| /* | 
 |  * Copyright (C) 2016 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "loop_optimization.h" | 
 |  | 
 | #include "arch/arm/instruction_set_features_arm.h" | 
 | #include "arch/arm64/instruction_set_features_arm64.h" | 
 | #include "arch/instruction_set.h" | 
 | #include "arch/mips/instruction_set_features_mips.h" | 
 | #include "arch/mips64/instruction_set_features_mips64.h" | 
 | #include "arch/x86/instruction_set_features_x86.h" | 
 | #include "arch/x86_64/instruction_set_features_x86_64.h" | 
 | #include "driver/compiler_driver.h" | 
 | #include "linear_order.h" | 
 | #include "mirror/array-inl.h" | 
 | #include "mirror/string.h" | 
 |  | 
 | namespace art { | 
 |  | 
 | // Enables vectorization (SIMDization) in the loop optimizer. | 
 | static constexpr bool kEnableVectorization = true; | 
 |  | 
 | // | 
 | // Static helpers. | 
 | // | 
 |  | 
 | // Base alignment for arrays/strings guaranteed by the Android runtime. | 
 | static uint32_t BaseAlignment() { | 
 |   return kObjectAlignment; | 
 | } | 
 |  | 
 | // Hidden offset for arrays/strings guaranteed by the Android runtime. | 
 | static uint32_t HiddenOffset(DataType::Type type, bool is_string_char_at) { | 
 |   return is_string_char_at | 
 |       ? mirror::String::ValueOffset().Uint32Value() | 
 |       : mirror::Array::DataOffset(DataType::Size(type)).Uint32Value(); | 
 | } | 
 |  | 
 | // Remove the instruction from the graph. A bit more elaborate than the usual | 
 | // instruction removal, since there may be a cycle in the use structure. | 
 | static void RemoveFromCycle(HInstruction* instruction) { | 
 |   instruction->RemoveAsUserOfAllInputs(); | 
 |   instruction->RemoveEnvironmentUsers(); | 
 |   instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false); | 
 |   RemoveEnvironmentUses(instruction); | 
 |   ResetEnvironmentInputRecords(instruction); | 
 | } | 
 |  | 
 | // Detect a goto block and sets succ to the single successor. | 
 | static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) { | 
 |   if (block->GetPredecessors().size() == 1 && | 
 |       block->GetSuccessors().size() == 1 && | 
 |       block->IsSingleGoto()) { | 
 |     *succ = block->GetSingleSuccessor(); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Detect an early exit loop. | 
 | static bool IsEarlyExit(HLoopInformation* loop_info) { | 
 |   HBlocksInLoopReversePostOrderIterator it_loop(*loop_info); | 
 |   for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) { | 
 |     for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) { | 
 |       if (!loop_info->Contains(*successor)) { | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Forward declaration. | 
 | static bool IsZeroExtensionAndGet(HInstruction* instruction, | 
 |                                   DataType::Type type, | 
 |                                   /*out*/ HInstruction** operand); | 
 |  | 
 | // Detect a sign extension in instruction from the given type. | 
 | // Returns the promoted operand on success. | 
 | static bool IsSignExtensionAndGet(HInstruction* instruction, | 
 |                                   DataType::Type type, | 
 |                                   /*out*/ HInstruction** operand) { | 
 |   // Accept any already wider constant that would be handled properly by sign | 
 |   // extension when represented in the *width* of the given narrower data type | 
 |   // (the fact that Uint8/Uint16 normally zero extend does not matter here). | 
 |   int64_t value = 0; | 
 |   if (IsInt64AndGet(instruction, /*out*/ &value)) { | 
 |     switch (type) { | 
 |       case DataType::Type::kUint8: | 
 |       case DataType::Type::kInt8: | 
 |         if (IsInt<8>(value)) { | 
 |           *operand = instruction; | 
 |           return true; | 
 |         } | 
 |         return false; | 
 |       case DataType::Type::kUint16: | 
 |       case DataType::Type::kInt16: | 
 |         if (IsInt<16>(value)) { | 
 |           *operand = instruction; | 
 |           return true; | 
 |         } | 
 |         return false; | 
 |       default: | 
 |         return false; | 
 |     } | 
 |   } | 
 |   // An implicit widening conversion of any signed expression sign-extends. | 
 |   if (instruction->GetType() == type) { | 
 |     switch (type) { | 
 |       case DataType::Type::kInt8: | 
 |       case DataType::Type::kInt16: | 
 |         *operand = instruction; | 
 |         return true; | 
 |       default: | 
 |         return false; | 
 |     } | 
 |   } | 
 |   // An explicit widening conversion of a signed expression sign-extends. | 
 |   if (instruction->IsTypeConversion()) { | 
 |     HInstruction* conv = instruction->InputAt(0); | 
 |     DataType::Type from = conv->GetType(); | 
 |     switch (instruction->GetType()) { | 
 |       case DataType::Type::kInt32: | 
 |       case DataType::Type::kInt64: | 
 |         if (type == from && (from == DataType::Type::kInt8 || | 
 |                              from == DataType::Type::kInt16 || | 
 |                              from == DataType::Type::kInt32)) { | 
 |           *operand = conv; | 
 |           return true; | 
 |         } | 
 |         return false; | 
 |       case DataType::Type::kInt16: | 
 |         return type == DataType::Type::kUint16 && | 
 |                from == DataType::Type::kUint16 && | 
 |                IsZeroExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand); | 
 |       default: | 
 |         return false; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Detect a zero extension in instruction from the given type. | 
 | // Returns the promoted operand on success. | 
 | static bool IsZeroExtensionAndGet(HInstruction* instruction, | 
 |                                   DataType::Type type, | 
 |                                   /*out*/ HInstruction** operand) { | 
 |   // Accept any already wider constant that would be handled properly by zero | 
 |   // extension when represented in the *width* of the given narrower data type | 
 |   // (the fact that Int8/Int16 normally sign extend does not matter here). | 
 |   int64_t value = 0; | 
 |   if (IsInt64AndGet(instruction, /*out*/ &value)) { | 
 |     switch (type) { | 
 |       case DataType::Type::kUint8: | 
 |       case DataType::Type::kInt8: | 
 |         if (IsUint<8>(value)) { | 
 |           *operand = instruction; | 
 |           return true; | 
 |         } | 
 |         return false; | 
 |       case DataType::Type::kUint16: | 
 |       case DataType::Type::kInt16: | 
 |         if (IsUint<16>(value)) { | 
 |           *operand = instruction; | 
 |           return true; | 
 |         } | 
 |         return false; | 
 |       default: | 
 |         return false; | 
 |     } | 
 |   } | 
 |   // An implicit widening conversion of any unsigned expression zero-extends. | 
 |   if (instruction->GetType() == type) { | 
 |     switch (type) { | 
 |       case DataType::Type::kUint8: | 
 |       case DataType::Type::kUint16: | 
 |         *operand = instruction; | 
 |         return true; | 
 |       default: | 
 |         return false; | 
 |     } | 
 |   } | 
 |   // An explicit widening conversion of an unsigned expression zero-extends. | 
 |   if (instruction->IsTypeConversion()) { | 
 |     HInstruction* conv = instruction->InputAt(0); | 
 |     DataType::Type from = conv->GetType(); | 
 |     switch (instruction->GetType()) { | 
 |       case DataType::Type::kInt32: | 
 |       case DataType::Type::kInt64: | 
 |         if (type == from && from == DataType::Type::kUint16) { | 
 |           *operand = conv; | 
 |           return true; | 
 |         } | 
 |         return false; | 
 |       case DataType::Type::kUint16: | 
 |         return type == DataType::Type::kInt16 && | 
 |                from == DataType::Type::kInt16 && | 
 |                IsSignExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand); | 
 |       default: | 
 |         return false; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Detect situations with same-extension narrower operands. | 
 | // Returns true on success and sets is_unsigned accordingly. | 
 | static bool IsNarrowerOperands(HInstruction* a, | 
 |                                HInstruction* b, | 
 |                                DataType::Type type, | 
 |                                /*out*/ HInstruction** r, | 
 |                                /*out*/ HInstruction** s, | 
 |                                /*out*/ bool* is_unsigned) { | 
 |   DCHECK(a != nullptr && b != nullptr); | 
 |   // Look for a matching sign extension. | 
 |   DataType::Type stype = HVecOperation::ToSignedType(type); | 
 |   if (IsSignExtensionAndGet(a, stype, r) && IsSignExtensionAndGet(b, stype, s)) { | 
 |     *is_unsigned = false; | 
 |     return true; | 
 |   } | 
 |   // Look for a matching zero extension. | 
 |   DataType::Type utype = HVecOperation::ToUnsignedType(type); | 
 |   if (IsZeroExtensionAndGet(a, utype, r) && IsZeroExtensionAndGet(b, utype, s)) { | 
 |     *is_unsigned = true; | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // As above, single operand. | 
 | static bool IsNarrowerOperand(HInstruction* a, | 
 |                               DataType::Type type, | 
 |                               /*out*/ HInstruction** r, | 
 |                               /*out*/ bool* is_unsigned) { | 
 |   DCHECK(a != nullptr); | 
 |   // Look for a matching sign extension. | 
 |   DataType::Type stype = HVecOperation::ToSignedType(type); | 
 |   if (IsSignExtensionAndGet(a, stype, r)) { | 
 |     *is_unsigned = false; | 
 |     return true; | 
 |   } | 
 |   // Look for a matching zero extension. | 
 |   DataType::Type utype = HVecOperation::ToUnsignedType(type); | 
 |   if (IsZeroExtensionAndGet(a, utype, r)) { | 
 |     *is_unsigned = true; | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Compute relative vector length based on type difference. | 
 | static uint32_t GetOtherVL(DataType::Type other_type, DataType::Type vector_type, uint32_t vl) { | 
 |   DCHECK(DataType::IsIntegralType(other_type)); | 
 |   DCHECK(DataType::IsIntegralType(vector_type)); | 
 |   DCHECK_GE(DataType::SizeShift(other_type), DataType::SizeShift(vector_type)); | 
 |   return vl >> (DataType::SizeShift(other_type) - DataType::SizeShift(vector_type)); | 
 | } | 
 |  | 
 | // Detect up to two added operands a and b and an acccumulated constant c. | 
 | static bool IsAddConst(HInstruction* instruction, | 
 |                        /*out*/ HInstruction** a, | 
 |                        /*out*/ HInstruction** b, | 
 |                        /*out*/ int64_t* c, | 
 |                        int32_t depth = 8) {  // don't search too deep | 
 |   int64_t value = 0; | 
 |   // Enter add/sub while still within reasonable depth. | 
 |   if (depth > 0) { | 
 |     if (instruction->IsAdd()) { | 
 |       return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1) && | 
 |              IsAddConst(instruction->InputAt(1), a, b, c, depth - 1); | 
 |     } else if (instruction->IsSub() && | 
 |                IsInt64AndGet(instruction->InputAt(1), &value)) { | 
 |       *c -= value; | 
 |       return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1); | 
 |     } | 
 |   } | 
 |   // Otherwise, deal with leaf nodes. | 
 |   if (IsInt64AndGet(instruction, &value)) { | 
 |     *c += value; | 
 |     return true; | 
 |   } else if (*a == nullptr) { | 
 |     *a = instruction; | 
 |     return true; | 
 |   } else if (*b == nullptr) { | 
 |     *b = instruction; | 
 |     return true; | 
 |   } | 
 |   return false;  // too many operands | 
 | } | 
 |  | 
 | // Detect a + b + c with optional constant c. | 
 | static bool IsAddConst2(HGraph* graph, | 
 |                         HInstruction* instruction, | 
 |                         /*out*/ HInstruction** a, | 
 |                         /*out*/ HInstruction** b, | 
 |                         /*out*/ int64_t* c) { | 
 |   if (IsAddConst(instruction, a, b, c) && *a != nullptr) { | 
 |     if (*b == nullptr) { | 
 |       // Constant is usually already present, unless accumulated. | 
 |       *b = graph->GetConstant(instruction->GetType(), (*c)); | 
 |       *c = 0; | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Detect a direct a - b or a hidden a - (-c). | 
 | static bool IsSubConst2(HGraph* graph, | 
 |                         HInstruction* instruction, | 
 |                         /*out*/ HInstruction** a, | 
 |                         /*out*/ HInstruction** b) { | 
 |   int64_t c = 0; | 
 |   if (instruction->IsSub()) { | 
 |     *a = instruction->InputAt(0); | 
 |     *b = instruction->InputAt(1); | 
 |     return true; | 
 |   } else if (IsAddConst(instruction, a, b, &c) && *a != nullptr && *b == nullptr) { | 
 |     // Constant for the hidden subtraction. | 
 |     *b = graph->GetConstant(instruction->GetType(), -c); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Detect reductions of the following forms, | 
 | //   x = x_phi + .. | 
 | //   x = x_phi - .. | 
 | static bool HasReductionFormat(HInstruction* reduction, HInstruction* phi) { | 
 |   if (reduction->IsAdd()) { | 
