| /* | 
 |  * Copyright (C) 2015 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include "code_generator_mips.h" | 
 |  | 
 | #include "arch/mips/asm_support_mips.h" | 
 | #include "arch/mips/entrypoints_direct_mips.h" | 
 | #include "arch/mips/instruction_set_features_mips.h" | 
 | #include "art_method.h" | 
 | #include "class_table.h" | 
 | #include "code_generator_utils.h" | 
 | #include "compiled_method.h" | 
 | #include "entrypoints/quick/quick_entrypoints.h" | 
 | #include "entrypoints/quick/quick_entrypoints_enum.h" | 
 | #include "gc/accounting/card_table.h" | 
 | #include "heap_poisoning.h" | 
 | #include "intrinsics.h" | 
 | #include "intrinsics_mips.h" | 
 | #include "linker/linker_patch.h" | 
 | #include "mirror/array-inl.h" | 
 | #include "mirror/class-inl.h" | 
 | #include "offsets.h" | 
 | #include "stack_map_stream.h" | 
 | #include "thread.h" | 
 | #include "utils/assembler.h" | 
 | #include "utils/mips/assembler_mips.h" | 
 | #include "utils/stack_checks.h" | 
 |  | 
 | namespace art { | 
 | namespace mips { | 
 |  | 
 | static constexpr int kCurrentMethodStackOffset = 0; | 
 | static constexpr Register kMethodRegisterArgument = A0; | 
 |  | 
 | // Flags controlling the use of thunks for Baker read barriers. | 
 | constexpr bool kBakerReadBarrierThunksEnableForFields = true; | 
 | constexpr bool kBakerReadBarrierThunksEnableForArrays = true; | 
 | constexpr bool kBakerReadBarrierThunksEnableForGcRoots = true; | 
 |  | 
 | Location MipsReturnLocation(DataType::Type return_type) { | 
 |   switch (return_type) { | 
 |     case DataType::Type::kReference: | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |     case DataType::Type::kUint32: | 
 |     case DataType::Type::kInt32: | 
 |       return Location::RegisterLocation(V0); | 
 |  | 
 |     case DataType::Type::kUint64: | 
 |     case DataType::Type::kInt64: | 
 |       return Location::RegisterPairLocation(V0, V1); | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       return Location::FpuRegisterLocation(F0); | 
 |  | 
 |     case DataType::Type::kVoid: | 
 |       return Location(); | 
 |   } | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(DataType::Type type) const { | 
 |   return MipsReturnLocation(type); | 
 | } | 
 |  | 
 | Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const { | 
 |   return Location::RegisterLocation(kMethodRegisterArgument); | 
 | } | 
 |  | 
 | Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(DataType::Type type) { | 
 |   Location next_location; | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kReference: | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |     case DataType::Type::kInt32: { | 
 |       uint32_t gp_index = gp_index_++; | 
 |       if (gp_index < calling_convention.GetNumberOfRegisters()) { | 
 |         next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index)); | 
 |       } else { | 
 |         size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); | 
 |         next_location = Location::StackSlot(stack_offset); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       uint32_t gp_index = gp_index_; | 
 |       gp_index_ += 2; | 
 |       if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) { | 
 |         Register reg = calling_convention.GetRegisterAt(gp_index); | 
 |         if (reg == A1 || reg == A3) { | 
 |           gp_index_++;  // Skip A1(A3), and use A2_A3(T0_T1) instead. | 
 |           gp_index++; | 
 |         } | 
 |         Register low_even = calling_convention.GetRegisterAt(gp_index); | 
 |         Register high_odd = calling_convention.GetRegisterAt(gp_index + 1); | 
 |         DCHECK_EQ(low_even + 1, high_odd); | 
 |         next_location = Location::RegisterPairLocation(low_even, high_odd); | 
 |       } else { | 
 |         size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); | 
 |         next_location = Location::DoubleStackSlot(stack_offset); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     // Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double | 
 |     // will take up the even/odd pair, while floats are stored in even regs only. | 
 |     // On 64 bit FPU, both double and float are stored in even registers only. | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       uint32_t float_index = float_index_++; | 
 |       if (float_index < calling_convention.GetNumberOfFpuRegisters()) { | 
 |         next_location = Location::FpuRegisterLocation( | 
 |             calling_convention.GetFpuRegisterAt(float_index)); | 
 |       } else { | 
 |         size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); | 
 |         next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) | 
 |                                                     : Location::StackSlot(stack_offset); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kUint32: | 
 |     case DataType::Type::kUint64: | 
 |     case DataType::Type::kVoid: | 
 |       LOG(FATAL) << "Unexpected parameter type " << type; | 
 |       break; | 
 |   } | 
 |  | 
 |   // Space on the stack is reserved for all arguments. | 
 |   stack_index_ += DataType::Is64BitType(type) ? 2 : 1; | 
 |  | 
 |   return next_location; | 
 | } | 
 |  | 
 | Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type type) { | 
 |   return MipsReturnLocation(type); | 
 | } | 
 |  | 
 | // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. | 
 | #define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()->  // NOLINT | 
 | #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value() | 
 |  | 
 | class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : SlowPathCodeMIPS(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     if (instruction_->CanThrowIntoCatchBlock()) { | 
 |       // Live registers will be restored in the catch block if caught. | 
 |       SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     } | 
 |     // We're moving two locations to locations that could overlap, so we need a parallel | 
 |     // move resolver. | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     codegen->EmitParallelMoves(locations->InAt(0), | 
 |                                Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |                                DataType::Type::kInt32, | 
 |                                locations->InAt(1), | 
 |                                Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
 |                                DataType::Type::kInt32); | 
 |     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() | 
 |         ? kQuickThrowStringBounds | 
 |         : kQuickThrowArrayBounds; | 
 |     mips_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); | 
 |     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); | 
 |   } | 
 |  | 
 |   bool IsFatal() const OVERRIDE { return true; } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathMIPS"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS); | 
 | }; | 
 |  | 
 | class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : SlowPathCodeMIPS(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     mips_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); | 
 |   } | 
 |  | 
 |   bool IsFatal() const OVERRIDE { return true; } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathMIPS"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS); | 
 | }; | 
 |  | 
 | class LoadClassSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   LoadClassSlowPathMIPS(HLoadClass* cls, | 
 |                         HInstruction* at, | 
 |                         uint32_t dex_pc, | 
 |                         bool do_clinit) | 
 |       : SlowPathCodeMIPS(at), | 
 |         cls_(cls), | 
 |         dex_pc_(dex_pc), | 
 |         do_clinit_(do_clinit) { | 
 |     DCHECK(at->IsLoadClass() || at->IsClinitCheck()); | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Location out = locations->Out(); | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     dex::TypeIndex type_index = cls_->GetTypeIndex(); | 
 |     __ LoadConst32(calling_convention.GetRegisterAt(0), type_index.index_); | 
 |     QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage | 
 |                                                 : kQuickInitializeType; | 
 |     mips_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this); | 
 |     if (do_clinit_) { | 
 |       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); | 
 |     } else { | 
 |       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); | 
 |     } | 
 |  | 
 |     // Move the class to the desired location. | 
 |     if (out.IsValid()) { | 
 |       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); | 
 |       DataType::Type type = instruction_->GetType(); | 
 |       mips_codegen->MoveLocation(out, | 
 |                                  Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |                                  type); | 
 |     } | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |  | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathMIPS"; } | 
 |  | 
 |  private: | 
 |   // The class this slow path will load. | 
 |   HLoadClass* const cls_; | 
 |  | 
 |   // The dex PC of `at_`. | 
 |   const uint32_t dex_pc_; | 
 |  | 
 |   // Whether to initialize the class. | 
 |   const bool do_clinit_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS); | 
 | }; | 
 |  | 
 | class LoadStringSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   explicit LoadStringSlowPathMIPS(HLoadString* instruction) | 
 |       : SlowPathCodeMIPS(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     DCHECK(instruction_->IsLoadString()); | 
 |     DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry); | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
 |     const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     __ LoadConst32(calling_convention.GetRegisterAt(0), string_index.index_); | 
 |     mips_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); | 
 |  | 
 |     DataType::Type type = instruction_->GetType(); | 
 |     mips_codegen->MoveLocation(locations->Out(), | 
 |                                Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |                                type); | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |  | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathMIPS"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS); | 
 | }; | 
 |  | 
 | class NullCheckSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   explicit NullCheckSlowPathMIPS(HNullCheck* instr) : SlowPathCodeMIPS(instr) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     if (instruction_->CanThrowIntoCatchBlock()) { | 
 |       // Live registers will be restored in the catch block if caught. | 
 |       SaveLiveRegisters(codegen, instruction_->GetLocations()); | 
 |     } | 
 |     mips_codegen->InvokeRuntime(kQuickThrowNullPointer, | 
 |                                 instruction_, | 
 |                                 instruction_->GetDexPc(), | 
 |                                 this); | 
 |     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); | 
 |   } | 
 |  | 
 |   bool IsFatal() const OVERRIDE { return true; } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathMIPS"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS); | 
 | }; | 
 |  | 
 | class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor) | 
 |       : SlowPathCodeMIPS(instruction), successor_(successor) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations);     // Only saves live vector registers for SIMD. | 
 |     mips_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickTestSuspend, void, void>(); | 
 |     RestoreLiveRegisters(codegen, locations);  // Only restores live vector registers for SIMD. | 
 |     if (successor_ == nullptr) { | 
 |       __ B(GetReturnLabel()); | 
 |     } else { | 
 |       __ B(mips_codegen->GetLabelOf(successor_)); | 
 |     } | 
 |   } | 
 |  | 
 |   MipsLabel* GetReturnLabel() { | 
 |     DCHECK(successor_ == nullptr); | 
 |     return &return_label_; | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathMIPS"; } | 
 |  | 
 |   HBasicBlock* GetSuccessor() const { | 
 |     return successor_; | 
 |   } | 
 |  | 
 |  private: | 
 |   // If not null, the block to branch to after the suspend check. | 
 |   HBasicBlock* const successor_; | 
 |  | 
 |   // If `successor_` is null, the label to branch to after the suspend check. | 
 |   MipsLabel return_label_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS); | 
 | }; | 
 |  | 
 | class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   explicit TypeCheckSlowPathMIPS(HInstruction* instruction, bool is_fatal) | 
 |       : SlowPathCodeMIPS(instruction), is_fatal_(is_fatal) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     uint32_t dex_pc = instruction_->GetDexPc(); | 
 |     DCHECK(instruction_->IsCheckCast() | 
 |            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { | 
 |       SaveLiveRegisters(codegen, locations); | 
 |     } | 
 |  | 
 |     // We're moving two locations to locations that could overlap, so we need a parallel | 
 |     // move resolver. | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     codegen->EmitParallelMoves(locations->InAt(0), | 
 |                                Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |                                DataType::Type::kReference, | 
 |                                locations->InAt(1), | 
 |                                Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
 |                                DataType::Type::kReference); | 
 |     if (instruction_->IsInstanceOf()) { | 
 |       mips_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); | 
 |       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); | 
 |       DataType::Type ret_type = instruction_->GetType(); | 
 |       Location ret_loc = calling_convention.GetReturnLocation(ret_type); | 
 |       mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); | 
 |     } else { | 
 |       DCHECK(instruction_->IsCheckCast()); | 
 |       mips_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); | 
 |       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); | 
 |     } | 
 |  | 
 |     if (!is_fatal_) { | 
 |       RestoreLiveRegisters(codegen, locations); | 
 |       __ B(GetExitLabel()); | 
 |     } | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathMIPS"; } | 
 |  | 
 |   bool IsFatal() const OVERRIDE { return is_fatal_; } | 
 |  | 
 |  private: | 
 |   const bool is_fatal_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS); | 
 | }; | 
 |  | 
 | class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   explicit DeoptimizationSlowPathMIPS(HDeoptimize* instruction) | 
 |     : SlowPathCodeMIPS(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     __ Bind(GetEntryLabel()); | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     __ LoadConst32(calling_convention.GetRegisterAt(0), | 
 |                    static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); | 
 |     mips_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathMIPS"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS); | 
 | }; | 
 |  | 
 | class ArraySetSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   explicit ArraySetSlowPathMIPS(HInstruction* instruction) : SlowPathCodeMIPS(instruction) {} | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); | 
 |     parallel_move.AddMove( | 
 |         locations->InAt(0), | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |         DataType::Type::kReference, | 
 |         nullptr); | 
 |     parallel_move.AddMove( | 
 |         locations->InAt(1), | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
 |         DataType::Type::kInt32, | 
 |         nullptr); | 
 |     parallel_move.AddMove( | 
 |         locations->InAt(2), | 
 |         Location::RegisterLocation(calling_convention.GetRegisterAt(2)), | 
 |         DataType::Type::kReference, | 
 |         nullptr); | 
 |     codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |  | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     mips_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); | 
 |     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathMIPS"; } | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathMIPS); | 
 | }; | 
 |  | 
 | // Slow path marking an object reference `ref` during a read | 
 | // barrier. The field `obj.field` in the object `obj` holding this | 
 | // reference does not get updated by this slow path after marking (see | 
 | // ReadBarrierMarkAndUpdateFieldSlowPathMIPS below for that). | 
 | // | 
 | // This means that after the execution of this slow path, `ref` will | 
 | // always be up-to-date, but `obj.field` may not; i.e., after the | 
 | // flip, `ref` will be a to-space reference, but `obj.field` will | 
 | // probably still be a from-space reference (unless it gets updated by | 
 | // another thread, or if another thread installed another object | 
 | // reference (different from `ref`) in `obj.field`). | 
 | // | 
 | // If `entrypoint` is a valid location it is assumed to already be | 
 | // holding the entrypoint. The case where the entrypoint is passed in | 
 | // is for the GcRoot read barrier. | 
 | class ReadBarrierMarkSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   ReadBarrierMarkSlowPathMIPS(HInstruction* instruction, | 
 |                               Location ref, | 
 |                               Location entrypoint = Location::NoLocation()) | 
 |       : SlowPathCodeMIPS(instruction), ref_(ref), entrypoint_(entrypoint) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathMIPS"; } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Register ref_reg = ref_.AsRegister<Register>(); | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; | 
 |     DCHECK(instruction_->IsInstanceFieldGet() || | 
 |            instruction_->IsStaticFieldGet() || | 
 |            instruction_->IsArrayGet() || | 
 |            instruction_->IsArraySet() || | 
 |            instruction_->IsLoadClass() || | 
 |            instruction_->IsLoadString() || | 
 |            instruction_->IsInstanceOf() || | 
 |            instruction_->IsCheckCast() || | 
 |            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || | 
 |            (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) | 
 |         << "Unexpected instruction in read barrier marking slow path: " | 
 |         << instruction_->DebugName(); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     // No need to save live registers; it's taken care of by the | 
 |     // entrypoint. Also, there is no need to update the stack mask, | 
 |     // as this runtime call will not trigger a garbage collection. | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     DCHECK((V0 <= ref_reg && ref_reg <= T7) || | 
 |            (S2 <= ref_reg && ref_reg <= S7) || | 
 |            (ref_reg == FP)) << ref_reg; | 
 |     // "Compact" slow path, saving two moves. | 
 |     // | 
 |     // Instead of using the standard runtime calling convention (input | 
 |     // and output in A0 and V0 respectively): | 
 |     // | 
 |     //   A0 <- ref | 
 |     //   V0 <- ReadBarrierMark(A0) | 
 |     //   ref <- V0 | 
 |     // | 
 |     // we just use rX (the register containing `ref`) as input and output | 
 |     // of a dedicated entrypoint: | 
 |     // | 
 |     //   rX <- ReadBarrierMarkRegX(rX) | 
 |     // | 
 |     if (entrypoint_.IsValid()) { | 
 |       mips_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); | 
 |       DCHECK_EQ(entrypoint_.AsRegister<Register>(), T9); | 
 |       __ Jalr(entrypoint_.AsRegister<Register>()); | 
 |       __ NopIfNoReordering(); | 
 |     } else { | 
 |       int32_t entry_point_offset = | 
 |           Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1); | 
 |       // This runtime call does not require a stack map. | 
 |       mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, | 
 |                                                         instruction_, | 
 |                                                         this, | 
 |                                                         /* direct */ false); | 
 |     } | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The location (register) of the marked object reference. | 
 |   const Location ref_; | 
 |  | 
 |   // The location of the entrypoint if already loaded. | 
 |   const Location entrypoint_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathMIPS); | 
 | }; | 
 |  | 
 | // Slow path marking an object reference `ref` during a read barrier, | 
 | // and if needed, atomically updating the field `obj.field` in the | 
 | // object `obj` holding this reference after marking (contrary to | 
 | // ReadBarrierMarkSlowPathMIPS above, which never tries to update | 
 | // `obj.field`). | 
 | // | 
 | // This means that after the execution of this slow path, both `ref` | 
 | // and `obj.field` will be up-to-date; i.e., after the flip, both will | 
 | // hold the same to-space reference (unless another thread installed | 
 | // another object reference (different from `ref`) in `obj.field`). | 
 | class ReadBarrierMarkAndUpdateFieldSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   ReadBarrierMarkAndUpdateFieldSlowPathMIPS(HInstruction* instruction, | 
 |                                             Location ref, | 
 |                                             Register obj, | 
 |                                             Location field_offset, | 
 |                                             Register temp1) | 
 |       : SlowPathCodeMIPS(instruction), | 
 |         ref_(ref), | 
 |         obj_(obj), | 
 |         field_offset_(field_offset), | 
 |         temp1_(temp1) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { | 
 |     return "ReadBarrierMarkAndUpdateFieldSlowPathMIPS"; | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Register ref_reg = ref_.AsRegister<Register>(); | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; | 
 |     // This slow path is only used by the UnsafeCASObject intrinsic. | 
 |     DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) | 
 |         << "Unexpected instruction in read barrier marking and field updating slow path: " | 
 |         << instruction_->DebugName(); | 
 |     DCHECK(instruction_->GetLocations()->Intrinsified()); | 
 |     DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); | 
 |     DCHECK(field_offset_.IsRegisterPair()) << field_offset_; | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |  | 
 |     // Save the old reference. | 
 |     // Note that we cannot use AT or TMP to save the old reference, as those | 
 |     // are used by the code that follows, but we need the old reference after | 
 |     // the call to the ReadBarrierMarkRegX entry point. | 
 |     DCHECK_NE(temp1_, AT); | 
 |     DCHECK_NE(temp1_, TMP); | 
 |     __ Move(temp1_, ref_reg); | 
 |  | 
 |     // No need to save live registers; it's taken care of by the | 
 |     // entrypoint. Also, there is no need to update the stack mask, | 
 |     // as this runtime call will not trigger a garbage collection. | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     DCHECK((V0 <= ref_reg && ref_reg <= T7) || | 
 |            (S2 <= ref_reg && ref_reg <= S7) || | 
 |            (ref_reg == FP)) << ref_reg; | 
 |     // "Compact" slow path, saving two moves. | 
 |     // | 
 |     // Instead of using the standard runtime calling convention (input | 
 |     // and output in A0 and V0 respectively): | 
 |     // | 
 |     //   A0 <- ref | 
 |     //   V0 <- ReadBarrierMark(A0) | 
 |     //   ref <- V0 | 
 |     // | 
 |     // we just use rX (the register containing `ref`) as input and output | 
 |     // of a dedicated entrypoint: | 
 |     // | 
 |     //   rX <- ReadBarrierMarkRegX(rX) | 
 |     // | 
 |     int32_t entry_point_offset = | 
 |         Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1); | 
 |     // This runtime call does not require a stack map. | 
 |     mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, | 
 |                                                       instruction_, | 
 |                                                       this, | 
 |                                                       /* direct */ false); | 
 |  | 
 |     // If the new reference is different from the old reference, | 
 |     // update the field in the holder (`*(obj_ + field_offset_)`). | 
 |     // | 
 |     // Note that this field could also hold a different object, if | 
 |     // another thread had concurrently changed it. In that case, the | 
 |     // the compare-and-set (CAS) loop below would abort, leaving the | 
 |     // field as-is. | 
 |     MipsLabel done; | 
 |     __ Beq(temp1_, ref_reg, &done); | 
 |  | 
 |     // Update the the holder's field atomically.  This may fail if | 
 |     // mutator updates before us, but it's OK.  This is achieved | 
 |     // using a strong compare-and-set (CAS) operation with relaxed | 
 |     // memory synchronization ordering, where the expected value is | 
 |     // the old reference and the desired value is the new reference. | 
 |  | 
 |     // Convenience aliases. | 
 |     Register base = obj_; | 
 |     // The UnsafeCASObject intrinsic uses a register pair as field | 
 |     // offset ("long offset"), of which only the low part contains | 
 |     // data. | 
 |     Register offset = field_offset_.AsRegisterPairLow<Register>(); | 
 |     Register expected = temp1_; | 
 |     Register value = ref_reg; | 
 |     Register tmp_ptr = TMP;      // Pointer to actual memory. | 
 |     Register tmp = AT;           // Value in memory. | 
 |  | 
 |     __ Addu(tmp_ptr, base, offset); | 
 |  | 
 |     if (kPoisonHeapReferences) { | 
 |       __ PoisonHeapReference(expected); | 
 |       // Do not poison `value` if it is the same register as | 
 |       // `expected`, which has just been poisoned. | 
 |       if (value != expected) { | 
 |         __ PoisonHeapReference(value); | 
 |       } | 
 |     } | 
 |  | 
 |     // do { | 
 |     //   tmp = [r_ptr] - expected; | 
 |     // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); | 
 |  | 
 |     bool is_r6 = mips_codegen->GetInstructionSetFeatures().IsR6(); | 
 |     MipsLabel loop_head, exit_loop; | 
 |     __ Bind(&loop_head); | 
 |     if (is_r6) { | 
 |       __ LlR6(tmp, tmp_ptr); | 
 |     } else { | 
 |       __ LlR2(tmp, tmp_ptr); | 
 |     } | 
 |     __ Bne(tmp, expected, &exit_loop); | 
 |     __ Move(tmp, value); | 
 |     if (is_r6) { | 
 |       __ ScR6(tmp, tmp_ptr); | 
 |     } else { | 
 |       __ ScR2(tmp, tmp_ptr); | 
 |     } | 
 |     __ Beqz(tmp, &loop_head); | 
 |     __ Bind(&exit_loop); | 
 |  | 
 |     if (kPoisonHeapReferences) { | 
 |       __ UnpoisonHeapReference(expected); | 
 |       // Do not unpoison `value` if it is the same register as | 
 |       // `expected`, which has just been unpoisoned. | 
 |       if (value != expected) { | 
 |         __ UnpoisonHeapReference(value); | 
 |       } | 
 |     } | 
 |  | 
 |     __ Bind(&done); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The location (register) of the marked object reference. | 
 |   const Location ref_; | 
 |   // The register containing the object holding the marked object reference field. | 
 |   const Register obj_; | 
 |   // The location of the offset of the marked reference field within `obj_`. | 
 |   Location field_offset_; | 
 |  | 
 |   const Register temp1_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathMIPS); | 
 | }; | 
 |  | 
 | // Slow path generating a read barrier for a heap reference. | 
 | class ReadBarrierForHeapReferenceSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   ReadBarrierForHeapReferenceSlowPathMIPS(HInstruction* instruction, | 
 |                                           Location out, | 
 |                                           Location ref, | 
 |                                           Location obj, | 
 |                                           uint32_t offset, | 
 |                                           Location index) | 
 |       : SlowPathCodeMIPS(instruction), | 
 |         out_(out), | 
 |         ref_(ref), | 
 |         obj_(obj), | 
 |         offset_(offset), | 
 |         index_(index) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |     // If `obj` is equal to `out` or `ref`, it means the initial object | 
 |     // has been overwritten by (or after) the heap object reference load | 
 |     // to be instrumented, e.g.: | 
 |     // | 
 |     //   __ LoadFromOffset(kLoadWord, out, out, offset); | 
 |     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); | 
 |     // | 
 |     // In that case, we have lost the information about the original | 
 |     // object, and the emitted read barrier cannot work properly. | 
 |     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; | 
 |     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Register reg_out = out_.AsRegister<Register>(); | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); | 
 |     DCHECK(instruction_->IsInstanceFieldGet() || | 
 |            instruction_->IsStaticFieldGet() || | 
