod()) {
mirror::ArtMethod* method = obj->AsArtMethod();
if (method->IsNative()) {
// TODO: portable dumping.
DCHECK(method->GetNativeGcMap() == nullptr) << PrettyMethod(method);
DCHECK(method->GetMappingTable() == nullptr) << PrettyMethod(method);
bool first_occurrence;
const void* quick_oat_code = state->GetQuickOatCodeBegin(method);
uint32_t quick_oat_code_size = state->GetQuickOatCodeSize(method);
state->ComputeOatSize(quick_oat_code, &first_occurrence);
if (first_occurrence) {
state->stats_.native_to_managed_code_bytes += quick_oat_code_size;
}
if (quick_oat_code != method->GetEntryPointFromQuickCompiledCode()) {
indent_os << StringPrintf("OAT CODE: %p\n", quick_oat_code);
}
} else if (method->IsAbstract() || method->IsCalleeSaveMethod() ||
method->IsResolutionMethod() || method->IsImtConflictMethod() ||
MethodHelper(method).IsClassInitializer()) {
DCHECK(method->GetNativeGcMap() == NULL) << PrettyMethod(method);
DCHECK(method->GetMappingTable() == NULL) << PrettyMethod(method);
} else {
// TODO: we check there is a GC map here, we may not have a GC map if the code is pointing
// to the quick/portable to interpreter bridge.
CHECK(method->GetNativeGcMap() != NULL) << PrettyMethod(method);
const DexFile::CodeItem* code_item = MethodHelper(method).GetCodeItem();
size_t dex_instruction_bytes = code_item->insns_size_in_code_units_ * 2;
state->stats_.dex_instruction_bytes += dex_instruction_bytes;
bool first_occurrence;
size_t gc_map_bytes = state->ComputeOatSize(method->GetNativeGcMap(), &first_occurrence);
if (first_occurrence) {
state->stats_.gc_map_bytes += gc_map_bytes;
}
size_t pc_mapping_table_bytes =
state->ComputeOatSize(method->GetMappingTable(), &first_occurrence);
if (first_occurrence) {
state->stats_.pc_mapping_table_bytes += pc_mapping_table_bytes;
}
size_t vmap_table_bytes =
state->ComputeOatSize(method->GetVmapTable(), &first_occurrence);
if (first_occurrence) {
state->stats_.vmap_table_bytes += vmap_table_bytes;
}
// TODO: portable dumping.
const void* quick_oat_code_begin = state->GetQuickOatCodeBegin(method);
const void* quick_oat_code_end = state->GetQuickOatCodeEnd(method);
uint32_t quick_oat_code_size = state->GetQuickOatCodeSize(method);
state->ComputeOatSize(quick_oat_code_begin, &first_occurrence);
if (first_occurrence) {
state->stats_.managed_code_bytes += quick_oat_code_size;
if (method->IsConstructor()) {
if (method->IsStatic()) {
state->stats_.class_initializer_code_bytes += quick_oat_code_size;
} else if (dex_instruction_bytes > kLargeConstructorDexBytes) {
state->stats_.large_initializer_code_bytes += quick_oat_code_size;
}
} else if (dex_instruction_bytes > kLargeMethodDexBytes) {
state->stats_.large_method_code_bytes += quick_oat_code_size;
}
}
state->stats_.managed_code_bytes_ignoring_deduplication += quick_oat_code_size;
indent_os << StringPrintf("OAT CODE: %p-%p\n", quick_oat_code_begin, quick_oat_code_end);
indent_os << StringPrintf("SIZE: Dex Instructions=%zd GC=%zd Mapping=%zd\n",
dex_instruction_bytes, gc_map_bytes, pc_mapping_table_bytes);
size_t total_size = dex_instruction_bytes + gc_map_bytes + pc_mapping_table_bytes +
vmap_table_bytes + quick_oat_code_size + object_bytes;
double expansion =
static_cast<double>(quick_oat_code_size) / static_cast<double>(dex_instruction_bytes);
state->stats_.ComputeOutliers(total_size, expansion, method);
}
}