 |     return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi) || | 
 |            (reduction->InputAt(0) != phi && reduction->InputAt(1) == phi); | 
 |   } else if (reduction->IsSub()) { | 
 |     return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Translates vector operation to reduction kind. | 
 | static HVecReduce::ReductionKind GetReductionKind(HVecOperation* reduction) { | 
 |   if (reduction->IsVecAdd() || reduction->IsVecSub() || reduction->IsVecSADAccumulate()) { | 
 |     return HVecReduce::kSum; | 
 |   } | 
 |   LOG(FATAL) << "Unsupported SIMD reduction " << reduction->GetId(); | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | // Test vector restrictions. | 
 | static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) { | 
 |   return (restrictions & tested) != 0; | 
 | } | 
 |  | 
 | // Insert an instruction. | 
 | static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) { | 
 |   DCHECK(block != nullptr); | 
 |   DCHECK(instruction != nullptr); | 
 |   block->InsertInstructionBefore(instruction, block->GetLastInstruction()); | 
 |   return instruction; | 
 | } | 
 |  | 
 | // Check that instructions from the induction sets are fully removed: have no uses | 
 | // and no other instructions use them. | 
 | static bool CheckInductionSetFullyRemoved(ScopedArenaSet<HInstruction*>* iset) { | 
 |   for (HInstruction* instr : *iset) { | 
 |     if (instr->GetBlock() != nullptr || | 
 |         !instr->GetUses().empty() || | 
 |         !instr->GetEnvUses().empty() || | 
 |         HasEnvironmentUsedByOthers(instr)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // Tries to statically evaluate condition of the specified "HIf" for other condition checks. | 
 | static void TryToEvaluateIfCondition(HIf* instruction, HGraph* graph) { | 
 |   HInstruction* cond = instruction->InputAt(0); | 
 |  | 
 |   // If a condition 'cond' is evaluated in an HIf instruction then in the successors of the | 
 |   // IF_BLOCK we statically know the value of the condition 'cond' (TRUE in TRUE_SUCC, FALSE in | 
 |   // FALSE_SUCC). Using that we can replace another evaluation (use) EVAL of the same 'cond' | 
 |   // with TRUE value (FALSE value) if every path from the ENTRY_BLOCK to EVAL_BLOCK contains the | 
 |   // edge HIF_BLOCK->TRUE_SUCC (HIF_BLOCK->FALSE_SUCC). | 
 |   //     if (cond) {               if(cond) { | 
 |   //       if (cond) {}              if (1) {} | 
 |   //     } else {        =======>  } else { | 
 |   //       if (cond) {}              if (0) {} | 
 |   //     }                         } | 
 |   if (!cond->IsConstant()) { | 
 |     HBasicBlock* true_succ = instruction->IfTrueSuccessor(); | 
 |     HBasicBlock* false_succ = instruction->IfFalseSuccessor(); | 
 |  | 
 |     DCHECK_EQ(true_succ->GetPredecessors().size(), 1u); | 
 |     DCHECK_EQ(false_succ->GetPredecessors().size(), 1u); | 
 |  | 
 |     const HUseList<HInstruction*>& uses = cond->GetUses(); | 
 |     for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) { | 
 |       HInstruction* user = it->GetUser(); | 
 |       size_t index = it->GetIndex(); | 
 |       HBasicBlock* user_block = user->GetBlock(); | 
 |       // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput(). | 
 |       ++it; | 
 |       if (true_succ->Dominates(user_block)) { | 
 |         user->ReplaceInput(graph->GetIntConstant(1), index); | 
 |      } else if (false_succ->Dominates(user_block)) { | 
 |         user->ReplaceInput(graph->GetIntConstant(0), index); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // | 
 | // Public methods. | 
 | // | 
 |  | 
 | HLoopOptimization::HLoopOptimization(HGraph* graph, | 
 |                                      CompilerDriver* compiler_driver, | 
 |                                      HInductionVarAnalysis* induction_analysis, | 
 |                                      OptimizingCompilerStats* stats, | 
 |                                      const char* name) | 
 |     : HOptimization(graph, name, stats), | 
 |       compiler_driver_(compiler_driver), | 
 |       induction_range_(induction_analysis), | 
 |       loop_allocator_(nullptr), | 
 |       global_allocator_(graph_->GetAllocator()), | 
 |       top_loop_(nullptr), | 
 |       last_loop_(nullptr), | 
 |       iset_(nullptr), | 
 |       reductions_(nullptr), | 
 |       simplified_(false), | 
 |       vector_length_(0), | 
 |       vector_refs_(nullptr), | 
 |       vector_static_peeling_factor_(0), | 
 |       vector_dynamic_peeling_candidate_(nullptr), | 
 |       vector_runtime_test_a_(nullptr), | 
 |       vector_runtime_test_b_(nullptr), | 
 |       vector_map_(nullptr), | 
 |       vector_permanent_map_(nullptr), | 
 |       vector_mode_(kSequential), | 
 |       vector_preheader_(nullptr), | 
 |       vector_header_(nullptr), | 
 |       vector_body_(nullptr), | 
 |       vector_index_(nullptr), | 
 |       arch_loop_helper_(ArchNoOptsLoopHelper::Create(compiler_driver_ != nullptr | 
 |                                                           ? compiler_driver_->GetInstructionSet() | 
 |                                                           : InstructionSet::kNone, | 
 |                                                       global_allocator_)) { | 
 | } | 
 |  | 
 | bool HLoopOptimization::Run() { | 
 |   // Skip if there is no loop or the graph has try-catch/irreducible loops. | 
 |   // TODO: make this less of a sledgehammer. | 
 |   if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Phase-local allocator. | 
 |   ScopedArenaAllocator allocator(graph_->GetArenaStack()); | 
 |   loop_allocator_ = &allocator; | 
 |  | 
 |   // Perform loop optimizations. | 
 |   bool didLoopOpt = LocalRun(); | 
 |   if (top_loop_ == nullptr) { | 
 |     graph_->SetHasLoops(false);  // no more loops | 
 |   } | 
 |  | 
 |   // Detach. | 
 |   loop_allocator_ = nullptr; | 
 |   last_loop_ = top_loop_ = nullptr; | 
 |  | 
 |   return didLoopOpt; | 
 | } | 
 |  | 
 | // | 
 | // Loop setup and traversal. | 
 | // | 
 |  | 
 | bool HLoopOptimization::LocalRun() { | 
 |   bool didLoopOpt = false; | 
 |   // Build the linear order using the phase-local allocator. This step enables building | 
 |   // a loop hierarchy that properly reflects the outer-inner and previous-next relation. | 
 |   ScopedArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder)); | 
 |   LinearizeGraph(graph_, &linear_order); | 
 |  | 
 |   // Build the loop hierarchy. | 
 |   for (HBasicBlock* block : linear_order) { | 
 |     if (block->IsLoopHeader()) { | 
 |       AddLoop(block->GetLoopInformation()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use | 
 |   // temporary data structures using the phase-local allocator. All new HIR | 
 |   // should use the global allocator. | 
 |   if (top_loop_ != nullptr) { | 
 |     ScopedArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization)); | 
 |     ScopedArenaSafeMap<HInstruction*, HInstruction*> reds( | 
 |         std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization)); | 
 |     ScopedArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization)); | 
 |     ScopedArenaSafeMap<HInstruction*, HInstruction*> map( | 
 |         std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization)); | 
 |     ScopedArenaSafeMap<HInstruction*, HInstruction*> perm( | 
 |         std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization)); | 
 |     // Attach. | 
 |     iset_ = &iset; | 
 |     reductions_ = &reds; | 
 |     vector_refs_ = &refs; | 
 |     vector_map_ = ↦ | 
 |     vector_permanent_map_ = &perm; | 
 |     // Traverse. | 
 |     didLoopOpt = TraverseLoopsInnerToOuter(top_loop_); | 
 |     // Detach. | 
 |     iset_ = nullptr; | 
 |     reductions_ = nullptr; | 
 |     vector_refs_ = nullptr; | 
 |     vector_map_ = nullptr; | 
 |     vector_permanent_map_ = nullptr; | 
 |   } | 
 |   return didLoopOpt; | 
 | } | 
 |  | 
 | void HLoopOptimization::AddLoop(HLoopInformation* loop_info) { | 
 |   DCHECK(loop_info != nullptr); | 
 |   LoopNode* node = new (loop_allocator_) LoopNode(loop_info); | 
 |   if (last_loop_ == nullptr) { | 
 |     // First loop. | 
 |     DCHECK(top_loop_ == nullptr); | 
 |     last_loop_ = top_loop_ = node; | 
 |   } else if (loop_info->IsIn(*last_loop_->loop_info)) { | 
 |     // Inner loop. | 
 |     node->outer = last_loop_; | 
 |     DCHECK(last_loop_->inner == nullptr); | 
 |     last_loop_ = last_loop_->inner = node; | 
 |   } else { | 
 |     // Subsequent loop. | 
 |     while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) { | 
 |       last_loop_ = last_loop_->outer; | 
 |     } | 
 |     node->outer = last_loop_->outer; | 
 |     node->previous = last_loop_; | 
 |     DCHECK(last_loop_->next == nullptr); | 
 |     last_loop_ = last_loop_->next = node; | 
 |   } | 
 | } | 
 |  | 
 | void HLoopOptimization::RemoveLoop(LoopNode* node) { | 
 |   DCHECK(node != nullptr); | 
 |   DCHECK(node->inner == nullptr); | 
 |   if (node->previous != nullptr) { | 
 |     // Within sequence. | 
 |     node->previous->next = node->next; | 
 |     if (node->next != nullptr) { | 
 |       node->next->previous = node->previous; | 
 |     } | 
 |   } else { | 
 |     // First of sequence. | 
 |     if (node->outer != nullptr) { | 
 |       node->outer->inner = node->next; | 
 |     } else { | 
 |       top_loop_ = node->next; | 
 |     } | 
 |     if (node->next != nullptr) { | 
 |       node->next->outer = node->outer; | 
 |       node->next->previous = nullptr; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) { | 
 |   bool changed = false; | 
 |   for ( ; node != nullptr; node = node->next) { | 
 |     // Visit inner loops first. Recompute induction information for this | 
 |     // loop if the induction of any inner loop has changed. | 
 |     if (TraverseLoopsInnerToOuter(node->inner)) { | 
 |       induction_range_.ReVisit(node->loop_info); | 
 |       changed = true; | 
 |     } | 
 |     // Repeat simplifications in the loop-body until no more changes occur. | 
 |     // Note that since each simplification consists of eliminating code (without | 
 |     // introducing new code), this process is always finite. | 
 |     do { | 
 |       simplified_ = false; | 
 |       SimplifyInduction(node); | 
 |       SimplifyBlocks(node); | 
 |       changed = simplified_ || changed; | 
 |     } while (simplified_); | 
 |     // Optimize inner loop. | 
 |     if (node->inner == nullptr) { | 
 |       changed = OptimizeInnerLoop(node) || changed; | 
 |     } | 
 |   } | 
 |   return changed; | 
 | } | 
 |  | 
 | // | 
 | // Optimization. | 
 | // | 
 |  | 
 | void HLoopOptimization::SimplifyInduction(LoopNode* node) { | 
 |   HBasicBlock* header = node->loop_info->GetHeader(); | 
 |   HBasicBlock* preheader = node->loop_info->GetPreHeader(); | 
 |   // Scan the phis in the header to find opportunities to simplify an induction | 
 |   // cycle that is only used outside the loop. Replace these uses, if any, with | 
 |   // the last value and remove the induction cycle. | 
 |   // Examples: for (int i = 0; x != null;   i++) { .... no i .... } | 
 |   //           for (int i = 0; i < 10; i++, k++) { .... no k .... } return k; | 
 |   for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) { | 
 |     HPhi* phi = it.Current()->AsPhi(); | 
 |     if (TrySetPhiInduction(phi, /*restrict_uses*/ true) && | 
 |         TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) { | 
 |       // Note that it's ok to have replaced uses after the loop with the last value, without | 
 |       // being able to remove the cycle. Environment uses (which are the reason we may not be | 
 |       // able to remove the cycle) within the loop will still hold the right value. We must | 
 |       // have tried first, however, to replace outside uses. | 
 |       if (CanRemoveCycle()) { | 
 |         simplified_ = true; | 
 |         for (HInstruction* i : *iset_) { | 
 |           RemoveFromCycle(i); | 
 |         } | 
 |         DCHECK(CheckInductionSetFullyRemoved(iset_)); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void HLoopOptimization::SimplifyBlocks(LoopNode* node) { | 
 |   // Iterate over all basic blocks in the loop-body. | 
 |   for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) { | 
 |     HBasicBlock* block = it.Current(); | 
 |     // Remove dead instructions from the loop-body. | 
 |     RemoveDeadInstructions(block->GetPhis()); | 
 |     RemoveDeadInstructions(block->GetInstructions()); | 
 |     // Remove trivial control flow blocks from the loop-body. | 
 |     if (block->GetPredecessors().size() == 1 && | 
 |         block->GetSuccessors().size() == 1 && | 
 |         block->GetSingleSuccessor()->GetPredecessors().size() == 1) { | 
 |       simplified_ = true; | 
 |       block->MergeWith(block->GetSingleSuccessor()); | 
 |     } else if (block->GetSuccessors().size() == 2) { | 
 |       // Trivial if block can be bypassed to either branch. | 
 |       HBasicBlock* succ0 = block->GetSuccessors()[0]; | 
 |       HBasicBlock* succ1 = block->GetSuccessors()[1]; | 
