blob: 0cbbf2a215090c8d7b1c608b14e67923d7f6f15d [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_
#define ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_
// This #include should never be used by compilation, because this header file (nodes_vector.h)
// is included in the header file nodes.h itself. However it gives editing tools better context.
#include "nodes.h"
namespace art {
// Memory alignment, represented as an offset relative to a base, where 0 <= offset < base,
// and base is a power of two. For example, the value Alignment(16, 0) means memory is
// perfectly aligned at a 16-byte boundary, whereas the value Alignment(16, 4) means
// memory is always exactly 4 bytes above such a boundary.
class Alignment {
public:
Alignment(size_t base, size_t offset) : base_(base), offset_(offset) {
DCHECK_LT(offset, base);
DCHECK(IsPowerOfTwo(base));
}
// Returns true if memory is "at least" aligned at the given boundary.
// Assumes requested base is power of two.
bool IsAlignedAt(size_t base) const {
DCHECK_NE(0u, base);
DCHECK(IsPowerOfTwo(base));
return ((offset_ | base_) & (base - 1u)) == 0;
}
std::string ToString() const {
return "ALIGN(" + std::to_string(base_) + "," + std::to_string(offset_) + ")";
}
private:
size_t base_;
size_t offset_;
};
//
// Definitions of abstract vector operations in HIR.
//
// Abstraction of a vector operation, i.e., an operation that performs
// GetVectorLength() x GetPackedType() operations simultaneously.
class HVecOperation : public HVariableInputSizeInstruction {
public:
HVecOperation(ArenaAllocator* arena,
Primitive::Type packed_type,
SideEffects side_effects,
size_t number_of_inputs,
size_t vector_length,
uint32_t dex_pc)
: HVariableInputSizeInstruction(side_effects,
dex_pc,
arena,
number_of_inputs,
kArenaAllocVectorNode),
vector_length_(vector_length) {
SetPackedField<TypeField>(packed_type);
DCHECK_LT(1u, vector_length);
}
// Returns the number of elements packed in a vector.
size_t GetVectorLength() const {
return vector_length_;
}
// Returns the number of bytes in a full vector.
size_t GetVectorNumberOfBytes() const {
return vector_length_ * Primitive::ComponentSize(GetPackedType());
}
// Returns the type of the vector operation: a SIMD operation looks like a FPU location.
// TODO: we could introduce SIMD types in HIR.
Primitive::Type GetType() const OVERRIDE {
return Primitive::kPrimDouble;
}
// Returns the true component type packed in a vector.
Primitive::Type GetPackedType() const {
return GetPackedField<TypeField>();
}
DECLARE_ABSTRACT_INSTRUCTION(VecOperation);
private:
// Additional packed bits.
static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
static constexpr size_t kFieldTypeSize =
MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
static constexpr size_t kNumberOfVectorOpPackedBits = kFieldType + kFieldTypeSize;
static_assert(kNumberOfVectorOpPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
const size_t vector_length_;
DISALLOW_COPY_AND_ASSIGN(HVecOperation);
};
// Abstraction of a unary vector operation.
class HVecUnaryOperation : public HVecOperation {
public:
HVecUnaryOperation(ArenaAllocator* arena,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(arena,
packed_type,
SideEffects::None(),
/*number_of_inputs*/ 1,
vector_length,
dex_pc) { }
DECLARE_ABSTRACT_INSTRUCTION(VecUnaryOperation);
private:
DISALLOW_COPY_AND_ASSIGN(HVecUnaryOperation);
};
// Abstraction of a binary vector operation.
class HVecBinaryOperation : public HVecOperation {
public:
HVecBinaryOperation(ArenaAllocator* arena,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(arena,
packed_type,
SideEffects::None(),
/*number_of_inputs*/ 2,
vector_length,
dex_pc) { }
DECLARE_ABSTRACT_INSTRUCTION(VecBinaryOperation);
private:
DISALLOW_COPY_AND_ASSIGN(HVecBinaryOperation);
};
// Abstraction of a vector operation that references memory, with an alignment.
// The Android runtime guarantees at least "component size" alignment for array
// elements and, thus, vectors.
class HVecMemoryOperation : public HVecOperation {
public:
HVecMemoryOperation(ArenaAllocator* arena,
Primitive::Type packed_type,
SideEffects side_effects,
size_t number_of_inputs,
size_t vector_length,
uint32_t dex_pc)
: HVecOperation(arena, packed_type, side_effects, number_of_inputs, vector_length, dex_pc),
alignment_(Primitive::ComponentSize(packed_type), 0) { }
void SetAlignment(Alignment alignment) { alignment_ = alignment; }
Alignment GetAlignment() const { return alignment_; }
DECLARE_ABSTRACT_INSTRUCTION(VecMemoryOperation);
private:
Alignment alignment_;
DISALLOW_COPY_AND_ASSIGN(HVecMemoryOperation);
};
//
// Definitions of concrete vector operations in HIR.
