| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |
| #define ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |
| |
| // This #include should never be used by compilation, because this header file (nodes_vector.h) |
| // is included in the header file nodes.h itself. However it gives editing tools better context. |
| #include "nodes.h" |
| |
| namespace art { |
| |
| // Memory alignment, represented as an offset relative to a base, where 0 <= offset < base, |
| // and base is a power of two. For example, the value Alignment(16, 0) means memory is |
| // perfectly aligned at a 16-byte boundary, whereas the value Alignment(16, 4) means |
| // memory is always exactly 4 bytes above such a boundary. |
| class Alignment { |
| public: |
| Alignment(size_t base, size_t offset) : base_(base), offset_(offset) { |
| DCHECK_LT(offset, base); |
| DCHECK(IsPowerOfTwo(base)); |
| } |
| |
| // Returns true if memory is "at least" aligned at the given boundary. |
| // Assumes requested base is power of two. |
| bool IsAlignedAt(size_t base) const { |
| DCHECK_NE(0u, base); |
| DCHECK(IsPowerOfTwo(base)); |
| return ((offset_ | base_) & (base - 1u)) == 0; |
| } |
| |
| std::string ToString() const { |
| return "ALIGN(" + std::to_string(base_) + "," + std::to_string(offset_) + ")"; |
| } |
| |
| private: |
| size_t base_; |
| size_t offset_; |
| }; |
| |
| // |
| // Definitions of abstract vector operations in HIR. |
| // |
| |
| // Abstraction of a vector operation, i.e., an operation that performs |
| // GetVectorLength() x GetPackedType() operations simultaneously. |
| class HVecOperation : public HVariableInputSizeInstruction { |
| public: |
| HVecOperation(ArenaAllocator* arena, |
| Primitive::Type packed_type, |
| SideEffects side_effects, |
| size_t number_of_inputs, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVariableInputSizeInstruction(side_effects, |
| dex_pc, |
| arena, |
| number_of_inputs, |
| kArenaAllocVectorNode), |
| vector_length_(vector_length) { |
| SetPackedField<TypeField>(packed_type); |
| DCHECK_LT(1u, vector_length); |
| } |
| |
| // Returns the number of elements packed in a vector. |
| size_t GetVectorLength() const { |
| return vector_length_; |
| } |
| |
| // Returns the number of bytes in a full vector. |
| size_t GetVectorNumberOfBytes() const { |
| return vector_length_ * Primitive::ComponentSize(GetPackedType()); |
| } |
| |
| // Returns the type of the vector operation: a SIMD operation looks like a FPU location. |
| // TODO: we could introduce SIMD types in HIR. |
| Primitive::Type GetType() const OVERRIDE { |
| return Primitive::kPrimDouble; |
| } |
| |
| // Returns the true component type packed in a vector. |
| Primitive::Type GetPackedType() const { |
| return GetPackedField<TypeField>(); |
| } |
| |
| DECLARE_ABSTRACT_INSTRUCTION(VecOperation); |
| |
| private: |
| // Additional packed bits. |
| static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast)); |
| static constexpr size_t kNumberOfVectorOpPackedBits = kFieldType + kFieldTypeSize; |
| static_assert(kNumberOfVectorOpPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>; |
| |
| const size_t vector_length_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HVecOperation); |
| }; |
| |
| // Abstraction of a unary vector operation. |
| class HVecUnaryOperation : public HVecOperation { |
| public: |
| HVecUnaryOperation(ArenaAllocator* arena, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecOperation(arena, |
| packed_type, |
| SideEffects::None(), |
| /*number_of_inputs*/ 1, |
| vector_length, |
| dex_pc) { } |
| DECLARE_ABSTRACT_INSTRUCTION(VecUnaryOperation); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecUnaryOperation); |
| }; |
| |
| // Abstraction of a binary vector operation. |
| class HVecBinaryOperation : public HVecOperation { |
| public: |
| HVecBinaryOperation(ArenaAllocator* arena, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecOperation(arena, |
| packed_type, |
| SideEffects::None(), |
| /*number_of_inputs*/ 2, |
| vector_length, |
| dex_pc) { } |
| DECLARE_ABSTRACT_INSTRUCTION(VecBinaryOperation); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecBinaryOperation); |
| }; |
| |
| // Abstraction of a vector operation that references memory, with an alignment. |
| // The Android runtime guarantees at least "component size" alignment for array |
| // elements and, thus, vectors. |
| class HVecMemoryOperation : public HVecOperation { |
| public: |
| HVecMemoryOperation(ArenaAllocator* arena, |
| Primitive::Type packed_type, |
| SideEffects side_effects, |
| size_t number_of_inputs, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecOperation(arena, packed_type, side_effects, number_of_inputs, vector_length, dex_pc), |
| alignment_(Primitive::ComponentSize(packed_type), 0) { } |
| |
| void SetAlignment(Alignment alignment) { alignment_ = alignment; } |
| |
| Alignment GetAlignment() const { return alignment_; } |