 |       HBasicBlock* meet0 = nullptr; | 
 |       HBasicBlock* meet1 = nullptr; | 
 |       if (succ0 != succ1 && | 
 |           IsGotoBlock(succ0, &meet0) && | 
 |           IsGotoBlock(succ1, &meet1) && | 
 |           meet0 == meet1 &&  // meets again | 
 |           meet0 != block &&  // no self-loop | 
 |           meet0->GetPhis().IsEmpty()) {  // not used for merging | 
 |         simplified_ = true; | 
 |         succ0->DisconnectAndDelete(); | 
 |         if (block->Dominates(meet0)) { | 
 |           block->RemoveDominatedBlock(meet0); | 
 |           succ1->AddDominatedBlock(meet0); | 
 |           meet0->SetDominator(succ1); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool HLoopOptimization::TryOptimizeInnerLoopFinite(LoopNode* node) { | 
 |   HBasicBlock* header = node->loop_info->GetHeader(); | 
 |   HBasicBlock* preheader = node->loop_info->GetPreHeader(); | 
 |   // Ensure loop header logic is finite. | 
 |   int64_t trip_count = 0; | 
 |   if (!induction_range_.IsFinite(node->loop_info, &trip_count)) { | 
 |     return false; | 
 |   } | 
 |   // Ensure there is only a single loop-body (besides the header). | 
 |   HBasicBlock* body = nullptr; | 
 |   for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) { | 
 |     if (it.Current() != header) { | 
 |       if (body != nullptr) { | 
 |         return false; | 
 |       } | 
 |       body = it.Current(); | 
 |     } | 
 |   } | 
 |   CHECK(body != nullptr); | 
 |   // Ensure there is only a single exit point. | 
 |   if (header->GetSuccessors().size() != 2) { | 
 |     return false; | 
 |   } | 
 |   HBasicBlock* exit = (header->GetSuccessors()[0] == body) | 
 |       ? header->GetSuccessors()[1] | 
 |       : header->GetSuccessors()[0]; | 
 |   // Ensure exit can only be reached by exiting loop. | 
 |   if (exit->GetPredecessors().size() != 1) { | 
 |     return false; | 
 |   } | 
 |   // Detect either an empty loop (no side effects other than plain iteration) or | 
 |   // a trivial loop (just iterating once). Replace subsequent index uses, if any, | 
 |   // with the last value and remove the loop, possibly after unrolling its body. | 
 |   HPhi* main_phi = nullptr; | 
 |   if (TrySetSimpleLoopHeader(header, &main_phi)) { | 
 |     bool is_empty = IsEmptyBody(body); | 
 |     if (reductions_->empty() &&  // TODO: possible with some effort | 
 |         (is_empty || trip_count == 1) && | 
 |         TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) { | 
 |       if (!is_empty) { | 
 |         // Unroll the loop-body, which sees initial value of the index. | 
 |         main_phi->ReplaceWith(main_phi->InputAt(0)); | 
 |         preheader->MergeInstructionsWith(body); | 
 |       } | 
 |       body->DisconnectAndDelete(); | 
 |       exit->RemovePredecessor(header); | 
 |       header->RemoveSuccessor(exit); | 
 |       header->RemoveDominatedBlock(exit); | 
 |       header->DisconnectAndDelete(); | 
 |       preheader->AddSuccessor(exit); | 
 |       preheader->AddInstruction(new (global_allocator_) HGoto()); | 
 |       preheader->AddDominatedBlock(exit); | 
 |       exit->SetDominator(preheader); | 
 |       RemoveLoop(node);  // update hierarchy | 
 |       return true; | 
 |     } | 
 |   } | 
 |   // Vectorize loop, if possible and valid. | 
 |   if (kEnableVectorization && | 
 |       TrySetSimpleLoopHeader(header, &main_phi) && | 
 |       ShouldVectorize(node, body, trip_count) && | 
 |       TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) { | 
 |     Vectorize(node, body, exit, trip_count); | 
 |     graph_->SetHasSIMD(true);  // flag SIMD usage | 
 |     MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorized); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool HLoopOptimization::OptimizeInnerLoop(LoopNode* node) { | 
 |   return TryOptimizeInnerLoopFinite(node) || | 
 |          TryPeelingForLoopInvariantExitsElimination(node) || | 
 |          TryUnrollingForBranchPenaltyReduction(node); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | // | 
 | // Loop unrolling: generic part methods. | 
 | // | 
 |  | 
 | bool HLoopOptimization::TryUnrollingForBranchPenaltyReduction(LoopNode* node) { | 
 |   // Don't run peeling/unrolling if compiler_driver_ is nullptr (i.e., running under tests) | 
 |   // as InstructionSet is needed. | 
 |   if (compiler_driver_ == nullptr) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   HLoopInformation* loop_info = node->loop_info; | 
 |   int64_t trip_count = 0; | 
 |   // Only unroll loops with a known tripcount. | 
 |   if (!induction_range_.HasKnownTripCount(loop_info, &trip_count)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   uint32_t unrolling_factor = arch_loop_helper_->GetScalarUnrollingFactor(loop_info, trip_count); | 
 |   if (unrolling_factor == kNoUnrollingFactor) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   LoopAnalysisInfo loop_analysis_info(loop_info); | 
 |   LoopAnalysis::CalculateLoopBasicProperties(loop_info, &loop_analysis_info); | 
 |  | 
 |   // Check "IsLoopClonable" last as it can be time-consuming. | 
 |   if (loop_analysis_info.HasInstructionsPreventingScalarUnrolling() || | 
 |       arch_loop_helper_->IsLoopNonBeneficialForScalarOpts(&loop_analysis_info) || | 
 |       (loop_analysis_info.GetNumberOfExits() > 1) || | 
 |       !PeelUnrollHelper::IsLoopClonable(loop_info)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // TODO: support other unrolling factors. | 
 |   DCHECK_EQ(unrolling_factor, 2u); | 
 |  | 
 |   // Perform unrolling. | 
 |   PeelUnrollSimpleHelper helper(loop_info); | 
 |   helper.DoUnrolling(); | 
 |  | 
 |   // Remove the redundant loop check after unrolling. | 
 |   HIf* copy_hif = | 
 |       helper.GetBasicBlockMap()->Get(loop_info->GetHeader())->GetLastInstruction()->AsIf(); | 
 |   int32_t constant = loop_info->Contains(*copy_hif->IfTrueSuccessor()) ? 1 : 0; | 
 |   copy_hif->ReplaceInput(graph_->GetIntConstant(constant), 0u); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool HLoopOptimization::TryPeelingForLoopInvariantExitsElimination(LoopNode* node) { | 
 |   // Don't run peeling/unrolling if compiler_driver_ is nullptr (i.e., running under tests) | 
 |   // as InstructionSet is needed. | 
 |   if (compiler_driver_ == nullptr) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   HLoopInformation* loop_info = node->loop_info; | 
 |   // Check 'IsLoopClonable' the last as it might be time-consuming. | 
 |   if (!arch_loop_helper_->IsLoopPeelingEnabled()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   LoopAnalysisInfo loop_analysis_info(loop_info); | 
 |   LoopAnalysis::CalculateLoopBasicProperties(loop_info, &loop_analysis_info); | 
 |  | 
 |   // Check "IsLoopClonable" last as it can be time-consuming. | 
 |   if (loop_analysis_info.HasInstructionsPreventingScalarPeeling() || | 
 |       arch_loop_helper_->IsLoopNonBeneficialForScalarOpts(&loop_analysis_info) || | 
 |       !LoopAnalysis::HasLoopAtLeastOneInvariantExit(loop_info) || | 
 |       !PeelUnrollHelper::IsLoopClonable(loop_info)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Perform peeling. | 
 |   PeelUnrollSimpleHelper helper(loop_info); | 
 |   helper.DoPeeling(); | 
 |  | 
 |   const SuperblockCloner::HInstructionMap* hir_map = helper.GetInstructionMap(); | 
 |   for (auto entry : *hir_map) { | 
 |     HInstruction* copy = entry.second; | 
 |     if (copy->IsIf()) { | 
 |       TryToEvaluateIfCondition(copy->AsIf(), graph_); | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // | 
 | // Loop vectorization. The implementation is based on the book by Aart J.C. Bik: | 
 | // "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance." | 
 | // Intel Press, June, 2004 (http://www.aartbik.com/). | 
 | // | 
 |  | 
 | bool HLoopOptimization::ShouldVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) { | 
 |   // Reset vector bookkeeping. | 
 |   vector_length_ = 0; | 
 |   vector_refs_->clear(); | 
 |   vector_static_peeling_factor_ = 0; | 
 |   vector_dynamic_peeling_candidate_ = nullptr; | 
 |   vector_runtime_test_a_ = | 
 |   vector_runtime_test_b_ = nullptr; | 
 |  | 
 |   // Phis in the loop-body prevent vectorization. | 
 |   if (!block->GetPhis().IsEmpty()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side | 
 |   // occurrence, which allows passing down attributes down the use tree. | 
 |   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { | 
 |     if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) { | 
 |       return false;  // failure to vectorize a left-hand-side | 
 |     } | 
 |   } | 
 |  | 
 |   // Prepare alignment analysis: | 
 |   // (1) find desired alignment (SIMD vector size in bytes). | 
 |   // (2) initialize static loop peeling votes (peeling factor that will | 
 |   //     make one particular reference aligned), never to exceed (1). | 
 |   // (3) variable to record how many references share same alignment. | 
 |   // (4) variable to record suitable candidate for dynamic loop peeling. | 
 |   uint32_t desired_alignment = GetVectorSizeInBytes(); | 
 |   DCHECK_LE(desired_alignment, 16u); | 
 |   uint32_t peeling_votes[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | 
 |   uint32_t max_num_same_alignment = 0; | 
 |   const ArrayReference* peeling_candidate = nullptr; | 
 |  | 
 |   // Data dependence analysis. Find each pair of references with same type, where | 
 |   // at least one is a write. Each such pair denotes a possible data dependence. | 
 |   // This analysis exploits the property that differently typed arrays cannot be | 
 |   // aliased, as well as the property that references either point to the same | 
 |   // array or to two completely disjoint arrays, i.e., no partial aliasing. | 
 |   // Other than a few simply heuristics, no detailed subscript analysis is done. | 
 |   // The scan over references also prepares finding a suitable alignment strategy. | 
 |   for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) { | 
 |     uint32_t num_same_alignment = 0; | 
 |     // Scan over all next references. | 
 |     for (auto j = i; ++j != vector_refs_->end(); ) { | 
 |       if (i->type == j->type && (i->lhs || j->lhs)) { | 
 |         // Found same-typed a[i+x] vs. b[i+y], where at least one is a write. | 
 |         HInstruction* a = i->base; | 
 |         HInstruction* b = j->base; | 
 |         HInstruction* x = i->offset; | 
 |         HInstruction* y = j->offset; | 
 |         if (a == b) { | 
 |           // Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence). | 
 |           // Conservatively assume a loop-carried data dependence otherwise, and reject. | 
 |           if (x != y) { | 
 |             return false; | 
 |           } | 
 |           // Count the number of references that have the same alignment (since | 
 |           // base and offset are the same) and where at least one is a write, so | 
 |           // e.g. a[i] = a[i] + b[i] counts a[i] but not b[i]). | 
 |           num_same_alignment++; | 
 |         } else { | 
 |           // Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence). | 
 |           // Conservatively assume a potential loop-carried data dependence otherwise, avoided by | 
 |           // generating an explicit a != b disambiguation runtime test on the two references. | 
 |           if (x != y) { | 
 |             // To avoid excessive overhead, we only accept one a != b test. | 
 |             if (vector_runtime_test_a_ == nullptr) { | 
 |               // First test found. | 
 |               vector_runtime_test_a_ = a; | 
 |               vector_runtime_test_b_ = b; | 
 |             } else if ((vector_runtime_test_a_ != a || vector_runtime_test_b_ != b) && | 
 |                        (vector_runtime_test_a_ != b || vector_runtime_test_b_ != a)) { | 
 |               return false;  // second test would be needed | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     // Update information for finding suitable alignment strategy: | 
 |     // (1) update votes for static loop peeling, | 
 |     // (2) update suitable candidate for dynamic loop peeling. | 
 |     Alignment alignment = ComputeAlignment(i->offset, i->type, i->is_string_char_at); | 
 |     if (alignment.Base() >= desired_alignment) { | 
 |       // If the array/string object has a known, sufficient alignment, use the | 
 |       // initial offset to compute the static loop peeling vote (this always | 
 |       // works, since elements have natural alignment). | 
 |       uint32_t offset = alignment.Offset() & (desired_alignment - 1u); | 
 |       uint32_t vote = (offset == 0) | 
 |           ? 0 | 
 |           : ((desired_alignment - offset) >> DataType::SizeShift(i->type)); | 
 |       DCHECK_LT(vote, 16u); | 
 |       ++peeling_votes[vote]; | 
 |     } else if (BaseAlignment() >= desired_alignment && | 
 |                num_same_alignment > max_num_same_alignment) { | 
 |       // Otherwise, if the array/string object has a known, sufficient alignment | 
 |       // for just the base but with an unknown offset, record the candidate with | 