state->stats_.Update(ClassHelper(obj_class).GetDescriptor(), object_bytes);
}
std::set<const void*> already_seen_;
// Compute the size of the given data within the oat file and whether this is the first time
// this data has been requested
size_t ComputeOatSize(const void* oat_data, bool* first_occurrence) {
if (already_seen_.count(oat_data) == 0) {
*first_occurrence = true;
already_seen_.insert(oat_data);
} else {
*first_occurrence = false;
}
return oat_dumper_->ComputeSize(oat_data);
}
public:
struct Stats {
size_t oat_file_bytes;
size_t file_bytes;
size_t header_bytes;
size_t object_bytes;
size_t bitmap_bytes;
size_t alignment_bytes;
size_t managed_code_bytes;
size_t managed_code_bytes_ignoring_deduplication;
size_t managed_to_native_code_bytes;
size_t native_to_managed_code_bytes;
size_t class_initializer_code_bytes;
size_t large_initializer_code_bytes;
size_t large_method_code_bytes;
size_t gc_map_bytes;
size_t pc_mapping_table_bytes;
size_t vmap_table_bytes;
size_t dex_instruction_bytes;
std::vector<mirror::ArtMethod*> method_outlier;
std::vector<size_t> method_outlier_size;
std::vector<double> method_outlier_expansion;
std::vector<std::pair<std::string, size_t> > oat_dex_file_sizes;
explicit Stats()
: oat_file_bytes(0),
file_bytes(0),
header_bytes(0),
object_bytes(0),
bitmap_bytes(0),
alignment_bytes(0),
managed_code_bytes(0),
managed_code_bytes_ignoring_deduplication(0),
managed_to_native_code_bytes(0),
native_to_managed_code_bytes(0),
class_initializer_code_bytes(0),
large_initializer_code_bytes(0),
large_method_code_bytes(0),
gc_map_bytes(0),
pc_mapping_table_bytes(0),
vmap_table_bytes(0),
dex_instruction_bytes(0) {}
struct SizeAndCount {
SizeAndCount(size_t bytes, size_t count) : bytes(bytes), count(count) {}
size_t bytes;
size_t count;
};
typedef SafeMap<std::string, SizeAndCount> SizeAndCountTable;
SizeAndCountTable sizes_and_counts;
void Update(const char* descriptor, size_t object_bytes) {
SizeAndCountTable::iterator it = sizes_and_counts.find(descriptor);
if (it != sizes_and_counts.end()) {
it->second.bytes += object_bytes;
it->second.count += 1;
} else {
sizes_and_counts.Put(descriptor, SizeAndCount(object_bytes, 1));
}
}
double PercentOfOatBytes(size_t size) {
return (static_cast<double>(size) / static_cast<double>(oat_file_bytes)) * 100;
}
double PercentOfFileBytes(size_t size) {
return (static_cast<double>(size) / static_cast<double>(file_bytes)) * 100;
}
double PercentOfObjectBytes(size_t size) {
return (static_cast<double>(size) / static_cast<double>(object_bytes)) * 100;
}
void ComputeOutliers(size_t total_size, double expansion, mirror::ArtMethod* method) {
method_outlier_size.push_back(total_size);
method_outlier_expansion.push_back(expansion);
method_outlier.push_back(method);
}
void DumpOutliers(std::ostream& os)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
size_t sum_of_sizes = 0;
size_t sum_of_sizes_squared = 0;
size_t sum_of_expansion = 0;
size_t sum_of_expansion_squared = 0;
size_t n = method_outlier_size.size();
for (size_t i = 0; i < n; i++) {
size_t cur_size = method_outlier_size[i];
sum_of_sizes += cur_size;
sum_of_sizes_squared += cur_size * cur_size;
double cur_expansion = method_outlier_expansion[i];
sum_of_expansion += cur_expansion;
sum_of_expansion_squared += cur_expansion * cur_expansion;
}
size_t size_mean = sum_of_sizes / n;
