blob: d52ec0ad5a0f917541647fc3224a95b6907acc4f [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image.h"
#include <memory>
#include <string>
#include <vector>
#include "common_compiler_test.h"
#include "compiler/elf_fixup.h"
#include "compiler/image_writer.h"
#include "compiler/oat_writer.h"
#include "gc/space/image_space.h"
#include "lock_word.h"
#include "mirror/object-inl.h"
#include "signal_catcher.h"
#include "utils.h"
#include "vector_output_stream.h"
namespace art {
class ImageTest : public CommonCompilerTest {
protected:
virtual void SetUp() {
ReserveImageSpace();
CommonCompilerTest::SetUp();
}
};
TEST_F(ImageTest, WriteRead) {
// Create a generic location tmp file, to be the base of the .art and .oat temporary files.
ScratchFile location;
ScratchFile image_location(location, ".art");
std::string image_filename(GetSystemImageFilename(image_location.GetFilename().c_str(),
kRuntimeISA));
size_t pos = image_filename.rfind('/');
CHECK_NE(pos, std::string::npos) << image_filename;
std::string image_dir(image_filename, 0, pos);
int mkdir_result = mkdir(image_dir.c_str(), 0700);
CHECK_EQ(0, mkdir_result) << image_dir;
ScratchFile image_file(OS::CreateEmptyFile(image_filename.c_str()));
std::string oat_filename(image_filename, 0, image_filename.size() - 3);
oat_filename += "oat";
ScratchFile oat_file(OS::CreateEmptyFile(oat_filename.c_str()));
{
{
jobject class_loader = NULL;
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
TimingLogger timings("ImageTest::WriteRead", false, false);
TimingLogger::ScopedTiming t("CompileAll", &timings);
if (kUsePortableCompiler) {
// TODO: we disable this for portable so the test executes in a reasonable amount of time.
// We shouldn't need to do this.
compiler_options_->SetCompilerFilter(CompilerOptions::kInterpretOnly);
}
for (const DexFile* dex_file : class_linker->GetBootClassPath()) {
dex_file->EnableWrite();
}
compiler_driver_->CompileAll(class_loader, class_linker->GetBootClassPath(), &timings);
t.NewTiming("WriteElf");
ScopedObjectAccess soa(Thread::Current());
OatWriter oat_writer(class_linker->GetBootClassPath(),
0, 0, "", compiler_driver_.get(), &timings);
bool success = compiler_driver_->WriteElf(GetTestAndroidRoot(),
!kIsTargetBuild,
class_linker->GetBootClassPath(),
&oat_writer,
oat_file.GetFile());
ASSERT_TRUE(success);
}
}
// Workound bug that mcld::Linker::emit closes oat_file by reopening as dup_oat.
std::unique_ptr<File> dup_oat(OS::OpenFileReadWrite(oat_file.GetFilename().c_str()));
ASSERT_TRUE(dup_oat.get() != NULL);
const uintptr_t requested_image_base = ART_BASE_ADDRESS;
{
ImageWriter writer(*compiler_driver_.get());
bool success_image = writer.Write(image_file.GetFilename(), requested_image_base,
dup_oat->GetPath(), dup_oat->GetPath());
ASSERT_TRUE(success_image);
bool success_fixup = ElfFixup::Fixup(dup_oat.get(), writer.GetOatDataBegin());
ASSERT_TRUE(success_fixup);
}
{
std::unique_ptr<File> file(OS::OpenFileForReading(image_file.GetFilename().c_str()));
ASSERT_TRUE(file.get() != NULL);
ImageHeader image_header;
file->ReadFully(&image_header, sizeof(image_header));
ASSERT_TRUE(image_header.IsValid());
ASSERT_GE(image_header.GetImageBitmapOffset(), sizeof(image_header));
ASSERT_NE(0U, image_header.GetImageBitmapSize());
gc::Heap* heap = Runtime::Current()->GetHeap();
ASSERT_TRUE(!heap->GetContinuousSpaces().empty());
gc::space::ContinuousSpace* space = heap->GetNonMovingSpace();
ASSERT_FALSE(space->IsImageSpace());
ASSERT_TRUE(space != NULL);
ASSERT_TRUE(space->IsMallocSpace());
ASSERT_GE(sizeof(image_header) + space->Size(), static_cast<size_t>(file->GetLength()));
}
ASSERT_TRUE(compiler_driver_->GetImageClasses() != NULL);
CompilerDriver::DescriptorSet image_classes(*compiler_driver_->GetImageClasses());
// Need to delete the compiler since it has worker threads which are attached to runtime.