 |       // the most occurrences for dynamic loop peeling (again, the peeling always | 
 |       // works, since elements have natural alignment). | 
 |       max_num_same_alignment = num_same_alignment; | 
 |       peeling_candidate = &(*i); | 
 |     } | 
 |   }  // for i | 
 |  | 
 |   // Find a suitable alignment strategy. | 
 |   SetAlignmentStrategy(peeling_votes, peeling_candidate); | 
 |  | 
 |   // Does vectorization seem profitable? | 
 |   if (!IsVectorizationProfitable(trip_count)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Success! | 
 |   return true; | 
 | } | 
 |  | 
 | void HLoopOptimization::Vectorize(LoopNode* node, | 
 |                                   HBasicBlock* block, | 
 |                                   HBasicBlock* exit, | 
 |                                   int64_t trip_count) { | 
 |   HBasicBlock* header = node->loop_info->GetHeader(); | 
 |   HBasicBlock* preheader = node->loop_info->GetPreHeader(); | 
 |  | 
 |   // Pick a loop unrolling factor for the vector loop. | 
 |   uint32_t unroll = arch_loop_helper_->GetSIMDUnrollingFactor( | 
 |       block, trip_count, MaxNumberPeeled(), vector_length_); | 
 |   uint32_t chunk = vector_length_ * unroll; | 
 |  | 
 |   DCHECK(trip_count == 0 || (trip_count >= MaxNumberPeeled() + chunk)); | 
 |  | 
 |   // A cleanup loop is needed, at least, for any unknown trip count or | 
 |   // for a known trip count with remainder iterations after vectorization. | 
 |   bool needs_cleanup = trip_count == 0 || | 
 |       ((trip_count - vector_static_peeling_factor_) % chunk) != 0; | 
 |  | 
 |   // Adjust vector bookkeeping. | 
 |   HPhi* main_phi = nullptr; | 
 |   bool is_simple_loop_header = TrySetSimpleLoopHeader(header, &main_phi);  // refills sets | 
 |   DCHECK(is_simple_loop_header); | 
 |   vector_header_ = header; | 
 |   vector_body_ = block; | 
 |  | 
 |   // Loop induction type. | 
 |   DataType::Type induc_type = main_phi->GetType(); | 
 |   DCHECK(induc_type == DataType::Type::kInt32 || induc_type == DataType::Type::kInt64) | 
 |       << induc_type; | 
 |  | 
 |   // Generate the trip count for static or dynamic loop peeling, if needed: | 
 |   // ptc = <peeling factor>; | 
 |   HInstruction* ptc = nullptr; | 
 |   if (vector_static_peeling_factor_ != 0) { | 
 |     // Static loop peeling for SIMD alignment (using the most suitable | 
 |     // fixed peeling factor found during prior alignment analysis). | 
 |     DCHECK(vector_dynamic_peeling_candidate_ == nullptr); | 
 |     ptc = graph_->GetConstant(induc_type, vector_static_peeling_factor_); | 
 |   } else if (vector_dynamic_peeling_candidate_ != nullptr) { | 
 |     // Dynamic loop peeling for SIMD alignment (using the most suitable | 
 |     // candidate found during prior alignment analysis): | 
 |     // rem = offset % ALIGN;    // adjusted as #elements | 
 |     // ptc = rem == 0 ? 0 : (ALIGN - rem); | 
 |     uint32_t shift = DataType::SizeShift(vector_dynamic_peeling_candidate_->type); | 
 |     uint32_t align = GetVectorSizeInBytes() >> shift; | 
 |     uint32_t hidden_offset = HiddenOffset(vector_dynamic_peeling_candidate_->type, | 
 |                                           vector_dynamic_peeling_candidate_->is_string_char_at); | 
 |     HInstruction* adjusted_offset = graph_->GetConstant(induc_type, hidden_offset >> shift); | 
 |     HInstruction* offset = Insert(preheader, new (global_allocator_) HAdd( | 
 |         induc_type, vector_dynamic_peeling_candidate_->offset, adjusted_offset)); | 
 |     HInstruction* rem = Insert(preheader, new (global_allocator_) HAnd( | 
 |         induc_type, offset, graph_->GetConstant(induc_type, align - 1u))); | 
 |     HInstruction* sub = Insert(preheader, new (global_allocator_) HSub( | 
 |         induc_type, graph_->GetConstant(induc_type, align), rem)); | 
 |     HInstruction* cond = Insert(preheader, new (global_allocator_) HEqual( | 
 |         rem, graph_->GetConstant(induc_type, 0))); | 
 |     ptc = Insert(preheader, new (global_allocator_) HSelect( | 
 |         cond, graph_->GetConstant(induc_type, 0), sub, kNoDexPc)); | 
 |     needs_cleanup = true;  // don't know the exact amount | 
 |   } | 
 |  | 
 |   // Generate loop control: | 
 |   // stc = <trip-count>; | 
 |   // ptc = min(stc, ptc); | 
 |   // vtc = stc - (stc - ptc) % chunk; | 
 |   // i = 0; | 
 |   HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader); | 
 |   HInstruction* vtc = stc; | 
 |   if (needs_cleanup) { | 
 |     DCHECK(IsPowerOfTwo(chunk)); | 
 |     HInstruction* diff = stc; | 
 |     if (ptc != nullptr) { | 
 |       if (trip_count == 0) { | 
 |         HInstruction* cond = Insert(preheader, new (global_allocator_) HAboveOrEqual(stc, ptc)); | 
 |         ptc = Insert(preheader, new (global_allocator_) HSelect(cond, ptc, stc, kNoDexPc)); | 
 |       } | 
 |       diff = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, ptc)); | 
 |     } | 
 |     HInstruction* rem = Insert( | 
 |         preheader, new (global_allocator_) HAnd(induc_type, | 
 |                                                 diff, | 
 |                                                 graph_->GetConstant(induc_type, chunk - 1))); | 
 |     vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem)); | 
 |   } | 
 |   vector_index_ = graph_->GetConstant(induc_type, 0); | 
 |  | 
 |   // Generate runtime disambiguation test: | 
 |   // vtc = a != b ? vtc : 0; | 
 |   if (vector_runtime_test_a_ != nullptr) { | 
 |     HInstruction* rt = Insert( | 
 |         preheader, | 
 |         new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_)); | 
 |     vtc = Insert(preheader, | 
 |                  new (global_allocator_) | 
 |                  HSelect(rt, vtc, graph_->GetConstant(induc_type, 0), kNoDexPc)); | 
 |     needs_cleanup = true; | 
 |   } | 
 |  | 
 |   // Generate alignment peeling loop, if needed: | 
 |   // for ( ; i < ptc; i += 1) | 
 |   //    <loop-body> | 
 |   // | 
 |   // NOTE: The alignment forced by the peeling loop is preserved even if data is | 
 |   //       moved around during suspend checks, since all analysis was based on | 
 |   //       nothing more than the Android runtime alignment conventions. | 
 |   if (ptc != nullptr) { | 
 |     vector_mode_ = kSequential; | 
 |     GenerateNewLoop(node, | 
 |                     block, | 
 |                     graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit), | 
 |                     vector_index_, | 
 |                     ptc, | 
 |                     graph_->GetConstant(induc_type, 1), | 
 |                     kNoUnrollingFactor); | 
 |   } | 
 |  | 
 |   // Generate vector loop, possibly further unrolled: | 
 |   // for ( ; i < vtc; i += chunk) | 
 |   //    <vectorized-loop-body> | 
 |   vector_mode_ = kVector; | 
 |   GenerateNewLoop(node, | 
 |                   block, | 
 |                   graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit), | 
 |                   vector_index_, | 
 |                   vtc, | 
 |                   graph_->GetConstant(induc_type, vector_length_),  // increment per unroll | 
 |                   unroll); | 
 |   HLoopInformation* vloop = vector_header_->GetLoopInformation(); | 
 |  | 
 |   // Generate cleanup loop, if needed: | 
 |   // for ( ; i < stc; i += 1) | 
 |   //    <loop-body> | 
 |   if (needs_cleanup) { | 
 |     vector_mode_ = kSequential; | 
 |     GenerateNewLoop(node, | 
 |                     block, | 
 |                     graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit), | 
 |                     vector_index_, | 
 |                     stc, | 
 |                     graph_->GetConstant(induc_type, 1), | 
 |                     kNoUnrollingFactor); | 
 |   } | 
 |  | 
 |   // Link reductions to their final uses. | 
 |   for (auto i = reductions_->begin(); i != reductions_->end(); ++i) { | 
 |     if (i->first->IsPhi()) { | 
 |       HInstruction* phi = i->first; | 
 |       HInstruction* repl = ReduceAndExtractIfNeeded(i->second); | 
 |       // Deal with regular uses. | 
 |       for (const HUseListNode<HInstruction*>& use : phi->GetUses()) { | 
 |         induction_range_.Replace(use.GetUser(), phi, repl);  // update induction use | 
 |       } | 
 |       phi->ReplaceWith(repl); | 
 |     } | 
 |   } | 
 |  | 
 |   // Remove the original loop by disconnecting the body block | 
 |   // and removing all instructions from the header. | 
 |   block->DisconnectAndDelete(); | 
 |   while (!header->GetFirstInstruction()->IsGoto()) { | 
 |     header->RemoveInstruction(header->GetFirstInstruction()); | 
 |   } | 
 |  | 
 |   // Update loop hierarchy: the old header now resides in the same outer loop | 
 |   // as the old preheader. Note that we don't bother putting sequential | 
 |   // loops back in the hierarchy at this point. | 
 |   header->SetLoopInformation(preheader->GetLoopInformation());  // outward | 
 |   node->loop_info = vloop; | 
 | } | 
 |  | 
 | void HLoopOptimization::GenerateNewLoop(LoopNode* node, | 
 |                                         HBasicBlock* block, | 
 |                                         HBasicBlock* new_preheader, | 
 |                                         HInstruction* lo, | 
 |                                         HInstruction* hi, | 
 |                                         HInstruction* step, | 
 |                                         uint32_t unroll) { | 
 |   DCHECK(unroll == 1 || vector_mode_ == kVector); | 
 |   DataType::Type induc_type = lo->GetType(); | 
 |   // Prepare new loop. | 
 |   vector_preheader_ = new_preheader, | 
 |   vector_header_ = vector_preheader_->GetSingleSuccessor(); | 
 |   vector_body_ = vector_header_->GetSuccessors()[1]; | 
 |   HPhi* phi = new (global_allocator_) HPhi(global_allocator_, | 
 |                                            kNoRegNumber, | 
 |                                            0, | 
 |                                            HPhi::ToPhiType(induc_type)); | 
 |   // Generate header and prepare body. | 
 |   // for (i = lo; i < hi; i += step) | 
 |   //    <loop-body> | 
 |   HInstruction* cond = new (global_allocator_) HAboveOrEqual(phi, hi); | 
 |   vector_header_->AddPhi(phi); | 
 |   vector_header_->AddInstruction(cond); | 
 |   vector_header_->AddInstruction(new (global_allocator_) HIf(cond)); | 
 |   vector_index_ = phi; | 
 |   vector_permanent_map_->clear();  // preserved over unrolling | 
 |   for (uint32_t u = 0; u < unroll; u++) { | 
 |     // Generate instruction map. | 
 |     vector_map_->clear(); | 
 |     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { | 
 |       bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true); | 
 |       DCHECK(vectorized_def); | 
 |     } | 
 |     // Generate body from the instruction map, but in original program order. | 
 |     HEnvironment* env = vector_header_->GetFirstInstruction()->GetEnvironment(); | 
 |     for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { | 
 |       auto i = vector_map_->find(it.Current()); | 
 |       if (i != vector_map_->end() && !i->second->IsInBlock()) { | 
 |         Insert(vector_body_, i->second); | 
 |         // Deal with instructions that need an environment, such as the scalar intrinsics. | 
 |         if (i->second->NeedsEnvironment()) { | 
 |           i->second->CopyEnvironmentFromWithLoopPhiAdjustment(env, vector_header_); | 
 |         } | 
 |       } | 
 |     } | 
 |     // Generate the induction. | 
 |     vector_index_ = new (global_allocator_) HAdd(induc_type, vector_index_, step); | 
 |     Insert(vector_body_, vector_index_); | 
 |   } | 
 |   // Finalize phi inputs for the reductions (if any). | 
 |   for (auto i = reductions_->begin(); i != reductions_->end(); ++i) { | 
 |     if (!i->first->IsPhi()) { | 
 |       DCHECK(i->second->IsPhi()); | 
 |       GenerateVecReductionPhiInputs(i->second->AsPhi(), i->first); | 
 |     } | 
 |   } | 
 |   // Finalize phi inputs for the loop index. | 
 |   phi->AddInput(lo); | 
 |   phi->AddInput(vector_index_); | 
 |   vector_index_ = phi; | 
 | } | 
 |  | 
 | bool HLoopOptimization::VectorizeDef(LoopNode* node, | 
 |                                      HInstruction* instruction, | 
 |                                      bool generate_code) { | 
 |   // Accept a left-hand-side array base[index] for | 
 |   // (1) supported vector type, | 
 |   // (2) loop-invariant base, | 
 |   // (3) unit stride index, | 
 |   // (4) vectorizable right-hand-side value. | 
 |   uint64_t restrictions = kNone; | 
 |   if (instruction->IsArraySet()) { | 
 |     DataType::Type type = instruction->AsArraySet()->GetComponentType(); | 
 |     HInstruction* base = instruction->InputAt(0); | 
 |     HInstruction* index = instruction->InputAt(1); | 
 |     HInstruction* value = instruction->InputAt(2); | 
 |     HInstruction* offset = nullptr; | 
 |     // For narrow types, explicit type conversion may have been | 
 |     // optimized way, so set the no hi bits restriction here. | 
 |     if (DataType::Size(type) <= 2) { | 
 |       restrictions |= kNoHiBits; | 