 |            instruction_->IsArrayGet() || | 
 |            instruction_->IsInstanceOf() || | 
 |            instruction_->IsCheckCast() || | 
 |            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) | 
 |         << "Unexpected instruction in read barrier for heap reference slow path: " | 
 |         << instruction_->DebugName(); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     // We may have to change the index's value, but as `index_` is a | 
 |     // constant member (like other "inputs" of this slow path), | 
 |     // introduce a copy of it, `index`. | 
 |     Location index = index_; | 
 |     if (index_.IsValid()) { | 
 |       // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. | 
 |       if (instruction_->IsArrayGet()) { | 
 |         // Compute the actual memory offset and store it in `index`. | 
 |         Register index_reg = index_.AsRegister<Register>(); | 
 |         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); | 
 |         if (codegen->IsCoreCalleeSaveRegister(index_reg)) { | 
 |           // We are about to change the value of `index_reg` (see the | 
 |           // calls to art::mips::MipsAssembler::Sll and | 
 |           // art::mips::MipsAssembler::Addiu32 below), but it has | 
 |           // not been saved by the previous call to | 
 |           // art::SlowPathCode::SaveLiveRegisters, as it is a | 
 |           // callee-save register -- | 
 |           // art::SlowPathCode::SaveLiveRegisters does not consider | 
 |           // callee-save registers, as it has been designed with the | 
 |           // assumption that callee-save registers are supposed to be | 
 |           // handled by the called function.  So, as a callee-save | 
 |           // register, `index_reg` _would_ eventually be saved onto | 
 |           // the stack, but it would be too late: we would have | 
 |           // changed its value earlier.  Therefore, we manually save | 
 |           // it here into another freely available register, | 
 |           // `free_reg`, chosen of course among the caller-save | 
 |           // registers (as a callee-save `free_reg` register would | 
 |           // exhibit the same problem). | 
 |           // | 
 |           // Note we could have requested a temporary register from | 
 |           // the register allocator instead; but we prefer not to, as | 
 |           // this is a slow path, and we know we can find a | 
 |           // caller-save register that is available. | 
 |           Register free_reg = FindAvailableCallerSaveRegister(codegen); | 
 |           __ Move(free_reg, index_reg); | 
 |           index_reg = free_reg; | 
 |           index = Location::RegisterLocation(index_reg); | 
 |         } else { | 
 |           // The initial register stored in `index_` has already been | 
 |           // saved in the call to art::SlowPathCode::SaveLiveRegisters | 
 |           // (as it is not a callee-save register), so we can freely | 
 |           // use it. | 
 |         } | 
 |         // Shifting the index value contained in `index_reg` by the scale | 
 |         // factor (2) cannot overflow in practice, as the runtime is | 
 |         // unable to allocate object arrays with a size larger than | 
 |         // 2^26 - 1 (that is, 2^28 - 4 bytes). | 
 |         __ Sll(index_reg, index_reg, TIMES_4); | 
 |         static_assert( | 
 |             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
 |             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
 |         __ Addiu32(index_reg, index_reg, offset_); | 
 |       } else { | 
 |         // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile | 
 |         // intrinsics, `index_` is not shifted by a scale factor of 2 | 
 |         // (as in the case of ArrayGet), as it is actually an offset | 
 |         // to an object field within an object. | 
 |         DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); | 
 |         DCHECK(instruction_->GetLocations()->Intrinsified()); | 
 |         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || | 
 |                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) | 
 |             << instruction_->AsInvoke()->GetIntrinsic(); | 
 |         DCHECK_EQ(offset_, 0U); | 
 |         DCHECK(index_.IsRegisterPair()); | 
 |         // UnsafeGet's offset location is a register pair, the low | 
 |         // part contains the correct offset. | 
 |         index = index_.ToLow(); | 
 |       } | 
 |     } | 
 |  | 
 |     // We're moving two or three locations to locations that could | 
 |     // overlap, so we need a parallel move resolver. | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); | 
 |     parallel_move.AddMove(ref_, | 
 |                           Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |                           DataType::Type::kReference, | 
 |                           nullptr); | 
 |     parallel_move.AddMove(obj_, | 
 |                           Location::RegisterLocation(calling_convention.GetRegisterAt(1)), | 
 |                           DataType::Type::kReference, | 
 |                           nullptr); | 
 |     if (index.IsValid()) { | 
 |       parallel_move.AddMove(index, | 
 |                             Location::RegisterLocation(calling_convention.GetRegisterAt(2)), | 
 |                             DataType::Type::kInt32, | 
 |                             nullptr); | 
 |       codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |     } else { | 
 |       codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); | 
 |       __ LoadConst32(calling_convention.GetRegisterAt(2), offset_); | 
 |     } | 
 |     mips_codegen->InvokeRuntime(kQuickReadBarrierSlow, | 
 |                                 instruction_, | 
 |                                 instruction_->GetDexPc(), | 
 |                                 this); | 
 |     CheckEntrypointTypes< | 
 |         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); | 
 |     mips_codegen->MoveLocation(out_, | 
 |                                calling_convention.GetReturnLocation(DataType::Type::kReference), | 
 |                                DataType::Type::kReference); | 
 |  | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathMIPS"; } | 
 |  | 
 |  private: | 
 |   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { | 
 |     size_t ref = static_cast<int>(ref_.AsRegister<Register>()); | 
 |     size_t obj = static_cast<int>(obj_.AsRegister<Register>()); | 
 |     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { | 
 |       if (i != ref && | 
 |           i != obj && | 
 |           !codegen->IsCoreCalleeSaveRegister(i) && | 
 |           !codegen->IsBlockedCoreRegister(i)) { | 
 |         return static_cast<Register>(i); | 
 |       } | 
 |     } | 
 |     // We shall never fail to find a free caller-save register, as | 
 |     // there are more than two core caller-save registers on MIPS | 
 |     // (meaning it is possible to find one which is different from | 
 |     // `ref` and `obj`). | 
 |     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); | 
 |     LOG(FATAL) << "Could not find a free caller-save register"; | 
 |     UNREACHABLE(); | 
 |   } | 
 |  | 
 |   const Location out_; | 
 |   const Location ref_; | 
 |   const Location obj_; | 
 |   const uint32_t offset_; | 
 |   // An additional location containing an index to an array. | 
 |   // Only used for HArrayGet and the UnsafeGetObject & | 
 |   // UnsafeGetObjectVolatile intrinsics. | 
 |   const Location index_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathMIPS); | 
 | }; | 
 |  | 
 | // Slow path generating a read barrier for a GC root. | 
 | class ReadBarrierForRootSlowPathMIPS : public SlowPathCodeMIPS { | 
 |  public: | 
 |   ReadBarrierForRootSlowPathMIPS(HInstruction* instruction, Location out, Location root) | 
 |       : SlowPathCodeMIPS(instruction), out_(out), root_(root) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |   } | 
 |  | 
 |   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { | 
 |     LocationSummary* locations = instruction_->GetLocations(); | 
 |     Register reg_out = out_.AsRegister<Register>(); | 
 |     DCHECK(locations->CanCall()); | 
 |     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); | 
 |     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) | 
 |         << "Unexpected instruction in read barrier for GC root slow path: " | 
 |         << instruction_->DebugName(); | 
 |  | 
 |     __ Bind(GetEntryLabel()); | 
 |     SaveLiveRegisters(codegen, locations); | 
 |  | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen); | 
 |     mips_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), | 
 |                                root_, | 
 |                                DataType::Type::kReference); | 
 |     mips_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, | 
 |                                 instruction_, | 
 |                                 instruction_->GetDexPc(), | 
 |                                 this); | 
 |     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); | 
 |     mips_codegen->MoveLocation(out_, | 
 |                                calling_convention.GetReturnLocation(DataType::Type::kReference), | 
 |                                DataType::Type::kReference); | 
 |  | 
 |     RestoreLiveRegisters(codegen, locations); | 
 |     __ B(GetExitLabel()); | 
 |   } | 
 |  | 
 |   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathMIPS"; } | 
 |  | 
 |  private: | 
 |   const Location out_; | 
 |   const Location root_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathMIPS); | 
 | }; | 
 |  | 
 | CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph, | 
 |                                      const MipsInstructionSetFeatures& isa_features, | 
 |                                      const CompilerOptions& compiler_options, | 
 |                                      OptimizingCompilerStats* stats) | 
 |     : CodeGenerator(graph, | 
 |                     kNumberOfCoreRegisters, | 
 |                     kNumberOfFRegisters, | 
 |                     kNumberOfRegisterPairs, | 
 |                     ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), | 
 |                                         arraysize(kCoreCalleeSaves)), | 
 |                     ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves), | 
 |                                         arraysize(kFpuCalleeSaves)), | 
 |                     compiler_options, | 
 |                     stats), | 
 |       block_labels_(nullptr), | 
 |       location_builder_(graph, this), | 
 |       instruction_visitor_(graph, this), | 
 |       move_resolver_(graph->GetAllocator(), this), | 
 |       assembler_(graph->GetAllocator(), &isa_features), | 
 |       isa_features_(isa_features), | 
 |       uint32_literals_(std::less<uint32_t>(), | 
 |                        graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       jit_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       jit_class_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), | 
 |       clobbered_ra_(false) { | 
 |   // Save RA (containing the return address) to mimic Quick. | 
 |   AddAllocatedRegister(Location::RegisterLocation(RA)); | 
 | } | 
 |  | 
 | #undef __ | 
 | // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. | 
 | #define __ down_cast<MipsAssembler*>(GetAssembler())->  // NOLINT | 
 | #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value() | 
 |  | 
 | void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) { | 
 |   // Ensure that we fix up branches. | 
 |   __ FinalizeCode(); | 
 |  | 
 |   // Adjust native pc offsets in stack maps. | 
 |   StackMapStream* stack_map_stream = GetStackMapStream(); | 
 |   for (size_t i = 0, num = stack_map_stream->GetNumberOfStackMaps(); i != num; ++i) { | 
 |     uint32_t old_position = stack_map_stream->GetStackMapNativePcOffset(i); | 
 |     uint32_t new_position = __ GetAdjustedPosition(old_position); | 
 |     DCHECK_GE(new_position, old_position); | 
 |     stack_map_stream->SetStackMapNativePcOffset(i, new_position); | 
 |   } | 
 |  | 
 |   // Adjust pc offsets for the disassembly information. | 
 |   if (disasm_info_ != nullptr) { | 
 |     GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval(); | 
 |     frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start); | 
 |     frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end); | 
 |     for (auto& it : *disasm_info_->GetInstructionIntervals()) { | 
 |       it.second.start = __ GetAdjustedPosition(it.second.start); | 
 |       it.second.end = __ GetAdjustedPosition(it.second.end); | 
 |     } | 
 |     for (auto& it : *disasm_info_->GetSlowPathIntervals()) { | 
 |       it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start); | 
 |       it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end); | 
 |     } | 
 |   } | 
 |  | 
 |   CodeGenerator::Finalize(allocator); | 
 | } | 
 |  | 
 | MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const { | 
 |   return codegen_->GetAssembler(); | 
 | } | 
 |  | 
 | void ParallelMoveResolverMIPS::EmitMove(size_t index) { | 
 |   DCHECK_LT(index, moves_.size()); | 
 |   MoveOperands* move = moves_[index]; | 
 |   codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType()); | 
 | } | 
 |  | 
 | void ParallelMoveResolverMIPS::EmitSwap(size_t index) { | 
 |   DCHECK_LT(index, moves_.size()); | 
 |   MoveOperands* move = moves_[index]; | 
 |   DataType::Type type = move->GetType(); | 
 |   Location loc1 = move->GetDestination(); | 
 |   Location loc2 = move->GetSource(); | 
 |  | 
 |   DCHECK(!loc1.IsConstant()); | 
 |   DCHECK(!loc2.IsConstant()); | 
 |  | 
 |   if (loc1.Equals(loc2)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   if (loc1.IsRegister() && loc2.IsRegister()) { | 
 |     // Swap 2 GPRs. | 
 |     Register r1 = loc1.AsRegister<Register>(); | 
 |     Register r2 = loc2.AsRegister<Register>(); | 
 |     __ Move(TMP, r2); | 
 |     __ Move(r2, r1); | 
 |     __ Move(r1, TMP); | 
 |   } else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) { | 
 |     if (codegen_->GetGraph()->HasSIMD()) { | 
 |       __ MoveV(static_cast<VectorRegister>(FTMP), VectorRegisterFrom(loc1)); | 
 |       __ MoveV(VectorRegisterFrom(loc1), VectorRegisterFrom(loc2)); | 
 |       __ MoveV(VectorRegisterFrom(loc2), static_cast<VectorRegister>(FTMP)); | 
 |     } else { | 
 |       FRegister f1 = loc1.AsFpuRegister<FRegister>(); | 
 |       FRegister f2 = loc2.AsFpuRegister<FRegister>(); | 
 |       if (type == DataType::Type::kFloat32) { | 
 |         __ MovS(FTMP, f2); | 
 |         __ MovS(f2, f1); | 
 |         __ MovS(f1, FTMP); | 
 |       } else { | 
 |         DCHECK_EQ(type, DataType::Type::kFloat64); | 
 |         __ MovD(FTMP, f2); | 
 |         __ MovD(f2, f1); | 
 |         __ MovD(f1, FTMP); | 
 |       } | 
 |     } | 
 |   } else if ((loc1.IsRegister() && loc2.IsFpuRegister()) || | 
 |              (loc1.IsFpuRegister() && loc2.IsRegister())) { | 
 |     // Swap FPR and GPR. | 
 |     DCHECK_EQ(type, DataType::Type::kFloat32);  // Can only swap a float. | 
 |     FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>() | 
 |                                         : loc2.AsFpuRegister<FRegister>(); | 
 |     Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>(); | 
 |     __ Move(TMP, r2); | 
 |     __ Mfc1(r2, f1); | 
 |     __ Mtc1(TMP, f1); | 
 |   } else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) { | 
 |     // Swap 2 GPR register pairs. | 
 |     Register r1 = loc1.AsRegisterPairLow<Register>(); | 
 |     Register r2 = loc2.AsRegisterPairLow<Register>(); | 
 |     __ Move(TMP, r2); | 
 |     __ Move(r2, r1); | 
 |     __ Move(r1, TMP); | 
 |     r1 = loc1.AsRegisterPairHigh<Register>(); | 
 |     r2 = loc2.AsRegisterPairHigh<Register>(); | 
 |     __ Move(TMP, r2); | 
 |     __ Move(r2, r1); | 
 |     __ Move(r1, TMP); | 
 |   } else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) || | 
 |              (loc1.IsFpuRegister() && loc2.IsRegisterPair())) { | 
 |     // Swap FPR and GPR register pair. | 
 |     DCHECK_EQ(type, DataType::Type::kFloat64); | 
 |     FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>() | 
 |                                         : loc2.AsFpuRegister<FRegister>(); | 
 |     Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>() | 
 |                                           : loc2.AsRegisterPairLow<Register>(); | 
 |     Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>() | 
 |                                           : loc2.AsRegisterPairHigh<Register>(); | 
 |     // Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and | 
 |     // then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR | 
 |     // unpredictable and the following mfch1 will fail. | 
 |     __ Mfc1(TMP, f1); | 
 |     __ MoveFromFpuHigh(AT, f1); | 
 |     __ Mtc1(r2_l, f1); | 
 |     __ MoveToFpuHigh(r2_h, f1); | 
 |     __ Move(r2_l, TMP); | 
 |     __ Move(r2_h, AT); | 
 |   } else if (loc1.IsStackSlot() && loc2.IsStackSlot()) { | 
 |     Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ false); | 
 |   } else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) { | 
 |     Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ true); | 
 |   } else if (loc1.IsSIMDStackSlot() && loc2.IsSIMDStackSlot()) { | 
 |     ExchangeQuadSlots(loc1.GetStackIndex(), loc2.GetStackIndex()); | 
 |   } else if ((loc1.IsRegister() && loc2.IsStackSlot()) || | 
 |              (loc1.IsStackSlot() && loc2.IsRegister())) { | 
 |     Register reg = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>(); | 
 |     intptr_t offset = loc1.IsStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex(); | 
 |     __ Move(TMP, reg); | 
 |     __ LoadFromOffset(kLoadWord, reg, SP, offset); | 
 |     __ StoreToOffset(kStoreWord, TMP, SP, offset); | 
 |   } else if ((loc1.IsRegisterPair() && loc2.IsDoubleStackSlot()) || | 
 |              (loc1.IsDoubleStackSlot() && loc2.IsRegisterPair())) { | 
 |     Register reg_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>() | 
 |                                            : loc2.AsRegisterPairLow<Register>(); | 
 |     Register reg_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>() | 
 |                                            : loc2.AsRegisterPairHigh<Register>(); | 
 |     intptr_t offset_l = loc1.IsDoubleStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex(); | 
 |     intptr_t offset_h = loc1.IsDoubleStackSlot() ? loc1.GetHighStackIndex(kMipsWordSize) | 
 |                                                  : loc2.GetHighStackIndex(kMipsWordSize); | 
 |     __ Move(TMP, reg_l); | 
 |     __ LoadFromOffset(kLoadWord, reg_l, SP, offset_l); | 
 |     __ StoreToOffset(kStoreWord, TMP, SP, offset_l); | 
 |     __ Move(TMP, reg_h); | 
 |     __ LoadFromOffset(kLoadWord, reg_h, SP, offset_h); | 
 |     __ StoreToOffset(kStoreWord, TMP, SP, offset_h); | 
 |   } else if ((loc1.IsFpuRegister() && loc2.IsSIMDStackSlot()) || | 
 |              (loc1.IsSIMDStackSlot() && loc2.IsFpuRegister())) { | 
 |     Location fp_loc = loc1.IsFpuRegister() ? loc1 : loc2; | 
 |     intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex(); | 
 |     __ MoveV(static_cast<VectorRegister>(FTMP), VectorRegisterFrom(fp_loc)); | 
 |     __ LoadQFromOffset(fp_loc.AsFpuRegister<FRegister>(), SP, offset); | 
 |     __ StoreQToOffset(FTMP, SP, offset); | 
 |   } else if (loc1.IsFpuRegister() || loc2.IsFpuRegister()) { | 
 |     FRegister reg = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>() | 
 |                                          : loc2.AsFpuRegister<FRegister>(); | 
 |     intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex(); | 
 |     if (type == DataType::Type::kFloat32) { | 
 |       __ MovS(FTMP, reg); | 
 |       __ LoadSFromOffset(reg, SP, offset); | 
 |       __ StoreSToOffset(FTMP, SP, offset); | 
 |     } else { | 
 |       DCHECK_EQ(type, DataType::Type::kFloat64); | 
 |       __ MovD(FTMP, reg); | 
 |       __ LoadDFromOffset(reg, SP, offset); | 
 |       __ StoreDToOffset(FTMP, SP, offset); | 
 |     } | 
 |   } else { | 
 |     LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported"; | 
 |   } | 
 | } | 
 |  | 
 | void ParallelMoveResolverMIPS::RestoreScratch(int reg) { | 
 |   __ Pop(static_cast<Register>(reg)); | 
 | } | 
 |  | 
 | void ParallelMoveResolverMIPS::SpillScratch(int reg) { | 
 |   __ Push(static_cast<Register>(reg)); | 
 | } | 
 |  | 
 | void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) { | 
 |   // Allocate a scratch register other than TMP, if available. | 
 |   // Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be | 
 |   // automatically unspilled when the scratch scope object is destroyed). | 
 |   ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters()); | 
 |   // If V0 spills onto the stack, SP-relative offsets need to be adjusted. | 
 |   int stack_offset = ensure_scratch.IsSpilled() ? kStackAlignment : 0; | 
 |   for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) { | 
 |     __ LoadFromOffset(kLoadWord, | 
 |                       Register(ensure_scratch.GetRegister()), | 
 |                       SP, | 
 |                       index1 + stack_offset); | 
 |     __ LoadFromOffset(kLoadWord, | 
 |                       TMP, | 
 |                       SP, | 
 |                       index2 + stack_offset); | 
 |     __ StoreToOffset(kStoreWord, | 
 |                      Register(ensure_scratch.GetRegister()), | 
 |                      SP, | 
 |                      index2 + stack_offset); | 
 |     __ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset); | 
 |   } | 
 | } | 
 |  | 
 | void ParallelMoveResolverMIPS::ExchangeQuadSlots(int index1, int index2) { | 
 |   __ LoadQFromOffset(FTMP, SP, index1); | 
 |   __ LoadQFromOffset(FTMP2, SP, index2); | 
 |   __ StoreQToOffset(FTMP, SP, index2); | 
 |   __ StoreQToOffset(FTMP2, SP, index1); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::ComputeSpillMask() { | 
 |   core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_; | 
 |   fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_; | 
 |   DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved"; | 
 |   // If there're FPU callee-saved registers and there's an odd number of GPR callee-saved | 
 |   // registers, include the ZERO register to force alignment of FPU callee-saved registers | 
 |   // within the stack frame. | 
 |   if ((fpu_spill_mask_ != 0) && (POPCOUNT(core_spill_mask_) % 2 != 0)) { | 
 |     core_spill_mask_ |= (1 << ZERO); | 
 |   } | 
 | } | 
 |  | 
 | bool CodeGeneratorMIPS::HasAllocatedCalleeSaveRegisters() const { | 
 |   // If RA is clobbered by PC-relative operations on R2 and it's the only spilled register | 
 |   // (this can happen in leaf methods), force CodeGenerator::InitializeCodeGeneration() | 
 |   // into the path that creates a stack frame so that RA can be explicitly saved and restored. | 
 |   // RA can't otherwise be saved/restored when it's the only spilled register. | 
 |   return CodeGenerator::HasAllocatedCalleeSaveRegisters() || clobbered_ra_; | 
 | } | 
 |  | 
 | static dwarf::Reg DWARFReg(Register reg) { | 
 |   return dwarf::Reg::MipsCore(static_cast<int>(reg)); | 
 | } | 
 |  | 
 | // TODO: mapping of floating-point registers to DWARF. | 
 |  | 
 | void CodeGeneratorMIPS::GenerateFrameEntry() { | 
 |   __ Bind(&frame_entry_label_); | 
 |  | 
 |   if (GetCompilerOptions().CountHotnessInCompiledCode()) { | 
 |     __ Lhu(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value()); | 
 |     __ Addiu(TMP, TMP, 1); | 
 |     __ Sh(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value()); | 
 |   } | 
 |  | 
 |   bool do_overflow_check = | 
 |       FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kMips) || !IsLeafMethod(); | 
 |  | 
 |   if (do_overflow_check) { | 
 |     __ LoadFromOffset(kLoadWord, | 
 |                       ZERO, | 
 |                       SP, | 
 |                       -static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kMips))); | 
 |     RecordPcInfo(nullptr, 0); | 
 |   } | 
 |  | 
 |   if (HasEmptyFrame()) { | 
 |     CHECK_EQ(fpu_spill_mask_, 0u); | 
 |     CHECK_EQ(core_spill_mask_, 1u << RA); | 
 |     CHECK(!clobbered_ra_); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Make sure the frame size isn't unreasonably large. | 
 |   if (GetFrameSize() > GetStackOverflowReservedBytes(InstructionSet::kMips)) { | 
 |     LOG(FATAL) << "Stack frame larger than " | 
 |         << GetStackOverflowReservedBytes(InstructionSet::kMips) << " bytes"; | 
 |   } | 
 |  | 
 |   // Spill callee-saved registers. | 
 |  | 
 |   uint32_t ofs = GetFrameSize(); | 
 |   __ IncreaseFrameSize(ofs); | 
 |  | 
 |   for (uint32_t mask = core_spill_mask_; mask != 0; ) { | 
 |     Register reg = static_cast<Register>(MostSignificantBit(mask)); | 
 |     mask ^= 1u << reg; | 
 |     ofs -= kMipsWordSize; | 
 |     // The ZERO register is only included for alignment. | 
 |     if (reg != ZERO) { | 
 |       __ StoreToOffset(kStoreWord, reg, SP, ofs); | 
 |       __ cfi().RelOffset(DWARFReg(reg), ofs); | 
 |     } | 
 |   } | 
 |  | 
 |   for (uint32_t mask = fpu_spill_mask_; mask != 0; ) { | 
 |     FRegister reg = static_cast<FRegister>(MostSignificantBit(mask)); | 
 |     mask ^= 1u << reg; | 
 |     ofs -= kMipsDoublewordSize; | 
 |     __ StoreDToOffset(reg, SP, ofs); | 
 |     // TODO: __ cfi().RelOffset(DWARFReg(reg), ofs); | 
 |   } | 
 |  | 
 |   // Save the current method if we need it. Note that we do not | 
 |   // do this in HCurrentMethod, as the instruction might have been removed | 
 |   // in the SSA graph. | 
 |   if (RequiresCurrentMethod()) { | 
 |     __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, kCurrentMethodStackOffset); | 
 |   } | 
 |  | 
 |   if (GetGraph()->HasShouldDeoptimizeFlag()) { | 
 |     // Initialize should deoptimize flag to 0. | 
 |     __ StoreToOffset(kStoreWord, ZERO, SP, GetStackOffsetOfShouldDeoptimizeFlag()); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateFrameExit() { | 
 |   __ cfi().RememberState(); | 
 |  | 
 |   if (!HasEmptyFrame()) { | 
 |     // Restore callee-saved registers. | 
 |  | 
 |     // For better instruction scheduling restore RA before other registers. | 
 |     uint32_t ofs = GetFrameSize(); | 
 |     for (uint32_t mask = core_spill_mask_; mask != 0; ) { | 
 |       Register reg = static_cast<Register>(MostSignificantBit(mask)); | 
 |       mask ^= 1u << reg; | 
 |       ofs -= kMipsWordSize; | 
 |       // The ZERO register is only included for alignment. | 
 |       if (reg != ZERO) { | 
 |         __ LoadFromOffset(kLoadWord, reg, SP, ofs); | 
 |         __ cfi().Restore(DWARFReg(reg)); | 
 |       } | 
 |     } | 
 |  | 
 |     for (uint32_t mask = fpu_spill_mask_; mask != 0; ) { | 
 |       FRegister reg = static_cast<FRegister>(MostSignificantBit(mask)); | 
 |       mask ^= 1u << reg; | 
 |       ofs -= kMipsDoublewordSize; | 
 |       __ LoadDFromOffset(reg, SP, ofs); | 
 |       // TODO: __ cfi().Restore(DWARFReg(reg)); | 
 |     } | 
 |  | 
 |     size_t frame_size = GetFrameSize(); | 
 |     // Adjust the stack pointer in the delay slot if doing so doesn't break CFI. | 
 |     bool exchange = IsInt<16>(static_cast<int32_t>(frame_size)); | 
 |     bool reordering = __ SetReorder(false); | 
 |     if (exchange) { | 
 |       __ Jr(RA); | 
 |       __ DecreaseFrameSize(frame_size);  // Single instruction in delay slot. | 
 |     } else { | 
 |       __ DecreaseFrameSize(frame_size); | 
 |       __ Jr(RA); | 
 |       __ Nop();  // In delay slot. | 
 |     } | 
 |     __ SetReorder(reordering); | 
 |   } else { | 
 |     __ Jr(RA); | 
 |     __ NopIfNoReordering(); | 
 |   } | 
 |  | 
 |   __ cfi().RestoreState(); | 
 |   __ cfi().DefCFAOffset(GetFrameSize()); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::Bind(HBasicBlock* block) { | 
 |   __ Bind(GetLabelOf(block)); | 
 | } | 
 |  | 
 | VectorRegister VectorRegisterFrom(Location location) { | 
 |   DCHECK(location.IsFpuRegister()); | 
 |   return static_cast<VectorRegister>(location.AsFpuRegister<FRegister>()); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::MoveLocation(Location destination, | 
 |                                      Location source, | 
 |                                      DataType::Type dst_type) { | 
 |   if (source.Equals(destination)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   if (source.IsConstant()) { | 
 |     MoveConstant(destination, source.GetConstant()); | 
 |   } else { | 
 |     if (destination.IsRegister()) { | 
 |       if (source.IsRegister()) { | 
 |         __ Move(destination.AsRegister<Register>(), source.AsRegister<Register>()); | 
 |       } else if (source.IsFpuRegister()) { | 
 |         __ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>()); | 
 |       } else { | 
 |         DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination; | 
 |       __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex()); | 
 |       } | 
 |     } else if (destination.IsRegisterPair()) { | 
 |       if (source.IsRegisterPair()) { | 