compiler_driver_.reset();
// Tear down old runtime before making a new one, clearing out misc state.
runtime_.reset();
java_lang_dex_file_ = NULL;
std::unique_ptr<const DexFile> dex(LoadExpectSingleDexFile(GetLibCoreDexFileName().c_str()));
// Remove the reservation of the memory for use to load the image.
UnreserveImageSpace();
Runtime::Options options;
std::string image("-Ximage:");
image.append(image_location.GetFilename());
options.push_back(std::make_pair(image.c_str(), reinterpret_cast<void*>(NULL)));
if (!Runtime::Create(options, false)) {
LOG(FATAL) << "Failed to create runtime";
return;
}
runtime_.reset(Runtime::Current());
// Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start,
// give it away now and then switch to a more managable ScopedObjectAccess.
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
ScopedObjectAccess soa(Thread::Current());
ASSERT_TRUE(runtime_.get() != NULL);
class_linker_ = runtime_->GetClassLinker();
gc::Heap* heap = Runtime::Current()->GetHeap();
ASSERT_TRUE(heap->HasImageSpace());
ASSERT_TRUE(heap->GetNonMovingSpace()->IsMallocSpace());
gc::space::ImageSpace* image_space = heap->GetImageSpace();
image_space->VerifyImageAllocations();
byte* image_begin = image_space->Begin();
byte* image_end = image_space->End();
CHECK_EQ(requested_image_base, reinterpret_cast<uintptr_t>(image_begin));
for (size_t i = 0; i < dex->NumClassDefs(); ++i) {
const DexFile::ClassDef& class_def = dex->GetClassDef(i);
const char* descriptor = dex->GetClassDescriptor(class_def);
mirror::Class* klass = class_linker_->FindSystemClass(soa.Self(), descriptor);
EXPECT_TRUE(klass != nullptr) << descriptor;
if (image_classes.find(descriptor) != image_classes.end()) {
// Image classes should be located inside the image.
EXPECT_LT(image_begin, reinterpret_cast<byte*>(klass)) << descriptor;
EXPECT_LT(reinterpret_cast<byte*>(klass), image_end) << descriptor;
} else {
EXPECT_TRUE(reinterpret_cast<byte*>(klass) >= image_end ||
reinterpret_cast<byte*>(klass) < image_begin) << descriptor;
}
EXPECT_TRUE(Monitor::IsValidLockWord(klass->GetLockWord(false)));
}
image_file.Unlink();
oat_file.Unlink();
int rmdir_result = rmdir(image_dir.c_str());
CHECK_EQ(0, rmdir_result);
}
TEST_F(ImageTest, ImageHeaderIsValid) {
uint32_t image_begin = ART_BASE_ADDRESS;
uint32_t image_size_ = 16 * KB;
uint32_t image_bitmap_offset = 0;
uint32_t image_bitmap_size = 0;
uint32_t image_roots = ART_BASE_ADDRESS + (1 * KB);
uint32_t oat_checksum = 0;
uint32_t oat_file_begin = ART_BASE_ADDRESS + (4 * KB); // page aligned
uint32_t oat_data_begin = ART_BASE_ADDRESS + (8 * KB); // page aligned
uint32_t oat_data_end = ART_BASE_ADDRESS + (9 * KB);
uint32_t oat_file_end = ART_BASE_ADDRESS + (10 * KB);
ImageHeader image_header(image_begin,
image_size_,
image_bitmap_offset,
image_bitmap_size,
image_roots,
oat_checksum,
oat_file_begin,
oat_data_begin,
oat_data_end,
oat_file_end);
ASSERT_TRUE(image_header.IsValid());
char* magic = const_cast<char*>(image_header.GetMagic());
strcpy(magic, ""); // bad magic
ASSERT_FALSE(image_header.IsValid());
strcpy(magic, "art\n000"); // bad version
ASSERT_FALSE(image_header.IsValid());
}
} // namespace art