 |     } | 
 |     if (TrySetVectorType(type, &restrictions) && | 
 |         node->loop_info->IsDefinedOutOfTheLoop(base) && | 
 |         induction_range_.IsUnitStride(instruction, index, graph_, &offset) && | 
 |         VectorizeUse(node, value, generate_code, type, restrictions)) { | 
 |       if (generate_code) { | 
 |         GenerateVecSub(index, offset); | 
 |         GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), offset, type); | 
 |       } else { | 
 |         vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true)); | 
 |       } | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |   // Accept a left-hand-side reduction for | 
 |   // (1) supported vector type, | 
 |   // (2) vectorizable right-hand-side value. | 
 |   auto redit = reductions_->find(instruction); | 
 |   if (redit != reductions_->end()) { | 
 |     DataType::Type type = instruction->GetType(); | 
 |     // Recognize SAD idiom or direct reduction. | 
 |     if (VectorizeSADIdiom(node, instruction, generate_code, type, restrictions) || | 
 |         (TrySetVectorType(type, &restrictions) && | 
 |          VectorizeUse(node, instruction, generate_code, type, restrictions))) { | 
 |       if (generate_code) { | 
 |         HInstruction* new_red = vector_map_->Get(instruction); | 
 |         vector_permanent_map_->Put(new_red, vector_map_->Get(redit->second)); | 
 |         vector_permanent_map_->Overwrite(redit->second, new_red); | 
 |       } | 
 |       return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |   // Branch back okay. | 
 |   if (instruction->IsGoto()) { | 
 |     return true; | 
 |   } | 
 |   // Otherwise accept only expressions with no effects outside the immediate loop-body. | 
 |   // Note that actual uses are inspected during right-hand-side tree traversal. | 
 |   return !IsUsedOutsideLoop(node->loop_info, instruction) && !instruction->DoesAnyWrite(); | 
 | } | 
 |  | 
 | bool HLoopOptimization::VectorizeUse(LoopNode* node, | 
 |                                      HInstruction* instruction, | 
 |                                      bool generate_code, | 
 |                                      DataType::Type type, | 
 |                                      uint64_t restrictions) { | 
 |   // Accept anything for which code has already been generated. | 
 |   if (generate_code) { | 
 |     if (vector_map_->find(instruction) != vector_map_->end()) { | 
 |       return true; | 
 |     } | 
 |   } | 
 |   // Continue the right-hand-side tree traversal, passing in proper | 
 |   // types and vector restrictions along the way. During code generation, | 
 |   // all new nodes are drawn from the global allocator. | 
 |   if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) { | 
 |     // Accept invariant use, using scalar expansion. | 
 |     if (generate_code) { | 
 |       GenerateVecInv(instruction, type); | 
 |     } | 
 |     return true; | 
 |   } else if (instruction->IsArrayGet()) { | 
 |     // Deal with vector restrictions. | 
 |     bool is_string_char_at = instruction->AsArrayGet()->IsStringCharAt(); | 
 |     if (is_string_char_at && HasVectorRestrictions(restrictions, kNoStringCharAt)) { | 
 |       return false; | 
 |     } | 
 |     // Accept a right-hand-side array base[index] for | 
 |     // (1) matching vector type (exact match or signed/unsigned integral type of the same size), | 
 |     // (2) loop-invariant base, | 
 |     // (3) unit stride index, | 
 |     // (4) vectorizable right-hand-side value. | 
 |     HInstruction* base = instruction->InputAt(0); | 
 |     HInstruction* index = instruction->InputAt(1); | 
 |     HInstruction* offset = nullptr; | 
 |     if (HVecOperation::ToSignedType(type) == HVecOperation::ToSignedType(instruction->GetType()) && | 
 |         node->loop_info->IsDefinedOutOfTheLoop(base) && | 
 |         induction_range_.IsUnitStride(instruction, index, graph_, &offset)) { | 
 |       if (generate_code) { | 
 |         GenerateVecSub(index, offset); | 
 |         GenerateVecMem(instruction, vector_map_->Get(index), nullptr, offset, type); | 
 |       } else { | 
 |         vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false, is_string_char_at)); | 
 |       } | 
 |       return true; | 
 |     } | 
 |   } else if (instruction->IsPhi()) { | 
 |     // Accept particular phi operations. | 
 |     if (reductions_->find(instruction) != reductions_->end()) { | 
 |       // Deal with vector restrictions. | 
 |       if (HasVectorRestrictions(restrictions, kNoReduction)) { | 
 |         return false; | 
 |       } | 
 |       // Accept a reduction. | 
 |       if (generate_code) { | 
 |         GenerateVecReductionPhi(instruction->AsPhi()); | 
 |       } | 
 |       return true; | 
 |     } | 
 |     // TODO: accept right-hand-side induction? | 
 |     return false; | 
 |   } else if (instruction->IsTypeConversion()) { | 
 |     // Accept particular type conversions. | 
 |     HTypeConversion* conversion = instruction->AsTypeConversion(); | 
 |     HInstruction* opa = conversion->InputAt(0); | 
 |     DataType::Type from = conversion->GetInputType(); | 
 |     DataType::Type to = conversion->GetResultType(); | 
 |     if (DataType::IsIntegralType(from) && DataType::IsIntegralType(to)) { | 
 |       uint32_t size_vec = DataType::Size(type); | 
 |       uint32_t size_from = DataType::Size(from); | 
 |       uint32_t size_to = DataType::Size(to); | 
 |       // Accept an integral conversion | 
 |       // (1a) narrowing into vector type, "wider" operations cannot bring in higher order bits, or | 
 |       // (1b) widening from at least vector type, and | 
 |       // (2) vectorizable operand. | 
 |       if ((size_to < size_from && | 
 |            size_to == size_vec && | 
 |            VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) || | 
 |           (size_to >= size_from && | 
 |            size_from >= size_vec && | 
 |            VectorizeUse(node, opa, generate_code, type, restrictions))) { | 
 |         if (generate_code) { | 
 |           if (vector_mode_ == kVector) { | 
 |             vector_map_->Put(instruction, vector_map_->Get(opa));  // operand pass-through | 
 |           } else { | 
 |             GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type); | 
 |           } | 
 |         } | 
 |         return true; | 
 |       } | 
 |     } else if (to == DataType::Type::kFloat32 && from == DataType::Type::kInt32) { | 
 |       DCHECK_EQ(to, type); | 
 |       // Accept int to float conversion for | 
 |       // (1) supported int, | 
 |       // (2) vectorizable operand. | 
 |       if (TrySetVectorType(from, &restrictions) && | 
 |           VectorizeUse(node, opa, generate_code, from, restrictions)) { | 
 |         if (generate_code) { | 
 |           GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type); | 
 |         } | 
 |         return true; | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) { | 
 |     // Accept unary operator for vectorizable operand. | 
 |     HInstruction* opa = instruction->InputAt(0); | 
 |     if (VectorizeUse(node, opa, generate_code, type, restrictions)) { | 
 |       if (generate_code) { | 
 |         GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type); | 
 |       } | 
 |       return true; | 
 |     } | 
 |   } else if (instruction->IsAdd() || instruction->IsSub() || | 
 |              instruction->IsMul() || instruction->IsDiv() || | 
 |              instruction->IsAnd() || instruction->IsOr()  || instruction->IsXor()) { | 
 |     // Deal with vector restrictions. | 
 |     if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) || | 
 |         (instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) { | 
 |       return false; | 
 |     } | 
 |     // Accept binary operator for vectorizable operands. | 
 |     HInstruction* opa = instruction->InputAt(0); | 
 |     HInstruction* opb = instruction->InputAt(1); | 
 |     if (VectorizeUse(node, opa, generate_code, type, restrictions) && | 
 |         VectorizeUse(node, opb, generate_code, type, restrictions)) { | 
 |       if (generate_code) { | 
 |         GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type); | 
 |       } | 
 |       return true; | 
 |     } | 
 |   } else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) { | 
 |     // Recognize halving add idiom. | 
 |     if (VectorizeHalvingAddIdiom(node, instruction, generate_code, type, restrictions)) { | 
 |       return true; | 
 |     } | 
 |     // Deal with vector restrictions. | 
 |     HInstruction* opa = instruction->InputAt(0); | 
 |     HInstruction* opb = instruction->InputAt(1); | 
 |     HInstruction* r = opa; | 
 |     bool is_unsigned = false; | 
 |     if ((HasVectorRestrictions(restrictions, kNoShift)) || | 
 |         (instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) { | 
 |       return false;  // unsupported instruction | 
 |     } else if (HasVectorRestrictions(restrictions, kNoHiBits)) { | 
 |       // Shifts right need extra care to account for higher order bits. | 
 |       // TODO: less likely shr/unsigned and ushr/signed can by flipping signess. | 
 |       if (instruction->IsShr() && | 
 |           (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) { | 
 |         return false;  // reject, unless all operands are sign-extension narrower | 
 |       } else if (instruction->IsUShr() && | 
 |                  (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || !is_unsigned)) { | 
 |         return false;  // reject, unless all operands are zero-extension narrower | 
 |       } | 
 |     } | 
 |     // Accept shift operator for vectorizable/invariant operands. | 
 |     // TODO: accept symbolic, albeit loop invariant shift factors. | 
 |     DCHECK(r != nullptr); | 
 |     if (generate_code && vector_mode_ != kVector) {  // de-idiom | 
 |       r = opa; | 
 |     } | 
 |     int64_t distance = 0; | 
 |     if (VectorizeUse(node, r, generate_code, type, restrictions) && | 
 |         IsInt64AndGet(opb, /*out*/ &distance)) { | 
 |       // Restrict shift distance to packed data type width. | 
 |       int64_t max_distance = DataType::Size(type) * 8; | 
 |       if (0 <= distance && distance < max_distance) { | 
 |         if (generate_code) { | 
 |           GenerateVecOp(instruction, vector_map_->Get(r), opb, type); | 
 |         } | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } else if (instruction->IsAbs()) { | 
 |     // Deal with vector restrictions. | 
 |     HInstruction* opa = instruction->InputAt(0); | 
 |     HInstruction* r = opa; | 
 |     bool is_unsigned = false; | 
 |     if (HasVectorRestrictions(restrictions, kNoAbs)) { | 
 |       return false; | 
 |     } else if (HasVectorRestrictions(restrictions, kNoHiBits) && | 
 |                (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) { | 
 |       return false;  // reject, unless operand is sign-extension narrower | 
 |     } | 
 |     // Accept ABS(x) for vectorizable operand. | 
 |     DCHECK(r != nullptr); | 
 |     if (generate_code && vector_mode_ != kVector) {  // de-idiom | 
 |       r = opa; | 
 |     } | 
 |     if (VectorizeUse(node, r, generate_code, type, restrictions)) { | 
 |       if (generate_code) { | 
 |         GenerateVecOp(instruction, | 
 |                       vector_map_->Get(r), | 
 |                       nullptr, | 
 |                       HVecOperation::ToProperType(type, is_unsigned)); | 
 |       } | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | uint32_t HLoopOptimization::GetVectorSizeInBytes() { | 
 |   switch (compiler_driver_->GetInstructionSet()) { | 
 |     case InstructionSet::kArm: | 
 |     case InstructionSet::kThumb2: | 
 |       return 8;  // 64-bit SIMD | 
 |     default: | 
 |       return 16;  // 128-bit SIMD | 
 |   } | 
 | } | 
 |  | 
 | bool HLoopOptimization::TrySetVectorType(DataType::Type type, uint64_t* restrictions) { | 
 |   const InstructionSetFeatures* features = compiler_driver_->GetInstructionSetFeatures(); | 
 |   switch (compiler_driver_->GetInstructionSet()) { | 
 |     case InstructionSet::kArm: | 
 |     case InstructionSet::kThumb2: | 
 |       // Allow vectorization for all ARM devices, because Android assumes that | 
 |       // ARM 32-bit always supports advanced SIMD (64-bit SIMD). | 
 |       switch (type) { | 
 |         case DataType::Type::kBool: | 
 |         case DataType::Type::kUint8: | 
 |         case DataType::Type::kInt8: | 
 |           *restrictions |= kNoDiv | kNoReduction; | 
 |           return TrySetVectorLength(8); | 
 |         case DataType::Type::kUint16: | 
 |         case DataType::Type::kInt16: | 
 |           *restrictions |= kNoDiv | kNoStringCharAt | kNoReduction; | 
 |           return TrySetVectorLength(4); | 
 |         case DataType::Type::kInt32: | 
 |           *restrictions |= kNoDiv | kNoWideSAD; | 
 |           return TrySetVectorLength(2); | 
 |         default: | 
 |           break; | 
 |       } | 
 |       return false; | 
 |     case InstructionSet::kArm64: | 
 |       // Allow vectorization for all ARM devices, because Android assumes that | 