size_t size_variance = (sum_of_sizes_squared - sum_of_sizes * size_mean) / (n - 1);
double expansion_mean = sum_of_expansion / n;
double expansion_variance =
(sum_of_expansion_squared - sum_of_expansion * expansion_mean) / (n - 1);
// Dump methods whose size is a certain number of standard deviations from the mean
size_t dumped_values = 0;
size_t skipped_values = 0;
for (size_t i = 100; i > 0; i--) { // i is the current number of standard deviations
size_t cur_size_variance = i * i * size_variance;
bool first = true;
for (size_t j = 0; j < n; j++) {
size_t cur_size = method_outlier_size[j];
if (cur_size > size_mean) {
size_t cur_var = cur_size - size_mean;
cur_var = cur_var * cur_var;
if (cur_var > cur_size_variance) {
if (dumped_values > 20) {
if (i == 1) {
skipped_values++;
} else {
i = 2; // jump to counting for 1 standard deviation
break;
}
} else {
if (first) {
os << "\nBig methods (size > " << i << " standard deviations the norm):\n";
first = false;
}
os << PrettyMethod(method_outlier[j]) << " requires storage of "
<< PrettySize(cur_size) << "\n";
method_outlier_size[j] = 0; // don't consider this method again
dumped_values++;
}
}
}
}
}
if (skipped_values > 0) {
os << "... skipped " << skipped_values
<< " methods with size > 1 standard deviation from the norm\n";
}
os << std::flush;
// Dump methods whose expansion is a certain number of standard deviations from the mean
dumped_values = 0;
skipped_values = 0;
for (size_t i = 10; i > 0; i--) { // i is the current number of standard deviations
double cur_expansion_variance = i * i * expansion_variance;
bool first = true;
for (size_t j = 0; j < n; j++) {
double cur_expansion = method_outlier_expansion[j];
if (cur_expansion > expansion_mean) {
size_t cur_var = cur_expansion - expansion_mean;
cur_var = cur_var * cur_var;
if (cur_var > cur_expansion_variance) {
if (dumped_values > 20) {
if (i == 1) {
skipped_values++;
} else {
i = 2; // jump to counting for 1 standard deviation
break;
}
} else {
if (first) {
os << "\nLarge expansion methods (size > " << i
<< " standard deviations the norm):\n";
first = false;
}
os << PrettyMethod(method_outlier[j]) << " expanded code by "
<< cur_expansion << "\n";
method_outlier_expansion[j] = 0.0; // don't consider this method again
dumped_values++;
}
}
}
}
}
if (skipped_values > 0) {
os << "... skipped " << skipped_values
<< " methods with expansion > 1 standard deviation from the norm\n";
}
os << "\n" << std::flush;
}
void Dump(std::ostream& os) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
{
os << "art_file_bytes = " << PrettySize(file_bytes) << "\n\n"
<< "art_file_bytes = header_bytes + object_bytes + alignment_bytes\n";
Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
std::ostream indent_os(&indent_filter);
indent_os << StringPrintf("header_bytes = %8zd (%2.0f%% of art file bytes)\n"
"object_bytes = %8zd (%2.0f%% of art file bytes)\n"
"bitmap_bytes = %8zd (%2.0f%% of art file bytes)\n"
"alignment_bytes = %8zd (%2.0f%% of art file bytes)\n\n",
header_bytes, PercentOfFileBytes(header_bytes),
object_bytes, PercentOfFileBytes(object_bytes),
bitmap_bytes, PercentOfFileBytes(bitmap_bytes),
alignment_bytes, PercentOfFileBytes(alignment_bytes))
<< std::flush;
CHECK_EQ(file_bytes, bitmap_bytes + header_bytes + object_bytes + alignment_bytes);
}
os << "object_bytes breakdown:\n";
size_t object_bytes_total = 0;