| |
| DECLARE_ABSTRACT_INSTRUCTION(VecMemoryOperation); |
| |
| private: |
| Alignment alignment_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HVecMemoryOperation); |
| }; |
| |
| // |
| // Definitions of concrete vector operations in HIR. |
| // |
| |
| // Replicates the given scalar into a vector, |
| // viz. replicate(x) = [ x, .. , x ]. |
| class HVecReplicateScalar FINAL : public HVecUnaryOperation { |
| public: |
| HVecReplicateScalar(ArenaAllocator* arena, |
| HInstruction* scalar, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| SetRawInputAt(0, scalar); |
| } |
| DECLARE_INSTRUCTION(VecReplicateScalar); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecReplicateScalar); |
| }; |
| |
| // Assigns the given scalar elements to a vector, |
| // viz. set( array(x1, .., xn) ) = [ x1, .. , xn ]. |
| class HVecSetScalars FINAL : public HVecUnaryOperation { |
| HVecSetScalars(ArenaAllocator* arena, |
| HInstruction** scalars, // array |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| for (size_t i = 0; i < vector_length; i++) { |
| SetRawInputAt(0, scalars[i]); |
| } |
| } |
| DECLARE_INSTRUCTION(VecSetScalars); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecSetScalars); |
| }; |
| |
| // Sum-reduces the given vector into a shorter vector (m < n) or scalar (m = 1), |
| // viz. sum-reduce[ x1, .. , xn ] = [ y1, .., ym ], where yi = sum_j x_j. |
| class HVecSumReduce FINAL : public HVecUnaryOperation { |
| HVecSumReduce(ArenaAllocator* arena, |
| HInstruction* input, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(input->IsVecOperation()); |
| DCHECK_EQ(input->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, input); |
| } |
| |
| // TODO: probably integral promotion |
| Primitive::Type GetType() const OVERRIDE { return GetPackedType(); } |
| |
| DECLARE_INSTRUCTION(VecSumReduce); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecSumReduce); |
| }; |
| |
| // Converts every component in the vector, |
| // viz. cnv[ x1, .. , xn ] = [ cnv(x1), .. , cnv(xn) ]. |
| class HVecCnv FINAL : public HVecUnaryOperation { |
| public: |
| HVecCnv(ArenaAllocator* arena, |
| HInstruction* input, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(input->IsVecOperation()); |
| DCHECK_NE(input->AsVecOperation()->GetPackedType(), packed_type); // actual convert |
| SetRawInputAt(0, input); |
| } |
| |
| Primitive::Type GetInputType() const { return InputAt(0)->AsVecOperation()->GetPackedType(); } |
| Primitive::Type GetResultType() const { return GetPackedType(); } |
| |
| DECLARE_INSTRUCTION(VecCnv); |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecCnv); |
| }; |
| |
| // Negates every component in the vector, |
| // viz. neg[ x1, .. , xn ] = [ -x1, .. , -xn ]. |
| class HVecNeg FINAL : public HVecUnaryOperation { |
| public: |
| HVecNeg(ArenaAllocator* arena, |
| HInstruction* input, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(input->IsVecOperation()); |
| DCHECK_EQ(input->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, input); |
| } |
| DECLARE_INSTRUCTION(VecNeg); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecNeg); |
| }; |
| |
| // Takes absolute value of every component in the vector, |
| // viz. abs[ x1, .. , xn ] = [ |x1|, .. , |xn| ]. |
| class HVecAbs FINAL : public HVecUnaryOperation { |
| public: |
| HVecAbs(ArenaAllocator* arena, |
| HInstruction* input, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(input->IsVecOperation()); |
| DCHECK_EQ(input->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, input); |
| } |
| DECLARE_INSTRUCTION(VecAbs); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecAbs); |
| }; |
| |
| // Bitwise- or boolean-nots every component in the vector, |
| // viz. not[ x1, .. , xn ] = [ ~x1, .. , ~xn ], or |
| // not[ x1, .. , xn ] = [ !x1, .. , !xn ] for boolean. |
| class HVecNot FINAL : public HVecUnaryOperation { |
| public: |
| HVecNot(ArenaAllocator* arena, |
| HInstruction* input, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(input->IsVecOperation()); |
| SetRawInputAt(0, input); |
| } |
| DECLARE_INSTRUCTION(VecNot); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecNot); |
| }; |
| |
| // Adds every component in the two vectors, |
| // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 + y1, .. , xn + yn ]. |
| class HVecAdd FINAL : public HVecBinaryOperation { |
| public: |
| HVecAdd(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecAdd); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecAdd); |
| }; |
| |
| // Subtracts every component in the two vectors, |
| // viz. [ x1, .. , xn ] - [ y1, .. , yn ] = [ x1 - y1, .. , xn - yn ]. |
| class HVecSub FINAL : public HVecBinaryOperation { |
| public: |
| HVecSub(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecSub); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecSub); |
| }; |
| |
| // Multiplies every component in the two vectors, |