 |       // ARMv8 AArch64 always supports advanced SIMD (128-bit SIMD). | 
 |       switch (type) { | 
 |         case DataType::Type::kBool: | 
 |         case DataType::Type::kUint8: | 
 |         case DataType::Type::kInt8: | 
 |           *restrictions |= kNoDiv; | 
 |           return TrySetVectorLength(16); | 
 |         case DataType::Type::kUint16: | 
 |         case DataType::Type::kInt16: | 
 |           *restrictions |= kNoDiv; | 
 |           return TrySetVectorLength(8); | 
 |         case DataType::Type::kInt32: | 
 |           *restrictions |= kNoDiv; | 
 |           return TrySetVectorLength(4); | 
 |         case DataType::Type::kInt64: | 
 |           *restrictions |= kNoDiv | kNoMul; | 
 |           return TrySetVectorLength(2); | 
 |         case DataType::Type::kFloat32: | 
 |           *restrictions |= kNoReduction; | 
 |           return TrySetVectorLength(4); | 
 |         case DataType::Type::kFloat64: | 
 |           *restrictions |= kNoReduction; | 
 |           return TrySetVectorLength(2); | 
 |         default: | 
 |           return false; | 
 |       } | 
 |     case InstructionSet::kX86: | 
 |     case InstructionSet::kX86_64: | 
 |       // Allow vectorization for SSE4.1-enabled X86 devices only (128-bit SIMD). | 
 |       if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) { | 
 |         switch (type) { | 
 |           case DataType::Type::kBool: | 
 |           case DataType::Type::kUint8: | 
 |           case DataType::Type::kInt8: | 
 |             *restrictions |= | 
 |                 kNoMul | kNoDiv | kNoShift | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd | kNoSAD; | 
 |             return TrySetVectorLength(16); | 
 |           case DataType::Type::kUint16: | 
 |           case DataType::Type::kInt16: | 
 |             *restrictions |= kNoDiv | kNoAbs | kNoSignedHAdd | kNoUnroundedHAdd | kNoSAD; | 
 |             return TrySetVectorLength(8); | 
 |           case DataType::Type::kInt32: | 
 |             *restrictions |= kNoDiv | kNoSAD; | 
 |             return TrySetVectorLength(4); | 
 |           case DataType::Type::kInt64: | 
 |             *restrictions |= kNoMul | kNoDiv | kNoShr | kNoAbs | kNoSAD; | 
 |             return TrySetVectorLength(2); | 
 |           case DataType::Type::kFloat32: | 
 |             *restrictions |= kNoReduction; | 
 |             return TrySetVectorLength(4); | 
 |           case DataType::Type::kFloat64: | 
 |             *restrictions |= kNoReduction; | 
 |             return TrySetVectorLength(2); | 
 |           default: | 
 |             break; | 
 |         }  // switch type | 
 |       } | 
 |       return false; | 
 |     case InstructionSet::kMips: | 
 |       if (features->AsMipsInstructionSetFeatures()->HasMsa()) { | 
 |         switch (type) { | 
 |           case DataType::Type::kBool: | 
 |           case DataType::Type::kUint8: | 
 |           case DataType::Type::kInt8: | 
 |             *restrictions |= kNoDiv; | 
 |             return TrySetVectorLength(16); | 
 |           case DataType::Type::kUint16: | 
 |           case DataType::Type::kInt16: | 
 |             *restrictions |= kNoDiv | kNoStringCharAt; | 
 |             return TrySetVectorLength(8); | 
 |           case DataType::Type::kInt32: | 
 |             *restrictions |= kNoDiv; | 
 |             return TrySetVectorLength(4); | 
 |           case DataType::Type::kInt64: | 
 |             *restrictions |= kNoDiv; | 
 |             return TrySetVectorLength(2); | 
 |           case DataType::Type::kFloat32: | 
 |             *restrictions |= kNoReduction; | 
 |             return TrySetVectorLength(4); | 
 |           case DataType::Type::kFloat64: | 
 |             *restrictions |= kNoReduction; | 
 |             return TrySetVectorLength(2); | 
 |           default: | 
 |             break; | 
 |         }  // switch type | 
 |       } | 
 |       return false; | 
 |     case InstructionSet::kMips64: | 
 |       if (features->AsMips64InstructionSetFeatures()->HasMsa()) { | 
 |         switch (type) { | 
 |           case DataType::Type::kBool: | 
 |           case DataType::Type::kUint8: | 
 |           case DataType::Type::kInt8: | 
 |             *restrictions |= kNoDiv; | 
 |             return TrySetVectorLength(16); | 
 |           case DataType::Type::kUint16: | 
 |           case DataType::Type::kInt16: | 
 |             *restrictions |= kNoDiv | kNoStringCharAt; | 
 |             return TrySetVectorLength(8); | 
 |           case DataType::Type::kInt32: | 
 |             *restrictions |= kNoDiv; | 
 |             return TrySetVectorLength(4); | 
 |           case DataType::Type::kInt64: | 
 |             *restrictions |= kNoDiv; | 
 |             return TrySetVectorLength(2); | 
 |           case DataType::Type::kFloat32: | 
 |             *restrictions |= kNoReduction; | 
 |             return TrySetVectorLength(4); | 
 |           case DataType::Type::kFloat64: | 
 |             *restrictions |= kNoReduction; | 
 |             return TrySetVectorLength(2); | 
 |           default: | 
 |             break; | 
 |         }  // switch type | 
 |       } | 
 |       return false; | 
 |     default: | 
 |       return false; | 
 |   }  // switch instruction set | 
 | } | 
 |  | 
 | bool HLoopOptimization::TrySetVectorLength(uint32_t length) { | 
 |   DCHECK(IsPowerOfTwo(length) && length >= 2u); | 
 |   // First time set? | 
 |   if (vector_length_ == 0) { | 
 |     vector_length_ = length; | 
 |   } | 
 |   // Different types are acceptable within a loop-body, as long as all the corresponding vector | 
 |   // lengths match exactly to obtain a uniform traversal through the vector iteration space | 
 |   // (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions). | 
 |   return vector_length_ == length; | 
 | } | 
 |  | 
 | void HLoopOptimization::GenerateVecInv(HInstruction* org, DataType::Type type) { | 
 |   if (vector_map_->find(org) == vector_map_->end()) { | 
 |     // In scalar code, just use a self pass-through for scalar invariants | 
 |     // (viz. expression remains itself). | 
 |     if (vector_mode_ == kSequential) { | 
 |       vector_map_->Put(org, org); | 
 |       return; | 
 |     } | 
 |     // In vector code, explicit scalar expansion is needed. | 
 |     HInstruction* vector = nullptr; | 
 |     auto it = vector_permanent_map_->find(org); | 
 |     if (it != vector_permanent_map_->end()) { | 
 |       vector = it->second;  // reuse during unrolling | 
 |     } else { | 
 |       // Generates ReplicateScalar( (optional_type_conv) org ). | 
 |       HInstruction* input = org; | 
 |       DataType::Type input_type = input->GetType(); | 
 |       if (type != input_type && (type == DataType::Type::kInt64 || | 
 |                                  input_type == DataType::Type::kInt64)) { | 
 |         input = Insert(vector_preheader_, | 
 |                        new (global_allocator_) HTypeConversion(type, input, kNoDexPc)); | 
 |       } | 
 |       vector = new (global_allocator_) | 
 |           HVecReplicateScalar(global_allocator_, input, type, vector_length_, kNoDexPc); | 
 |       vector_permanent_map_->Put(org, Insert(vector_preheader_, vector)); | 
 |     } | 
 |     vector_map_->Put(org, vector); | 
 |   } | 
 | } | 
 |  | 
 | void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) { | 
 |   if (vector_map_->find(org) == vector_map_->end()) { | 
 |     HInstruction* subscript = vector_index_; | 
 |     int64_t value = 0; | 
 |     if (!IsInt64AndGet(offset, &value) || value != 0) { | 
 |       subscript = new (global_allocator_) HAdd(DataType::Type::kInt32, subscript, offset); | 
 |       if (org->IsPhi()) { | 
 |         Insert(vector_body_, subscript);  // lacks layout placeholder | 
 |       } | 
 |     } | 
 |     vector_map_->Put(org, subscript); | 
 |   } | 
 | } | 
 |  | 
 | void HLoopOptimization::GenerateVecMem(HInstruction* org, | 
 |                                        HInstruction* opa, | 
 |                                        HInstruction* opb, | 
 |                                        HInstruction* offset, | 
 |                                        DataType::Type type) { | 
 |   uint32_t dex_pc = org->GetDexPc(); | 
 |   HInstruction* vector = nullptr; | 
 |   if (vector_mode_ == kVector) { | 
 |     // Vector store or load. | 
 |     bool is_string_char_at = false; | 
 |     HInstruction* base = org->InputAt(0); | 
 |     if (opb != nullptr) { | 
 |       vector = new (global_allocator_) HVecStore( | 
 |           global_allocator_, base, opa, opb, type, org->GetSideEffects(), vector_length_, dex_pc); | 
 |     } else  { | 
 |       is_string_char_at = org->AsArrayGet()->IsStringCharAt(); | 
 |       vector = new (global_allocator_) HVecLoad(global_allocator_, | 
 |                                                 base, | 
 |                                                 opa, | 
 |                                                 type, | 
 |                                                 org->GetSideEffects(), | 
 |                                                 vector_length_, | 
 |                                                 is_string_char_at, | 
 |                                                 dex_pc); | 
 |     } | 
 |     // Known (forced/adjusted/original) alignment? | 
 |     if (vector_dynamic_peeling_candidate_ != nullptr) { | 
 |       if (vector_dynamic_peeling_candidate_->offset == offset &&  // TODO: diffs too? | 
 |           DataType::Size(vector_dynamic_peeling_candidate_->type) == DataType::Size(type) && | 
 |           vector_dynamic_peeling_candidate_->is_string_char_at == is_string_char_at) { | 
 |         vector->AsVecMemoryOperation()->SetAlignment(  // forced | 
 |             Alignment(GetVectorSizeInBytes(), 0)); | 
 |       } | 
 |     } else { | 
 |       vector->AsVecMemoryOperation()->SetAlignment(  // adjusted/original | 
 |           ComputeAlignment(offset, type, is_string_char_at, vector_static_peeling_factor_)); | 
 |     } | 
 |   } else { | 
 |     // Scalar store or load. | 
 |     DCHECK(vector_mode_ == kSequential); | 
 |     if (opb != nullptr) { | 
 |       DataType::Type component_type = org->AsArraySet()->GetComponentType(); | 
 |       vector = new (global_allocator_) HArraySet( | 
 |           org->InputAt(0), opa, opb, component_type, org->GetSideEffects(), dex_pc); | 
 |     } else  { | 
 |       bool is_string_char_at = org->AsArrayGet()->IsStringCharAt(); | 
 |       vector = new (global_allocator_) HArrayGet( | 
 |           org->InputAt(0), opa, org->GetType(), org->GetSideEffects(), dex_pc, is_string_char_at); | 
 |     } | 
 |   } | 
 |   vector_map_->Put(org, vector); | 
 | } | 
 |  | 
 | void HLoopOptimization::GenerateVecReductionPhi(HPhi* phi) { | 
 |   DCHECK(reductions_->find(phi) != reductions_->end()); | 
 |   DCHECK(reductions_->Get(phi->InputAt(1)) == phi); | 
 |   HInstruction* vector = nullptr; | 
 |   if (vector_mode_ == kSequential) { | 
 |     HPhi* new_phi = new (global_allocator_) HPhi( | 
 |         global_allocator_, kNoRegNumber, 0, phi->GetType()); | 
 |     vector_header_->AddPhi(new_phi); | 
 |     vector = new_phi; | 
 |   } else { | 
 |     // Link vector reduction back to prior unrolled update, or a first phi. | 
 |     auto it = vector_permanent_map_->find(phi); | 
 |     if (it != vector_permanent_map_->end()) { | 
 |       vector = it->second; | 
 |     } else { | 
 |       HPhi* new_phi = new (global_allocator_) HPhi( | 
 |           global_allocator_, kNoRegNumber, 0, HVecOperation::kSIMDType); | 
 |       vector_header_->AddPhi(new_phi); | 
 |       vector = new_phi; | 
 |     } | 
 |   } | 
 |   vector_map_->Put(phi, vector); | 
 | } | 
 |  | 
 | void HLoopOptimization::GenerateVecReductionPhiInputs(HPhi* phi, HInstruction* reduction) { | 
 |   HInstruction* new_phi = vector_map_->Get(phi); | 
 |   HInstruction* new_init = reductions_->Get(phi); | 
 |   HInstruction* new_red = vector_map_->Get(reduction); | 
 |   // Link unrolled vector loop back to new phi. | 
 |   for (; !new_phi->IsPhi(); new_phi = vector_permanent_map_->Get(new_phi)) { | 
 |     DCHECK(new_phi->IsVecOperation()); | 
 |   } | 
 |   // Prepare the new initialization. | 
 |   if (vector_mode_ == kVector) { | 
 |     // Generate a [initial, 0, .., 0] vector for add or | 
 |     // a [initial, initial, .., initial] vector for min/max. | 
 |     HVecOperation* red_vector = new_red->AsVecOperation(); | 
 |     HVecReduce::ReductionKind kind = GetReductionKind(red_vector); | 
 |     uint32_t vector_length = red_vector->GetVectorLength(); | 
 |     DataType::Type type = red_vector->GetPackedType(); | 
 |     if (kind == HVecReduce::ReductionKind::kSum) { | 
 |       new_init = Insert(vector_preheader_, | 
 |                         new (global_allocator_) HVecSetScalars(global_allocator_, | 
 |                                                                &new_init, | 
 |                                                                type, | 
 |                                                                vector_length, | 
 |                                                                1, | 
 |                                                                kNoDexPc)); | 
 |     } else { | 
 |       new_init = Insert(vector_preheader_, | 
 |                         new (global_allocator_) HVecReplicateScalar(global_allocator_, | 
 |                                                                     new_init, | 
 |                                                                     type, | 
 |                                                                     vector_length, | 
 |                                                                     kNoDexPc)); | 
 |     } | 
 |   } else { | 
 |     new_init = ReduceAndExtractIfNeeded(new_init); | 
 |   } | 
 |   // Set the phi inputs. | 
 |   DCHECK(new_phi->IsPhi()); | 
 |   new_phi->AsPhi()->AddInput(new_init); | 
 |   new_phi->AsPhi()->AddInput(new_red); | 
 |   // New feed value for next phi (safe mutation in iteration). | 
 |   reductions_->find(phi)->second = new_phi; | 
 | } | 
 |  | 
 | HInstruction* HLoopOptimization::ReduceAndExtractIfNeeded(HInstruction* instruction) { | 
 |   if (instruction->IsPhi()) { | 
 |     HInstruction* input = instruction->InputAt(1); | 
 |     if (HVecOperation::ReturnsSIMDValue(input)) { | 
 |       DCHECK(!input->IsPhi()); | 
 |       HVecOperation* input_vector = input->AsVecOperation(); | 
 |       uint32_t vector_length = input_vector->GetVectorLength(); | 
 |       DataType::Type type = input_vector->GetPackedType(); | 
 |       HVecReduce::ReductionKind kind = GetReductionKind(input_vector); | 
 |       HBasicBlock* exit = instruction->GetBlock()->GetSuccessors()[0]; | 
 |       // Generate a vector reduction and scalar extract | 
 |       //    x = REDUCE( [x_1, .., x_n] ) | 
 |       //    y = x_1 | 
 |       // along the exit of the defining loop. | 
 |       HInstruction* reduce = new (global_allocator_) HVecReduce( | 
 |           global_allocator_, instruction, type, vector_length, kind, kNoDexPc); | 
 |       exit->InsertInstructionBefore(reduce, exit->GetFirstInstruction()); | 
 |       instruction = new (global_allocator_) HVecExtractScalar( | 
 |           global_allocator_, reduce, type, vector_length, 0, kNoDexPc); | 
 |       exit->InsertInstructionAfter(instruction, reduce); | 
 |     } | 
 |   } | 
 |   return instruction; | 
 | } | 
 |  | 
 | #define GENERATE_VEC(x, y) \ | 
 |   if (vector_mode_ == kVector) { \ | 
 |     vector = (x); \ | 
 |   } else { \ | 
 |     DCHECK(vector_mode_ == kSequential); \ | 
 |     vector = (y); \ | 
 |   } \ | 
 |   break; | 
 |  | 
 | void HLoopOptimization::GenerateVecOp(HInstruction* org, | 
 |                                       HInstruction* opa, | 
 |                                       HInstruction* opb, | 
 |                                       DataType::Type type) { | 
 |   uint32_t dex_pc = org->GetDexPc(); | 
 |   HInstruction* vector = nullptr; | 
 |   DataType::Type org_type = org->GetType(); | 
 |   switch (org->GetKind()) { | 
 |     case HInstruction::kNeg: | 
 |       DCHECK(opb == nullptr); | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HNeg(org_type, opa, dex_pc)); | 
 |     case HInstruction::kNot: | 
 |       DCHECK(opb == nullptr); | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HNot(org_type, opa, dex_pc)); | 
 |     case HInstruction::kBooleanNot: | 
 |       DCHECK(opb == nullptr); | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HBooleanNot(opa, dex_pc)); | 
 |     case HInstruction::kTypeConversion: | 
 |       DCHECK(opb == nullptr); | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HTypeConversion(org_type, opa, dex_pc)); | 
 |     case HInstruction::kAdd: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HAdd(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kSub: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HSub(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kMul: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HMul(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kDiv: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HDiv(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kAnd: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HAnd(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kOr: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HOr(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kXor: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HXor(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kShl: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HShl(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kShr: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HShr(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kUShr: | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HUShr(org_type, opa, opb, dex_pc)); | 
 |     case HInstruction::kAbs: | 
 |       DCHECK(opb == nullptr); | 
 |       GENERATE_VEC( | 
 |         new (global_allocator_) HVecAbs(global_allocator_, opa, type, vector_length_, dex_pc), | 
 |         new (global_allocator_) HAbs(org_type, opa, dex_pc)); | 
 |     default: | 
 |       break; | 
 |   }  // switch | 
 |   CHECK(vector != nullptr) << "Unsupported SIMD operator"; | 
 |   vector_map_->Put(org, vector); | 
 | } | 
 |  | 
 | #undef GENERATE_VEC | 
 |  | 
 | // | 
 | // Vectorization idioms. | 
 | // | 
 |  | 
 | // Method recognizes the following idioms: | 
 | //   rounding  halving add (a + b + 1) >> 1 for unsigned/signed operands a, b | 
 | //   truncated halving add (a + b)     >> 1 for unsigned/signed operands a, b | 
 | // Provided that the operands are promoted to a wider form to do the arithmetic and | 
 | // then cast back to narrower form, the idioms can be mapped into efficient SIMD | 
 | // implementation that operates directly in narrower form (plus one extra bit). | 
 | // TODO: current version recognizes implicit byte/short/char widening only; | 
 | //       explicit widening from int to long could be added later. | 
 | bool HLoopOptimization::VectorizeHalvingAddIdiom(LoopNode* node, | 
 |                                                  HInstruction* instruction, | 
 |                                                  bool generate_code, | 
 |                                                  DataType::Type type, | 
 |                                                  uint64_t restrictions) { | 
 |   // Test for top level arithmetic shift right x >> 1 or logical shift right x >>> 1 | 
 |   // (note whether the sign bit in wider precision is shifted in has no effect | 
 |   // on the narrow precision computed by the idiom). | 
 |   if ((instruction->IsShr() || | 
 |        instruction->IsUShr()) && | 
 |       IsInt64Value(instruction->InputAt(1), 1)) { | 
 |     // Test for (a + b + c) >> 1 for optional constant c. | 
 |     HInstruction* a = nullptr; | 
 |     HInstruction* b = nullptr; | 
 |     int64_t       c = 0; | 
 |     if (IsAddConst2(graph_, instruction->InputAt(0), /*out*/ &a, /*out*/ &b, /*out*/ &c)) { | 
 |       // Accept c == 1 (rounded) or c == 0 (not rounded). | 
 |       bool is_rounded = false; | 
 |       if (c == 1) { | 
 |         is_rounded = true; | 
 |       } else if (c != 0) { | 
 |         return false; | 
 |       } | 
 |       // Accept consistent zero or sign extension on operands a and b. | 
 |       HInstruction* r = nullptr; | 
 |       HInstruction* s = nullptr; | 
 |       bool is_unsigned = false; | 
 |       if (!IsNarrowerOperands(a, b, type, &r, &s, &is_unsigned)) { | 
 |         return false; | 
 |       } | 
 |       // Deal with vector restrictions. | 
 |       if ((!is_unsigned && HasVectorRestrictions(restrictions, kNoSignedHAdd)) || | 
 |           (!is_rounded && HasVectorRestrictions(restrictions, kNoUnroundedHAdd))) { | 
 |         return false; | 
 |       } | 
 |       // Accept recognized halving add for vectorizable operands. Vectorized code uses the | 
 |       // shorthand idiomatic operation. Sequential code uses the original scalar expressions. | 
 |       DCHECK(r != nullptr && s != nullptr); | 
 |       if (generate_code && vector_mode_ != kVector) {  // de-idiom | 
 |         r = instruction->InputAt(0); | 
 |         s = instruction->InputAt(1); | 
 |       } | 
 |       if (VectorizeUse(node, r, generate_code, type, restrictions) && | 
 |           VectorizeUse(node, s, generate_code, type, restrictions)) { | 
 |         if (generate_code) { | 
 |           if (vector_mode_ == kVector) { | 
 |             vector_map_->Put(instruction, new (global_allocator_) HVecHalvingAdd( | 
 |                 global_allocator_, | 
 |                 vector_map_->Get(r), | 
 |                 vector_map_->Get(s), | 
 |                 HVecOperation::ToProperType(type, is_unsigned), | 
 |                 vector_length_, | 
 |                 is_rounded, | 
 |                 kNoDexPc)); | 
 |             MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom); | 
 |           } else { | 
 |             GenerateVecOp(instruction, vector_map_->Get(r), vector_map_->Get(s), type); | 
 |           } | 
 |         } | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Method recognizes the following idiom: | 
 | //   q += ABS(a - b) for signed operands a, b | 
 | // Provided that the operands have the same type or are promoted to a wider form. | 
 | // Since this may involve a vector length change, the idiom is handled by going directly | 
 | // to a sad-accumulate node (rather than relying combining finer grained nodes later). | 
 | // TODO: unsigned SAD too? | 
 | bool HLoopOptimization::VectorizeSADIdiom(LoopNode* node, | 
 |                                           HInstruction* instruction, | 
 |                                           bool generate_code, | 
 |                                           DataType::Type reduction_type, | 
 |                                           uint64_t restrictions) { | 
 |   // Filter integral "q += ABS(a - b);" reduction, where ABS and SUB | 
 |   // are done in the same precision (either int or long). | 
 |   if (!instruction->IsAdd() || | 
 |       (reduction_type != DataType::Type::kInt32 && reduction_type != DataType::Type::kInt64)) { | 
 |     return false; | 
 |   } | 
 |   HInstruction* q = instruction->InputAt(0); | 
 |   HInstruction* v = instruction->InputAt(1); | 
 |   HInstruction* a = nullptr; | 
 |   HInstruction* b = nullptr; | 
 |   if (v->IsAbs() && | 
 |       v->GetType() == reduction_type && | 
 |       IsSubConst2(graph_, v->InputAt(0), /*out*/ &a, /*out*/ &b)) { | 
 |     DCHECK(a != nullptr && b != nullptr); | 
 |   } else { | 
 |     return false; | 
 |   } | 
 |   // Accept same-type or consistent sign extension for narrower-type on operands a and b. | 
 |   // The same-type or narrower operands are called r (a or lower) and s (b or lower). | 
 |   // We inspect the operands carefully to pick the most suited type. | 
 |   HInstruction* r = a; | 
 |   HInstruction* s = b; | 
 |   bool is_unsigned = false; | 
 |   DataType::Type sub_type = a->GetType(); | 
 |   if (DataType::Size(b->GetType()) < DataType::Size(sub_type)) { | 
 |     sub_type = b->GetType(); | 
 |   } | 
 |   if (a->IsTypeConversion() && | 
 |       DataType::Size(a->InputAt(0)->GetType()) < DataType::Size(sub_type)) { | 
 |     sub_type = a->InputAt(0)->GetType(); | 
 |   } | 
 |   if (b->IsTypeConversion() && | 
 |       DataType::Size(b->InputAt(0)->GetType()) < DataType::Size(sub_type)) { | 
 |     sub_type = b->InputAt(0)->GetType(); | 
 |   } | 
 |   if (reduction_type != sub_type && | 
 |       (!IsNarrowerOperands(a, b, sub_type, &r, &s, &is_unsigned) || is_unsigned)) { | 
 |     return false; | 
 |   } | 
 |   // Try same/narrower type and deal with vector restrictions. | 
 |   if (!TrySetVectorType(sub_type, &restrictions) || | 
 |       HasVectorRestrictions(restrictions, kNoSAD) || | 
 |       (reduction_type != sub_type && HasVectorRestrictions(restrictions, kNoWideSAD))) { | 
 |     return false; | 
 |   } | 
 |   // Accept SAD idiom for vectorizable operands. Vectorized code uses the shorthand | 
 |   // idiomatic operation. Sequential code uses the original scalar expressions. | 
 |   DCHECK(r != nullptr && s != nullptr); | 
 |   if (generate_code && vector_mode_ != kVector) {  // de-idiom | 
 |     r = s = v->InputAt(0); | 
 |   } | 
 |   if (VectorizeUse(node, q, generate_code, sub_type, restrictions) && | 
 |       VectorizeUse(node, r, generate_code, sub_type, restrictions) && | 
 |       VectorizeUse(node, s, generate_code, sub_type, restrictions)) { | 
 |     if (generate_code) { | 
 |       if (vector_mode_ == kVector) { | 
 |         vector_map_->Put(instruction, new (global_allocator_) HVecSADAccumulate( | 
 |             global_allocator_, | 
 |             vector_map_->Get(q), | 
 |             vector_map_->Get(r), | 
 |             vector_map_->Get(s), | 
 |             HVecOperation::ToProperType(reduction_type, is_unsigned), | 
 |             GetOtherVL(reduction_type, sub_type, vector_length_), | 
 |             kNoDexPc)); | 