for (const auto& sizes_and_count : sizes_and_counts) {
const std::string& descriptor(sizes_and_count.first);
double average = static_cast<double>(sizes_and_count.second.bytes) /
static_cast<double>(sizes_and_count.second.count);
double percent = PercentOfObjectBytes(sizes_and_count.second.bytes);
os << StringPrintf("%32s %8zd bytes %6zd instances "
"(%4.0f bytes/instance) %2.0f%% of object_bytes\n",
descriptor.c_str(), sizes_and_count.second.bytes,
sizes_and_count.second.count, average, percent);
object_bytes_total += sizes_and_count.second.bytes;
}
os << "\n" << std::flush;
CHECK_EQ(object_bytes, object_bytes_total);
os << StringPrintf("oat_file_bytes = %8zd\n"
"managed_code_bytes = %8zd (%2.0f%% of oat file bytes)\n"
"managed_to_native_code_bytes = %8zd (%2.0f%% of oat file bytes)\n"
"native_to_managed_code_bytes = %8zd (%2.0f%% of oat file bytes)\n\n"
"class_initializer_code_bytes = %8zd (%2.0f%% of oat file bytes)\n"
"large_initializer_code_bytes = %8zd (%2.0f%% of oat file bytes)\n"
"large_method_code_bytes = %8zd (%2.0f%% of oat file bytes)\n\n",
oat_file_bytes,
managed_code_bytes, PercentOfOatBytes(managed_code_bytes),
managed_to_native_code_bytes, PercentOfOatBytes(managed_to_native_code_bytes),
native_to_managed_code_bytes, PercentOfOatBytes(native_to_managed_code_bytes),
class_initializer_code_bytes, PercentOfOatBytes(class_initializer_code_bytes),
large_initializer_code_bytes, PercentOfOatBytes(large_initializer_code_bytes),
large_method_code_bytes, PercentOfOatBytes(large_method_code_bytes))
<< "DexFile sizes:\n";
for (const std::pair<std::string, size_t>& oat_dex_file_size : oat_dex_file_sizes) {
os << StringPrintf("%s = %zd (%2.0f%% of oat file bytes)\n",
oat_dex_file_size.first.c_str(), oat_dex_file_size.second,
PercentOfOatBytes(oat_dex_file_size.second));
}
os << "\n" << StringPrintf("gc_map_bytes = %7zd (%2.0f%% of oat file bytes)\n"
"pc_mapping_table_bytes = %7zd (%2.0f%% of oat file bytes)\n"
"vmap_table_bytes = %7zd (%2.0f%% of oat file bytes)\n\n",
gc_map_bytes, PercentOfOatBytes(gc_map_bytes),
pc_mapping_table_bytes, PercentOfOatBytes(pc_mapping_table_bytes),
vmap_table_bytes, PercentOfOatBytes(vmap_table_bytes))
<< std::flush;
os << StringPrintf("dex_instruction_bytes = %zd\n", dex_instruction_bytes)
<< StringPrintf("managed_code_bytes expansion = %.2f (ignoring deduplication %.2f)\n\n",
static_cast<double>(managed_code_bytes) / static_cast<double>(dex_instruction_bytes),
static_cast<double>(managed_code_bytes_ignoring_deduplication) /
static_cast<double>(dex_instruction_bytes))
<< std::flush;
DumpOutliers(os);
}
} stats_;
private:
enum {
// Number of bytes for a constructor to be considered large. Based on the 1000 basic block
// threshold, we assume 2 bytes per instruction and 2 instructions per block.
kLargeConstructorDexBytes = 4000,
// Number of bytes for a method to be considered large. Based on the 4000 basic block
// threshold, we assume 2 bytes per instruction and 2 instructions per block.
kLargeMethodDexBytes = 16000
};
UniquePtr<OatDumper> oat_dumper_;
std::ostream* os_;
const std::string image_filename_;
const std::string host_prefix_;
gc::space::ImageSpace& image_space_;
const ImageHeader& image_header_;
bool dump_raw_mapping_table_;
bool dump_raw_gc_map_;
DISALLOW_COPY_AND_ASSIGN(ImageDumper);
};
static int oatdump(int argc, char** argv) {
InitLogging(argv);
// Skip over argv[0].