//
// Replicates the given scalar into a vector,
// viz. replicate(x) = [ x, .. , x ].
class HVecReplicateScalar FINAL : public HVecUnaryOperation {
public:
HVecReplicateScalar(ArenaAllocator* arena,
HInstruction* scalar,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) {
SetRawInputAt(0, scalar);
}
DECLARE_INSTRUCTION(VecReplicateScalar);
private:
DISALLOW_COPY_AND_ASSIGN(HVecReplicateScalar);
};
// Assigns the given scalar elements to a vector,
// viz. set( array(x1, .., xn) ) = [ x1, .. , xn ].
class HVecSetScalars FINAL : public HVecUnaryOperation {
HVecSetScalars(ArenaAllocator* arena,
HInstruction** scalars, // array
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) {
for (size_t i = 0; i < vector_length; i++) {
SetRawInputAt(0, scalars[i]);
}
}
DECLARE_INSTRUCTION(VecSetScalars);
private:
DISALLOW_COPY_AND_ASSIGN(HVecSetScalars);
};
// Sum-reduces the given vector into a shorter vector (m < n) or scalar (m = 1),
// viz. sum-reduce[ x1, .. , xn ] = [ y1, .., ym ], where yi = sum_j x_j.
class HVecSumReduce FINAL : public HVecUnaryOperation {
HVecSumReduce(ArenaAllocator* arena,
HInstruction* input,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(input->IsVecOperation());
DCHECK_EQ(input->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, input);
}
// TODO: probably integral promotion
Primitive::Type GetType() const OVERRIDE { return GetPackedType(); }
DECLARE_INSTRUCTION(VecSumReduce);
private:
DISALLOW_COPY_AND_ASSIGN(HVecSumReduce);
};
// Converts every component in the vector,
// viz. cnv[ x1, .. , xn ] = [ cnv(x1), .. , cnv(xn) ].
class HVecCnv FINAL : public HVecUnaryOperation {
public:
HVecCnv(ArenaAllocator* arena,
HInstruction* input,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(input->IsVecOperation());
DCHECK_NE(input->AsVecOperation()->GetPackedType(), packed_type); // actual convert
SetRawInputAt(0, input);
}
Primitive::Type GetInputType() const { return InputAt(0)->AsVecOperation()->GetPackedType(); }
Primitive::Type GetResultType() const { return GetPackedType(); }
DECLARE_INSTRUCTION(VecCnv);
private:
DISALLOW_COPY_AND_ASSIGN(HVecCnv);
};
// Negates every component in the vector,
// viz. neg[ x1, .. , xn ] = [ -x1, .. , -xn ].
class HVecNeg FINAL : public HVecUnaryOperation {
public:
HVecNeg(ArenaAllocator* arena,
HInstruction* input,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(input->IsVecOperation());
DCHECK_EQ(input->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, input);
}
DECLARE_INSTRUCTION(VecNeg);
private:
DISALLOW_COPY_AND_ASSIGN(HVecNeg);
};
// Takes absolute value of every component in the vector,
// viz. abs[ x1, .. , xn ] = [ |x1|, .. , |xn| ].
class HVecAbs FINAL : public HVecUnaryOperation {
public:
HVecAbs(ArenaAllocator* arena,
HInstruction* input,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(input->IsVecOperation());
DCHECK_EQ(input->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, input);
}
DECLARE_INSTRUCTION(VecAbs);
private:
DISALLOW_COPY_AND_ASSIGN(HVecAbs);
};
// Bitwise- or boolean-nots every component in the vector,
// viz. not[ x1, .. , xn ] = [ ~x1, .. , ~xn ], or
// not[ x1, .. , xn ] = [ !x1, .. , !xn ] for boolean.
class HVecNot FINAL : public HVecUnaryOperation {
public:
HVecNot(ArenaAllocator* arena,
HInstruction* input,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecUnaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(input->IsVecOperation());
SetRawInputAt(0, input);
}
DECLARE_INSTRUCTION(VecNot);
private:
DISALLOW_COPY_AND_ASSIGN(HVecNot);
};
// Adds every component in the two vectors,
// viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 + y1, .. , xn + yn ].
class HVecAdd FINAL : public HVecBinaryOperation {
public:
HVecAdd(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type);
DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecAdd);
private:
DISALLOW_COPY_AND_ASSIGN(HVecAdd);
};
// Subtracts every component in the two vectors,
// viz. [ x1, .. , xn ] - [ y1, .. , yn ] = [ x1 - y1, .. , xn - yn ].
class HVecSub FINAL : public HVecBinaryOperation {
public:
HVecSub(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type);
DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecSub);
private:
DISALLOW_COPY_AND_ASSIGN(HVecSub);
};
// Multiplies every component in the two vectors,
// viz. [ x1, .. , xn ] * [ y1, .. , yn ] = [ x1 * y1, .. , xn * yn ].