| // viz. [ x1, .. , xn ] * [ y1, .. , yn ] = [ x1 * y1, .. , xn * yn ]. |
| class HVecMul FINAL : public HVecBinaryOperation { |
| public: |
| HVecMul(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecMul); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecMul); |
| }; |
| |
| // Divides every component in the two vectors, |
| // viz. [ x1, .. , xn ] / [ y1, .. , yn ] = [ x1 / y1, .. , xn / yn ]. |
| class HVecDiv FINAL : public HVecBinaryOperation { |
| public: |
| HVecDiv(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecDiv); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecDiv); |
| }; |
| |
| // Bitwise-ands every component in the two vectors, |
| // viz. [ x1, .. , xn ] & [ y1, .. , yn ] = [ x1 & y1, .. , xn & yn ]. |
| class HVecAnd FINAL : public HVecBinaryOperation { |
| public: |
| HVecAnd(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecAnd); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecAnd); |
| }; |
| |
| // Bitwise-and-nots every component in the two vectors, |
| // viz. [ x1, .. , xn ] and-not [ y1, .. , yn ] = [ ~x1 & y1, .. , ~xn & yn ]. |
| class HVecAndNot FINAL : public HVecBinaryOperation { |
| public: |
| HVecAndNot(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecAndNot); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecAndNot); |
| }; |
| |
| // Bitwise-ors every component in the two vectors, |
| // viz. [ x1, .. , xn ] | [ y1, .. , yn ] = [ x1 | y1, .. , xn | yn ]. |
| class HVecOr FINAL : public HVecBinaryOperation { |
| public: |
| HVecOr(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecOr); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecOr); |
| }; |
| |
| // Bitwise-xors every component in the two vectors, |
| // viz. [ x1, .. , xn ] ^ [ y1, .. , yn ] = [ x1 ^ y1, .. , xn ^ yn ]. |
| class HVecXor FINAL : public HVecBinaryOperation { |
| public: |
| HVecXor(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecXor); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecXor); |
| }; |
| |
| // Logically shifts every component in the vector left by the given distance, |
| // viz. [ x1, .. , xn ] << d = [ x1 << d, .. , xn << d ]. |
| class HVecShl FINAL : public HVecBinaryOperation { |
| public: |
| HVecShl(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation()); |
| DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecShl); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecShl); |
| }; |
| |
| // Arithmetically shifts every component in the vector right by the given distance, |
| // viz. [ x1, .. , xn ] >> d = [ x1 >> d, .. , xn >> d ]. |
| class HVecShr FINAL : public HVecBinaryOperation { |
| public: |
| HVecShr(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation()); |
| DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecShr); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecShr); |
| }; |
| |
| // Logically shifts every component in the vector right by the given distance, |
| // viz. [ x1, .. , xn ] >>> d = [ x1 >>> d, .. , xn >>> d ]. |
| class HVecUShr FINAL : public HVecBinaryOperation { |
| public: |
| HVecUShr(ArenaAllocator* arena, |
| HInstruction* left, |
| HInstruction* right, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation()); |
| DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| DECLARE_INSTRUCTION(VecUShr); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecUShr); |
| }; |
| |
| // Loads a vector from memory, viz. load(mem, 1) |
| // yield the vector [ mem(1), .. , mem(n) ]. |
| class HVecLoad FINAL : public HVecMemoryOperation { |
| public: |
| HVecLoad(ArenaAllocator* arena, |
| HInstruction* base, |
| HInstruction* index, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecMemoryOperation(arena, |
| packed_type, |
| SideEffects::ArrayReadOfType(packed_type), |
| /*number_of_inputs*/ 2, |
| vector_length, |
| dex_pc) { |
| SetRawInputAt(0, base); |
| SetRawInputAt(1, index); |
| } |
| DECLARE_INSTRUCTION(VecLoad); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecLoad); |
| }; |
| |
| // Stores a vector to memory, viz. store(m, 1, [x1, .. , xn] ) |
| // sets mem(1) = x1, .. , mem(n) = xn. |
| class HVecStore FINAL : public HVecMemoryOperation { |
| public: |
| HVecStore(ArenaAllocator* arena, |
| HInstruction* base, |
| HInstruction* index, |
| HInstruction* value, |
| Primitive::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc = kNoDexPc) |
| : HVecMemoryOperation(arena, |
| packed_type, |
| SideEffects::ArrayWriteOfType(packed_type), |
| /*number_of_inputs*/ 3, |
| vector_length, |
| dex_pc) { |
| DCHECK(value->IsVecOperation()); |
| DCHECK_EQ(value->AsVecOperation()->GetPackedType(), packed_type); |
| SetRawInputAt(0, base); |
| SetRawInputAt(1, index); |
| SetRawInputAt(2, value); |
| } |
| DECLARE_INSTRUCTION(VecStore); |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HVecStore); |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |