blob: e2a0942724055067fcdd4b7b219556d9c49334e2 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_COMPILED_METHOD_H_
#define ART_COMPILER_COMPILED_METHOD_H_
#include <memory>
#include <iosfwd>
#include <string>
#include <vector>
#include "arch/instruction_set.h"
#include "base/array_ref.h"
#include "base/bit_utils.h"
#include "base/length_prefixed_array.h"
#include "dex_file_types.h"
#include "method_reference.h"
namespace art {
class CompilerDriver;
class CompiledMethodStorage;
class CompiledCode {
public:
// For Quick to supply an code blob
CompiledCode(CompilerDriver* compiler_driver, InstructionSet instruction_set,
const ArrayRef<const uint8_t>& quick_code);
virtual ~CompiledCode();
InstructionSet GetInstructionSet() const {
return instruction_set_;
}
ArrayRef<const uint8_t> GetQuickCode() const {
return GetArray(quick_code_);
}
bool operator==(const CompiledCode& rhs) const;
// To align an offset from a page-aligned value to make it suitable
// for code storage. For example on ARM, to ensure that PC relative
// valu computations work out as expected.
size_t AlignCode(size_t offset) const;
static size_t AlignCode(size_t offset, InstructionSet instruction_set);
// returns the difference between the code address and a usable PC.
// mainly to cope with kThumb2 where the lower bit must be set.
size_t CodeDelta() const;
static size_t CodeDelta(InstructionSet instruction_set);
// Returns a pointer suitable for invoking the code at the argument
// code_pointer address. Mainly to cope with kThumb2 where the
// lower bit must be set to indicate Thumb mode.
static const void* CodePointer(const void* code_pointer,
InstructionSet instruction_set);
protected:
template <typename T>
static ArrayRef<const T> GetArray(const LengthPrefixedArray<T>* array) {
if (array == nullptr) {
return ArrayRef<const T>();
}
DCHECK_NE(array->size(), 0u);
return ArrayRef<const T>(&array->At(0), array->size());
}
CompilerDriver* GetCompilerDriver() {
return compiler_driver_;
}
private:
CompilerDriver* const compiler_driver_;
const InstructionSet instruction_set_;
// Used to store the PIC code for Quick.
const LengthPrefixedArray<uint8_t>* const quick_code_;
};
class SrcMapElem {
public:
uint32_t from_;
int32_t to_;
};
inline bool operator<(const SrcMapElem& lhs, const SrcMapElem& rhs) {
if (lhs.from_ != rhs.from_) {
return lhs.from_ < rhs.from_;
}
return lhs.to_ < rhs.to_;
}
inline bool operator==(const SrcMapElem& lhs, const SrcMapElem& rhs) {
return lhs.from_ == rhs.from_ && lhs.to_ == rhs.to_;
}
template <class Allocator>
class SrcMap FINAL : public std::vector<SrcMapElem, Allocator> {
public:
using std::vector<SrcMapElem, Allocator>::begin;
using typename std::vector<SrcMapElem, Allocator>::const_iterator;
using std::vector<SrcMapElem, Allocator>::empty;
using std::vector<SrcMapElem, Allocator>::end;
using std::vector<SrcMapElem, Allocator>::resize;
using std::vector<SrcMapElem, Allocator>::shrink_to_fit;
using std::vector<SrcMapElem, Allocator>::size;
explicit SrcMap() {}
explicit SrcMap(const Allocator& alloc) : std::vector<SrcMapElem, Allocator>(alloc) {}
template <class InputIt>
SrcMap(InputIt first, InputIt last, const Allocator& alloc)
: std::vector<SrcMapElem, Allocator>(first, last, alloc) {}
void push_back(const SrcMapElem& elem) {
if (!empty()) {
// Check that the addresses are inserted in sorted order.
DCHECK_GE(elem.from_, this->back().from_);
// If two consequitive entries map to the same value, ignore the later.
// E.g. for map {{0, 1}, {4, 1}, {8, 2}}, all values in [0,8) map to 1.
if (elem.to_ == this->back().to_) {
return;
}
}
std::vector<SrcMapElem, Allocator>::push_back(elem);
}
// Returns true and the corresponding "to" value if the mapping is found.
// Oterwise returns false and 0.
std::pair<bool, int32_t> Find(uint32_t from) const {
// Finds first mapping such that lb.from_ >= from.
auto lb = std::lower_bound(begin(), end(), SrcMapElem {from, INT32_MIN});
if (lb != end() && lb->from_ == from) {
// Found exact match.
return std::make_pair(true, lb->to_);
} else if (lb != begin()) {
// The previous mapping is still in effect.
return std::make_pair(true, (--lb)->to_);
} else {
// Not found because 'from' is smaller than first entry in the map.
return std::make_pair(false, 0);
}
}
};
using DefaultSrcMap = SrcMap<std::allocator<SrcMapElem>>;
class LinkerPatch {
public:
// Note: We explicitly specify the underlying type of the enum because GCC
// would otherwise select a bigger underlying type and then complain that
// 'art::LinkerPatch::patch_type_' is too small to hold all
// values of 'enum class art::LinkerPatch::Type'
// which is ridiculous given we have only a handful of values here. If we
// choose to squeeze the Type into fewer than 8 bits, we'll have to declare
// patch_type_ as an uintN_t and do explicit static_cast<>s.
enum class Type : uint8_t {
kRecordPosition, // Just record patch position for patchoat.
kMethod,
kCall,
kCallRelative, // NOTE: Actual patching is instruction_set-dependent.
kType,
kTypeRelative, // NOTE: Actual patching is instruction_set-dependent.
kTypeBssEntry, // NOTE: Actual patching is instruction_set-dependent.
kString,
kStringRelative, // NOTE: Actual patching is instruction_set-dependent.
kStringBssEntry, // NOTE: Actual patching is instruction_set-dependent.
kDexCacheArray, // NOTE: Actual patching is instruction_set-dependent.
};
static LinkerPatch RecordPosition(size_t literal_offset) {
return LinkerPatch(literal_offset, Type::kRecordPosition, /* target_dex_file */ nullptr);
}
static LinkerPatch MethodPatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t target_method_idx) {
LinkerPatch patch(literal_offset, Type::kMethod, target_dex_file);
patch.method_idx_ = target_method_idx;
return patch;
}
static LinkerPatch CodePatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t target_method_idx) {
LinkerPatch patch(literal_offset, Type::kCall, target_dex_file);
patch.method_idx_ = target_method_idx;
return patch;
}
static LinkerPatch RelativeCodePatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t target_method_idx) {
LinkerPatch patch(literal_offset, Type::kCallRelative, target_dex_file);
patch.method_idx_ = target_method_idx;
return patch;
}
static LinkerPatch TypePatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t target_type_idx) {
LinkerPatch patch(literal_offset, Type::kType, target_dex_file);
patch.type_idx_ = target_type_idx;
return patch;
}
static LinkerPatch RelativeTypePatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t pc_insn_offset,
uint32_t target_type_idx) {
LinkerPatch patch(literal_offset, Type::kTypeRelative, target_dex_file);
patch.type_idx_ = target_type_idx;
patch.pc_insn_offset_ = pc_insn_offset;
return patch;
}
static LinkerPatch TypeBssEntryPatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t pc_insn_offset,
uint32_t target_type_idx) {
LinkerPatch patch(literal_offset, Type::kTypeBssEntry, target_dex_file);
patch.type_idx_ = target_type_idx;
patch.pc_insn_offset_ = pc_insn_offset;
return patch;
}
static LinkerPatch StringPatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t target_string_idx) {
LinkerPatch patch(literal_offset, Type::kString, target_dex_file);
patch.string_idx_ = target_string_idx;
return patch;
}
static LinkerPatch RelativeStringPatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t pc_insn_offset,
uint32_t target_string_idx) {
LinkerPatch patch(literal_offset, Type::kStringRelative, target_dex_file);
patch.string_idx_ = target_string_idx;
patch.pc_insn_offset_ = pc_insn_offset;
return patch;
}
static LinkerPatch StringBssEntryPatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t pc_insn_offset,