 |         __ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>()); | 
 |         __ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>()); | 
 |       } else if (source.IsFpuRegister()) { | 
 |         Register dst_high = destination.AsRegisterPairHigh<Register>(); | 
 |         Register dst_low =  destination.AsRegisterPairLow<Register>(); | 
 |         FRegister src = source.AsFpuRegister<FRegister>(); | 
 |         __ Mfc1(dst_low, src); | 
 |         __ MoveFromFpuHigh(dst_high, src); | 
 |       } else { | 
 |         DCHECK(source.IsDoubleStackSlot()) | 
 |             << "Cannot move from " << source << " to " << destination; | 
 |         int32_t off = source.GetStackIndex(); | 
 |         Register r = destination.AsRegisterPairLow<Register>(); | 
 |         __ LoadFromOffset(kLoadDoubleword, r, SP, off); | 
 |       } | 
 |     } else if (destination.IsFpuRegister()) { | 
 |       if (source.IsRegister()) { | 
 |         DCHECK(!DataType::Is64BitType(dst_type)); | 
 |         __ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>()); | 
 |       } else if (source.IsRegisterPair()) { | 
 |         DCHECK(DataType::Is64BitType(dst_type)); | 
 |         FRegister dst = destination.AsFpuRegister<FRegister>(); | 
 |         Register src_high = source.AsRegisterPairHigh<Register>(); | 
 |         Register src_low = source.AsRegisterPairLow<Register>(); | 
 |         __ Mtc1(src_low, dst); | 
 |         __ MoveToFpuHigh(src_high, dst); | 
 |       } else if (source.IsFpuRegister()) { | 
 |         if (GetGraph()->HasSIMD()) { | 
 |           __ MoveV(VectorRegisterFrom(destination), | 
 |                    VectorRegisterFrom(source)); | 
 |         } else { | 
 |           if (DataType::Is64BitType(dst_type)) { | 
 |             __ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>()); | 
 |           } else { | 
 |             DCHECK_EQ(dst_type, DataType::Type::kFloat32); | 
 |             __ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>()); | 
 |           } | 
 |         } | 
 |       } else if (source.IsSIMDStackSlot()) { | 
 |         __ LoadQFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); | 
 |       } else if (source.IsDoubleStackSlot()) { | 
 |         DCHECK(DataType::Is64BitType(dst_type)); | 
 |         __ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); | 
 |       } else { | 
 |         DCHECK(!DataType::Is64BitType(dst_type)); | 
 |         DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination; | 
 |         __ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex()); | 
 |       } | 
 |     } else if (destination.IsSIMDStackSlot()) { | 
 |       if (source.IsFpuRegister()) { | 
 |         __ StoreQToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex()); | 
 |       } else { | 
 |         DCHECK(source.IsSIMDStackSlot()); | 
 |         __ LoadQFromOffset(FTMP, SP, source.GetStackIndex()); | 
 |         __ StoreQToOffset(FTMP, SP, destination.GetStackIndex()); | 
 |       } | 
 |     } else if (destination.IsDoubleStackSlot()) { | 
 |       int32_t dst_offset = destination.GetStackIndex(); | 
 |       if (source.IsRegisterPair()) { | 
 |         __ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, dst_offset); | 
 |       } else if (source.IsFpuRegister()) { | 
 |         __ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset); | 
 |       } else { | 
 |         DCHECK(source.IsDoubleStackSlot()) | 
 |             << "Cannot move from " << source << " to " << destination; | 
 |         __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex()); | 
 |         __ StoreToOffset(kStoreWord, TMP, SP, dst_offset); | 
 |         __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4); | 
 |         __ StoreToOffset(kStoreWord, TMP, SP, dst_offset + 4); | 
 |       } | 
 |     } else { | 
 |       DCHECK(destination.IsStackSlot()) << destination; | 
 |       int32_t dst_offset = destination.GetStackIndex(); | 
 |       if (source.IsRegister()) { | 
 |         __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, dst_offset); | 
 |       } else if (source.IsFpuRegister()) { | 
 |         __ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset); | 
 |       } else { | 
 |         DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination; | 
 |         __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex()); | 
 |         __ StoreToOffset(kStoreWord, TMP, SP, dst_offset); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) { | 
 |   if (c->IsIntConstant() || c->IsNullConstant()) { | 
 |     // Move 32 bit constant. | 
 |     int32_t value = GetInt32ValueOf(c); | 
 |     if (destination.IsRegister()) { | 
 |       Register dst = destination.AsRegister<Register>(); | 
 |       __ LoadConst32(dst, value); | 
 |     } else { | 
 |       DCHECK(destination.IsStackSlot()) | 
 |           << "Cannot move " << c->DebugName() << " to " << destination; | 
 |       __ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP); | 
 |     } | 
 |   } else if (c->IsLongConstant()) { | 
 |     // Move 64 bit constant. | 
 |     int64_t value = GetInt64ValueOf(c); | 
 |     if (destination.IsRegisterPair()) { | 
 |       Register r_h = destination.AsRegisterPairHigh<Register>(); | 
 |       Register r_l = destination.AsRegisterPairLow<Register>(); | 
 |       __ LoadConst64(r_h, r_l, value); | 
 |     } else { | 
 |       DCHECK(destination.IsDoubleStackSlot()) | 
 |           << "Cannot move " << c->DebugName() << " to " << destination; | 
 |       __ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP); | 
 |     } | 
 |   } else if (c->IsFloatConstant()) { | 
 |     // Move 32 bit float constant. | 
 |     int32_t value = GetInt32ValueOf(c); | 
 |     if (destination.IsFpuRegister()) { | 
 |       __ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP); | 
 |     } else { | 
 |       DCHECK(destination.IsStackSlot()) | 
 |           << "Cannot move " << c->DebugName() << " to " << destination; | 
 |       __ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP); | 
 |     } | 
 |   } else { | 
 |     // Move 64 bit double constant. | 
 |     DCHECK(c->IsDoubleConstant()) << c->DebugName(); | 
 |     int64_t value = GetInt64ValueOf(c); | 
 |     if (destination.IsFpuRegister()) { | 
 |       FRegister fd = destination.AsFpuRegister<FRegister>(); | 
 |       __ LoadDConst64(fd, value, TMP); | 
 |     } else { | 
 |       DCHECK(destination.IsDoubleStackSlot()) | 
 |           << "Cannot move " << c->DebugName() << " to " << destination; | 
 |       __ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) { | 
 |   DCHECK(destination.IsRegister()); | 
 |   Register dst = destination.AsRegister<Register>(); | 
 |   __ LoadConst32(dst, value); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) { | 
 |   if (location.IsRegister()) { | 
 |     locations->AddTemp(location); | 
 |   } else if (location.IsRegisterPair()) { | 
 |     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>())); | 
 |     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>())); | 
 |   } else { | 
 |     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; | 
 |   } | 
 | } | 
 |  | 
 | template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> | 
 | inline void CodeGeneratorMIPS::EmitPcRelativeLinkerPatches( | 
 |     const ArenaDeque<PcRelativePatchInfo>& infos, | 
 |     ArenaVector<linker::LinkerPatch>* linker_patches) { | 
 |   for (const PcRelativePatchInfo& info : infos) { | 
 |     const DexFile* dex_file = info.target_dex_file; | 
 |     size_t offset_or_index = info.offset_or_index; | 
 |     DCHECK(info.label.IsBound()); | 
 |     uint32_t literal_offset = __ GetLabelLocation(&info.label); | 
 |     // On R2 we use HMipsComputeBaseMethodAddress and patch relative to | 
 |     // the assembler's base label used for PC-relative addressing. | 
 |     const PcRelativePatchInfo& info_high = info.patch_info_high ? *info.patch_info_high : info; | 
 |     uint32_t pc_rel_offset = info_high.pc_rel_label.IsBound() | 
 |         ? __ GetLabelLocation(&info_high.pc_rel_label) | 
 |         : __ GetPcRelBaseLabelLocation(); | 
 |     linker_patches->push_back(Factory(literal_offset, dex_file, pc_rel_offset, offset_or_index)); | 
 |   } | 
 | } | 
 |  | 
 | linker::LinkerPatch DataBimgRelRoPatchAdapter(size_t literal_offset, | 
 |                                               const DexFile* target_dex_file, | 
 |                                               uint32_t pc_insn_offset, | 
 |                                               uint32_t boot_image_offset) { | 
 |   DCHECK(target_dex_file == nullptr);  // Unused for DataBimgRelRoPatch(), should be null. | 
 |   return linker::LinkerPatch::DataBimgRelRoPatch(literal_offset, pc_insn_offset, boot_image_offset); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) { | 
 |   DCHECK(linker_patches->empty()); | 
 |   size_t size = | 
 |       boot_image_method_patches_.size() + | 
 |       method_bss_entry_patches_.size() + | 
 |       boot_image_type_patches_.size() + | 
 |       type_bss_entry_patches_.size() + | 
 |       boot_image_string_patches_.size() + | 
 |       string_bss_entry_patches_.size(); | 
 |   linker_patches->reserve(size); | 
 |   if (GetCompilerOptions().IsBootImage()) { | 
 |     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>( | 
 |         boot_image_method_patches_, linker_patches); | 
 |     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>( | 
 |         boot_image_type_patches_, linker_patches); | 
 |     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>( | 
 |         boot_image_string_patches_, linker_patches); | 
 |   } else { | 
 |     EmitPcRelativeLinkerPatches<DataBimgRelRoPatchAdapter>( | 
 |         boot_image_method_patches_, linker_patches); | 
 |     DCHECK(boot_image_type_patches_.empty()); | 
 |     DCHECK(boot_image_string_patches_.empty()); | 
 |   } | 
 |   EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>( | 
 |       method_bss_entry_patches_, linker_patches); | 
 |   EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>( | 
 |       type_bss_entry_patches_, linker_patches); | 
 |   EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>( | 
 |       string_bss_entry_patches_, linker_patches); | 
 |   DCHECK_EQ(size, linker_patches->size()); | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageRelRoPatch( | 
 |     uint32_t boot_image_offset, | 
 |     const PcRelativePatchInfo* info_high) { | 
 |   return NewPcRelativePatch( | 
 |       /* dex_file */ nullptr, boot_image_offset, info_high, &boot_image_method_patches_); | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageMethodPatch( | 
 |     MethodReference target_method, | 
 |     const PcRelativePatchInfo* info_high) { | 
 |   return NewPcRelativePatch( | 
 |       target_method.dex_file, target_method.index, info_high, &boot_image_method_patches_); | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewMethodBssEntryPatch( | 
 |     MethodReference target_method, | 
 |     const PcRelativePatchInfo* info_high) { | 
 |   return NewPcRelativePatch( | 
 |       target_method.dex_file, target_method.index, info_high, &method_bss_entry_patches_); | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageTypePatch( | 
 |     const DexFile& dex_file, | 
 |     dex::TypeIndex type_index, | 
 |     const PcRelativePatchInfo* info_high) { | 
 |   return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &boot_image_type_patches_); | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewTypeBssEntryPatch( | 
 |     const DexFile& dex_file, | 
 |     dex::TypeIndex type_index, | 
 |     const PcRelativePatchInfo* info_high) { | 
 |   return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &type_bss_entry_patches_); | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageStringPatch( | 
 |     const DexFile& dex_file, | 
 |     dex::StringIndex string_index, | 
 |     const PcRelativePatchInfo* info_high) { | 
 |   return NewPcRelativePatch( | 
 |       &dex_file, string_index.index_, info_high, &boot_image_string_patches_); | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewStringBssEntryPatch( | 
 |     const DexFile& dex_file, | 
 |     dex::StringIndex string_index, | 
 |     const PcRelativePatchInfo* info_high) { | 
 |   return NewPcRelativePatch(&dex_file, string_index.index_, info_high, &string_bss_entry_patches_); | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativePatch( | 
 |     const DexFile* dex_file, | 
 |     uint32_t offset_or_index, | 
 |     const PcRelativePatchInfo* info_high, | 
 |     ArenaDeque<PcRelativePatchInfo>* patches) { | 
 |   patches->emplace_back(dex_file, offset_or_index, info_high); | 
 |   return &patches->back(); | 
 | } | 
 |  | 
 | Literal* CodeGeneratorMIPS::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) { | 
 |   return map->GetOrCreate( | 
 |       value, | 
 |       [this, value]() { return __ NewLiteral<uint32_t>(value); }); | 
 | } | 
 |  | 
 | Literal* CodeGeneratorMIPS::DeduplicateBootImageAddressLiteral(uint32_t address) { | 
 |   return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info_high, | 
 |                                                              Register out, | 
 |                                                              Register base) { | 
 |   DCHECK(!info_high->patch_info_high); | 
 |   DCHECK_NE(out, base); | 
 |   bool reordering = __ SetReorder(false); | 
 |   if (GetInstructionSetFeatures().IsR6()) { | 
 |     DCHECK_EQ(base, ZERO); | 
 |     __ Bind(&info_high->label); | 
 |     __ Bind(&info_high->pc_rel_label); | 
 |     // Add the high half of a 32-bit offset to PC. | 
 |     __ Auipc(out, /* placeholder */ 0x1234); | 
 |     __ SetReorder(reordering); | 
 |   } else { | 
 |     // If base is ZERO, emit NAL to obtain the actual base. | 
 |     if (base == ZERO) { | 
 |       // Generate a dummy PC-relative call to obtain PC. | 
 |       __ Nal(); | 
 |     } | 
 |     __ Bind(&info_high->label); | 
 |     __ Lui(out, /* placeholder */ 0x1234); | 
 |     // If we emitted the NAL, bind the pc_rel_label, otherwise base is a register holding | 
 |     // the HMipsComputeBaseMethodAddress which has its own label stored in MipsAssembler. | 
 |     if (base == ZERO) { | 
 |       __ Bind(&info_high->pc_rel_label); | 
 |     } | 
 |     __ SetReorder(reordering); | 
 |     // Add the high half of a 32-bit offset to PC. | 
 |     __ Addu(out, out, (base == ZERO) ? RA : base); | 
 |   } | 
 |   // A following instruction will add the sign-extended low half of the 32-bit | 
 |   // offset to `out` (e.g. lw, jialc, addiu). | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootStringPatch( | 
 |     const DexFile& dex_file, | 
 |     dex::StringIndex string_index, | 
 |     Handle<mirror::String> handle) { | 
 |   ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); | 
 |   jit_string_patches_.emplace_back(dex_file, string_index.index_); | 
 |   return &jit_string_patches_.back(); | 
 | } | 
 |  | 
 | CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootClassPatch( | 
 |     const DexFile& dex_file, | 
 |     dex::TypeIndex type_index, | 
 |     Handle<mirror::Class> handle) { | 
 |   ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); | 
 |   jit_class_patches_.emplace_back(dex_file, type_index.index_); | 
 |   return &jit_class_patches_.back(); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::PatchJitRootUse(uint8_t* code, | 
 |                                         const uint8_t* roots_data, | 
 |                                         const CodeGeneratorMIPS::JitPatchInfo& info, | 
 |                                         uint64_t index_in_table) const { | 
 |   uint32_t high_literal_offset = GetAssembler().GetLabelLocation(&info.high_label); | 
 |   uint32_t low_literal_offset = GetAssembler().GetLabelLocation(&info.low_label); | 
 |   uintptr_t address = | 
 |       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); | 
 |   uint32_t addr32 = dchecked_integral_cast<uint32_t>(address); | 
 |   // lui reg, addr32_high | 
 |   DCHECK_EQ(code[high_literal_offset + 0], 0x34); | 
 |   DCHECK_EQ(code[high_literal_offset + 1], 0x12); | 
 |   DCHECK_EQ((code[high_literal_offset + 2] & 0xE0), 0x00); | 
 |   DCHECK_EQ(code[high_literal_offset + 3], 0x3C); | 
 |   // instr reg, reg, addr32_low | 
 |   DCHECK_EQ(code[low_literal_offset + 0], 0x78); | 
 |   DCHECK_EQ(code[low_literal_offset + 1], 0x56); | 
 |   addr32 += (addr32 & 0x8000) << 1;  // Account for sign extension in "instr reg, reg, addr32_low". | 
 |   // lui reg, addr32_high | 
 |   code[high_literal_offset + 0] = static_cast<uint8_t>(addr32 >> 16); | 
 |   code[high_literal_offset + 1] = static_cast<uint8_t>(addr32 >> 24); | 
 |   // instr reg, reg, addr32_low | 
 |   code[low_literal_offset + 0] = static_cast<uint8_t>(addr32 >> 0); | 
 |   code[low_literal_offset + 1] = static_cast<uint8_t>(addr32 >> 8); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { | 
 |   for (const JitPatchInfo& info : jit_string_patches_) { | 
 |     StringReference string_reference(&info.target_dex_file, dex::StringIndex(info.index)); | 
 |     uint64_t index_in_table = GetJitStringRootIndex(string_reference); | 
 |     PatchJitRootUse(code, roots_data, info, index_in_table); | 
 |   } | 
 |   for (const JitPatchInfo& info : jit_class_patches_) { | 
 |     TypeReference type_reference(&info.target_dex_file, dex::TypeIndex(info.index)); | 
 |     uint64_t index_in_table = GetJitClassRootIndex(type_reference); | 
 |     PatchJitRootUse(code, roots_data, info, index_in_table); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::MarkGCCard(Register object, | 
 |                                    Register value, | 
 |                                    bool value_can_be_null) { | 
 |   MipsLabel done; | 
 |   Register card = AT; | 
 |   Register temp = TMP; | 
 |   if (value_can_be_null) { | 
 |     __ Beqz(value, &done); | 
 |   } | 
 |   __ LoadFromOffset(kLoadWord, | 
 |                     card, | 
 |                     TR, | 
 |                     Thread::CardTableOffset<kMipsPointerSize>().Int32Value()); | 
 |   __ Srl(temp, object, gc::accounting::CardTable::kCardShift); | 
 |   __ Addu(temp, card, temp); | 
 |   __ Sb(card, temp, 0); | 
 |   if (value_can_be_null) { | 
 |     __ Bind(&done); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::SetupBlockedRegisters() const { | 
 |   // ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated. | 
 |   blocked_core_registers_[ZERO] = true; | 
 |   blocked_core_registers_[K0] = true; | 
 |   blocked_core_registers_[K1] = true; | 
 |   blocked_core_registers_[GP] = true; | 
 |   blocked_core_registers_[SP] = true; | 
 |   blocked_core_registers_[RA] = true; | 
 |  | 
 |   // AT and TMP(T8) are used as temporary/scratch registers | 
 |   // (similar to how AT is used by MIPS assemblers). | 
 |   blocked_core_registers_[AT] = true; | 
 |   blocked_core_registers_[TMP] = true; | 
 |   blocked_fpu_registers_[FTMP] = true; | 
 |  | 
 |   if (GetInstructionSetFeatures().HasMsa()) { | 
 |     // To be used just for MSA instructions. | 
 |     blocked_fpu_registers_[FTMP2] = true; | 
 |   } | 
 |  | 
 |   // Reserve suspend and thread registers. | 
 |   blocked_core_registers_[S0] = true; | 
 |   blocked_core_registers_[TR] = true; | 
 |  | 
 |   // Reserve T9 for function calls | 
 |   blocked_core_registers_[T9] = true; | 
 |  | 
 |   // Reserve odd-numbered FPU registers. | 
 |   for (size_t i = 1; i < kNumberOfFRegisters; i += 2) { | 
 |     blocked_fpu_registers_[i] = true; | 
 |   } | 
 |  | 
 |   if (GetGraph()->IsDebuggable()) { | 
 |     // Stubs do not save callee-save floating point registers. If the graph | 
 |     // is debuggable, we need to deal with these registers differently. For | 
 |     // now, just block them. | 
 |     for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { | 
 |       blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { | 
 |   __ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index); | 
 |   return kMipsWordSize; | 
 | } | 
 |  | 
 | size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { | 
 |   __ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index); | 
 |   return kMipsWordSize; | 
 | } | 
 |  | 
 | size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { | 
 |   if (GetGraph()->HasSIMD()) { | 
 |     __ StoreQToOffset(FRegister(reg_id), SP, stack_index); | 
 |   } else { | 
 |     __ StoreDToOffset(FRegister(reg_id), SP, stack_index); | 
 |   } | 
 |   return GetFloatingPointSpillSlotSize(); | 
 | } | 
 |  | 
 | size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { | 
 |   if (GetGraph()->HasSIMD()) { | 
 |     __ LoadQFromOffset(FRegister(reg_id), SP, stack_index); | 
 |   } else { | 
 |     __ LoadDFromOffset(FRegister(reg_id), SP, stack_index); | 
 |   } | 
 |   return GetFloatingPointSpillSlotSize(); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const { | 
 |   stream << Register(reg); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const { | 
 |   stream << FRegister(reg); | 
 | } | 
 |  | 
 | constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16; | 
 |  | 
 | void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint, | 
 |                                       HInstruction* instruction, | 
 |                                       uint32_t dex_pc, | 
 |                                       SlowPathCode* slow_path) { | 
 |   ValidateInvokeRuntime(entrypoint, instruction, slow_path); | 
 |   GenerateInvokeRuntime(GetThreadOffset<kMipsPointerSize>(entrypoint).Int32Value(), | 
 |                         IsDirectEntrypoint(entrypoint)); | 
 |   if (EntrypointRequiresStackMap(entrypoint)) { | 
 |     RecordPcInfo(instruction, dex_pc, slow_path); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, | 
 |                                                             HInstruction* instruction, | 
 |                                                             SlowPathCode* slow_path, | 
 |                                                             bool direct) { | 
 |   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); | 
 |   GenerateInvokeRuntime(entry_point_offset, direct); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateInvokeRuntime(int32_t entry_point_offset, bool direct) { | 
 |   bool reordering = __ SetReorder(false); | 
 |   __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset); | 
 |   __ Jalr(T9); | 
 |   if (direct) { | 
 |     // Reserve argument space on stack (for $a0-$a3) for | 
 |     // entrypoints that directly reference native implementations. | 
 |     // Called function may use this space to store $a0-$a3 regs. | 
 |     __ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);  // Single instruction in delay slot. | 
 |     __ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset); | 
 |   } else { | 
 |     __ Nop();  // In delay slot. | 
 |   } | 
 |   __ SetReorder(reordering); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path, | 
 |                                                                     Register class_reg) { | 
 |   constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf(); | 
 |   const size_t status_byte_offset = | 
 |       mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte); | 
 |   constexpr uint32_t shifted_initialized_value = | 
 |       enum_cast<uint32_t>(ClassStatus::kInitialized) << (status_lsb_position % kBitsPerByte); | 
 |  | 
 |   __ LoadFromOffset(kLoadUnsignedByte, TMP, class_reg, status_byte_offset); | 
 |   __ Sltiu(TMP, TMP, shifted_initialized_value); | 
 |   __ Bnez(TMP, slow_path->GetEntryLabel()); | 
 |   // Even if the initialized flag is set, we need to ensure consistent memory ordering. | 
 |   __ Sync(0); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check, | 
 |                                                                      Register temp) { | 
 |   uint32_t path_to_root = check->GetBitstringPathToRoot(); | 
 |   uint32_t mask = check->GetBitstringMask(); | 
 |   DCHECK(IsPowerOfTwo(mask + 1)); | 
 |   size_t mask_bits = WhichPowerOf2(mask + 1); | 
 |  | 
 |   if (mask_bits == 16u) { | 
 |     // Load only the bitstring part of the status word. | 
 |     __ LoadFromOffset( | 
 |         kLoadUnsignedHalfword, temp, temp, mirror::Class::StatusOffset().Int32Value()); | 
 |     // Compare the bitstring bits using XOR. | 
 |     __ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root)); | 
 |   } else { | 
 |     // /* uint32_t */ temp = temp->status_ | 
 |     __ LoadFromOffset(kLoadWord, temp, temp, mirror::Class::StatusOffset().Int32Value()); | 
 |     // Compare the bitstring bits using XOR. | 
 |     if (IsUint<16>(path_to_root)) { | 
 |       __ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root)); | 
 |     } else { | 
 |       __ LoadConst32(TMP, path_to_root); | 
 |       __ Xor(temp, temp, TMP); | 
 |     } | 
 |     // Shift out bits that do not contribute to the comparison. | 
 |     __ Sll(temp, temp, 32 - mask_bits); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) { | 
 |   __ Sync(0);  // Only stype 0 is supported. | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction, | 
 |                                                         HBasicBlock* successor) { | 
 |   SuspendCheckSlowPathMIPS* slow_path = | 
 |       down_cast<SuspendCheckSlowPathMIPS*>(instruction->GetSlowPath()); | 
 |  | 
 |   if (slow_path == nullptr) { | 
 |     slow_path = | 
 |         new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathMIPS(instruction, successor); | 
 |     instruction->SetSlowPath(slow_path); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     if (successor != nullptr) { | 
 |       DCHECK(successor->IsLoopHeader()); | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(slow_path->GetSuccessor(), successor); | 
 |   } | 
 |  | 
 |   __ LoadFromOffset(kLoadUnsignedHalfword, | 
 |                     TMP, | 
 |                     TR, | 
 |                     Thread::ThreadFlagsOffset<kMipsPointerSize>().Int32Value()); | 
 |   if (successor == nullptr) { | 
 |     __ Bnez(TMP, slow_path->GetEntryLabel()); | 
 |     __ Bind(slow_path->GetReturnLabel()); | 
 |   } else { | 
 |     __ Beqz(TMP, codegen_->GetLabelOf(successor)); | 
 |     __ B(slow_path->GetEntryLabel()); | 
 |     // slow_path will return to GetLabelOf(successor). | 
 |   } | 
 | } | 
 |  | 
 | InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph, | 
 |                                                            CodeGeneratorMIPS* codegen) | 
 |       : InstructionCodeGenerator(graph, codegen), | 
 |         assembler_(codegen->GetAssembler()), | 
 |         codegen_(codegen) {} | 
 |  | 
 | void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) { | 
 |   DCHECK_EQ(instruction->InputCount(), 2U); | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   DataType::Type type = instruction->GetResultType(); | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       HInstruction* right = instruction->InputAt(1); | 
 |       bool can_use_imm = false; | 
 |       if (right->IsConstant()) { | 
 |         int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant()); | 
 |         if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) { | 
 |           can_use_imm = IsUint<16>(imm); | 
 |         } else { | 
 |           DCHECK(instruction->IsSub() || instruction->IsAdd()); | 
 |           if (instruction->IsSub()) { | 
 |             imm = -imm; | 
 |           } | 
 |           if (isR6) { | 
 |             bool single_use = right->GetUses().HasExactlyOneElement(); | 
 |             int16_t imm_high = High16Bits(imm); | 
 |             int16_t imm_low = Low16Bits(imm); | 
 |             if (imm_low < 0) { | 
 |               imm_high += 1; | 
 |             } | 
 |             can_use_imm = !((imm_high != 0) && (imm_low != 0)) || single_use; | 
 |           } else { | 
 |             can_use_imm = IsInt<16>(imm); | 
 |           } | 
 |         } | 
 |       } | 
 |       if (can_use_imm) | 
 |         locations->SetInAt(1, Location::ConstantLocation(right->AsConstant())); | 
 |       else | 
 |         locations->SetInAt(1, Location::RequiresRegister()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       DCHECK(instruction->IsAdd() || instruction->IsSub()); | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) { | 
 |   DataType::Type type = instruction->GetType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: { | 
 |       Register dst = locations->Out().AsRegister<Register>(); | 
 |       Register lhs = locations->InAt(0).AsRegister<Register>(); | 
 |       Location rhs_location = locations->InAt(1); | 
 |  | 
 |       Register rhs_reg = ZERO; | 
 |       int32_t rhs_imm = 0; | 
 |       bool use_imm = rhs_location.IsConstant(); | 
 |       if (use_imm) { | 
 |         rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); | 
 |       } else { | 
 |         rhs_reg = rhs_location.AsRegister<Register>(); | 
 |       } | 
 |  | 
 |       if (instruction->IsAnd()) { | 
 |         if (use_imm) | 
 |           __ Andi(dst, lhs, rhs_imm); | 
 |         else | 
 |           __ And(dst, lhs, rhs_reg); | 
 |       } else if (instruction->IsOr()) { | 
 |         if (use_imm) | 
 |           __ Ori(dst, lhs, rhs_imm); | 
 |         else | 
 |           __ Or(dst, lhs, rhs_reg); | 
 |       } else if (instruction->IsXor()) { | 
 |         if (use_imm) | 
 |           __ Xori(dst, lhs, rhs_imm); | 
 |         else | 
 |           __ Xor(dst, lhs, rhs_reg); | 
 |       } else { | 
 |         DCHECK(instruction->IsAdd() || instruction->IsSub()); | 
 |         if (use_imm) { | 
 |           if (instruction->IsSub()) { | 
 |             rhs_imm = -rhs_imm; | 
 |           } | 
 |           if (IsInt<16>(rhs_imm)) { | 
 |             __ Addiu(dst, lhs, rhs_imm); | 
 |           } else { | 
 |             DCHECK(isR6); | 
 |             int16_t rhs_imm_high = High16Bits(rhs_imm); | 
 |             int16_t rhs_imm_low = Low16Bits(rhs_imm); | 
 |             if (rhs_imm_low < 0) { | 
 |               rhs_imm_high += 1; | 
 |             } | 
 |             __ Aui(dst, lhs, rhs_imm_high); | 
 |             if (rhs_imm_low != 0) { | 
 |               __ Addiu(dst, dst, rhs_imm_low); | 
 |             } | 
 |           } | 
 |         } else if (instruction->IsAdd()) { | 
 |           __ Addu(dst, lhs, rhs_reg); | 
 |         } else { | 
 |           DCHECK(instruction->IsSub()); | 
 |           __ Subu(dst, lhs, rhs_reg); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); | 
 |       Register dst_low = locations->Out().AsRegisterPairLow<Register>(); | 
 |       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |       Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |       Location rhs_location = locations->InAt(1); | 
 |       bool use_imm = rhs_location.IsConstant(); | 
 |       if (!use_imm) { | 
 |         Register rhs_high = rhs_location.AsRegisterPairHigh<Register>(); | 
 |         Register rhs_low = rhs_location.AsRegisterPairLow<Register>(); | 
 |         if (instruction->IsAnd()) { | 
 |           __ And(dst_low, lhs_low, rhs_low); | 
 |           __ And(dst_high, lhs_high, rhs_high); | 
 |         } else if (instruction->IsOr()) { | 
 |           __ Or(dst_low, lhs_low, rhs_low); | 
 |           __ Or(dst_high, lhs_high, rhs_high); | 
 |         } else if (instruction->IsXor()) { | 
 |           __ Xor(dst_low, lhs_low, rhs_low); | 
 |           __ Xor(dst_high, lhs_high, rhs_high); | 
 |         } else if (instruction->IsAdd()) { | 
 |           if (lhs_low == rhs_low) { | 
 |             // Special case for lhs = rhs and the sum potentially overwriting both lhs and rhs. | 
 |             __ Slt(TMP, lhs_low, ZERO); | 
 |             __ Addu(dst_low, lhs_low, rhs_low); | 
 |           } else { | 
 |             __ Addu(dst_low, lhs_low, rhs_low); | 
 |             // If the sum overwrites rhs, lhs remains unchanged, otherwise rhs remains unchanged. | 
 |             __ Sltu(TMP, dst_low, (dst_low == rhs_low) ? lhs_low : rhs_low); | 
 |           } | 
 |           __ Addu(dst_high, lhs_high, rhs_high); | 
 |           __ Addu(dst_high, dst_high, TMP); | 
 |         } else { | 
 |           DCHECK(instruction->IsSub()); | 
 |           __ Sltu(TMP, lhs_low, rhs_low); | 
 |           __ Subu(dst_low, lhs_low, rhs_low); | 
 |           __ Subu(dst_high, lhs_high, rhs_high); | 
 |           __ Subu(dst_high, dst_high, TMP); | 
 |         } | 
 |       } else { | 
 |         int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant()); | 
 |         if (instruction->IsOr()) { | 
 |           uint32_t low = Low32Bits(value); | 
 |           uint32_t high = High32Bits(value); | 
 |           if (IsUint<16>(low)) { | 
 |             if (dst_low != lhs_low || low != 0) { | 
 |               __ Ori(dst_low, lhs_low, low); | 
 |             } | 
 |           } else { | 
 |             __ LoadConst32(TMP, low); | 
 |             __ Or(dst_low, lhs_low, TMP); | 
 |           } | 
 |           if (IsUint<16>(high)) { | 
 |             if (dst_high != lhs_high || high != 0) { | 
 |               __ Ori(dst_high, lhs_high, high); | 
 |             } | 
 |           } else { | 
 |             if (high != low) { | 
 |               __ LoadConst32(TMP, high); | 
 |             } | 
 |             __ Or(dst_high, lhs_high, TMP); | 
 |           } | 
 |         } else if (instruction->IsXor()) { | 
 |           uint32_t low = Low32Bits(value); | 
 |           uint32_t high = High32Bits(value); | 
 |           if (IsUint<16>(low)) { | 
 |             if (dst_low != lhs_low || low != 0) { | 
 |               __ Xori(dst_low, lhs_low, low); | 
 |             } | 
 |           } else { | 
 |             __ LoadConst32(TMP, low); | 
 |             __ Xor(dst_low, lhs_low, TMP); | 
 |           } | 
 |           if (IsUint<16>(high)) { | 
 |             if (dst_high != lhs_high || high != 0) { | 
 |               __ Xori(dst_high, lhs_high, high); | 
 |             } | 
 |           } else { | 
 |             if (high != low) { | 
 |               __ LoadConst32(TMP, high); | 
 |             } | 
 |             __ Xor(dst_high, lhs_high, TMP); | 
 |           } | 
 |         } else if (instruction->IsAnd()) { | 
 |           uint32_t low = Low32Bits(value); | 
 |           uint32_t high = High32Bits(value); | 
 |           if (IsUint<16>(low)) { | 
 |             __ Andi(dst_low, lhs_low, low); | 
 |           } else if (low != 0xFFFFFFFF) { | 
 |             __ LoadConst32(TMP, low); | 
 |             __ And(dst_low, lhs_low, TMP); | 
 |           } else if (dst_low != lhs_low) { | 
 |             __ Move(dst_low, lhs_low); | 
 |           } | 
 |           if (IsUint<16>(high)) { | 
 |             __ Andi(dst_high, lhs_high, high); | 
 |           } else if (high != 0xFFFFFFFF) { | 
 |             if (high != low) { | 
 |               __ LoadConst32(TMP, high); | 
 |             } | 
 |             __ And(dst_high, lhs_high, TMP); | 
 |           } else if (dst_high != lhs_high) { | 
 |             __ Move(dst_high, lhs_high); | 
 |           } | 
 |         } else { | 
 |           if (instruction->IsSub()) { | 
 |             value = -value; | 
 |           } else { | 
 |             DCHECK(instruction->IsAdd()); | 
 |           } | 
 |           int32_t low = Low32Bits(value); | 
 |           int32_t high = High32Bits(value); | 
 |           if (IsInt<16>(low)) { | 
 |             if (dst_low != lhs_low || low != 0) { | 
 |               __ Addiu(dst_low, lhs_low, low); | 
 |             } | 
 |             if (low != 0) { | 
 |               __ Sltiu(AT, dst_low, low); | 
 |             } | 
 |           } else { | 
 |             __ LoadConst32(TMP, low); | 
 |             __ Addu(dst_low, lhs_low, TMP); | 
 |             __ Sltu(AT, dst_low, TMP); | 
 |           } | 
 |           if (IsInt<16>(high)) { | 
 |             if (dst_high != lhs_high || high != 0) { | 
 |               __ Addiu(dst_high, lhs_high, high); | 
 |             } | 
 |           } else { | 
 |             if (high != low) { | 
 |               __ LoadConst32(TMP, high); | 
 |             } | 
 |             __ Addu(dst_high, lhs_high, TMP); | 
 |           } | 
 |           if (low != 0) { | 
 |             __ Addu(dst_high, dst_high, AT); | 
 |           } | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       FRegister dst = locations->Out().AsFpuRegister<FRegister>(); | 
 |       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |       if (instruction->IsAdd()) { | 
 |         if (type == DataType::Type::kFloat32) { | 
 |           __ AddS(dst, lhs, rhs); | 
 |         } else { | 
 |           __ AddD(dst, lhs, rhs); | 
 |         } | 
 |       } else { | 
 |         DCHECK(instruction->IsSub()); | 
 |         if (type == DataType::Type::kFloat32) { | 
 |           __ SubS(dst, lhs, rhs); | 
 |         } else { | 
 |           __ SubD(dst, lhs, rhs); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected binary operation type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) { | 
 |   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor()); | 
 |  | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); | 
 |   DataType::Type type = instr->GetResultType(); | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); | 
 |       locations->SetOut(Location::RequiresRegister()); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected shift type " << type; | 
 |   } | 
 | } | 
 |  | 
 | static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte; | 
 |  | 
 | void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) { | 
 |   DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor()); | 
 |   LocationSummary* locations = instr->GetLocations(); | 
 |   DataType::Type type = instr->GetType(); | 
 |  | 
 |   Location rhs_location = locations->InAt(1); | 
 |   bool use_imm = rhs_location.IsConstant(); | 
 |   Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>(); | 
 |   int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0; | 
 |   const uint32_t shift_mask = | 
 |       (type == DataType::Type::kInt32) ? kMaxIntShiftDistance : kMaxLongShiftDistance; | 
 |   const uint32_t shift_value = rhs_imm & shift_mask; | 
 |   // Are the INS (Insert Bit Field) and ROTR instructions supported? | 
 |   bool has_ins_rotr = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: { | 
 |       Register dst = locations->Out().AsRegister<Register>(); | 
 |       Register lhs = locations->InAt(0).AsRegister<Register>(); | 
 |       if (use_imm) { | 
 |         if (shift_value == 0) { | 
 |           if (dst != lhs) { | 
 |             __ Move(dst, lhs); | 
 |           } | 
 |         } else if (instr->IsShl()) { | 
 |           __ Sll(dst, lhs, shift_value); | 
 |         } else if (instr->IsShr()) { | 
 |           __ Sra(dst, lhs, shift_value); | 
 |         } else if (instr->IsUShr()) { | 
 |           __ Srl(dst, lhs, shift_value); | 
 |         } else { | 
 |           if (has_ins_rotr) { | 
 |             __ Rotr(dst, lhs, shift_value); | 
 |           } else { | 
 |             __ Sll(TMP, lhs, (kMipsBitsPerWord - shift_value) & shift_mask); | 
 |             __ Srl(dst, lhs, shift_value); | 
 |             __ Or(dst, dst, TMP); | 
 |           } | 
 |         } | 
 |       } else { | 
 |         if (instr->IsShl()) { | 
 |           __ Sllv(dst, lhs, rhs_reg); | 
 |         } else if (instr->IsShr()) { | 
 |           __ Srav(dst, lhs, rhs_reg); | 
 |         } else if (instr->IsUShr()) { | 
 |           __ Srlv(dst, lhs, rhs_reg); | 
 |         } else { | 
 |           if (has_ins_rotr) { | 
 |             __ Rotrv(dst, lhs, rhs_reg); | 
 |           } else { | 
 |             __ Subu(TMP, ZERO, rhs_reg); | 
 |             // 32-bit shift instructions use the 5 least significant bits of the shift count, so | 
 |             // shifting by `-rhs_reg` is equivalent to shifting by `(32 - rhs_reg) & 31`. The case | 
 |             // when `rhs_reg & 31 == 0` is OK even though we don't shift `lhs` left all the way out | 
 |             // by 32, because the result in this case is computed as `(lhs >> 0) | (lhs << 0)`, | 
 |             // IOW, the OR'd values are equal. | 
 |             __ Sllv(TMP, lhs, TMP); | 
 |             __ Srlv(dst, lhs, rhs_reg); | 
 |             __ Or(dst, dst, TMP); | 
 |           } | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); | 
 |       Register dst_low = locations->Out().AsRegisterPairLow<Register>(); | 
 |       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |       Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |       if (use_imm) { | 
 |           if (shift_value == 0) { | 
 |             codegen_->MoveLocation(locations->Out(), locations->InAt(0), type); | 
 |           } else if (shift_value < kMipsBitsPerWord) { | 
 |             if (has_ins_rotr) { | 
 |               if (instr->IsShl()) { | 
 |                 __ Srl(dst_high, lhs_low, kMipsBitsPerWord - shift_value); | 
 |                 __ Ins(dst_high, lhs_high, shift_value, kMipsBitsPerWord - shift_value); | 
 |                 __ Sll(dst_low, lhs_low, shift_value); | 
 |               } else if (instr->IsShr()) { | 
 |                 __ Srl(dst_low, lhs_low, shift_value); | 
 |                 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value); | 
 |                 __ Sra(dst_high, lhs_high, shift_value); | 
 |               } else if (instr->IsUShr()) { | 
 |                 __ Srl(dst_low, lhs_low, shift_value); | 
 |                 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value); | 
 |                 __ Srl(dst_high, lhs_high, shift_value); | 
 |               } else { | 
 |                 __ Srl(dst_low, lhs_low, shift_value); | 
 |                 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value); | 
 |                 __ Srl(dst_high, lhs_high, shift_value); | 
 |                 __ Ins(dst_high, lhs_low, kMipsBitsPerWord - shift_value, shift_value); | 
 |               } | 
 |             } else { | 
 |               if (instr->IsShl()) { | 
 |                 __ Sll(dst_low, lhs_low, shift_value); | 
 |                 __ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value); | 
 |                 __ Sll(dst_high, lhs_high, shift_value); | 
 |                 __ Or(dst_high, dst_high, TMP); | 
 |               } else if (instr->IsShr()) { | 
 |                 __ Sra(dst_high, lhs_high, shift_value); | 
 |                 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value); | 
 |                 __ Srl(dst_low, lhs_low, shift_value); | 
 |                 __ Or(dst_low, dst_low, TMP); | 
 |               } else if (instr->IsUShr()) { | 
 |                 __ Srl(dst_high, lhs_high, shift_value); | 
 |                 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value); | 
 |                 __ Srl(dst_low, lhs_low, shift_value); | 
 |                 __ Or(dst_low, dst_low, TMP); | 
 |               } else { | 
 |                 __ Srl(TMP, lhs_low, shift_value); | 
 |                 __ Sll(dst_low, lhs_high, kMipsBitsPerWord - shift_value); | 
 |                 __ Or(dst_low, dst_low, TMP); | 
 |                 __ Srl(TMP, lhs_high, shift_value); | 
 |                 __ Sll(dst_high, lhs_low, kMipsBitsPerWord - shift_value); | 
 |                 __ Or(dst_high, dst_high, TMP); | 
 |               } | 
 |             } | 
 |           } else { | 
 |             const uint32_t shift_value_high = shift_value - kMipsBitsPerWord; | 
 |             if (instr->IsShl()) { | 
 |               __ Sll(dst_high, lhs_low, shift_value_high); | 
 |               __ Move(dst_low, ZERO); | 
 |             } else if (instr->IsShr()) { | 
 |               __ Sra(dst_low, lhs_high, shift_value_high); | 
 |               __ Sra(dst_high, dst_low, kMipsBitsPerWord - 1); | 
 |             } else if (instr->IsUShr()) { | 
 |               __ Srl(dst_low, lhs_high, shift_value_high); | 
 |               __ Move(dst_high, ZERO); | 
 |             } else { | 
 |               if (shift_value == kMipsBitsPerWord) { | 
 |                 // 64-bit rotation by 32 is just a swap. | 
 |                 __ Move(dst_low, lhs_high); | 
 |                 __ Move(dst_high, lhs_low); | 
 |               } else { | 
 |                 if (has_ins_rotr) { | 
 |                   __ Srl(dst_low, lhs_high, shift_value_high); | 
 |                   __ Ins(dst_low, lhs_low, kMipsBitsPerWord - shift_value_high, shift_value_high); | 
 |                   __ Srl(dst_high, lhs_low, shift_value_high); | 
 |                   __ Ins(dst_high, lhs_high, kMipsBitsPerWord - shift_value_high, shift_value_high); | 
 |                 } else { | 
 |                   __ Sll(TMP, lhs_low, kMipsBitsPerWord - shift_value_high); | 
 |                   __ Srl(dst_low, lhs_high, shift_value_high); | 
 |                   __ Or(dst_low, dst_low, TMP); | 
 |                   __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value_high); | 
 |                   __ Srl(dst_high, lhs_low, shift_value_high); | 
 |                   __ Or(dst_high, dst_high, TMP); | 
 |                 } | 
 |               } | 
 |             } | 
 |           } | 
 |       } else { | 
 |         const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |         MipsLabel done; | 
 |         if (instr->IsShl()) { | 
 |           __ Sllv(dst_low, lhs_low, rhs_reg); | 
 |           __ Nor(AT, ZERO, rhs_reg); | 
 |           __ Srl(TMP, lhs_low, 1); | 
 |           __ Srlv(TMP, TMP, AT); | 
 |           __ Sllv(dst_high, lhs_high, rhs_reg); | 
 |           __ Or(dst_high, dst_high, TMP); | 
 |           __ Andi(TMP, rhs_reg, kMipsBitsPerWord); | 
 |           if (isR6) { | 
 |             __ Beqzc(TMP, &done, /* is_bare */ true); | 
 |             __ Move(dst_high, dst_low); | 
 |             __ Move(dst_low, ZERO); | 
 |           } else { | 
 |             __ Movn(dst_high, dst_low, TMP); | 
 |             __ Movn(dst_low, ZERO, TMP); | 
 |           } | 
 |         } else if (instr->IsShr()) { | 
 |           __ Srav(dst_high, lhs_high, rhs_reg); | 
 |           __ Nor(AT, ZERO, rhs_reg); | 
 |           __ Sll(TMP, lhs_high, 1); | 
 |           __ Sllv(TMP, TMP, AT); | 
 |           __ Srlv(dst_low, lhs_low, rhs_reg); | 
 |           __ Or(dst_low, dst_low, TMP); | 
 |           __ Andi(TMP, rhs_reg, kMipsBitsPerWord); | 
 |           if (isR6) { | 
 |             __ Beqzc(TMP, &done, /* is_bare */ true); | 
 |             __ Move(dst_low, dst_high); | 
 |             __ Sra(dst_high, dst_high, 31); | 
 |           } else { | 
 |             __ Sra(AT, dst_high, 31); | 
 |             __ Movn(dst_low, dst_high, TMP); | 
 |             __ Movn(dst_high, AT, TMP); | 
 |           } | 
 |         } else if (instr->IsUShr()) { | 
 |           __ Srlv(dst_high, lhs_high, rhs_reg); | 
 |           __ Nor(AT, ZERO, rhs_reg); | 
 |           __ Sll(TMP, lhs_high, 1); | 
 |           __ Sllv(TMP, TMP, AT); | 
 |           __ Srlv(dst_low, lhs_low, rhs_reg); | 
 |           __ Or(dst_low, dst_low, TMP); | 
 |           __ Andi(TMP, rhs_reg, kMipsBitsPerWord); | 
 |           if (isR6) { | 
 |             __ Beqzc(TMP, &done, /* is_bare */ true); | 
 |             __ Move(dst_low, dst_high); | 
 |             __ Move(dst_high, ZERO); | 
 |           } else { | 
 |             __ Movn(dst_low, dst_high, TMP); | 
 |             __ Movn(dst_high, ZERO, TMP); | 
 |           } | 
 |         } else {  // Rotate. | 
 |           __ Nor(AT, ZERO, rhs_reg); | 
 |           __ Srlv(TMP, lhs_low, rhs_reg); | 
 |           __ Sll(dst_low, lhs_high, 1); | 
 |           __ Sllv(dst_low, dst_low, AT); | 
 |           __ Or(dst_low, dst_low, TMP); | 
 |           __ Srlv(TMP, lhs_high, rhs_reg); | 
 |           __ Sll(dst_high, lhs_low, 1); | 
 |           __ Sllv(dst_high, dst_high, AT); | 
 |           __ Or(dst_high, dst_high, TMP); | 
 |           __ Andi(TMP, rhs_reg, kMipsBitsPerWord); | 
 |           if (isR6) { | 
 |             __ Beqzc(TMP, &done, /* is_bare */ true); | 
 |             __ Move(TMP, dst_high); | 
 |             __ Move(dst_high, dst_low); | 
 |             __ Move(dst_low, TMP); | 
 |           } else { | 
 |             __ Movn(AT, dst_high, TMP); | 
 |             __ Movn(dst_high, dst_low, TMP); | 
 |             __ Movn(dst_low, AT, TMP); | 
 |           } | 
 |         } | 
 |         __ Bind(&done); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected shift operation type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) { | 
 |   DataType::Type type = instruction->GetType(); | 
 |   bool object_array_get_with_read_barrier = | 
 |       kEmitCompilerReadBarrier && (type == DataType::Type::kReference); | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, | 
 |                                                        object_array_get_with_read_barrier | 
 |                                                            ? LocationSummary::kCallOnSlowPath | 
 |                                                            : LocationSummary::kNoCall); | 
 |   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |   } | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |   if (DataType::IsFloatingPointType(type)) { | 
 |     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |   } else { | 
 |     // The output overlaps in the case of an object array get with | 
 |     // read barriers enabled: we do not want the move to overwrite the | 
 |     // array's location, as we need it to emit the read barrier. | 
 |     locations->SetOut(Location::RequiresRegister(), | 
 |                       object_array_get_with_read_barrier | 
 |                           ? Location::kOutputOverlap | 
 |                           : Location::kNoOutputOverlap); | 
 |   } | 
 |   // We need a temporary register for the read barrier marking slow | 
 |   // path in CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier. | 
 |   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { | 
 |     bool temp_needed = instruction->GetIndex()->IsConstant() | 
 |         ? !kBakerReadBarrierThunksEnableForFields | 
 |         : !kBakerReadBarrierThunksEnableForArrays; | 
 |     if (temp_needed) { | 
 |       locations->AddTemp(Location::RequiresRegister()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static auto GetImplicitNullChecker(HInstruction* instruction, CodeGeneratorMIPS* codegen) { | 
 |   auto null_checker = [codegen, instruction]() { | 
 |     codegen->MaybeRecordImplicitNullCheck(instruction); | 
 |   }; | 
 |   return null_checker; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj_loc = locations->InAt(0); | 
 |   Register obj = obj_loc.AsRegister<Register>(); | 
 |   Location out_loc = locations->Out(); | 
 |   Location index = locations->InAt(1); | 
 |   uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); | 
 |   auto null_checker = GetImplicitNullChecker(instruction, codegen_); | 
 |  | 
 |   DataType::Type type = instruction->GetType(); | 
 |   const bool maybe_compressed_char_at = mirror::kUseStringCompression && | 
 |                                         instruction->IsStringCharAt(); | 
 |   switch (type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: { | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         size_t offset = | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; | 
 |         __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset, null_checker); | 
 |       } else { | 
 |         __ Addu(TMP, obj, index.AsRegister<Register>()); | 
 |         __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt8: { | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         size_t offset = | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; | 
 |         __ LoadFromOffset(kLoadSignedByte, out, obj, offset, null_checker); | 
 |       } else { | 
 |         __ Addu(TMP, obj, index.AsRegister<Register>()); | 
 |         __ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kUint16: { | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (maybe_compressed_char_at) { | 
 |         uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); | 
 |         __ LoadFromOffset(kLoadWord, TMP, obj, count_offset, null_checker); | 
 |         __ Sll(TMP, TMP, 31);    // Extract compression flag into the most significant bit of TMP. | 
 |         static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, | 
 |                       "Expecting 0=compressed, 1=uncompressed"); | 
 |       } | 
 |       if (index.IsConstant()) { | 
 |         int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); | 
 |         if (maybe_compressed_char_at) { | 
 |           MipsLabel uncompressed_load, done; | 
 |           __ Bnez(TMP, &uncompressed_load); | 
 |           __ LoadFromOffset(kLoadUnsignedByte, | 
 |                             out, | 
 |                             obj, | 
 |                             data_offset + (const_index << TIMES_1)); | 
 |           __ B(&done); | 
 |           __ Bind(&uncompressed_load); | 
 |           __ LoadFromOffset(kLoadUnsignedHalfword, | 
 |                             out, | 
 |                             obj, | 
 |                             data_offset + (const_index << TIMES_2)); | 
 |           __ Bind(&done); | 
 |         } else { | 
 |           __ LoadFromOffset(kLoadUnsignedHalfword, | 
 |                             out, | 
 |                             obj, | 
 |                             data_offset + (const_index << TIMES_2), | 
 |                             null_checker); | 
 |         } | 
 |       } else { | 
 |         Register index_reg = index.AsRegister<Register>(); | 
 |         if (maybe_compressed_char_at) { | 
 |           MipsLabel uncompressed_load, done; | 
 |           __ Bnez(TMP, &uncompressed_load); | 
 |           __ Addu(TMP, obj, index_reg); | 
 |           __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset); | 
 |           __ B(&done); | 
 |           __ Bind(&uncompressed_load); | 
 |           __ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP); | 
 |           __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset); | 
 |           __ Bind(&done); | 
 |         } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |           __ Addu(TMP, index_reg, obj); | 
 |           __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker); | 
 |         } else { | 
 |           __ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP); | 
 |           __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt16: { | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         size_t offset = | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; | 
 |         __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset, null_checker); | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(TMP, index.AsRegister<Register>(), obj); | 
 |         __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker); | 
 |       } else { | 
 |         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_2, TMP); | 
 |         __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt32: { | 
 |       DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t)); | 
 |       Register out = out_loc.AsRegister<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         size_t offset = | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
 |         __ LoadFromOffset(kLoadWord, out, obj, offset, null_checker); | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(TMP, index.AsRegister<Register>(), obj); | 
 |         __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker); | 
 |       } else { | 
 |         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP); | 
 |         __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kReference: { | 
 |       static_assert( | 
 |           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
 |           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
 |       // /* HeapReference<Object> */ out = | 
 |       //     *(obj + data_offset + index * sizeof(HeapReference<Object>)) | 
 |       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |         bool temp_needed = index.IsConstant() | 
 |             ? !kBakerReadBarrierThunksEnableForFields | 
 |             : !kBakerReadBarrierThunksEnableForArrays; | 
 |         Location temp = temp_needed ? locations->GetTemp(0) : Location::NoLocation(); | 
 |         // Note that a potential implicit null check is handled in this | 
 |         // CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier call. | 
 |         DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); | 
 |         if (index.IsConstant()) { | 
 |           // Array load with a constant index can be treated as a field load. | 
 |           size_t offset = | 
 |               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
 |           codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
 |                                                           out_loc, | 
 |                                                           obj, | 
 |                                                           offset, | 
 |                                                           temp, | 
 |                                                           /* needs_null_check */ false); | 
 |         } else { | 
 |           codegen_->GenerateArrayLoadWithBakerReadBarrier(instruction, | 
 |                                                           out_loc, | 
 |                                                           obj, | 
 |                                                           data_offset, | 
 |                                                           index, | 
 |                                                           temp, | 
 |                                                           /* needs_null_check */ false); | 
 |         } | 
 |       } else { | 
 |         Register out = out_loc.AsRegister<Register>(); | 
 |         if (index.IsConstant()) { | 
 |           size_t offset = | 
 |               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
 |           __ LoadFromOffset(kLoadWord, out, obj, offset, null_checker); | 
 |           // If read barriers are enabled, emit read barriers other than | 
 |           // Baker's using a slow path (and also unpoison the loaded | 
 |           // reference, if heap poisoning is enabled). | 
 |           codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); | 
 |         } else { | 
 |           __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP); | 
 |           __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker); | 
 |           // If read barriers are enabled, emit read barriers other than | 
 |           // Baker's using a slow path (and also unpoison the loaded | 
 |           // reference, if heap poisoning is enabled). | 
 |           codegen_->MaybeGenerateReadBarrierSlow(instruction, | 
 |                                                  out_loc, | 
 |                                                  out_loc, | 
 |                                                  obj_loc, | 
 |                                                  data_offset, | 
 |                                                  index); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       Register out = out_loc.AsRegisterPairLow<Register>(); | 
 |       if (index.IsConstant()) { | 
 |         size_t offset = | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; | 
 |         __ LoadFromOffset(kLoadDoubleword, out, obj, offset, null_checker); | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(TMP, index.AsRegister<Register>(), obj); | 
 |         __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker); | 
 |       } else { | 
 |         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP); | 
 |         __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat32: { | 
 |       FRegister out = out_loc.AsFpuRegister<FRegister>(); | 
 |       if (index.IsConstant()) { | 
 |         size_t offset = | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; | 
 |         __ LoadSFromOffset(out, obj, offset, null_checker); | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(TMP, index.AsRegister<Register>(), obj); | 
 |         __ LoadSFromOffset(out, TMP, data_offset, null_checker); | 
 |       } else { | 
 |         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP); | 
 |         __ LoadSFromOffset(out, TMP, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat64: { | 
 |       FRegister out = out_loc.AsFpuRegister<FRegister>(); | 
 |       if (index.IsConstant()) { | 
 |         size_t offset = | 
 |             (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; | 
 |         __ LoadDFromOffset(out, obj, offset, null_checker); | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(TMP, index.AsRegister<Register>(), obj); | 
 |         __ LoadDFromOffset(out, TMP, data_offset, null_checker); | 
 |       } else { | 
 |         __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP); | 
 |         __ LoadDFromOffset(out, TMP, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kUint32: | 
 |     case DataType::Type::kUint64: | 
 |     case DataType::Type::kVoid: | 
 |       LOG(FATAL) << "Unreachable type " << instruction->GetType(); | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); | 
 |   Register obj = locations->InAt(0).AsRegister<Register>(); | 
 |   Register out = locations->Out().AsRegister<Register>(); | 
 |   __ LoadFromOffset(kLoadWord, out, obj, offset); | 
 |   codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |   // Mask out compression flag from String's array length. | 
 |   if (mirror::kUseStringCompression && instruction->IsStringLength()) { | 
 |     __ Srl(out, out, 1u); | 
 |   } | 
 | } | 
 |  | 
 | Location LocationsBuilderMIPS::RegisterOrZeroConstant(HInstruction* instruction) { | 
 |   return (instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern()) | 
 |       ? Location::ConstantLocation(instruction->AsConstant()) | 
 |       : Location::RequiresRegister(); | 
 | } | 
 |  | 
 | Location LocationsBuilderMIPS::FpuRegisterOrConstantForStore(HInstruction* instruction) { | 
 |   // We can store 0.0 directly (from the ZERO register) without loading it into an FPU register. | 
 |   // We can store a non-zero float or double constant without first loading it into the FPU, | 
 |   // but we should only prefer this if the constant has a single use. | 
 |   if (instruction->IsConstant() && | 
 |       (instruction->AsConstant()->IsZeroBitPattern() || | 
 |        instruction->GetUses().HasExactlyOneElement())) { | 
 |     return Location::ConstantLocation(instruction->AsConstant()); | 
 |     // Otherwise fall through and require an FPU register for the constant. | 
 |   } | 
 |   return Location::RequiresFpuRegister(); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) { | 
 |   DataType::Type value_type = instruction->GetComponentType(); | 
 |  | 
 |   bool needs_write_barrier = | 
 |       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); | 
 |   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); | 
 |  | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, | 
 |       may_need_runtime_call_for_type_check ? | 
 |           LocationSummary::kCallOnSlowPath : | 
 |           LocationSummary::kNoCall); | 
 |  | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |   if (DataType::IsFloatingPointType(instruction->InputAt(2)->GetType())) { | 
 |     locations->SetInAt(2, FpuRegisterOrConstantForStore(instruction->InputAt(2))); | 
 |   } else { | 
 |     locations->SetInAt(2, RegisterOrZeroConstant(instruction->InputAt(2))); | 
 |   } | 
 |   if (needs_write_barrier) { | 
 |     // Temporary register for the write barrier. | 
 |     locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too. | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Register obj = locations->InAt(0).AsRegister<Register>(); | 
 |   Location index = locations->InAt(1); | 
 |   Location value_location = locations->InAt(2); | 
 |   DataType::Type value_type = instruction->GetComponentType(); | 
 |   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); | 
 |   bool needs_write_barrier = | 
 |       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); | 
 |   auto null_checker = GetImplicitNullChecker(instruction, codegen_); | 
 |   Register base_reg = index.IsConstant() ? obj : TMP; | 
 |  | 
 |   switch (value_type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); | 
 |       if (index.IsConstant()) { | 
 |         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1; | 
 |       } else { | 
 |         __ Addu(base_reg, obj, index.AsRegister<Register>()); | 
 |       } | 
 |       if (value_location.IsConstant()) { | 
 |         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); | 
 |         __ StoreConstToOffset(kStoreByte, value, base_reg, data_offset, TMP, null_checker); | 
 |       } else { | 
 |         Register value = value_location.AsRegister<Register>(); | 
 |         __ StoreToOffset(kStoreByte, value, base_reg, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); | 
 |       if (index.IsConstant()) { | 
 |         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2; | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(base_reg, index.AsRegister<Register>(), obj); | 
 |       } else { | 
 |         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_2, base_reg); | 
 |       } | 
 |       if (value_location.IsConstant()) { | 
 |         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); | 
 |         __ StoreConstToOffset(kStoreHalfword, value, base_reg, data_offset, TMP, null_checker); | 
 |       } else { | 
 |         Register value = value_location.AsRegister<Register>(); | 
 |         __ StoreToOffset(kStoreHalfword, value, base_reg, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt32: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); | 
 |       if (index.IsConstant()) { | 
 |         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(base_reg, index.AsRegister<Register>(), obj); | 
 |       } else { | 
 |         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); | 
 |       } | 
 |       if (value_location.IsConstant()) { | 
 |         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); | 
 |         __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker); | 
 |       } else { | 
 |         Register value = value_location.AsRegister<Register>(); | 
 |         __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kReference: { | 
 |       if (value_location.IsConstant()) { | 
 |         // Just setting null. | 
 |         uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); | 
 |         if (index.IsConstant()) { | 
 |           data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; | 
 |         } else { | 
 |           __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); | 
 |         } | 
 |         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); | 
 |         DCHECK_EQ(value, 0); | 
 |         __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker); | 
 |         DCHECK(!needs_write_barrier); | 
 |         DCHECK(!may_need_runtime_call_for_type_check); | 
 |         break; | 
 |       } | 
 |  | 
 |       DCHECK(needs_write_barrier); | 
 |       Register value = value_location.AsRegister<Register>(); | 
 |       Register temp1 = locations->GetTemp(0).AsRegister<Register>(); | 
 |       Register temp2 = TMP;  // Doesn't need to survive slow path. | 
 |       uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |       uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |       uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |       MipsLabel done; | 
 |       SlowPathCodeMIPS* slow_path = nullptr; | 
 |  | 
 |       if (may_need_runtime_call_for_type_check) { | 
 |         slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathMIPS(instruction); | 
 |         codegen_->AddSlowPath(slow_path); | 
 |         if (instruction->GetValueCanBeNull()) { | 
 |           MipsLabel non_zero; | 
 |           __ Bnez(value, &non_zero); | 
 |           uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); | 
 |           if (index.IsConstant()) { | 
 |             data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; | 
 |           } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |             __ Addu(base_reg, index.AsRegister<Register>(), obj); | 
 |           } else { | 
 |             __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); | 
 |           } | 
 |           __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker); | 
 |           __ B(&done); | 
 |           __ Bind(&non_zero); | 
 |         } | 
 |  | 
 |         // Note that when read barriers are enabled, the type checks | 
 |         // are performed without read barriers.  This is fine, even in | 
 |         // the case where a class object is in the from-space after | 
 |         // the flip, as a comparison involving such a type would not | 
 |         // produce a false positive; it may of course produce a false | 
 |         // negative, in which case we would take the ArraySet slow | 
 |         // path. | 
 |  | 
 |         // /* HeapReference<Class> */ temp1 = obj->klass_ | 
 |         __ LoadFromOffset(kLoadWord, temp1, obj, class_offset, null_checker); | 
 |         __ MaybeUnpoisonHeapReference(temp1); | 
 |  | 
 |         // /* HeapReference<Class> */ temp1 = temp1->component_type_ | 
 |         __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset); | 
 |         // /* HeapReference<Class> */ temp2 = value->klass_ | 
 |         __ LoadFromOffset(kLoadWord, temp2, value, class_offset); | 
 |         // If heap poisoning is enabled, no need to unpoison `temp1` | 
 |         // nor `temp2`, as we are comparing two poisoned references. | 
 |  | 
 |         if (instruction->StaticTypeOfArrayIsObjectArray()) { | 
 |           MipsLabel do_put; | 
 |           __ Beq(temp1, temp2, &do_put); | 
 |           // If heap poisoning is enabled, the `temp1` reference has | 
 |           // not been unpoisoned yet; unpoison it now. | 
 |           __ MaybeUnpoisonHeapReference(temp1); | 
 |  | 
 |           // /* HeapReference<Class> */ temp1 = temp1->super_class_ | 
 |           __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset); | 
 |           // If heap poisoning is enabled, no need to unpoison | 
 |           // `temp1`, as we are comparing against null below. | 
 |           __ Bnez(temp1, slow_path->GetEntryLabel()); | 
 |           __ Bind(&do_put); | 
 |         } else { | 
 |           __ Bne(temp1, temp2, slow_path->GetEntryLabel()); | 
 |         } | 
 |       } | 
 |  | 
 |       Register source = value; | 
 |       if (kPoisonHeapReferences) { | 
 |         // Note that in the case where `value` is a null reference, | 
 |         // we do not enter this block, as a null reference does not | 
 |         // need poisoning. | 
 |         __ Move(temp1, value); | 
 |         __ PoisonHeapReference(temp1); | 
 |         source = temp1; | 
 |       } | 
 |  | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); | 
 |       if (index.IsConstant()) { | 
 |         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; | 
 |       } else { | 
 |         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); | 
 |       } | 
 |       __ StoreToOffset(kStoreWord, source, base_reg, data_offset); | 
 |  | 
 |       if (!may_need_runtime_call_for_type_check) { | 
 |         codegen_->MaybeRecordImplicitNullCheck(instruction); | 
 |       } | 
 |  | 
 |       codegen_->MarkGCCard(obj, value, instruction->GetValueCanBeNull()); | 
 |  | 
 |       if (done.IsLinked()) { | 
 |         __ Bind(&done); | 
 |       } | 
 |  | 
 |       if (slow_path != nullptr) { | 
 |         __ Bind(slow_path->GetExitLabel()); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); | 
 |       if (index.IsConstant()) { | 
 |         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8; | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(base_reg, index.AsRegister<Register>(), obj); | 
 |       } else { | 
 |         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg); | 
 |       } | 
 |       if (value_location.IsConstant()) { | 
 |         int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); | 
 |         __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker); | 
 |       } else { | 
 |         Register value = value_location.AsRegisterPairLow<Register>(); | 
 |         __ StoreToOffset(kStoreDoubleword, value, base_reg, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat32: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); | 
 |       if (index.IsConstant()) { | 
 |         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(base_reg, index.AsRegister<Register>(), obj); | 
 |       } else { | 
 |         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg); | 
 |       } | 
 |       if (value_location.IsConstant()) { | 
 |         int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); | 
 |         __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker); | 
 |       } else { | 
 |         FRegister value = value_location.AsFpuRegister<FRegister>(); | 
 |         __ StoreSToOffset(value, base_reg, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat64: { | 
 |       uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); | 
 |       if (index.IsConstant()) { | 
 |         data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8; | 
 |       } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) { | 
 |         __ Addu(base_reg, index.AsRegister<Register>(), obj); | 
 |       } else { | 
 |         __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg); | 
 |       } | 
 |       if (value_location.IsConstant()) { | 
 |         int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); | 
 |         __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker); | 
 |       } else { | 
 |         FRegister value = value_location.AsFpuRegister<FRegister>(); | 
 |         __ StoreDToOffset(value, base_reg, data_offset, null_checker); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kUint32: | 
 |     case DataType::Type::kUint64: | 
 |     case DataType::Type::kVoid: | 
 |       LOG(FATAL) << "Unreachable type " << instruction->GetType(); | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitIntermediateArrayAddressIndex( | 
 |     HIntermediateArrayAddressIndex* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |  | 
 |   HIntConstant* shift = instruction->GetShift()->AsIntConstant(); | 
 |  | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetInAt(1, Location::ConstantLocation(shift)); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitIntermediateArrayAddressIndex( | 
 |     HIntermediateArrayAddressIndex* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Register index_reg = locations->InAt(0).AsRegister<Register>(); | 
 |   uint32_t shift = instruction->GetShift()->AsIntConstant()->GetValue(); | 
 |   __ Sll(locations->Out().AsRegister<Register>(), index_reg, shift); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) { | 
 |   RegisterSet caller_saves = RegisterSet::Empty(); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); | 
 |   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); | 
 |  | 
 |   HInstruction* index = instruction->InputAt(0); | 
 |   HInstruction* length = instruction->InputAt(1); | 
 |  | 
 |   bool const_index = false; | 
 |   bool const_length = false; | 
 |  | 
 |   if (index->IsConstant()) { | 
 |     if (length->IsConstant()) { | 
 |       const_index = true; | 
 |       const_length = true; | 
 |     } else { | 
 |       int32_t index_value = index->AsIntConstant()->GetValue(); | 
 |       if (index_value < 0 || IsInt<16>(index_value + 1)) { | 
 |         const_index = true; | 
 |       } | 
 |     } | 
 |   } else if (length->IsConstant()) { | 
 |     int32_t length_value = length->AsIntConstant()->GetValue(); | 
 |     if (IsUint<15>(length_value)) { | 
 |       const_length = true; | 
 |     } | 
 |   } | 
 |  | 
 |   locations->SetInAt(0, const_index | 
 |       ? Location::ConstantLocation(index->AsConstant()) | 
 |       : Location::RequiresRegister()); | 
 |   locations->SetInAt(1, const_length | 
 |       ? Location::ConstantLocation(length->AsConstant()) | 
 |       : Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location index_loc = locations->InAt(0); | 
 |   Location length_loc = locations->InAt(1); | 
 |  | 
 |   if (length_loc.IsConstant()) { | 
 |     int32_t length = length_loc.GetConstant()->AsIntConstant()->GetValue(); | 
 |     if (index_loc.IsConstant()) { | 
 |       int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue(); | 
 |       if (index < 0 || index >= length) { | 
 |         BoundsCheckSlowPathMIPS* slow_path = | 
 |             new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction); | 
 |         codegen_->AddSlowPath(slow_path); | 
 |         __ B(slow_path->GetEntryLabel()); | 
 |       } else { | 
 |         // Nothing to be done. | 
 |       } | 
 |       return; | 
 |     } | 
 |  | 
 |     BoundsCheckSlowPathMIPS* slow_path = | 
 |         new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     Register index = index_loc.AsRegister<Register>(); | 
 |     if (length == 0) { | 
 |       __ B(slow_path->GetEntryLabel()); | 
 |     } else if (length == 1) { | 
 |       __ Bnez(index, slow_path->GetEntryLabel()); | 
 |     } else { | 
 |       DCHECK(IsUint<15>(length)) << length; | 
 |       __ Sltiu(TMP, index, length); | 
 |       __ Beqz(TMP, slow_path->GetEntryLabel()); | 
 |     } | 
 |   } else { | 
 |     Register length = length_loc.AsRegister<Register>(); | 
 |     BoundsCheckSlowPathMIPS* slow_path = | 
 |         new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     if (index_loc.IsConstant()) { | 
 |       int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue(); | 
 |       if (index < 0) { | 
 |         __ B(slow_path->GetEntryLabel()); | 
 |       } else if (index == 0) { | 
 |         __ Blez(length, slow_path->GetEntryLabel()); | 
 |       } else { | 
 |         DCHECK(IsInt<16>(index + 1)) << index; | 
 |         __ Sltiu(TMP, length, index + 1); | 
 |         __ Bnez(TMP, slow_path->GetEntryLabel()); | 
 |       } | 
 |     } else { | 
 |       Register index = index_loc.AsRegister<Register>(); | 
 |       __ Bgeu(index, length, slow_path->GetEntryLabel()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Temp is used for read barrier. | 
 | static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { | 
 |   if (kEmitCompilerReadBarrier && | 
 |       !(kUseBakerReadBarrier && kBakerReadBarrierThunksEnableForFields) && | 
 |       (kUseBakerReadBarrier || | 
 |        type_check_kind == TypeCheckKind::kAbstractClassCheck || | 
 |        type_check_kind == TypeCheckKind::kClassHierarchyCheck || | 
 |        type_check_kind == TypeCheckKind::kArrayObjectCheck)) { | 
 |     return 1; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | // Extra temp is used for read barrier. | 
 | static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { | 
 |   return 1 + NumberOfInstanceOfTemps(type_check_kind); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) { | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction); | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (type_check_kind == TypeCheckKind::kBitstringCheck) { | 
 |     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); | 
 |     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); | 
 |     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); | 
 |   } else { | 
 |     locations->SetInAt(1, Location::RequiresRegister()); | 
 |   } | 
 |   locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) { | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj_loc = locations->InAt(0); | 
 |   Register obj = obj_loc.AsRegister<Register>(); | 
 |   Location cls = locations->InAt(1); | 
 |   Location temp_loc = locations->GetTemp(0); | 
 |   Register temp = temp_loc.AsRegister<Register>(); | 
 |   const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); | 
 |   DCHECK_LE(num_temps, 2u); | 
 |   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); | 
 |   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
 |   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); | 
 |   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); | 
 |   const uint32_t object_array_data_offset = | 
 |       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); | 
 |   MipsLabel done; | 
 |  | 
 |   bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction); | 
 |   SlowPathCodeMIPS* slow_path = | 
 |       new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS( | 
 |           instruction, is_type_check_slow_path_fatal); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |  | 
 |   // Avoid this check if we know `obj` is not null. | 
 |   if (instruction->MustDoNullCheck()) { | 
 |     __ Beqz(obj, &done); | 
 |   } | 
 |  | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: | 
 |     case TypeCheckKind::kArrayCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |       // Jump to slow path for throwing the exception or doing a | 
 |       // more involved array check. | 
 |       __ Bne(temp, cls.AsRegister<Register>(), slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kAbstractClassCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |       // If the class is abstract, we eagerly fetch the super class of the | 
 |       // object to avoid doing a comparison we know will fail. | 
 |       MipsLabel loop; | 
 |       __ Bind(&loop); | 
 |       // /* HeapReference<Class> */ temp = temp->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        temp_loc, | 
 |                                        super_offset, | 
 |                                        maybe_temp2_loc, | 
 |                                        kWithoutReadBarrier); | 
 |       // If the class reference currently in `temp` is null, jump to the slow path to throw the | 
 |       // exception. | 
 |       __ Beqz(temp, slow_path->GetEntryLabel()); | 
 |       // Otherwise, compare the classes. | 
 |       __ Bne(temp, cls.AsRegister<Register>(), &loop); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kClassHierarchyCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |       // Walk over the class hierarchy to find a match. | 
 |       MipsLabel loop; | 
 |       __ Bind(&loop); | 
 |       __ Beq(temp, cls.AsRegister<Register>(), &done); | 
 |       // /* HeapReference<Class> */ temp = temp->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        temp_loc, | 
 |                                        super_offset, | 
 |                                        maybe_temp2_loc, | 
 |                                        kWithoutReadBarrier); | 
 |       // If the class reference currently in `temp` is null, jump to the slow path to throw the | 
 |       // exception. Otherwise, jump to the beginning of the loop. | 
 |       __ Bnez(temp, &loop); | 
 |       __ B(slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kArrayObjectCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |       // Do an exact check. | 
 |       __ Beq(temp, cls.AsRegister<Register>(), &done); | 
 |       // Otherwise, we need to check that the object's class is a non-primitive array. | 
 |       // /* HeapReference<Class> */ temp = temp->component_type_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        temp_loc, | 
 |                                        component_offset, | 
 |                                        maybe_temp2_loc, | 
 |                                        kWithoutReadBarrier); | 
 |       // If the component type is null, jump to the slow path to throw the exception. | 
 |       __ Beqz(temp, slow_path->GetEntryLabel()); | 
 |       // Otherwise, the object is indeed an array, further check that this component | 
 |       // type is not a primitive type. | 
 |       __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset); | 
 |       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
 |       __ Bnez(temp, slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |       // We always go into the type check slow path for the unresolved check case. | 
 |       // We cannot directly call the CheckCast runtime entry point | 
 |       // without resorting to a type checking slow path here (i.e. by | 
 |       // calling InvokeRuntime directly), as it would require to | 
 |       // assign fixed registers for the inputs of this HInstanceOf | 
 |       // instruction (following the runtime calling convention), which | 
 |       // might be cluttered by the potential first read barrier | 
 |       // emission at the beginning of this method. | 
 |       __ B(slow_path->GetEntryLabel()); | 
 |       break; | 
 |  | 
 |     case TypeCheckKind::kInterfaceCheck: { | 
 |       // Avoid read barriers to improve performance of the fast path. We can not get false | 
 |       // positives by doing this. | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |       // /* HeapReference<Class> */ temp = temp->iftable_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         temp_loc, | 
 |                                         iftable_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |       // Iftable is never null. | 
 |       __ Lw(TMP, temp, array_length_offset); | 
 |       // Loop through the iftable and check if any class matches. | 
 |       MipsLabel loop; | 
 |       __ Bind(&loop); | 
 |       __ Addiu(temp, temp, 2 * kHeapReferenceSize);  // Possibly in delay slot on R2. | 
 |       __ Beqz(TMP, slow_path->GetEntryLabel()); | 
 |       __ Lw(AT, temp, object_array_data_offset - 2 * kHeapReferenceSize); | 
 |       __ MaybeUnpoisonHeapReference(AT); | 
 |       // Go to next interface. | 
 |       __ Addiu(TMP, TMP, -2); | 
 |       // Compare the classes and continue the loop if they do not match. | 
 |       __ Bne(AT, cls.AsRegister<Register>(), &loop); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kBitstringCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         temp_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp2_loc, | 
 |                                         kWithoutReadBarrier); | 
 |  | 
 |       GenerateBitstringTypeCheckCompare(instruction, temp); | 
 |       __ Bnez(temp, slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   __ Bind(&done); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (check->HasUses()) { | 
 |     locations->SetOut(Location::SameAsFirstInput()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) { | 
 |   // We assume the class is not null. | 
 |   SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS( | 
 |       check->GetLoadClass(), | 
 |       check, | 
 |       check->GetDexPc(), | 
 |       true); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |   GenerateClassInitializationCheck(slow_path, | 
 |                                    check->GetLocations()->InAt(0).AsRegister<Register>()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitCompare(HCompare* compare) { | 
 |   DataType::Type in_type = compare->InputAt(0)->GetType(); | 
 |  | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall); | 
 |  | 
 |   switch (in_type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |     case DataType::Type::kInt32: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RequiresRegister()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RequiresRegister()); | 
 |       // Output overlaps because it is written before doing the low comparison. | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for compare operation " << in_type; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Register res = locations->Out().AsRegister<Register>(); | 
 |   DataType::Type in_type = instruction->InputAt(0)->GetType(); | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |  | 
 |   //  0 if: left == right | 
 |   //  1 if: left  > right | 
 |   // -1 if: left  < right | 
 |   switch (in_type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |     case DataType::Type::kInt32: { | 
 |       Register lhs = locations->InAt(0).AsRegister<Register>(); | 
 |       Register rhs = locations->InAt(1).AsRegister<Register>(); | 
 |       __ Slt(TMP, lhs, rhs); | 
 |       __ Slt(res, rhs, lhs); | 
 |       __ Subu(res, res, TMP); | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kInt64: { | 
 |       MipsLabel done; | 
 |       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |       Register lhs_low  = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |       Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>(); | 
 |       Register rhs_low  = locations->InAt(1).AsRegisterPairLow<Register>(); | 
 |       // TODO: more efficient (direct) comparison with a constant. | 
 |       __ Slt(TMP, lhs_high, rhs_high); | 
 |       __ Slt(AT, rhs_high, lhs_high);  // Inverted: is actually gt. | 
 |       __ Subu(res, AT, TMP);           // Result -1:1:0 for [ <, >, == ]. | 
 |       __ Bnez(res, &done);             // If we compared ==, check if lower bits are also equal. | 
 |       __ Sltu(TMP, lhs_low, rhs_low); | 
 |       __ Sltu(AT, rhs_low, lhs_low);   // Inverted: is actually gt. | 
 |       __ Subu(res, AT, TMP);           // Result -1:1:0 for [ <, >, == ]. | 
 |       __ Bind(&done); | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat32: { | 
 |       bool gt_bias = instruction->IsGtBias(); | 
 |       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |       MipsLabel done; | 
 |       if (isR6) { | 
 |         __ CmpEqS(FTMP, lhs, rhs); | 
 |         __ LoadConst32(res, 0); | 
 |         __ Bc1nez(FTMP, &done); | 
 |         if (gt_bias) { | 
 |           __ CmpLtS(FTMP, lhs, rhs); | 
 |           __ LoadConst32(res, -1); | 
 |           __ Bc1nez(FTMP, &done); | 
 |           __ LoadConst32(res, 1); | 
 |         } else { | 
 |           __ CmpLtS(FTMP, rhs, lhs); | 
 |           __ LoadConst32(res, 1); | 
 |           __ Bc1nez(FTMP, &done); | 
 |           __ LoadConst32(res, -1); | 
 |         } | 
 |       } else { | 
 |         if (gt_bias) { | 
 |           __ ColtS(0, lhs, rhs); | 
 |           __ LoadConst32(res, -1); | 
 |           __ Bc1t(0, &done); | 
 |           __ CeqS(0, lhs, rhs); | 
 |           __ LoadConst32(res, 1); | 
 |           __ Movt(res, ZERO, 0); | 
 |         } else { | 
 |           __ ColtS(0, rhs, lhs); | 
 |           __ LoadConst32(res, 1); | 
 |           __ Bc1t(0, &done); | 
 |           __ CeqS(0, lhs, rhs); | 
 |           __ LoadConst32(res, -1); | 
 |           __ Movt(res, ZERO, 0); | 
 |         } | 
 |       } | 
 |       __ Bind(&done); | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat64: { | 
 |       bool gt_bias = instruction->IsGtBias(); | 
 |       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |       MipsLabel done; | 
 |       if (isR6) { | 
 |         __ CmpEqD(FTMP, lhs, rhs); | 
 |         __ LoadConst32(res, 0); | 
 |         __ Bc1nez(FTMP, &done); | 
 |         if (gt_bias) { | 
 |           __ CmpLtD(FTMP, lhs, rhs); | 
 |           __ LoadConst32(res, -1); | 
 |           __ Bc1nez(FTMP, &done); | 
 |           __ LoadConst32(res, 1); | 
 |         } else { | 
 |           __ CmpLtD(FTMP, rhs, lhs); | 
 |           __ LoadConst32(res, 1); | 
 |           __ Bc1nez(FTMP, &done); | 
 |           __ LoadConst32(res, -1); | 
 |         } | 
 |       } else { | 
 |         if (gt_bias) { | 
 |           __ ColtD(0, lhs, rhs); | 
 |           __ LoadConst32(res, -1); | 
 |           __ Bc1t(0, &done); | 
 |           __ CeqD(0, lhs, rhs); | 
 |           __ LoadConst32(res, 1); | 
 |           __ Movt(res, ZERO, 0); | 
 |         } else { | 
 |           __ ColtD(0, rhs, lhs); | 
 |           __ LoadConst32(res, 1); | 
 |           __ Bc1t(0, &done); | 
 |           __ CeqD(0, lhs, rhs); | 
 |           __ LoadConst32(res, -1); | 
 |           __ Movt(res, ZERO, 0); | 
 |         } | 
 |       } | 
 |       __ Bind(&done); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unimplemented compare type " << in_type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   switch (instruction->InputAt(0)->GetType()) { | 
 |     default: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       break; | 
 |   } | 
 |   if (!instruction->IsEmittedAtUseSite()) { | 
 |     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) { | 
 |   if (instruction->IsEmittedAtUseSite()) { | 
 |     return; | 
 |   } | 
 |  | 
 |   DataType::Type type = instruction->InputAt(0)->GetType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |  | 
 |   switch (type) { | 
 |     default: | 
 |       // Integer case. | 
 |       GenerateIntCompare(instruction->GetCondition(), locations); | 
 |       return; | 
 |  | 
 |     case DataType::Type::kInt64: | 
 |       GenerateLongCompare(instruction->GetCondition(), locations); | 
 |       return; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       GenerateFpCompare(instruction->GetCondition(), instruction->IsGtBias(), type, locations); | 
 |       return; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) { | 
 |   DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location second = locations->InAt(1); | 
 |   DCHECK(second.IsConstant()); | 
 |   int64_t imm = Int64FromConstant(second.GetConstant()); | 
 |   DCHECK(imm == 1 || imm == -1); | 
 |  | 
 |   if (instruction->GetResultType() == DataType::Type::kInt32) { | 
 |     Register out = locations->Out().AsRegister<Register>(); | 
 |     Register dividend = locations->InAt(0).AsRegister<Register>(); | 
 |  | 
 |     if (instruction->IsRem()) { | 
 |       __ Move(out, ZERO); | 
 |     } else { | 
 |       if (imm == -1) { | 
 |         __ Subu(out, ZERO, dividend); | 
 |       } else if (out != dividend) { | 
 |         __ Move(out, dividend); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64); | 
 |     Register out_high = locations->Out().AsRegisterPairHigh<Register>(); | 
 |     Register out_low = locations->Out().AsRegisterPairLow<Register>(); | 
 |     Register in_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |     Register in_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |  | 
 |     if (instruction->IsRem()) { | 
 |       __ Move(out_high, ZERO); | 
 |       __ Move(out_low, ZERO); | 
 |     } else { | 
 |       if (imm == -1) { | 
 |         __ Subu(out_low, ZERO, in_low); | 
 |         __ Sltu(AT, ZERO, out_low); | 
 |         __ Subu(out_high, ZERO, in_high); | 
 |         __ Subu(out_high, out_high, AT); | 
 |       } else { | 
 |         __ Move(out_low, in_low); | 
 |         __ Move(out_high, in_high); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) { | 
 |   DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location second = locations->InAt(1); | 
 |   const bool is_r2_or_newer = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); | 
 |   const bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   DCHECK(second.IsConstant()); | 
 |  | 
 |   if (instruction->GetResultType() == DataType::Type::kInt32) { | 
 |     Register out = locations->Out().AsRegister<Register>(); | 
 |     Register dividend = locations->InAt(0).AsRegister<Register>(); | 
 |     int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); | 
 |     uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); | 
 |     int ctz_imm = CTZ(abs_imm); | 
 |  | 
 |     if (instruction->IsDiv()) { | 
 |       if (ctz_imm == 1) { | 
 |         // Fast path for division by +/-2, which is very common. | 
 |         __ Srl(TMP, dividend, 31); | 
 |       } else { | 
 |         __ Sra(TMP, dividend, 31); | 
 |         __ Srl(TMP, TMP, 32 - ctz_imm); | 
 |       } | 
 |       __ Addu(out, dividend, TMP); | 
 |       __ Sra(out, out, ctz_imm); | 
 |       if (imm < 0) { | 
 |         __ Subu(out, ZERO, out); | 
 |       } | 
 |     } else { | 
 |       if (ctz_imm == 1) { | 
 |         // Fast path for modulo +/-2, which is very common. | 
 |         __ Sra(TMP, dividend, 31); | 
 |         __ Subu(out, dividend, TMP); | 
 |         __ Andi(out, out, 1); | 
 |         __ Addu(out, out, TMP); | 
 |       } else { | 
 |         __ Sra(TMP, dividend, 31); | 
 |         __ Srl(TMP, TMP, 32 - ctz_imm); | 
 |         __ Addu(out, dividend, TMP); | 
 |         if (IsUint<16>(abs_imm - 1)) { | 
 |           __ Andi(out, out, abs_imm - 1); | 
 |         } else { | 
 |           if (is_r2_or_newer) { | 
 |             __ Ins(out, ZERO, ctz_imm, 32 - ctz_imm); | 
 |           } else { | 
 |             __ Sll(out, out, 32 - ctz_imm); | 
 |             __ Srl(out, out, 32 - ctz_imm); | 
 |           } | 
 |         } | 
 |         __ Subu(out, out, TMP); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64); | 
 |     Register out_high = locations->Out().AsRegisterPairHigh<Register>(); | 
 |     Register out_low = locations->Out().AsRegisterPairLow<Register>(); | 
 |     Register in_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |     Register in_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |     int64_t imm = Int64FromConstant(second.GetConstant()); | 
 |     uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); | 
 |     int ctz_imm = CTZ(abs_imm); | 
 |  | 
 |     if (instruction->IsDiv()) { | 
 |       if (ctz_imm < 32) { | 
 |         if (ctz_imm == 1) { | 
 |           __ Srl(AT, in_high, 31); | 
 |         } else { | 
 |           __ Sra(AT, in_high, 31); | 
 |           __ Srl(AT, AT, 32 - ctz_imm); | 
 |         } | 
 |         __ Addu(AT, AT, in_low); | 
 |         __ Sltu(TMP, AT, in_low); | 
 |         __ Addu(out_high, in_high, TMP); | 
 |         __ Srl(out_low, AT, ctz_imm); | 
 |         if (is_r2_or_newer) { | 
 |           __ Ins(out_low, out_high, 32 - ctz_imm, ctz_imm); | 
 |           __ Sra(out_high, out_high, ctz_imm); | 
 |         } else { | 
 |           __ Sll(AT, out_high, 32 - ctz_imm); | 
 |           __ Sra(out_high, out_high, ctz_imm); | 
 |           __ Or(out_low, out_low, AT); | 
 |         } | 
 |         if (imm < 0) { | 
 |           __ Subu(out_low, ZERO, out_low); | 
 |           __ Sltu(AT, ZERO, out_low); | 
 |           __ Subu(out_high, ZERO, out_high); | 
 |           __ Subu(out_high, out_high, AT); | 
 |         } | 
 |       } else if (ctz_imm == 32) { | 
 |         __ Sra(AT, in_high, 31); | 
 |         __ Addu(AT, AT, in_low); | 
 |         __ Sltu(AT, AT, in_low); | 
 |         __ Addu(out_low, in_high, AT); | 
 |         if (imm < 0) { | 
 |           __ Srl(TMP, out_low, 31); | 
 |           __ Subu(out_low, ZERO, out_low); | 
 |           __ Sltu(AT, ZERO, out_low); | 
 |           __ Subu(out_high, TMP, AT); | 
 |         } else { | 
 |           __ Sra(out_high, out_low, 31); | 
 |         } | 
 |       } else if (ctz_imm < 63) { | 
 |         __ Sra(AT, in_high, 31); | 
 |         __ Srl(TMP, AT, 64 - ctz_imm); | 
 |         __ Addu(AT, AT, in_low); | 
 |         __ Sltu(AT, AT, in_low); | 
 |         __ Addu(out_low, in_high, AT); | 
 |         __ Addu(out_low, out_low, TMP); | 
 |         __ Sra(out_low, out_low, ctz_imm - 32); | 
 |         if (imm < 0) { | 
 |           __ Subu(out_low, ZERO, out_low); | 
 |         } | 
 |         __ Sra(out_high, out_low, 31); | 
 |       } else { | 
 |         DCHECK_LT(imm, 0); | 
 |         if (is_r6) { | 
 |           __ Aui(AT, in_high, 0x8000); | 
 |         } else { | 
 |           __ Lui(AT, 0x8000); | 
 |           __ Xor(AT, AT, in_high); | 
 |         } | 
 |         __ Or(AT, AT, in_low); | 
 |         __ Sltiu(out_low, AT, 1); | 
 |         __ Move(out_high, ZERO); | 
 |       } | 
 |     } else { | 
 |       if ((ctz_imm == 1) && !is_r6) { | 
 |         __ Andi(AT, in_low, 1); | 
 |         __ Sll(TMP, in_low, 31); | 
 |         __ And(TMP, in_high, TMP); | 
 |         __ Sra(out_high, TMP, 31); | 
 |         __ Or(out_low, out_high, AT); | 
 |       } else if (ctz_imm < 32) { | 
 |         __ Sra(AT, in_high, 31); | 
 |         if (ctz_imm <= 16) { | 
 |           __ Andi(out_low, in_low, abs_imm - 1); | 
 |         } else if (is_r2_or_newer) { | 
 |           __ Ext(out_low, in_low, 0, ctz_imm); | 
 |         } else { | 
 |           __ Sll(out_low, in_low, 32 - ctz_imm); | 
 |           __ Srl(out_low, out_low, 32 - ctz_imm); | 
 |         } | 
 |         if (is_r6) { | 
 |           __ Selnez(out_high, AT, out_low); | 
 |         } else { | 
 |           __ Movz(AT, ZERO, out_low); | 
 |           __ Move(out_high, AT); | 
 |         } | 
 |         if (is_r2_or_newer) { | 
 |           __ Ins(out_low, out_high, ctz_imm, 32 - ctz_imm); | 
 |         } else { | 
 |           __ Sll(AT, out_high, ctz_imm); | 
 |           __ Or(out_low, out_low, AT); | 
 |         } | 
 |       } else if (ctz_imm == 32) { | 
 |         __ Sra(AT, in_high, 31); | 
 |         __ Move(out_low, in_low); | 
 |         if (is_r6) { | 
 |           __ Selnez(out_high, AT, out_low); | 
 |         } else { | 
 |           __ Movz(AT, ZERO, out_low); | 
 |           __ Move(out_high, AT); | 
 |         } | 
 |       } else if (ctz_imm < 63) { | 
 |         __ Sra(AT, in_high, 31); | 
 |         __ Move(TMP, in_low); | 
 |         if (ctz_imm - 32 <= 16) { | 
 |           __ Andi(out_high, in_high, (1 << (ctz_imm - 32)) - 1); | 
 |         } else if (is_r2_or_newer) { | 
 |           __ Ext(out_high, in_high, 0, ctz_imm - 32); | 
 |         } else { | 
 |           __ Sll(out_high, in_high, 64 - ctz_imm); | 
 |           __ Srl(out_high, out_high, 64 - ctz_imm); | 
 |         } | 
 |         __ Move(out_low, TMP); | 
 |         __ Or(TMP, TMP, out_high); | 
 |         if (is_r6) { | 
 |           __ Selnez(AT, AT, TMP); | 
 |         } else { | 
 |           __ Movz(AT, ZERO, TMP); | 
 |         } | 
 |         if (is_r2_or_newer) { | 
 |           __ Ins(out_high, AT, ctz_imm - 32, 64 - ctz_imm); | 
 |         } else { | 
 |           __ Sll(AT, AT, ctz_imm - 32); | 
 |           __ Or(out_high, out_high, AT); | 
 |         } | 
 |       } else { | 
 |         if (is_r6) { | 
 |           __ Aui(AT, in_high, 0x8000); | 
 |         } else { | 
 |           __ Lui(AT, 0x8000); | 
 |           __ Xor(AT, AT, in_high); | 
 |         } | 
 |         __ Or(AT, AT, in_low); | 
 |         __ Sltiu(AT, AT, 1); | 
 |         __ Sll(AT, AT, 31); | 
 |         __ Move(out_low, in_low); | 
 |         __ Xor(out_high, in_high, AT); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { | 
 |   DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
 |   DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt32); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location second = locations->InAt(1); | 
 |   DCHECK(second.IsConstant()); | 
 |  | 
 |   Register out = locations->Out().AsRegister<Register>(); | 
 |   Register dividend = locations->InAt(0).AsRegister<Register>(); | 
 |   int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); | 
 |  | 
 |   int64_t magic; | 
 |   int shift; | 
 |   CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); | 
 |  | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |  | 
 |   __ LoadConst32(TMP, magic); | 
 |   if (isR6) { | 
 |     __ MuhR6(TMP, dividend, TMP); | 
 |   } else { | 
 |     __ MultR2(dividend, TMP); | 
 |     __ Mfhi(TMP); | 
 |   } | 
 |   if (imm > 0 && magic < 0) { | 
 |     __ Addu(TMP, TMP, dividend); | 
 |   } else if (imm < 0 && magic > 0) { | 
 |     __ Subu(TMP, TMP, dividend); | 
 |   } | 
 |  | 
 |   if (shift != 0) { | 
 |     __ Sra(TMP, TMP, shift); | 
 |   } | 
 |  | 
 |   if (instruction->IsDiv()) { | 
 |     __ Sra(out, TMP, 31); | 
 |     __ Subu(out, TMP, out); | 
 |   } else { | 
 |     __ Sra(AT, TMP, 31); | 
 |     __ Subu(AT, TMP, AT); | 
 |     __ LoadConst32(TMP, imm); | 
 |     if (isR6) { | 
 |       __ MulR6(TMP, AT, TMP); | 
 |     } else { | 
 |       __ MulR2(TMP, AT, TMP); | 
 |     } | 
 |     __ Subu(out, dividend, TMP); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) { | 
 |   DCHECK(instruction->IsDiv() || instruction->IsRem()); | 
 |   DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt32); | 
 |  | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Register out = locations->Out().AsRegister<Register>(); | 
 |   Location second = locations->InAt(1); | 
 |  | 
 |   if (second.IsConstant()) { | 
 |     int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); | 
 |     if (imm == 0) { | 
 |       // Do not generate anything. DivZeroCheck would prevent any code to be executed. | 
 |     } else if (imm == 1 || imm == -1) { | 
 |       DivRemOneOrMinusOne(instruction); | 
 |     } else if (IsPowerOfTwo(AbsOrMin(imm))) { | 
 |       DivRemByPowerOfTwo(instruction); | 
 |     } else { | 
 |       DCHECK(imm <= -2 || imm >= 2); | 
 |       GenerateDivRemWithAnyConstant(instruction); | 
 |     } | 
 |   } else { | 
 |     Register dividend = locations->InAt(0).AsRegister<Register>(); | 
 |     Register divisor = second.AsRegister<Register>(); | 
 |     bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |     if (instruction->IsDiv()) { | 
 |       if (isR6) { | 
 |         __ DivR6(out, dividend, divisor); | 
 |       } else { | 
 |         __ DivR2(out, dividend, divisor); | 
 |       } | 
 |     } else { | 
 |       if (isR6) { | 
 |         __ ModR6(out, dividend, divisor); | 
 |       } else { | 
 |         __ ModR2(out, dividend, divisor); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitDiv(HDiv* div) { | 
 |   DataType::Type type = div->GetResultType(); | 
 |   bool call_long_div = false; | 
 |   if (type == DataType::Type::kInt64) { | 
 |     if (div->InputAt(1)->IsConstant()) { | 
 |       int64_t imm = CodeGenerator::GetInt64ValueOf(div->InputAt(1)->AsConstant()); | 
 |       call_long_div = (imm != 0) && !IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm))); | 
 |     } else { | 
 |       call_long_div = true; | 
 |     } | 
 |   } | 
 |   LocationSummary::CallKind call_kind = call_long_div | 
 |       ? LocationSummary::kCallOnMainOnly | 
 |       : LocationSummary::kNoCall; | 
 |  | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       if (call_long_div) { | 
 |         InvokeRuntimeCallingConvention calling_convention; | 
 |         locations->SetInAt(0, Location::RegisterPairLocation( | 
 |             calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); | 
 |         locations->SetInAt(1, Location::RegisterPairLocation( | 
 |             calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); | 
 |         locations->SetOut(calling_convention.GetReturnLocation(type)); | 
 |       } else { | 
 |         locations->SetInAt(0, Location::RequiresRegister()); | 
 |         locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant())); | 
 |         locations->SetOut(Location::RequiresRegister()); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected div type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) { | 
 |   DataType::Type type = instruction->GetType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |       GenerateDivRemIntegral(instruction); | 
 |       break; | 
 |     case DataType::Type::kInt64: { | 
 |       if (locations->InAt(1).IsConstant()) { | 
 |         int64_t imm = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue(); | 
 |         if (imm == 0) { | 
 |           // Do not generate anything. DivZeroCheck would prevent any code to be executed. | 
 |         } else if (imm == 1 || imm == -1) { | 
 |           DivRemOneOrMinusOne(instruction); | 
 |         } else { | 
 |           DCHECK(IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm)))); | 
 |           DivRemByPowerOfTwo(instruction); | 
 |         } | 
 |       } else { | 
 |         codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc()); | 
 |         CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       FRegister dst = locations->Out().AsFpuRegister<FRegister>(); | 
 |       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |       if (type == DataType::Type::kFloat32) { | 
 |         __ DivS(dst, lhs, rhs); | 
 |       } else { | 
 |         __ DivD(dst, lhs, rhs); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected div type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
 |   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); | 
 |   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) { | 
 |   SlowPathCodeMIPS* slow_path = | 
 |       new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathMIPS(instruction); | 
 |   codegen_->AddSlowPath(slow_path); | 
 |   Location value = instruction->GetLocations()->InAt(0); | 
 |   DataType::Type type = instruction->GetType(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |     case DataType::Type::kInt32: { | 
 |       if (value.IsConstant()) { | 
 |         if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { | 
 |           __ B(slow_path->GetEntryLabel()); | 
 |         } else { | 
 |           // A division by a non-null constant is valid. We don't need to perform | 
 |           // any check, so simply fall through. | 
 |         } | 
 |       } else { | 
 |         DCHECK(value.IsRegister()) << value; | 
 |         __ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel()); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kInt64: { | 
 |       if (value.IsConstant()) { | 
 |         if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { | 
 |           __ B(slow_path->GetEntryLabel()); | 
 |         } else { | 
 |           // A division by a non-null constant is valid. We don't need to perform | 
 |           // any check, so simply fall through. | 
 |         } | 
 |       } else { | 
 |         DCHECK(value.IsRegisterPair()) << value; | 
 |         __ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>()); | 
 |         __ Beqz(TMP, slow_path->GetEntryLabel()); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitExit(HExit* exit) { | 
 |   exit->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitGoto(HGoto* got) { | 
 |   got->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) { | 
 |   if (successor->IsExitBlock()) { | 
 |     DCHECK(got->GetPrevious()->AlwaysThrows()); | 
 |     return;  // no code needed | 
 |   } | 
 |  | 
 |   HBasicBlock* block = got->GetBlock(); | 
 |   HInstruction* previous = got->GetPrevious(); | 
 |   HLoopInformation* info = block->GetLoopInformation(); | 
 |  | 
 |   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { | 
 |     if (codegen_->GetCompilerOptions().CountHotnessInCompiledCode()) { | 
 |       __ Lw(AT, SP, kCurrentMethodStackOffset); | 
 |       __ Lhu(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value()); | 
 |       __ Addiu(TMP, TMP, 1); | 
 |       __ Sh(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value()); | 
 |     } | 
 |     GenerateSuspendCheck(info->GetSuspendCheck(), successor); | 
 |     return; | 
 |   } | 
 |   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { | 
 |     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); | 
 |   } | 
 |   if (!codegen_->GoesToNextBlock(block, successor)) { | 
 |     __ B(codegen_->GetLabelOf(successor)); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) { | 
 |   HandleGoto(got, got->GetSuccessor()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) { | 
 |   try_boundary->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) { | 
 |   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); | 
 |   if (!successor->IsExitBlock()) { | 
 |     HandleGoto(try_boundary, successor); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond, | 
 |                                                       LocationSummary* locations) { | 
 |   Register dst = locations->Out().AsRegister<Register>(); | 
 |   Register lhs = locations->InAt(0).AsRegister<Register>(); | 
 |   Location rhs_location = locations->InAt(1); | 
 |   Register rhs_reg = ZERO; | 
 |   int64_t rhs_imm = 0; | 
 |   bool use_imm = rhs_location.IsConstant(); | 
 |   if (use_imm) { | 
 |     rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); | 
 |   } else { | 
 |     rhs_reg = rhs_location.AsRegister<Register>(); | 
 |   } | 
 |  | 
 |   switch (cond) { | 
 |     case kCondEQ: | 
 |     case kCondNE: | 
 |       if (use_imm && IsInt<16>(-rhs_imm)) { | 
 |         if (rhs_imm == 0) { | 
 |           if (cond == kCondEQ) { | 
 |             __ Sltiu(dst, lhs, 1); | 
 |           } else { | 
 |             __ Sltu(dst, ZERO, lhs); | 
 |           } | 
 |         } else { | 
 |           __ Addiu(dst, lhs, -rhs_imm); | 
 |           if (cond == kCondEQ) { | 
 |             __ Sltiu(dst, dst, 1); | 
 |           } else { | 
 |             __ Sltu(dst, ZERO, dst); | 
 |           } | 
 |         } | 
 |       } else { | 
 |         if (use_imm && IsUint<16>(rhs_imm)) { | 
 |           __ Xori(dst, lhs, rhs_imm); | 
 |         } else { | 
 |           if (use_imm) { | 
 |             rhs_reg = TMP; | 
 |             __ LoadConst32(rhs_reg, rhs_imm); | 
 |           } | 
 |           __ Xor(dst, lhs, rhs_reg); | 
 |         } | 
 |         if (cond == kCondEQ) { | 
 |           __ Sltiu(dst, dst, 1); | 
 |         } else { | 
 |           __ Sltu(dst, ZERO, dst); | 
 |         } | 
 |       } | 
 |       break; | 
 |  | 
 |     case kCondLT: | 
 |     case kCondGE: | 
 |       if (use_imm && IsInt<16>(rhs_imm)) { | 
 |         __ Slti(dst, lhs, rhs_imm); | 
 |       } else { | 
 |         if (use_imm) { | 
 |           rhs_reg = TMP; | 
 |           __ LoadConst32(rhs_reg, rhs_imm); | 
 |         } | 
 |         __ Slt(dst, lhs, rhs_reg); | 
 |       } | 
 |       if (cond == kCondGE) { | 
 |         // Simulate lhs >= rhs via !(lhs < rhs) since there's | 
 |         // only the slt instruction but no sge. | 
 |         __ Xori(dst, dst, 1); | 
 |       } | 
 |       break; | 
 |  | 
 |     case kCondLE: | 
 |     case kCondGT: | 
 |       if (use_imm && IsInt<16>(rhs_imm + 1)) { | 
 |         // Simulate lhs <= rhs via lhs < rhs + 1. | 
 |         __ Slti(dst, lhs, rhs_imm + 1); | 
 |         if (cond == kCondGT) { | 
 |           // Simulate lhs > rhs via !(lhs <= rhs) since there's | 
 |           // only the slti instruction but no sgti. | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |       } else { | 
 |         if (use_imm) { | 
 |           rhs_reg = TMP; | 
 |           __ LoadConst32(rhs_reg, rhs_imm); | 
 |         } | 
 |         __ Slt(dst, rhs_reg, lhs); | 
 |         if (cond == kCondLE) { | 
 |           // Simulate lhs <= rhs via !(rhs < lhs) since there's | 
 |           // only the slt instruction but no sle. | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |       } | 
 |       break; | 
 |  | 
 |     case kCondB: | 
 |     case kCondAE: | 
 |       if (use_imm && IsInt<16>(rhs_imm)) { | 
 |         // Sltiu sign-extends its 16-bit immediate operand before | 
 |         // the comparison and thus lets us compare directly with | 
 |         // unsigned values in the ranges [0, 0x7fff] and | 
 |         // [0xffff8000, 0xffffffff]. | 
 |         __ Sltiu(dst, lhs, rhs_imm); | 
 |       } else { | 
 |         if (use_imm) { | 
 |           rhs_reg = TMP; | 
 |           __ LoadConst32(rhs_reg, rhs_imm); | 
 |         } | 
 |         __ Sltu(dst, lhs, rhs_reg); | 
 |       } | 
 |       if (cond == kCondAE) { | 
 |         // Simulate lhs >= rhs via !(lhs < rhs) since there's | 
 |         // only the sltu instruction but no sgeu. | 
 |         __ Xori(dst, dst, 1); | 
 |       } | 
 |       break; | 
 |  | 
 |     case kCondBE: | 
 |     case kCondA: | 
 |       if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) { | 
 |         // Simulate lhs <= rhs via lhs < rhs + 1. | 
 |         // Note that this only works if rhs + 1 does not overflow | 
 |         // to 0, hence the check above. | 
 |         // Sltiu sign-extends its 16-bit immediate operand before | 
 |         // the comparison and thus lets us compare directly with | 
 |         // unsigned values in the ranges [0, 0x7fff] and | 
 |         // [0xffff8000, 0xffffffff]. | 
 |         __ Sltiu(dst, lhs, rhs_imm + 1); | 
 |         if (cond == kCondA) { | 
 |           // Simulate lhs > rhs via !(lhs <= rhs) since there's | 
 |           // only the sltiu instruction but no sgtiu. | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |       } else { | 
 |         if (use_imm) { | 
 |           rhs_reg = TMP; | 
 |           __ LoadConst32(rhs_reg, rhs_imm); | 
 |         } | 
 |         __ Sltu(dst, rhs_reg, lhs); | 
 |         if (cond == kCondBE) { | 
 |           // Simulate lhs <= rhs via !(rhs < lhs) since there's | 
 |           // only the sltu instruction but no sleu. | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |       } | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | bool InstructionCodeGeneratorMIPS::MaterializeIntCompare(IfCondition cond, | 
 |                                                          LocationSummary* input_locations, | 
 |                                                          Register dst) { | 
 |   Register lhs = input_locations->InAt(0).AsRegister<Register>(); | 
 |   Location rhs_location = input_locations->InAt(1); | 
 |   Register rhs_reg = ZERO; | 
 |   int64_t rhs_imm = 0; | 
 |   bool use_imm = rhs_location.IsConstant(); | 
 |   if (use_imm) { | 
 |     rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); | 
 |   } else { | 
 |     rhs_reg = rhs_location.AsRegister<Register>(); | 
 |   } | 
 |  | 
 |   switch (cond) { | 
 |     case kCondEQ: | 
 |     case kCondNE: | 
 |       if (use_imm && IsInt<16>(-rhs_imm)) { | 
 |         __ Addiu(dst, lhs, -rhs_imm); | 
 |       } else if (use_imm && IsUint<16>(rhs_imm)) { | 
 |         __ Xori(dst, lhs, rhs_imm); | 
 |       } else { | 
 |         if (use_imm) { | 
 |           rhs_reg = TMP; | 
 |           __ LoadConst32(rhs_reg, rhs_imm); | 
 |         } | 
 |         __ Xor(dst, lhs, rhs_reg); | 
 |       } | 
 |       return (cond == kCondEQ); | 
 |  | 
 |     case kCondLT: | 
 |     case kCondGE: | 
 |       if (use_imm && IsInt<16>(rhs_imm)) { | 
 |         __ Slti(dst, lhs, rhs_imm); | 
 |       } else { | 
 |         if (use_imm) { | 
 |           rhs_reg = TMP; | 
 |           __ LoadConst32(rhs_reg, rhs_imm); | 
 |         } | 
 |         __ Slt(dst, lhs, rhs_reg); | 
 |       } | 
 |       return (cond == kCondGE); | 
 |  | 
 |     case kCondLE: | 
 |     case kCondGT: | 
 |       if (use_imm && IsInt<16>(rhs_imm + 1)) { | 
 |         // Simulate lhs <= rhs via lhs < rhs + 1. | 
 |         __ Slti(dst, lhs, rhs_imm + 1); | 
 |         return (cond == kCondGT); | 
 |       } else { | 
 |         if (use_imm) { | 
 |           rhs_reg = TMP; | 
 |           __ LoadConst32(rhs_reg, rhs_imm); | 
 |         } | 
 |         __ Slt(dst, rhs_reg, lhs); | 
 |         return (cond == kCondLE); | 
 |       } | 
 |  | 
 |     case kCondB: | 
 |     case kCondAE: | 
 |       if (use_imm && IsInt<16>(rhs_imm)) { | 
 |         // Sltiu sign-extends its 16-bit immediate operand before | 
 |         // the comparison and thus lets us compare directly with | 
 |         // unsigned values in the ranges [0, 0x7fff] and | 
 |         // [0xffff8000, 0xffffffff]. | 
 |         __ Sltiu(dst, lhs, rhs_imm); | 
 |       } else { | 
 |         if (use_imm) { | 
 |           rhs_reg = TMP; | 
 |           __ LoadConst32(rhs_reg, rhs_imm); | 
 |         } | 
 |         __ Sltu(dst, lhs, rhs_reg); | 
 |       } | 
 |       return (cond == kCondAE); | 
 |  | 
 |     case kCondBE: | 
 |     case kCondA: | 
 |       if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) { | 
 |         // Simulate lhs <= rhs via lhs < rhs + 1. | 
 |         // Note that this only works if rhs + 1 does not overflow | 
 |         // to 0, hence the check above. | 
 |         // Sltiu sign-extends its 16-bit immediate operand before | 
 |         // the comparison and thus lets us compare directly with | 
 |         // unsigned values in the ranges [0, 0x7fff] and | 
 |         // [0xffff8000, 0xffffffff]. | 
 |         __ Sltiu(dst, lhs, rhs_imm + 1); | 
 |         return (cond == kCondA); | 
 |       } else { | 
 |         if (use_imm) { | 
 |           rhs_reg = TMP; | 
 |           __ LoadConst32(rhs_reg, rhs_imm); | 
 |         } | 
 |         __ Sltu(dst, rhs_reg, lhs); | 
 |         return (cond == kCondBE); | 
 |       } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond, | 
 |                                                                LocationSummary* locations, | 
 |                                                                MipsLabel* label) { | 
 |   Register lhs = locations->InAt(0).AsRegister<Register>(); | 
 |   Location rhs_location = locations->InAt(1); | 
 |   Register rhs_reg = ZERO; | 
 |   int64_t rhs_imm = 0; | 
 |   bool use_imm = rhs_location.IsConstant(); | 
 |   if (use_imm) { | 
 |     rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); | 
 |   } else { | 
 |     rhs_reg = rhs_location.AsRegister<Register>(); | 
 |   } | 
 |  | 
 |   if (use_imm && rhs_imm == 0) { | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |       case kCondBE:  // <= 0 if zero | 
 |         __ Beqz(lhs, label); | 
 |         break; | 
 |       case kCondNE: | 
 |       case kCondA:  // > 0 if non-zero | 
 |         __ Bnez(lhs, label); | 
 |         break; | 
 |       case kCondLT: | 
 |         __ Bltz(lhs, label); | 
 |         break; | 
 |       case kCondGE: | 
 |         __ Bgez(lhs, label); | 
 |         break; | 
 |       case kCondLE: | 
 |         __ Blez(lhs, label); | 
 |         break; | 
 |       case kCondGT: | 
 |         __ Bgtz(lhs, label); | 
 |         break; | 
 |       case kCondB:  // always false | 
 |         break; | 
 |       case kCondAE:  // always true | 
 |         __ B(label); | 
 |         break; | 
 |     } | 
 |   } else { | 
 |     bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |     if (isR6 || !use_imm) { | 
 |       if (use_imm) { | 
 |         rhs_reg = TMP; | 
 |         __ LoadConst32(rhs_reg, rhs_imm); | 
 |       } | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ Beq(lhs, rhs_reg, label); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ Bne(lhs, rhs_reg, label); | 
 |           break; | 
 |         case kCondLT: | 
 |           __ Blt(lhs, rhs_reg, label); | 
 |           break; | 
 |         case kCondGE: | 
 |           __ Bge(lhs, rhs_reg, label); | 
 |           break; | 
 |         case kCondLE: | 
 |           __ Bge(rhs_reg, lhs, label); | 
 |           break; | 
 |         case kCondGT: | 
 |           __ Blt(rhs_reg, lhs, label); | 
 |           break; | 
 |         case kCondB: | 
 |           __ Bltu(lhs, rhs_reg, label); | 
 |           break; | 
 |         case kCondAE: | 
 |           __ Bgeu(lhs, rhs_reg, label); | 
 |           break; | 
 |         case kCondBE: | 
 |           __ Bgeu(rhs_reg, lhs, label); | 
 |           break; | 
 |         case kCondA: | 
 |           __ Bltu(rhs_reg, lhs, label); | 
 |           break; | 
 |       } | 
 |     } else { | 
 |       // Special cases for more efficient comparison with constants on R2. | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ LoadConst32(TMP, rhs_imm); | 
 |           __ Beq(lhs, TMP, label); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ LoadConst32(TMP, rhs_imm); | 
 |           __ Bne(lhs, TMP, label); | 
 |           break; | 
 |         case kCondLT: | 
 |           if (IsInt<16>(rhs_imm)) { | 
 |             __ Slti(TMP, lhs, rhs_imm); | 
 |             __ Bnez(TMP, label); | 
 |           } else { | 
 |             __ LoadConst32(TMP, rhs_imm); | 
 |             __ Blt(lhs, TMP, label); | 
 |           } | 
 |           break; | 
 |         case kCondGE: | 
 |           if (IsInt<16>(rhs_imm)) { | 
 |             __ Slti(TMP, lhs, rhs_imm); | 
 |             __ Beqz(TMP, label); | 
 |           } else { | 
 |             __ LoadConst32(TMP, rhs_imm); | 
 |             __ Bge(lhs, TMP, label); | 
 |           } | 
 |           break; | 
 |         case kCondLE: | 
 |           if (IsInt<16>(rhs_imm + 1)) { | 
 |             // Simulate lhs <= rhs via lhs < rhs + 1. | 
 |             __ Slti(TMP, lhs, rhs_imm + 1); | 
 |             __ Bnez(TMP, label); | 
 |           } else { | 
 |             __ LoadConst32(TMP, rhs_imm); | 
 |             __ Bge(TMP, lhs, label); | 
 |           } | 
 |           break; | 
 |         case kCondGT: | 
 |           if (IsInt<16>(rhs_imm + 1)) { | 
 |             // Simulate lhs > rhs via !(lhs < rhs + 1). | 
 |             __ Slti(TMP, lhs, rhs_imm + 1); | 
 |             __ Beqz(TMP, label); | 
 |           } else { | 
 |             __ LoadConst32(TMP, rhs_imm); | 
 |             __ Blt(TMP, lhs, label); | 
 |           } | 
 |           break; | 
 |         case kCondB: | 
 |           if (IsInt<16>(rhs_imm)) { | 
 |             __ Sltiu(TMP, lhs, rhs_imm); | 
 |             __ Bnez(TMP, label); | 
 |           } else { | 
 |             __ LoadConst32(TMP, rhs_imm); | 
 |             __ Bltu(lhs, TMP, label); | 
 |           } | 
 |           break; | 
 |         case kCondAE: | 
 |           if (IsInt<16>(rhs_imm)) { | 
 |             __ Sltiu(TMP, lhs, rhs_imm); | 
 |             __ Beqz(TMP, label); | 
 |           } else { | 
 |             __ LoadConst32(TMP, rhs_imm); | 
 |             __ Bgeu(lhs, TMP, label); | 
 |           } | 
 |           break; | 
 |         case kCondBE: | 
 |           if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) { | 
 |             // Simulate lhs <= rhs via lhs < rhs + 1. | 
 |             // Note that this only works if rhs + 1 does not overflow | 
 |             // to 0, hence the check above. | 
 |             __ Sltiu(TMP, lhs, rhs_imm + 1); | 
 |             __ Bnez(TMP, label); | 
 |           } else { | 
 |             __ LoadConst32(TMP, rhs_imm); | 
 |             __ Bgeu(TMP, lhs, label); | 
 |           } | 
 |           break; | 
 |         case kCondA: | 
 |           if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) { | 
 |             // Simulate lhs > rhs via !(lhs < rhs + 1). | 
 |             // Note that this only works if rhs + 1 does not overflow | 
 |             // to 0, hence the check above. | 
 |             __ Sltiu(TMP, lhs, rhs_imm + 1); | 
 |             __ Beqz(TMP, label); | 
 |           } else { | 
 |             __ LoadConst32(TMP, rhs_imm); | 
 |             __ Bltu(TMP, lhs, label); | 
 |           } | 
 |           break; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateLongCompare(IfCondition cond, | 
 |                                                        LocationSummary* locations) { | 
 |   Register dst = locations->Out().AsRegister<Register>(); | 
 |   Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |   Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |   Location rhs_location = locations->InAt(1); | 
 |   Register rhs_high = ZERO; | 
 |   Register rhs_low = ZERO; | 
 |   int64_t imm = 0; | 
 |   uint32_t imm_high = 0; | 
 |   uint32_t imm_low = 0; | 
 |   bool use_imm = rhs_location.IsConstant(); | 
 |   if (use_imm) { | 
 |     imm = rhs_location.GetConstant()->AsLongConstant()->GetValue(); | 
 |     imm_high = High32Bits(imm); | 
 |     imm_low = Low32Bits(imm); | 
 |   } else { | 
 |     rhs_high = rhs_location.AsRegisterPairHigh<Register>(); | 
 |     rhs_low = rhs_location.AsRegisterPairLow<Register>(); | 
 |   } | 
 |   if (use_imm && imm == 0) { | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |       case kCondBE:  // <= 0 if zero | 
 |         __ Or(dst, lhs_high, lhs_low); | 
 |         __ Sltiu(dst, dst, 1); | 
 |         break; | 
 |       case kCondNE: | 
 |       case kCondA:  // > 0 if non-zero | 
 |         __ Or(dst, lhs_high, lhs_low); | 
 |         __ Sltu(dst, ZERO, dst); | 
 |         break; | 
 |       case kCondLT: | 
 |         __ Slt(dst, lhs_high, ZERO); | 
 |         break; | 
 |       case kCondGE: | 
 |         __ Slt(dst, lhs_high, ZERO); | 
 |         __ Xori(dst, dst, 1); | 
 |         break; | 
 |       case kCondLE: | 
 |         __ Or(TMP, lhs_high, lhs_low); | 
 |         __ Sra(AT, lhs_high, 31); | 
 |         __ Sltu(dst, AT, TMP); | 
 |         __ Xori(dst, dst, 1); | 
 |         break; | 
 |       case kCondGT: | 
 |         __ Or(TMP, lhs_high, lhs_low); | 
 |         __ Sra(AT, lhs_high, 31); | 
 |         __ Sltu(dst, AT, TMP); | 
 |         break; | 
 |       case kCondB:  // always false | 
 |         __ Andi(dst, dst, 0); | 
 |         break; | 
 |       case kCondAE:  // always true | 
 |         __ Ori(dst, ZERO, 1); | 
 |         break; | 
 |     } | 
 |   } else if (use_imm) { | 
 |     // TODO: more efficient comparison with constants without loading them into TMP/AT. | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Xor(TMP, TMP, lhs_high); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Xor(AT, AT, lhs_low); | 
 |         __ Or(dst, TMP, AT); | 
 |         __ Sltiu(dst, dst, 1); | 
 |         break; | 
 |       case kCondNE: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Xor(TMP, TMP, lhs_high); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Xor(AT, AT, lhs_low); | 
 |         __ Or(dst, TMP, AT); | 
 |         __ Sltu(dst, ZERO, dst); | 
 |         break; | 
 |       case kCondLT: | 
 |       case kCondGE: | 
 |         if (dst == lhs_low) { | 
 |           __ LoadConst32(TMP, imm_low); | 
 |           __ Sltu(dst, lhs_low, TMP); | 
 |         } | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Slt(AT, lhs_high, TMP); | 
 |         __ Slt(TMP, TMP, lhs_high); | 
 |         if (dst != lhs_low) { | 
 |           __ LoadConst32(dst, imm_low); | 
 |           __ Sltu(dst, lhs_low, dst); | 
 |         } | 
 |         __ Slt(dst, TMP, dst); | 
 |         __ Or(dst, dst, AT); | 
 |         if (cond == kCondGE) { | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |         break; | 
 |       case kCondGT: | 
 |       case kCondLE: | 
 |         if (dst == lhs_low) { | 
 |           __ LoadConst32(TMP, imm_low); | 
 |           __ Sltu(dst, TMP, lhs_low); | 
 |         } | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Slt(AT, TMP, lhs_high); | 
 |         __ Slt(TMP, lhs_high, TMP); | 
 |         if (dst != lhs_low) { | 
 |           __ LoadConst32(dst, imm_low); | 
 |           __ Sltu(dst, dst, lhs_low); | 
 |         } | 
 |         __ Slt(dst, TMP, dst); | 
 |         __ Or(dst, dst, AT); | 
 |         if (cond == kCondLE) { | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |         break; | 
 |       case kCondB: | 
 |       case kCondAE: | 
 |         if (dst == lhs_low) { | 
 |           __ LoadConst32(TMP, imm_low); | 
 |           __ Sltu(dst, lhs_low, TMP); | 
 |         } | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Sltu(AT, lhs_high, TMP); | 
 |         __ Sltu(TMP, TMP, lhs_high); | 
 |         if (dst != lhs_low) { | 
 |           __ LoadConst32(dst, imm_low); | 
 |           __ Sltu(dst, lhs_low, dst); | 
 |         } | 
 |         __ Slt(dst, TMP, dst); | 
 |         __ Or(dst, dst, AT); | 
 |         if (cond == kCondAE) { | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |         break; | 
 |       case kCondA: | 
 |       case kCondBE: | 
 |         if (dst == lhs_low) { | 
 |           __ LoadConst32(TMP, imm_low); | 
 |           __ Sltu(dst, TMP, lhs_low); | 
 |         } | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Sltu(AT, TMP, lhs_high); | 
 |         __ Sltu(TMP, lhs_high, TMP); | 
 |         if (dst != lhs_low) { | 
 |           __ LoadConst32(dst, imm_low); | 
 |           __ Sltu(dst, dst, lhs_low); | 
 |         } | 
 |         __ Slt(dst, TMP, dst); | 
 |         __ Or(dst, dst, AT); | 
 |         if (cond == kCondBE) { | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |         break; | 
 |     } | 
 |   } else { | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |         __ Xor(TMP, lhs_high, rhs_high); | 
 |         __ Xor(AT, lhs_low, rhs_low); | 
 |         __ Or(dst, TMP, AT); | 
 |         __ Sltiu(dst, dst, 1); | 
 |         break; | 
 |       case kCondNE: | 
 |         __ Xor(TMP, lhs_high, rhs_high); | 
 |         __ Xor(AT, lhs_low, rhs_low); | 
 |         __ Or(dst, TMP, AT); | 
 |         __ Sltu(dst, ZERO, dst); | 
 |         break; | 
 |       case kCondLT: | 
 |       case kCondGE: | 
 |         __ Slt(TMP, rhs_high, lhs_high); | 
 |         __ Sltu(AT, lhs_low, rhs_low); | 
 |         __ Slt(TMP, TMP, AT); | 
 |         __ Slt(AT, lhs_high, rhs_high); | 
 |         __ Or(dst, AT, TMP); | 
 |         if (cond == kCondGE) { | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |         break; | 
 |       case kCondGT: | 
 |       case kCondLE: | 
 |         __ Slt(TMP, lhs_high, rhs_high); | 
 |         __ Sltu(AT, rhs_low, lhs_low); | 
 |         __ Slt(TMP, TMP, AT); | 
 |         __ Slt(AT, rhs_high, lhs_high); | 
 |         __ Or(dst, AT, TMP); | 
 |         if (cond == kCondLE) { | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |         break; | 
 |       case kCondB: | 
 |       case kCondAE: | 
 |         __ Sltu(TMP, rhs_high, lhs_high); | 
 |         __ Sltu(AT, lhs_low, rhs_low); | 
 |         __ Slt(TMP, TMP, AT); | 
 |         __ Sltu(AT, lhs_high, rhs_high); | 
 |         __ Or(dst, AT, TMP); | 
 |         if (cond == kCondAE) { | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |         break; | 
 |       case kCondA: | 
 |       case kCondBE: | 
 |         __ Sltu(TMP, lhs_high, rhs_high); | 
 |         __ Sltu(AT, rhs_low, lhs_low); | 
 |         __ Slt(TMP, TMP, AT); | 
 |         __ Sltu(AT, rhs_high, lhs_high); | 
 |         __ Or(dst, AT, TMP); | 
 |         if (cond == kCondBE) { | 
 |           __ Xori(dst, dst, 1); | 
 |         } | 
 |         break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond, | 
 |                                                                 LocationSummary* locations, | 
 |                                                                 MipsLabel* label) { | 
 |   Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |   Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |   Location rhs_location = locations->InAt(1); | 
 |   Register rhs_high = ZERO; | 
 |   Register rhs_low = ZERO; | 
 |   int64_t imm = 0; | 
 |   uint32_t imm_high = 0; | 
 |   uint32_t imm_low = 0; | 
 |   bool use_imm = rhs_location.IsConstant(); | 
 |   if (use_imm) { | 
 |     imm = rhs_location.GetConstant()->AsLongConstant()->GetValue(); | 
 |     imm_high = High32Bits(imm); | 
 |     imm_low = Low32Bits(imm); | 
 |   } else { | 
 |     rhs_high = rhs_location.AsRegisterPairHigh<Register>(); | 
 |     rhs_low = rhs_location.AsRegisterPairLow<Register>(); | 
 |   } | 
 |  | 
 |   if (use_imm && imm == 0) { | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |       case kCondBE:  // <= 0 if zero | 
 |         __ Or(TMP, lhs_high, lhs_low); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondNE: | 
 |       case kCondA:  // > 0 if non-zero | 
 |         __ Or(TMP, lhs_high, lhs_low); | 
 |         __ Bnez(TMP, label); | 
 |         break; | 
 |       case kCondLT: | 
 |         __ Bltz(lhs_high, label); | 
 |         break; | 
 |       case kCondGE: | 
 |         __ Bgez(lhs_high, label); | 
 |         break; | 
 |       case kCondLE: | 
 |         __ Or(TMP, lhs_high, lhs_low); | 
 |         __ Sra(AT, lhs_high, 31); | 
 |         __ Bgeu(AT, TMP, label); | 
 |         break; | 
 |       case kCondGT: | 
 |         __ Or(TMP, lhs_high, lhs_low); | 
 |         __ Sra(AT, lhs_high, 31); | 
 |         __ Bltu(AT, TMP, label); | 
 |         break; | 
 |       case kCondB:  // always false | 
 |         break; | 
 |       case kCondAE:  // always true | 
 |         __ B(label); | 
 |         break; | 
 |     } | 
 |   } else if (use_imm) { | 
 |     // TODO: more efficient comparison with constants without loading them into TMP/AT. | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Xor(TMP, TMP, lhs_high); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Xor(AT, AT, lhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondNE: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Xor(TMP, TMP, lhs_high); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Xor(AT, AT, lhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Bnez(TMP, label); | 
 |         break; | 
 |       case kCondLT: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Blt(lhs_high, TMP, label); | 
 |         __ Slt(TMP, TMP, lhs_high); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Sltu(AT, lhs_low, AT); | 
 |         __ Blt(TMP, AT, label); | 
 |         break; | 
 |       case kCondGE: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Blt(TMP, lhs_high, label); | 
 |         __ Slt(TMP, lhs_high, TMP); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Sltu(AT, lhs_low, AT); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondLE: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Blt(lhs_high, TMP, label); | 
 |         __ Slt(TMP, TMP, lhs_high); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Sltu(AT, AT, lhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondGT: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Blt(TMP, lhs_high, label); | 
 |         __ Slt(TMP, lhs_high, TMP); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Sltu(AT, AT, lhs_low); | 
 |         __ Blt(TMP, AT, label); | 
 |         break; | 
 |       case kCondB: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Bltu(lhs_high, TMP, label); | 
 |         __ Sltu(TMP, TMP, lhs_high); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Sltu(AT, lhs_low, AT); | 
 |         __ Blt(TMP, AT, label); | 
 |         break; | 
 |       case kCondAE: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Bltu(TMP, lhs_high, label); | 
 |         __ Sltu(TMP, lhs_high, TMP); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Sltu(AT, lhs_low, AT); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondBE: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Bltu(lhs_high, TMP, label); | 
 |         __ Sltu(TMP, TMP, lhs_high); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Sltu(AT, AT, lhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondA: | 
 |         __ LoadConst32(TMP, imm_high); | 
 |         __ Bltu(TMP, lhs_high, label); | 
 |         __ Sltu(TMP, lhs_high, TMP); | 
 |         __ LoadConst32(AT, imm_low); | 
 |         __ Sltu(AT, AT, lhs_low); | 
 |         __ Blt(TMP, AT, label); | 
 |         break; | 
 |     } | 
 |   } else { | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |         __ Xor(TMP, lhs_high, rhs_high); | 
 |         __ Xor(AT, lhs_low, rhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondNE: | 
 |         __ Xor(TMP, lhs_high, rhs_high); | 
 |         __ Xor(AT, lhs_low, rhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Bnez(TMP, label); | 
 |         break; | 
 |       case kCondLT: | 
 |         __ Blt(lhs_high, rhs_high, label); | 
 |         __ Slt(TMP, rhs_high, lhs_high); | 
 |         __ Sltu(AT, lhs_low, rhs_low); | 
 |         __ Blt(TMP, AT, label); | 
 |         break; | 
 |       case kCondGE: | 
 |         __ Blt(rhs_high, lhs_high, label); | 
 |         __ Slt(TMP, lhs_high, rhs_high); | 
 |         __ Sltu(AT, lhs_low, rhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondLE: | 
 |         __ Blt(lhs_high, rhs_high, label); | 
 |         __ Slt(TMP, rhs_high, lhs_high); | 
 |         __ Sltu(AT, rhs_low, lhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondGT: | 
 |         __ Blt(rhs_high, lhs_high, label); | 
 |         __ Slt(TMP, lhs_high, rhs_high); | 
 |         __ Sltu(AT, rhs_low, lhs_low); | 
 |         __ Blt(TMP, AT, label); | 
 |         break; | 
 |       case kCondB: | 
 |         __ Bltu(lhs_high, rhs_high, label); | 
 |         __ Sltu(TMP, rhs_high, lhs_high); | 
 |         __ Sltu(AT, lhs_low, rhs_low); | 
 |         __ Blt(TMP, AT, label); | 
 |         break; | 
 |       case kCondAE: | 
 |         __ Bltu(rhs_high, lhs_high, label); | 
 |         __ Sltu(TMP, lhs_high, rhs_high); | 
 |         __ Sltu(AT, lhs_low, rhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondBE: | 
 |         __ Bltu(lhs_high, rhs_high, label); | 
 |         __ Sltu(TMP, rhs_high, lhs_high); | 
 |         __ Sltu(AT, rhs_low, lhs_low); | 
 |         __ Or(TMP, TMP, AT); | 
 |         __ Beqz(TMP, label); | 
 |         break; | 
 |       case kCondA: | 
 |         __ Bltu(rhs_high, lhs_high, label); | 
 |         __ Sltu(TMP, lhs_high, rhs_high); | 
 |         __ Sltu(AT, rhs_low, lhs_low); | 
 |         __ Blt(TMP, AT, label); | 
 |         break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateFpCompare(IfCondition cond, | 
 |                                                      bool gt_bias, | 
 |                                                      DataType::Type type, | 
 |                                                      LocationSummary* locations) { | 
 |   Register dst = locations->Out().AsRegister<Register>(); | 
 |   FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |   FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   if (type == DataType::Type::kFloat32) { | 
 |     if (isR6) { | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ CmpEqS(FTMP, lhs, rhs); | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ CmpEqS(FTMP, lhs, rhs); | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Addiu(dst, dst, 1); | 
 |           break; | 
 |         case kCondLT: | 
 |           if (gt_bias) { | 
 |             __ CmpLtS(FTMP, lhs, rhs); | 
 |           } else { | 
 |             __ CmpUltS(FTMP, lhs, rhs); | 
 |           } | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         case kCondLE: | 
 |           if (gt_bias) { | 
 |             __ CmpLeS(FTMP, lhs, rhs); | 
 |           } else { | 
 |             __ CmpUleS(FTMP, lhs, rhs); | 
 |           } | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         case kCondGT: | 
 |           if (gt_bias) { | 
 |             __ CmpUltS(FTMP, rhs, lhs); | 
 |           } else { | 
 |             __ CmpLtS(FTMP, rhs, lhs); | 
 |           } | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         case kCondGE: | 
 |           if (gt_bias) { | 
 |             __ CmpUleS(FTMP, rhs, lhs); | 
 |           } else { | 
 |             __ CmpLeS(FTMP, rhs, lhs); | 
 |           } | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected non-floating-point condition " << cond; | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } else { | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ CeqS(0, lhs, rhs); | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ CeqS(0, lhs, rhs); | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movt(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondLT: | 
 |           if (gt_bias) { | 
 |             __ ColtS(0, lhs, rhs); | 
 |           } else { | 
 |             __ CultS(0, lhs, rhs); | 
 |           } | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondLE: | 
 |           if (gt_bias) { | 
 |             __ ColeS(0, lhs, rhs); | 
 |           } else { | 
 |             __ CuleS(0, lhs, rhs); | 
 |           } | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondGT: | 
 |           if (gt_bias) { | 
 |             __ CultS(0, rhs, lhs); | 
 |           } else { | 
 |             __ ColtS(0, rhs, lhs); | 
 |           } | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondGE: | 
 |           if (gt_bias) { | 
 |             __ CuleS(0, rhs, lhs); | 
 |           } else { | 
 |             __ ColeS(0, rhs, lhs); | 
 |           } | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected non-floating-point condition " << cond; | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(type, DataType::Type::kFloat64); | 
 |     if (isR6) { | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ CmpEqD(FTMP, lhs, rhs); | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ CmpEqD(FTMP, lhs, rhs); | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Addiu(dst, dst, 1); | 
 |           break; | 
 |         case kCondLT: | 
 |           if (gt_bias) { | 
 |             __ CmpLtD(FTMP, lhs, rhs); | 
 |           } else { | 
 |             __ CmpUltD(FTMP, lhs, rhs); | 
 |           } | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         case kCondLE: | 
 |           if (gt_bias) { | 
 |             __ CmpLeD(FTMP, lhs, rhs); | 
 |           } else { | 
 |             __ CmpUleD(FTMP, lhs, rhs); | 
 |           } | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         case kCondGT: | 
 |           if (gt_bias) { | 
 |             __ CmpUltD(FTMP, rhs, lhs); | 
 |           } else { | 
 |             __ CmpLtD(FTMP, rhs, lhs); | 
 |           } | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         case kCondGE: | 
 |           if (gt_bias) { | 
 |             __ CmpUleD(FTMP, rhs, lhs); | 
 |           } else { | 
 |             __ CmpLeD(FTMP, rhs, lhs); | 
 |           } | 
 |           __ Mfc1(dst, FTMP); | 
 |           __ Andi(dst, dst, 1); | 
 |           break; | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected non-floating-point condition " << cond; | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } else { | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ CeqD(0, lhs, rhs); | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ CeqD(0, lhs, rhs); | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movt(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondLT: | 
 |           if (gt_bias) { | 
 |             __ ColtD(0, lhs, rhs); | 
 |           } else { | 
 |             __ CultD(0, lhs, rhs); | 
 |           } | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondLE: | 
 |           if (gt_bias) { | 
 |             __ ColeD(0, lhs, rhs); | 
 |           } else { | 
 |             __ CuleD(0, lhs, rhs); | 
 |           } | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondGT: | 
 |           if (gt_bias) { | 
 |             __ CultD(0, rhs, lhs); | 
 |           } else { | 
 |             __ ColtD(0, rhs, lhs); | 