 |         MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom); | 
 |       } else { | 
 |         GenerateVecOp(v, vector_map_->Get(r), nullptr, reduction_type); | 
 |         GenerateVecOp(instruction, vector_map_->Get(q), vector_map_->Get(v), reduction_type); | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // | 
 | // Vectorization heuristics. | 
 | // | 
 |  | 
 | Alignment HLoopOptimization::ComputeAlignment(HInstruction* offset, | 
 |                                               DataType::Type type, | 
 |                                               bool is_string_char_at, | 
 |                                               uint32_t peeling) { | 
 |   // Combine the alignment and hidden offset that is guaranteed by | 
 |   // the Android runtime with a known starting index adjusted as bytes. | 
 |   int64_t value = 0; | 
 |   if (IsInt64AndGet(offset, /*out*/ &value)) { | 
 |     uint32_t start_offset = | 
 |         HiddenOffset(type, is_string_char_at) + (value + peeling) * DataType::Size(type); | 
 |     return Alignment(BaseAlignment(), start_offset & (BaseAlignment() - 1u)); | 
 |   } | 
 |   // Otherwise, the Android runtime guarantees at least natural alignment. | 
 |   return Alignment(DataType::Size(type), 0); | 
 | } | 
 |  | 
 | void HLoopOptimization::SetAlignmentStrategy(uint32_t peeling_votes[], | 
 |                                              const ArrayReference* peeling_candidate) { | 
 |   // Current heuristic: pick the best static loop peeling factor, if any, | 
 |   // or otherwise use dynamic loop peeling on suggested peeling candidate. | 
 |   uint32_t max_vote = 0; | 
 |   for (int32_t i = 0; i < 16; i++) { | 
 |     if (peeling_votes[i] > max_vote) { | 
 |       max_vote = peeling_votes[i]; | 
 |       vector_static_peeling_factor_ = i; | 
 |     } | 
 |   } | 
 |   if (max_vote == 0) { | 
 |     vector_dynamic_peeling_candidate_ = peeling_candidate; | 
 |   } | 
 | } | 
 |  | 
 | uint32_t HLoopOptimization::MaxNumberPeeled() { | 
 |   if (vector_dynamic_peeling_candidate_ != nullptr) { | 
 |     return vector_length_ - 1u;  // worst-case | 
 |   } | 
 |   return vector_static_peeling_factor_;  // known exactly | 
 | } | 
 |  | 
 | bool HLoopOptimization::IsVectorizationProfitable(int64_t trip_count) { | 
 |   // Current heuristic: non-empty body with sufficient number of iterations (if known). | 
 |   // TODO: refine by looking at e.g. operation count, alignment, etc. | 
 |   // TODO: trip count is really unsigned entity, provided the guarding test | 
 |   //       is satisfied; deal with this more carefully later | 
 |   uint32_t max_peel = MaxNumberPeeled(); | 
 |   if (vector_length_ == 0) { | 
 |     return false;  // nothing found | 
 |   } else if (trip_count < 0) { | 
 |     return false;  // guard against non-taken/large | 
 |   } else if ((0 < trip_count) && (trip_count < (vector_length_ + max_peel))) { | 
 |     return false;  // insufficient iterations | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // | 
 | // Helpers. | 
 | // | 
 |  | 
 | bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) { | 
 |   // Start with empty phi induction. | 
 |   iset_->clear(); | 
 |  | 
 |   // Special case Phis that have equivalent in a debuggable setup. Our graph checker isn't | 
 |   // smart enough to follow strongly connected components (and it's probably not worth | 
 |   // it to make it so). See b/33775412. | 
 |   if (graph_->IsDebuggable() && phi->HasEquivalentPhi()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Lookup phi induction cycle. | 
 |   ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi); | 
 |   if (set != nullptr) { | 
 |     for (HInstruction* i : *set) { | 
 |       // Check that, other than instructions that are no longer in the graph (removed earlier) | 
 |       // each instruction is removable and, when restrict uses are requested, other than for phi, | 
 |       // all uses are contained within the cycle. | 
 |       if (!i->IsInBlock()) { | 
 |         continue; | 
 |       } else if (!i->IsRemovable()) { | 
 |         return false; | 
 |       } else if (i != phi && restrict_uses) { | 
 |         // Deal with regular uses. | 
 |         for (const HUseListNode<HInstruction*>& use : i->GetUses()) { | 
 |           if (set->find(use.GetUser()) == set->end()) { | 
 |             return false; | 
 |           } | 
 |         } | 
 |       } | 
 |       iset_->insert(i);  // copy | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool HLoopOptimization::TrySetPhiReduction(HPhi* phi) { | 
 |   DCHECK(iset_->empty()); | 
 |   // Only unclassified phi cycles are candidates for reductions. | 
 |   if (induction_range_.IsClassified(phi)) { | 
 |     return false; | 
 |   } | 
 |   // Accept operations like x = x + .., provided that the phi and the reduction are | 
 |   // used exactly once inside the loop, and by each other. | 
 |   HInputsRef inputs = phi->GetInputs(); | 
 |   if (inputs.size() == 2) { | 
 |     HInstruction* reduction = inputs[1]; | 
 |     if (HasReductionFormat(reduction, phi)) { | 
 |       HLoopInformation* loop_info = phi->GetBlock()->GetLoopInformation(); | 
 |       uint32_t use_count = 0; | 
 |       bool single_use_inside_loop = | 
 |           // Reduction update only used by phi. | 
 |           reduction->GetUses().HasExactlyOneElement() && | 
 |           !reduction->HasEnvironmentUses() && | 
 |           // Reduction update is only use of phi inside the loop. | 
 |           IsOnlyUsedAfterLoop(loop_info, phi, /*collect_loop_uses*/ true, &use_count) && | 
 |           iset_->size() == 1; | 
 |       iset_->clear();  // leave the way you found it | 
 |       if (single_use_inside_loop) { | 
 |         // Link reduction back, and start recording feed value. | 
 |         reductions_->Put(reduction, phi); | 
 |         reductions_->Put(phi, phi->InputAt(0)); | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block, /*out*/ HPhi** main_phi) { | 
 |   // Start with empty phi induction and reductions. | 
 |   iset_->clear(); | 
 |   reductions_->clear(); | 
 |  | 
 |   // Scan the phis to find the following (the induction structure has already | 
 |   // been optimized, so we don't need to worry about trivial cases): | 
 |   // (1) optional reductions in loop, | 
 |   // (2) the main induction, used in loop control. | 
 |   HPhi* phi = nullptr; | 
 |   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { | 
 |     if (TrySetPhiReduction(it.Current()->AsPhi())) { | 
 |       continue; | 
 |     } else if (phi == nullptr) { | 
 |       // Found the first candidate for main induction. | 
 |       phi = it.Current()->AsPhi(); | 
 |     } else { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // Then test for a typical loopheader: | 
 |   //   s:  SuspendCheck | 
 |   //   c:  Condition(phi, bound) | 
 |   //   i:  If(c) | 
 |   if (phi != nullptr && TrySetPhiInduction(phi, /*restrict_uses*/ false)) { | 
 |     HInstruction* s = block->GetFirstInstruction(); | 
 |     if (s != nullptr && s->IsSuspendCheck()) { | 
 |       HInstruction* c = s->GetNext(); | 
 |       if (c != nullptr && | 
 |           c->IsCondition() && | 
 |           c->GetUses().HasExactlyOneElement() &&  // only used for termination | 
 |           !c->HasEnvironmentUses()) {  // unlikely, but not impossible | 
 |         HInstruction* i = c->GetNext(); | 
 |         if (i != nullptr && i->IsIf() && i->InputAt(0) == c) { | 
 |           iset_->insert(c); | 
 |           iset_->insert(s); | 
 |           *main_phi = phi; | 
 |           return true; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) { | 
 |   if (!block->GetPhis().IsEmpty()) { | 
 |     return false; | 
 |   } | 
 |   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { | 
 |     HInstruction* instruction = it.Current(); | 
 |     if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info, | 
 |                                           HInstruction* instruction) { | 
 |   // Deal with regular uses. | 
 |   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { | 
 |     if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) { | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info, | 
 |                                             HInstruction* instruction, | 
 |                                             bool collect_loop_uses, | 
 |                                             /*out*/ uint32_t* use_count) { | 
 |   // Deal with regular uses. | 
 |   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) { | 
 |     HInstruction* user = use.GetUser(); | 
 |     if (iset_->find(user) == iset_->end()) {  // not excluded? | 
 |       HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation(); | 
 |       if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) { | 
 |         // If collect_loop_uses is set, simply keep adding those uses to the set. | 
 |         // Otherwise, reject uses inside the loop that were not already in the set. | 
 |         if (collect_loop_uses) { | 
 |           iset_->insert(user); | 
 |           continue; | 
 |         } | 
 |         return false; | 
 |       } | 
 |       ++*use_count; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool HLoopOptimization::TryReplaceWithLastValue(HLoopInformation* loop_info, | 
 |                                                 HInstruction* instruction, | 
 |                                                 HBasicBlock* block) { | 
 |   // Try to replace outside uses with the last value. | 
 |   if (induction_range_.CanGenerateLastValue(instruction)) { | 
 |     HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block); | 
 |     // Deal with regular uses. | 
 |     const HUseList<HInstruction*>& uses = instruction->GetUses(); | 
 |     for (auto it = uses.begin(), end = uses.end(); it != end;) { | 
 |       HInstruction* user = it->GetUser(); | 
 |       size_t index = it->GetIndex(); | 
 |       ++it;  // increment before replacing | 
 |       if (iset_->find(user) == iset_->end()) {  // not excluded? | 
 |         if (kIsDebugBuild) { | 
 |           // We have checked earlier in 'IsOnlyUsedAfterLoop' that the use is after the loop. | 
 |           HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation(); | 
 |           CHECK(other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info)); | 
 |         } | 
 |         user->ReplaceInput(replacement, index); | 
 |         induction_range_.Replace(user, instruction, replacement);  // update induction | 
 |       } | 
 |     } | 
 |     // Deal with environment uses. | 
 |     const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses(); | 
 |     for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) { | 
 |       HEnvironment* user = it->GetUser(); | 
 |       size_t index = it->GetIndex(); | 
 |       ++it;  // increment before replacing | 
 |       if (iset_->find(user->GetHolder()) == iset_->end()) {  // not excluded? | 
 |         // Only update environment uses after the loop. | 
 |         HLoopInformation* other_loop_info = user->GetHolder()->GetBlock()->GetLoopInformation(); | 
 |         if (other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info)) { | 
 |           user->RemoveAsUserOfInput(index); | 
 |           user->SetRawEnvAt(index, replacement); | 
 |           replacement->AddEnvUseAt(user, index); | 
 |         } | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info, | 
 |                                            HInstruction* instruction, | 
 |                                            HBasicBlock* block, | 
 |                                            bool collect_loop_uses) { | 
 |   // Assigning the last value is always successful if there are no uses. | 
 |   // Otherwise, it succeeds in a no early-exit loop by generating the | 
 |   // proper last value assignment. | 
 |   uint32_t use_count = 0; | 
 |   return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) && | 
 |       (use_count == 0 || | 
 |        (!IsEarlyExit(loop_info) && TryReplaceWithLastValue(loop_info, instruction, block))); | 
 | } | 
 |  | 
 | void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) { | 
 |   for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) { | 
 |     HInstruction* instruction = i.Current(); | 
 |     if (instruction->IsDeadAndRemovable()) { | 
 |       simplified_ = true; | 
 |       instruction->GetBlock()->RemoveInstructionOrPhi(instruction); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool HLoopOptimization::CanRemoveCycle() { | 
 |   for (HInstruction* i : *iset_) { | 
 |     // We can never remove instructions that have environment | 
 |     // uses when we compile 'debuggable'. | 
 |     if (i->HasEnvironmentUses() && graph_->IsDebuggable()) { | 
 |       return false; | 
 |     } | 
 |     // A deoptimization should never have an environment input removed. | 
 |     for (const HUseListNode<HEnvironment*>& use : i->GetEnvUses()) { | 
 |       if (use.GetUser()->GetHolder()->IsDeoptimize()) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | }  // namespace art |