uint32_t target_string_idx) {
LinkerPatch patch(literal_offset, Type::kStringBssEntry, target_dex_file);
patch.string_idx_ = target_string_idx;
patch.pc_insn_offset_ = pc_insn_offset;
return patch;
}
static LinkerPatch DexCacheArrayPatch(size_t literal_offset,
const DexFile* target_dex_file,
uint32_t pc_insn_offset,
uint32_t element_offset) {
DCHECK(IsUint<32>(element_offset));
LinkerPatch patch(literal_offset, Type::kDexCacheArray, target_dex_file);
patch.pc_insn_offset_ = pc_insn_offset;
patch.element_offset_ = element_offset;
return patch;
}
LinkerPatch(const LinkerPatch& other) = default;
LinkerPatch& operator=(const LinkerPatch& other) = default;
size_t LiteralOffset() const {
return literal_offset_;
}
Type GetType() const {
return patch_type_;
}
bool IsPcRelative() const {
switch (GetType()) {
case Type::kCallRelative:
case Type::kTypeRelative:
case Type::kTypeBssEntry:
case Type::kStringRelative:
case Type::kStringBssEntry:
case Type::kDexCacheArray:
return true;
default:
return false;
}
}
MethodReference TargetMethod() const {
DCHECK(patch_type_ == Type::kMethod ||
patch_type_ == Type::kCall ||
patch_type_ == Type::kCallRelative);
return MethodReference(target_dex_file_, method_idx_);
}
const DexFile* TargetTypeDexFile() const {
DCHECK(patch_type_ == Type::kType ||
patch_type_ == Type::kTypeRelative ||
patch_type_ == Type::kTypeBssEntry);
return target_dex_file_;
}
dex::TypeIndex TargetTypeIndex() const {
DCHECK(patch_type_ == Type::kType ||
patch_type_ == Type::kTypeRelative ||
patch_type_ == Type::kTypeBssEntry);
return dex::TypeIndex(type_idx_);
}
const DexFile* TargetStringDexFile() const {
DCHECK(patch_type_ == Type::kString ||
patch_type_ == Type::kStringRelative ||
patch_type_ == Type::kStringBssEntry);
return target_dex_file_;
}
dex::StringIndex TargetStringIndex() const {
DCHECK(patch_type_ == Type::kString ||
patch_type_ == Type::kStringRelative ||
patch_type_ == Type::kStringBssEntry);
return dex::StringIndex(string_idx_);
}
const DexFile* TargetDexCacheDexFile() const {
DCHECK(patch_type_ == Type::kDexCacheArray);
return target_dex_file_;
}
size_t TargetDexCacheElementOffset() const {
DCHECK(patch_type_ == Type::kDexCacheArray);
return element_offset_;
}
uint32_t PcInsnOffset() const {
DCHECK(patch_type_ == Type::kTypeRelative ||
patch_type_ == Type::kTypeBssEntry ||
patch_type_ == Type::kStringRelative ||
patch_type_ == Type::kStringBssEntry ||
patch_type_ == Type::kDexCacheArray);
return pc_insn_offset_;
}
private:
LinkerPatch(size_t literal_offset, Type patch_type, const DexFile* target_dex_file)
: target_dex_file_(target_dex_file),
literal_offset_(literal_offset),
patch_type_(patch_type) {
cmp1_ = 0u;
cmp2_ = 0u;
// The compiler rejects methods that are too big, so the compiled code
// of a single method really shouln't be anywhere close to 16MiB.
DCHECK(IsUint<24>(literal_offset));
}
const DexFile* target_dex_file_;
uint32_t literal_offset_ : 24; // Method code size up to 16MiB.
Type patch_type_ : 8;
union {
uint32_t cmp1_; // Used for relational operators.
uint32_t method_idx_; // Method index for Call/Method patches.
uint32_t type_idx_; // Type index for Type patches.
uint32_t string_idx_; // String index for String patches.
uint32_t element_offset_; // Element offset in the dex cache arrays.
static_assert(sizeof(method_idx_) == sizeof(cmp1_), "needed by relational operators");
static_assert(sizeof(type_idx_) == sizeof(cmp1_), "needed by relational operators");
static_assert(sizeof(string_idx_) == sizeof(cmp1_), "needed by relational operators");
static_assert(sizeof(element_offset_) == sizeof(cmp1_), "needed by relational operators");
};
union {
// Note: To avoid uninitialized padding on 64-bit systems, we use `size_t` for `cmp2_`.
// This allows a hashing function to treat an array of linker patches as raw memory.
size_t cmp2_; // Used for relational operators.