class HVecMul FINAL : public HVecBinaryOperation {
public:
HVecMul(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type);
DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecMul);
private:
DISALLOW_COPY_AND_ASSIGN(HVecMul);
};
// Divides every component in the two vectors,
// viz. [ x1, .. , xn ] / [ y1, .. , yn ] = [ x1 / y1, .. , xn / yn ].
class HVecDiv FINAL : public HVecBinaryOperation {
public:
HVecDiv(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type);
DCHECK_EQ(right->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecDiv);
private:
DISALLOW_COPY_AND_ASSIGN(HVecDiv);
};
// Bitwise-ands every component in the two vectors,
// viz. [ x1, .. , xn ] & [ y1, .. , yn ] = [ x1 & y1, .. , xn & yn ].
class HVecAnd FINAL : public HVecBinaryOperation {
public:
HVecAnd(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecAnd);
private:
DISALLOW_COPY_AND_ASSIGN(HVecAnd);
};
// Bitwise-and-nots every component in the two vectors,
// viz. [ x1, .. , xn ] and-not [ y1, .. , yn ] = [ ~x1 & y1, .. , ~xn & yn ].
class HVecAndNot FINAL : public HVecBinaryOperation {
public:
HVecAndNot(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecAndNot);
private:
DISALLOW_COPY_AND_ASSIGN(HVecAndNot);
};
// Bitwise-ors every component in the two vectors,
// viz. [ x1, .. , xn ] | [ y1, .. , yn ] = [ x1 | y1, .. , xn | yn ].
class HVecOr FINAL : public HVecBinaryOperation {
public:
HVecOr(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecOr);
private:
DISALLOW_COPY_AND_ASSIGN(HVecOr);
};
// Bitwise-xors every component in the two vectors,
// viz. [ x1, .. , xn ] ^ [ y1, .. , yn ] = [ x1 ^ y1, .. , xn ^ yn ].
class HVecXor FINAL : public HVecBinaryOperation {
public:
HVecXor(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation() && right->IsVecOperation());
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecXor);
private:
DISALLOW_COPY_AND_ASSIGN(HVecXor);
};
// Logically shifts every component in the vector left by the given distance,
// viz. [ x1, .. , xn ] << d = [ x1 << d, .. , xn << d ].
class HVecShl FINAL : public HVecBinaryOperation {
public:
HVecShl(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation());
DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecShl);
private:
DISALLOW_COPY_AND_ASSIGN(HVecShl);
};
// Arithmetically shifts every component in the vector right by the given distance,
// viz. [ x1, .. , xn ] >> d = [ x1 >> d, .. , xn >> d ].
class HVecShr FINAL : public HVecBinaryOperation {
public:
HVecShr(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation());
DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecShr);
private:
DISALLOW_COPY_AND_ASSIGN(HVecShr);
};
// Logically shifts every component in the vector right by the given distance,
// viz. [ x1, .. , xn ] >>> d = [ x1 >>> d, .. , xn >>> d ].
class HVecUShr FINAL : public HVecBinaryOperation {
public:
HVecUShr(ArenaAllocator* arena,
HInstruction* left,
HInstruction* right,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecBinaryOperation(arena, packed_type, vector_length, dex_pc) {
DCHECK(left->IsVecOperation());
DCHECK_EQ(left->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
DECLARE_INSTRUCTION(VecUShr);
private:
DISALLOW_COPY_AND_ASSIGN(HVecUShr);
};
// Loads a vector from memory, viz. load(mem, 1)
// yield the vector [ mem(1), .. , mem(n) ].
class HVecLoad FINAL : public HVecMemoryOperation {
public:
HVecLoad(ArenaAllocator* arena,
HInstruction* base,
HInstruction* index,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecMemoryOperation(arena,
packed_type,
SideEffects::ArrayReadOfType(packed_type),
/*number_of_inputs*/ 2,
vector_length,
dex_pc) {
SetRawInputAt(0, base);
SetRawInputAt(1, index);
}
DECLARE_INSTRUCTION(VecLoad);
private:
DISALLOW_COPY_AND_ASSIGN(HVecLoad);
};
// Stores a vector to memory, viz. store(m, 1, [x1, .. , xn] )
// sets mem(1) = x1, .. , mem(n) = xn.
class HVecStore FINAL : public HVecMemoryOperation {
public:
HVecStore(ArenaAllocator* arena,
HInstruction* base,
HInstruction* index,
HInstruction* value,
Primitive::Type packed_type,
size_t vector_length,
uint32_t dex_pc = kNoDexPc)
: HVecMemoryOperation(arena,
packed_type,
SideEffects::ArrayWriteOfType(packed_type),
/*number_of_inputs*/ 3,
vector_length,
dex_pc) {
DCHECK(value->IsVecOperation());
DCHECK_EQ(value->AsVecOperation()->GetPackedType(), packed_type);
SetRawInputAt(0, base);
SetRawInputAt(1, index);
SetRawInputAt(2, value);
}
DECLARE_INSTRUCTION(VecStore);
private:
DISALLOW_COPY_AND_ASSIGN(HVecStore);
};
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_