argv++;
argc--;
if (argc == 0) {
fprintf(stderr, "No arguments specified\n");
usage();
}
const char* oat_filename = NULL;
const char* image_filename = NULL;
const char* boot_image_filename = NULL;
std::string elf_filename_prefix;
UniquePtr<std::string> host_prefix;
std::ostream* os = &std::cout;
UniquePtr<std::ofstream> out;
bool dump_raw_mapping_table = false;
bool dump_raw_gc_map = false;
for (int i = 0; i < argc; i++) {
const StringPiece option(argv[i]);
if (option.starts_with("--oat-file=")) {
oat_filename = option.substr(strlen("--oat-file=")).data();
} else if (option.starts_with("--image=")) {
image_filename = option.substr(strlen("--image=")).data();
} else if (option.starts_with("--boot-image=")) {
boot_image_filename = option.substr(strlen("--boot-image=")).data();
} else if (option.starts_with("--host-prefix=")) {
host_prefix.reset(new std::string(option.substr(strlen("--host-prefix=")).data()));
} else if (option.starts_with("--dump:")) {
if (option == "--dump:raw_mapping_table") {
dump_raw_mapping_table = true;
} else if (option == "--dump:raw_gc_map") {
dump_raw_gc_map = true;
} else {
fprintf(stderr, "Unknown argument %s\n", option.data());
usage();
}
} else if (option.starts_with("--output=")) {
const char* filename = option.substr(strlen("--output=")).data();
out.reset(new std::ofstream(filename));
if (!out->good()) {
fprintf(stderr, "Failed to open output filename %s\n", filename);
usage();
}
os = out.get();
} else {
fprintf(stderr, "Unknown argument %s\n", option.data());
usage();
}
}
if (image_filename == NULL && oat_filename == NULL) {
fprintf(stderr, "Either --image or --oat must be specified\n");
return EXIT_FAILURE;
}
if (image_filename != NULL && oat_filename != NULL) {
fprintf(stderr, "Either --image or --oat must be specified but not both\n");
return EXIT_FAILURE;
}
if (host_prefix.get() == NULL) {
const char* android_product_out = getenv("ANDROID_PRODUCT_OUT");
if (android_product_out != NULL) {
host_prefix.reset(new std::string(android_product_out));
} else {
host_prefix.reset(new std::string(""));
}
}
if (oat_filename != NULL) {
std::string error_msg;
OatFile* oat_file =
OatFile::Open(oat_filename, oat_filename, NULL, false, &error_msg);
if (oat_file == NULL) {
fprintf(stderr, "Failed to open oat file from '%s': %s\n", oat_filename, error_msg.c_str());
return EXIT_FAILURE;
}
OatDumper oat_dumper(*host_prefix.get(), *oat_file, dump_raw_mapping_table, dump_raw_gc_map);
oat_dumper.Dump(*os);
return EXIT_SUCCESS;
}
Runtime::Options options;
std::string image_option;
std::string oat_option;
std::string boot_image_option;
std::string boot_oat_option;
// We are more like a compiler than a run-time. We don't want to execute code.
struct OatDumpCompilerCallbacks : CompilerCallbacks {
virtual bool MethodVerified(verifier::MethodVerifier* /*verifier*/) { return true; }
virtual void ClassRejected(ClassReference /*ref*/) { }
} callbacks;
options.push_back(std::make_pair("compilercallbacks",
static_cast<CompilerCallbacks*>(&callbacks)));
if (boot_image_filename != NULL) {
boot_image_option += "-Ximage:";
boot_image_option += boot_image_filename;
options.push_back(std::make_pair(boot_image_option.c_str(), reinterpret_cast<void*>(NULL)));
}
if (image_filename != NULL) {
image_option += "-Ximage:";
image_option += image_filename;
options.push_back(std::make_pair(image_option.c_str(), reinterpret_cast<void*>(NULL)));
}
if (!host_prefix->empty()) {
options.push_back(std::make_pair("host-prefix", host_prefix->c_str()));
}
if (!Runtime::Create(options, false)) {
fprintf(stderr, "Failed to create runtime\n");
return EXIT_FAILURE;
}
UniquePtr<Runtime> runtime(Runtime::Current());
// Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start,
// give it away now and then switch to a more managable ScopedObjectAccess.
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
ScopedObjectAccess soa(Thread::Current());
gc::Heap* heap = Runtime::Current()->GetHeap();
gc::space::ImageSpace* image_space = heap->GetImageSpace();
CHECK(image_space != NULL);
const ImageHeader& image_header = image_space->GetImageHeader();
if (!image_header.IsValid()) {
fprintf(stderr, "Invalid image header %s\n", image_filename);
return EXIT_FAILURE;
}
ImageDumper image_dumper(os, image_filename, *host_prefix.get(), *image_space, image_header,
dump_raw_mapping_table, dump_raw_gc_map);
image_dumper.Dump();
return EXIT_SUCCESS;
}
} // namespace art
int main(int argc, char** argv) {
return art::oatdump(argc, argv);
}