// Literal offset of the insn loading PC (same as literal_offset if it's the same insn,
// may be different if the PC-relative addressing needs multiple insns).
uint32_t pc_insn_offset_;
static_assert(sizeof(pc_insn_offset_) <= sizeof(cmp2_), "needed by relational operators");
};
friend bool operator==(const LinkerPatch& lhs, const LinkerPatch& rhs);
friend bool operator<(const LinkerPatch& lhs, const LinkerPatch& rhs);
};
std::ostream& operator<<(std::ostream& os, const LinkerPatch::Type& type);
inline bool operator==(const LinkerPatch& lhs, const LinkerPatch& rhs) {
return lhs.literal_offset_ == rhs.literal_offset_ &&
lhs.patch_type_ == rhs.patch_type_ &&
lhs.target_dex_file_ == rhs.target_dex_file_ &&
lhs.cmp1_ == rhs.cmp1_ &&
lhs.cmp2_ == rhs.cmp2_;
}
inline bool operator<(const LinkerPatch& lhs, const LinkerPatch& rhs) {
return (lhs.literal_offset_ != rhs.literal_offset_) ? lhs.literal_offset_ < rhs.literal_offset_
: (lhs.patch_type_ != rhs.patch_type_) ? lhs.patch_type_ < rhs.patch_type_
: (lhs.target_dex_file_ != rhs.target_dex_file_) ? lhs.target_dex_file_ < rhs.target_dex_file_
: (lhs.cmp1_ != rhs.cmp1_) ? lhs.cmp1_ < rhs.cmp1_
: lhs.cmp2_ < rhs.cmp2_;
}
class CompiledMethod FINAL : public CompiledCode {
public:
// Constructs a CompiledMethod.
// Note: Consider using the static allocation methods below that will allocate the CompiledMethod
// in the swap space.
CompiledMethod(CompilerDriver* driver,
InstructionSet instruction_set,
const ArrayRef<const uint8_t>& quick_code,
const size_t frame_size_in_bytes,
const uint32_t core_spill_mask,
const uint32_t fp_spill_mask,
const ArrayRef<const SrcMapElem>& src_mapping_table,
const ArrayRef<const uint8_t>& vmap_table,
const ArrayRef<const uint8_t>& cfi_info,
const ArrayRef<const LinkerPatch>& patches);
virtual ~CompiledMethod();
static CompiledMethod* SwapAllocCompiledMethod(
CompilerDriver* driver,
InstructionSet instruction_set,
const ArrayRef<const uint8_t>& quick_code,
const size_t frame_size_in_bytes,
const uint32_t core_spill_mask,
const uint32_t fp_spill_mask,
const ArrayRef<const SrcMapElem>& src_mapping_table,
const ArrayRef<const uint8_t>& vmap_table,
const ArrayRef<const uint8_t>& cfi_info,
const ArrayRef<const LinkerPatch>& patches);
static void ReleaseSwapAllocatedCompiledMethod(CompilerDriver* driver, CompiledMethod* m);
size_t GetFrameSizeInBytes() const {
return frame_size_in_bytes_;
}
uint32_t GetCoreSpillMask() const {
return core_spill_mask_;
}
uint32_t GetFpSpillMask() const {
return fp_spill_mask_;
}
ArrayRef<const SrcMapElem> GetSrcMappingTable() const {
return GetArray(src_mapping_table_);
}
ArrayRef<const uint8_t> GetVmapTable() const {
return GetArray(vmap_table_);
}
ArrayRef<const uint8_t> GetCFIInfo() const {
return GetArray(cfi_info_);
}
ArrayRef<const LinkerPatch> GetPatches() const {
return GetArray(patches_);
}
private:
// For quick code, the size of the activation used by the code.
const size_t frame_size_in_bytes_;
// For quick code, a bit mask describing spilled GPR callee-save registers.
const uint32_t core_spill_mask_;
// For quick code, a bit mask describing spilled FPR callee-save registers.
const uint32_t fp_spill_mask_;
// For quick code, a set of pairs (PC, DEX) mapping from native PC offset to DEX offset.
const LengthPrefixedArray<SrcMapElem>* const src_mapping_table_;
// For quick code, a uleb128 encoded map from GPR/FPR register to dex register. Size prefixed.
const LengthPrefixedArray<uint8_t>* const vmap_table_;
// For quick code, a FDE entry for the debug_frame section.
const LengthPrefixedArray<uint8_t>* const cfi_info_;
// For quick code, linker patches needed by the method.
const LengthPrefixedArray<LinkerPatch>* const patches_;
};
} // namespace art
#endif // ART_COMPILER_COMPILED_METHOD_H_