 |           } | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         case kCondGE: | 
 |           if (gt_bias) { | 
 |             __ CuleD(0, rhs, lhs); | 
 |           } else { | 
 |             __ ColeD(0, rhs, lhs); | 
 |           } | 
 |           __ LoadConst32(dst, 1); | 
 |           __ Movf(dst, ZERO, 0); | 
 |           break; | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected non-floating-point condition " << cond; | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR2(IfCondition cond, | 
 |                                                           bool gt_bias, | 
 |                                                           DataType::Type type, | 
 |                                                           LocationSummary* input_locations, | 
 |                                                           int cc) { | 
 |   FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |   FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |   CHECK(!codegen_->GetInstructionSetFeatures().IsR6()); | 
 |   if (type == DataType::Type::kFloat32) { | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |         __ CeqS(cc, lhs, rhs); | 
 |         return false; | 
 |       case kCondNE: | 
 |         __ CeqS(cc, lhs, rhs); | 
 |         return true; | 
 |       case kCondLT: | 
 |         if (gt_bias) { | 
 |           __ ColtS(cc, lhs, rhs); | 
 |         } else { | 
 |           __ CultS(cc, lhs, rhs); | 
 |         } | 
 |         return false; | 
 |       case kCondLE: | 
 |         if (gt_bias) { | 
 |           __ ColeS(cc, lhs, rhs); | 
 |         } else { | 
 |           __ CuleS(cc, lhs, rhs); | 
 |         } | 
 |         return false; | 
 |       case kCondGT: | 
 |         if (gt_bias) { | 
 |           __ CultS(cc, rhs, lhs); | 
 |         } else { | 
 |           __ ColtS(cc, rhs, lhs); | 
 |         } | 
 |         return false; | 
 |       case kCondGE: | 
 |         if (gt_bias) { | 
 |           __ CuleS(cc, rhs, lhs); | 
 |         } else { | 
 |           __ ColeS(cc, rhs, lhs); | 
 |         } | 
 |         return false; | 
 |       default: | 
 |         LOG(FATAL) << "Unexpected non-floating-point condition"; | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(type, DataType::Type::kFloat64); | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |         __ CeqD(cc, lhs, rhs); | 
 |         return false; | 
 |       case kCondNE: | 
 |         __ CeqD(cc, lhs, rhs); | 
 |         return true; | 
 |       case kCondLT: | 
 |         if (gt_bias) { | 
 |           __ ColtD(cc, lhs, rhs); | 
 |         } else { | 
 |           __ CultD(cc, lhs, rhs); | 
 |         } | 
 |         return false; | 
 |       case kCondLE: | 
 |         if (gt_bias) { | 
 |           __ ColeD(cc, lhs, rhs); | 
 |         } else { | 
 |           __ CuleD(cc, lhs, rhs); | 
 |         } | 
 |         return false; | 
 |       case kCondGT: | 
 |         if (gt_bias) { | 
 |           __ CultD(cc, rhs, lhs); | 
 |         } else { | 
 |           __ ColtD(cc, rhs, lhs); | 
 |         } | 
 |         return false; | 
 |       case kCondGE: | 
 |         if (gt_bias) { | 
 |           __ CuleD(cc, rhs, lhs); | 
 |         } else { | 
 |           __ ColeD(cc, rhs, lhs); | 
 |         } | 
 |         return false; | 
 |       default: | 
 |         LOG(FATAL) << "Unexpected non-floating-point condition"; | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR6(IfCondition cond, | 
 |                                                           bool gt_bias, | 
 |                                                           DataType::Type type, | 
 |                                                           LocationSummary* input_locations, | 
 |                                                           FRegister dst) { | 
 |   FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |   FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |   CHECK(codegen_->GetInstructionSetFeatures().IsR6()); | 
 |   if (type == DataType::Type::kFloat32) { | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |         __ CmpEqS(dst, lhs, rhs); | 
 |         return false; | 
 |       case kCondNE: | 
 |         __ CmpEqS(dst, lhs, rhs); | 
 |         return true; | 
 |       case kCondLT: | 
 |         if (gt_bias) { | 
 |           __ CmpLtS(dst, lhs, rhs); | 
 |         } else { | 
 |           __ CmpUltS(dst, lhs, rhs); | 
 |         } | 
 |         return false; | 
 |       case kCondLE: | 
 |         if (gt_bias) { | 
 |           __ CmpLeS(dst, lhs, rhs); | 
 |         } else { | 
 |           __ CmpUleS(dst, lhs, rhs); | 
 |         } | 
 |         return false; | 
 |       case kCondGT: | 
 |         if (gt_bias) { | 
 |           __ CmpUltS(dst, rhs, lhs); | 
 |         } else { | 
 |           __ CmpLtS(dst, rhs, lhs); | 
 |         } | 
 |         return false; | 
 |       case kCondGE: | 
 |         if (gt_bias) { | 
 |           __ CmpUleS(dst, rhs, lhs); | 
 |         } else { | 
 |           __ CmpLeS(dst, rhs, lhs); | 
 |         } | 
 |         return false; | 
 |       default: | 
 |         LOG(FATAL) << "Unexpected non-floating-point condition"; | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(type, DataType::Type::kFloat64); | 
 |     switch (cond) { | 
 |       case kCondEQ: | 
 |         __ CmpEqD(dst, lhs, rhs); | 
 |         return false; | 
 |       case kCondNE: | 
 |         __ CmpEqD(dst, lhs, rhs); | 
 |         return true; | 
 |       case kCondLT: | 
 |         if (gt_bias) { | 
 |           __ CmpLtD(dst, lhs, rhs); | 
 |         } else { | 
 |           __ CmpUltD(dst, lhs, rhs); | 
 |         } | 
 |         return false; | 
 |       case kCondLE: | 
 |         if (gt_bias) { | 
 |           __ CmpLeD(dst, lhs, rhs); | 
 |         } else { | 
 |           __ CmpUleD(dst, lhs, rhs); | 
 |         } | 
 |         return false; | 
 |       case kCondGT: | 
 |         if (gt_bias) { | 
 |           __ CmpUltD(dst, rhs, lhs); | 
 |         } else { | 
 |           __ CmpLtD(dst, rhs, lhs); | 
 |         } | 
 |         return false; | 
 |       case kCondGE: | 
 |         if (gt_bias) { | 
 |           __ CmpUleD(dst, rhs, lhs); | 
 |         } else { | 
 |           __ CmpLeD(dst, rhs, lhs); | 
 |         } | 
 |         return false; | 
 |       default: | 
 |         LOG(FATAL) << "Unexpected non-floating-point condition"; | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond, | 
 |                                                               bool gt_bias, | 
 |                                                               DataType::Type type, | 
 |                                                               LocationSummary* locations, | 
 |                                                               MipsLabel* label) { | 
 |   FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |   FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   if (type == DataType::Type::kFloat32) { | 
 |     if (isR6) { | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ CmpEqS(FTMP, lhs, rhs); | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ CmpEqS(FTMP, lhs, rhs); | 
 |           __ Bc1eqz(FTMP, label); | 
 |           break; | 
 |         case kCondLT: | 
 |           if (gt_bias) { | 
 |             __ CmpLtS(FTMP, lhs, rhs); | 
 |           } else { | 
 |             __ CmpUltS(FTMP, lhs, rhs); | 
 |           } | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         case kCondLE: | 
 |           if (gt_bias) { | 
 |             __ CmpLeS(FTMP, lhs, rhs); | 
 |           } else { | 
 |             __ CmpUleS(FTMP, lhs, rhs); | 
 |           } | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         case kCondGT: | 
 |           if (gt_bias) { | 
 |             __ CmpUltS(FTMP, rhs, lhs); | 
 |           } else { | 
 |             __ CmpLtS(FTMP, rhs, lhs); | 
 |           } | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         case kCondGE: | 
 |           if (gt_bias) { | 
 |             __ CmpUleS(FTMP, rhs, lhs); | 
 |           } else { | 
 |             __ CmpLeS(FTMP, rhs, lhs); | 
 |           } | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected non-floating-point condition"; | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } else { | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ CeqS(0, lhs, rhs); | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ CeqS(0, lhs, rhs); | 
 |           __ Bc1f(0, label); | 
 |           break; | 
 |         case kCondLT: | 
 |           if (gt_bias) { | 
 |             __ ColtS(0, lhs, rhs); | 
 |           } else { | 
 |             __ CultS(0, lhs, rhs); | 
 |           } | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         case kCondLE: | 
 |           if (gt_bias) { | 
 |             __ ColeS(0, lhs, rhs); | 
 |           } else { | 
 |             __ CuleS(0, lhs, rhs); | 
 |           } | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         case kCondGT: | 
 |           if (gt_bias) { | 
 |             __ CultS(0, rhs, lhs); | 
 |           } else { | 
 |             __ ColtS(0, rhs, lhs); | 
 |           } | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         case kCondGE: | 
 |           if (gt_bias) { | 
 |             __ CuleS(0, rhs, lhs); | 
 |           } else { | 
 |             __ ColeS(0, rhs, lhs); | 
 |           } | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected non-floating-point condition"; | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(type, DataType::Type::kFloat64); | 
 |     if (isR6) { | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ CmpEqD(FTMP, lhs, rhs); | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ CmpEqD(FTMP, lhs, rhs); | 
 |           __ Bc1eqz(FTMP, label); | 
 |           break; | 
 |         case kCondLT: | 
 |           if (gt_bias) { | 
 |             __ CmpLtD(FTMP, lhs, rhs); | 
 |           } else { | 
 |             __ CmpUltD(FTMP, lhs, rhs); | 
 |           } | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         case kCondLE: | 
 |           if (gt_bias) { | 
 |             __ CmpLeD(FTMP, lhs, rhs); | 
 |           } else { | 
 |             __ CmpUleD(FTMP, lhs, rhs); | 
 |           } | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         case kCondGT: | 
 |           if (gt_bias) { | 
 |             __ CmpUltD(FTMP, rhs, lhs); | 
 |           } else { | 
 |             __ CmpLtD(FTMP, rhs, lhs); | 
 |           } | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         case kCondGE: | 
 |           if (gt_bias) { | 
 |             __ CmpUleD(FTMP, rhs, lhs); | 
 |           } else { | 
 |             __ CmpLeD(FTMP, rhs, lhs); | 
 |           } | 
 |           __ Bc1nez(FTMP, label); | 
 |           break; | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected non-floating-point condition"; | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } else { | 
 |       switch (cond) { | 
 |         case kCondEQ: | 
 |           __ CeqD(0, lhs, rhs); | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         case kCondNE: | 
 |           __ CeqD(0, lhs, rhs); | 
 |           __ Bc1f(0, label); | 
 |           break; | 
 |         case kCondLT: | 
 |           if (gt_bias) { | 
 |             __ ColtD(0, lhs, rhs); | 
 |           } else { | 
 |             __ CultD(0, lhs, rhs); | 
 |           } | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         case kCondLE: | 
 |           if (gt_bias) { | 
 |             __ ColeD(0, lhs, rhs); | 
 |           } else { | 
 |             __ CuleD(0, lhs, rhs); | 
 |           } | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         case kCondGT: | 
 |           if (gt_bias) { | 
 |             __ CultD(0, rhs, lhs); | 
 |           } else { | 
 |             __ ColtD(0, rhs, lhs); | 
 |           } | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         case kCondGE: | 
 |           if (gt_bias) { | 
 |             __ CuleD(0, rhs, lhs); | 
 |           } else { | 
 |             __ ColeD(0, rhs, lhs); | 
 |           } | 
 |           __ Bc1t(0, label); | 
 |           break; | 
 |         default: | 
 |           LOG(FATAL) << "Unexpected non-floating-point condition"; | 
 |           UNREACHABLE(); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction, | 
 |                                                          size_t condition_input_index, | 
 |                                                          MipsLabel* true_target, | 
 |                                                          MipsLabel* false_target) { | 
 |   HInstruction* cond = instruction->InputAt(condition_input_index); | 
 |  | 
 |   if (true_target == nullptr && false_target == nullptr) { | 
 |     // Nothing to do. The code always falls through. | 
 |     return; | 
 |   } else if (cond->IsIntConstant()) { | 
 |     // Constant condition, statically compared against "true" (integer value 1). | 
 |     if (cond->AsIntConstant()->IsTrue()) { | 
 |       if (true_target != nullptr) { | 
 |         __ B(true_target); | 
 |       } | 
 |     } else { | 
 |       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); | 
 |       if (false_target != nullptr) { | 
 |         __ B(false_target); | 
 |       } | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // The following code generates these patterns: | 
 |   //  (1) true_target == nullptr && false_target != nullptr | 
 |   //        - opposite condition true => branch to false_target | 
 |   //  (2) true_target != nullptr && false_target == nullptr | 
 |   //        - condition true => branch to true_target | 
 |   //  (3) true_target != nullptr && false_target != nullptr | 
 |   //        - condition true => branch to true_target | 
 |   //        - branch to false_target | 
 |   if (IsBooleanValueOrMaterializedCondition(cond)) { | 
 |     // The condition instruction has been materialized, compare the output to 0. | 
 |     Location cond_val = instruction->GetLocations()->InAt(condition_input_index); | 
 |     DCHECK(cond_val.IsRegister()); | 
 |     if (true_target == nullptr) { | 
 |       __ Beqz(cond_val.AsRegister<Register>(), false_target); | 
 |     } else { | 
 |       __ Bnez(cond_val.AsRegister<Register>(), true_target); | 
 |     } | 
 |   } else { | 
 |     // The condition instruction has not been materialized, use its inputs as | 
 |     // the comparison and its condition as the branch condition. | 
 |     HCondition* condition = cond->AsCondition(); | 
 |     DataType::Type type = condition->InputAt(0)->GetType(); | 
 |     LocationSummary* locations = cond->GetLocations(); | 
 |     IfCondition if_cond = condition->GetCondition(); | 
 |     MipsLabel* branch_target = true_target; | 
 |  | 
 |     if (true_target == nullptr) { | 
 |       if_cond = condition->GetOppositeCondition(); | 
 |       branch_target = false_target; | 
 |     } | 
 |  | 
 |     switch (type) { | 
 |       default: | 
 |         GenerateIntCompareAndBranch(if_cond, locations, branch_target); | 
 |         break; | 
 |       case DataType::Type::kInt64: | 
 |         GenerateLongCompareAndBranch(if_cond, locations, branch_target); | 
 |         break; | 
 |       case DataType::Type::kFloat32: | 
 |       case DataType::Type::kFloat64: | 
 |         GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   // If neither branch falls through (case 3), the conditional branch to `true_target` | 
 |   // was already emitted (case 2) and we need to emit a jump to `false_target`. | 
 |   if (true_target != nullptr && false_target != nullptr) { | 
 |     __ B(false_target); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitIf(HIf* if_instr) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr); | 
 |   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) { | 
 |   HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); | 
 |   HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); | 
 |   MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? | 
 |       nullptr : codegen_->GetLabelOf(true_successor); | 
 |   MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? | 
 |       nullptr : codegen_->GetLabelOf(false_successor); | 
 |   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) | 
 |       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   RegisterSet caller_saves = RegisterSet::Empty(); | 
 |   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetCustomSlowPathCallerSaves(caller_saves); | 
 |   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { | 
 |     locations->SetInAt(0, Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) { | 
 |   SlowPathCodeMIPS* slow_path = | 
 |       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS>(deoptimize); | 
 |   GenerateTestAndBranch(deoptimize, | 
 |                         /* condition_input_index */ 0, | 
 |                         slow_path->GetEntryLabel(), | 
 |                         /* false_target */ nullptr); | 
 | } | 
 |  | 
 | // This function returns true if a conditional move can be generated for HSelect. | 
 | // Otherwise it returns false and HSelect must be implemented in terms of conditonal | 
 | // branches and regular moves. | 
 | // | 
 | // If `locations_to_set` isn't nullptr, its inputs and outputs are set for HSelect. | 
 | // | 
 | // While determining feasibility of a conditional move and setting inputs/outputs | 
 | // are two distinct tasks, this function does both because they share quite a bit | 
 | // of common logic. | 
 | static bool CanMoveConditionally(HSelect* select, bool is_r6, LocationSummary* locations_to_set) { | 
 |   bool materialized = IsBooleanValueOrMaterializedCondition(select->GetCondition()); | 
 |   HInstruction* cond = select->InputAt(/* condition_input_index */ 2); | 
 |   HCondition* condition = cond->AsCondition(); | 
 |  | 
 |   DataType::Type cond_type = | 
 |       materialized ? DataType::Type::kInt32 : condition->InputAt(0)->GetType(); | 
 |   DataType::Type dst_type = select->GetType(); | 
 |  | 
 |   HConstant* cst_true_value = select->GetTrueValue()->AsConstant(); | 
 |   HConstant* cst_false_value = select->GetFalseValue()->AsConstant(); | 
 |   bool is_true_value_zero_constant = | 
 |       (cst_true_value != nullptr && cst_true_value->IsZeroBitPattern()); | 
 |   bool is_false_value_zero_constant = | 
 |       (cst_false_value != nullptr && cst_false_value->IsZeroBitPattern()); | 
 |  | 
 |   bool can_move_conditionally = false; | 
 |   bool use_const_for_false_in = false; | 
 |   bool use_const_for_true_in = false; | 
 |  | 
 |   if (!cond->IsConstant()) { | 
 |     switch (cond_type) { | 
 |       default: | 
 |         switch (dst_type) { | 
 |           default: | 
 |             // Moving int on int condition. | 
 |             if (is_r6) { | 
 |               if (is_true_value_zero_constant) { | 
 |                 // seleqz out_reg, false_reg, cond_reg | 
 |                 can_move_conditionally = true; | 
 |                 use_const_for_true_in = true; | 
 |               } else if (is_false_value_zero_constant) { | 
 |                 // selnez out_reg, true_reg, cond_reg | 
 |                 can_move_conditionally = true; | 
 |                 use_const_for_false_in = true; | 
 |               } else if (materialized) { | 
 |                 // Not materializing unmaterialized int conditions | 
 |                 // to keep the instruction count low. | 
 |                 // selnez AT, true_reg, cond_reg | 
 |                 // seleqz TMP, false_reg, cond_reg | 
 |                 // or out_reg, AT, TMP | 
 |                 can_move_conditionally = true; | 
 |               } | 
 |             } else { | 
 |               // movn out_reg, true_reg/ZERO, cond_reg | 
 |               can_move_conditionally = true; | 
 |               use_const_for_true_in = is_true_value_zero_constant; | 
 |             } | 
 |             break; | 
 |           case DataType::Type::kInt64: | 
 |             // Moving long on int condition. | 
 |             if (is_r6) { | 
 |               if (is_true_value_zero_constant) { | 
 |                 // seleqz out_reg_lo, false_reg_lo, cond_reg | 
 |                 // seleqz out_reg_hi, false_reg_hi, cond_reg | 
 |                 can_move_conditionally = true; | 
 |                 use_const_for_true_in = true; | 
 |               } else if (is_false_value_zero_constant) { | 
 |                 // selnez out_reg_lo, true_reg_lo, cond_reg | 
 |                 // selnez out_reg_hi, true_reg_hi, cond_reg | 
 |                 can_move_conditionally = true; | 
 |                 use_const_for_false_in = true; | 
 |               } | 
 |               // Other long conditional moves would generate 6+ instructions, | 
 |               // which is too many. | 
 |             } else { | 
 |               // movn out_reg_lo, true_reg_lo/ZERO, cond_reg | 
 |               // movn out_reg_hi, true_reg_hi/ZERO, cond_reg | 
 |               can_move_conditionally = true; | 
 |               use_const_for_true_in = is_true_value_zero_constant; | 
 |             } | 
 |             break; | 
 |           case DataType::Type::kFloat32: | 
 |           case DataType::Type::kFloat64: | 
 |             // Moving float/double on int condition. | 
 |             if (is_r6) { | 
 |               if (materialized) { | 
 |                 // Not materializing unmaterialized int conditions | 
 |                 // to keep the instruction count low. | 
 |                 can_move_conditionally = true; | 
 |                 if (is_true_value_zero_constant) { | 
 |                   // sltu TMP, ZERO, cond_reg | 
 |                   // mtc1 TMP, temp_cond_reg | 
 |                   // seleqz.fmt out_reg, false_reg, temp_cond_reg | 
 |                   use_const_for_true_in = true; | 
 |                 } else if (is_false_value_zero_constant) { | 
 |                   // sltu TMP, ZERO, cond_reg | 
 |                   // mtc1 TMP, temp_cond_reg | 
 |                   // selnez.fmt out_reg, true_reg, temp_cond_reg | 
 |                   use_const_for_false_in = true; | 
 |                 } else { | 
 |                   // sltu TMP, ZERO, cond_reg | 
 |                   // mtc1 TMP, temp_cond_reg | 
 |                   // sel.fmt temp_cond_reg, false_reg, true_reg | 
 |                   // mov.fmt out_reg, temp_cond_reg | 
 |                 } | 
 |               } | 
 |             } else { | 
 |               // movn.fmt out_reg, true_reg, cond_reg | 
 |               can_move_conditionally = true; | 
 |             } | 
 |             break; | 
 |         } | 
 |         break; | 
 |       case DataType::Type::kInt64: | 
 |         // We don't materialize long comparison now | 
 |         // and use conditional branches instead. | 
 |         break; | 
 |       case DataType::Type::kFloat32: | 
 |       case DataType::Type::kFloat64: | 
 |         switch (dst_type) { | 
 |           default: | 
 |             // Moving int on float/double condition. | 
 |             if (is_r6) { | 
 |               if (is_true_value_zero_constant) { | 
 |                 // mfc1 TMP, temp_cond_reg | 
 |                 // seleqz out_reg, false_reg, TMP | 
 |                 can_move_conditionally = true; | 
 |                 use_const_for_true_in = true; | 
 |               } else if (is_false_value_zero_constant) { | 
 |                 // mfc1 TMP, temp_cond_reg | 
 |                 // selnez out_reg, true_reg, TMP | 
 |                 can_move_conditionally = true; | 
 |                 use_const_for_false_in = true; | 
 |               } else { | 
 |                 // mfc1 TMP, temp_cond_reg | 
 |                 // selnez AT, true_reg, TMP | 
 |                 // seleqz TMP, false_reg, TMP | 
 |                 // or out_reg, AT, TMP | 
 |                 can_move_conditionally = true; | 
 |               } | 
 |             } else { | 
 |               // movt out_reg, true_reg/ZERO, cc | 
 |               can_move_conditionally = true; | 
 |               use_const_for_true_in = is_true_value_zero_constant; | 
 |             } | 
 |             break; | 
 |           case DataType::Type::kInt64: | 
 |             // Moving long on float/double condition. | 
 |             if (is_r6) { | 
 |               if (is_true_value_zero_constant) { | 
 |                 // mfc1 TMP, temp_cond_reg | 
 |                 // seleqz out_reg_lo, false_reg_lo, TMP | 
 |                 // seleqz out_reg_hi, false_reg_hi, TMP | 
 |                 can_move_conditionally = true; | 
 |                 use_const_for_true_in = true; | 
 |               } else if (is_false_value_zero_constant) { | 
 |                 // mfc1 TMP, temp_cond_reg | 
 |                 // selnez out_reg_lo, true_reg_lo, TMP | 
 |                 // selnez out_reg_hi, true_reg_hi, TMP | 
 |                 can_move_conditionally = true; | 
 |                 use_const_for_false_in = true; | 
 |               } | 
 |               // Other long conditional moves would generate 6+ instructions, | 
 |               // which is too many. | 
 |             } else { | 
 |               // movt out_reg_lo, true_reg_lo/ZERO, cc | 
 |               // movt out_reg_hi, true_reg_hi/ZERO, cc | 
 |               can_move_conditionally = true; | 
 |               use_const_for_true_in = is_true_value_zero_constant; | 
 |             } | 
 |             break; | 
 |           case DataType::Type::kFloat32: | 
 |           case DataType::Type::kFloat64: | 
 |             // Moving float/double on float/double condition. | 
 |             if (is_r6) { | 
 |               can_move_conditionally = true; | 
 |               if (is_true_value_zero_constant) { | 
 |                 // seleqz.fmt out_reg, false_reg, temp_cond_reg | 
 |                 use_const_for_true_in = true; | 
 |               } else if (is_false_value_zero_constant) { | 
 |                 // selnez.fmt out_reg, true_reg, temp_cond_reg | 
 |                 use_const_for_false_in = true; | 
 |               } else { | 
 |                 // sel.fmt temp_cond_reg, false_reg, true_reg | 
 |                 // mov.fmt out_reg, temp_cond_reg | 
 |               } | 
 |             } else { | 
 |               // movt.fmt out_reg, true_reg, cc | 
 |               can_move_conditionally = true; | 
 |             } | 
 |             break; | 
 |         } | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (can_move_conditionally) { | 
 |     DCHECK(!use_const_for_false_in || !use_const_for_true_in); | 
 |   } else { | 
 |     DCHECK(!use_const_for_false_in); | 
 |     DCHECK(!use_const_for_true_in); | 
 |   } | 
 |  | 
 |   if (locations_to_set != nullptr) { | 
 |     if (use_const_for_false_in) { | 
 |       locations_to_set->SetInAt(0, Location::ConstantLocation(cst_false_value)); | 
 |     } else { | 
 |       locations_to_set->SetInAt(0, | 
 |                                 DataType::IsFloatingPointType(dst_type) | 
 |                                     ? Location::RequiresFpuRegister() | 
 |                                     : Location::RequiresRegister()); | 
 |     } | 
 |     if (use_const_for_true_in) { | 
 |       locations_to_set->SetInAt(1, Location::ConstantLocation(cst_true_value)); | 
 |     } else { | 
 |       locations_to_set->SetInAt(1, | 
 |                                 DataType::IsFloatingPointType(dst_type) | 
 |                                     ? Location::RequiresFpuRegister() | 
 |                                     : Location::RequiresRegister()); | 
 |     } | 
 |     if (materialized) { | 
 |       locations_to_set->SetInAt(2, Location::RequiresRegister()); | 
 |     } | 
 |     // On R6 we don't require the output to be the same as the | 
 |     // first input for conditional moves unlike on R2. | 
 |     bool is_out_same_as_first_in = !can_move_conditionally || !is_r6; | 
 |     if (is_out_same_as_first_in) { | 
 |       locations_to_set->SetOut(Location::SameAsFirstInput()); | 
 |     } else { | 
 |       locations_to_set->SetOut(DataType::IsFloatingPointType(dst_type) | 
 |                                    ? Location::RequiresFpuRegister() | 
 |                                    : Location::RequiresRegister()); | 
 |     } | 
 |   } | 
 |  | 
 |   return can_move_conditionally; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenConditionalMoveR2(HSelect* select) { | 
 |   LocationSummary* locations = select->GetLocations(); | 
 |   Location dst = locations->Out(); | 
 |   Location src = locations->InAt(1); | 
 |   Register src_reg = ZERO; | 
 |   Register src_reg_high = ZERO; | 
 |   HInstruction* cond = select->InputAt(/* condition_input_index */ 2); | 
 |   Register cond_reg = TMP; | 
 |   int cond_cc = 0; | 
 |   DataType::Type cond_type = DataType::Type::kInt32; | 
 |   bool cond_inverted = false; | 
 |   DataType::Type dst_type = select->GetType(); | 
 |  | 
 |   if (IsBooleanValueOrMaterializedCondition(cond)) { | 
 |     cond_reg = locations->InAt(/* condition_input_index */ 2).AsRegister<Register>(); | 
 |   } else { | 
 |     HCondition* condition = cond->AsCondition(); | 
 |     LocationSummary* cond_locations = cond->GetLocations(); | 
 |     IfCondition if_cond = condition->GetCondition(); | 
 |     cond_type = condition->InputAt(0)->GetType(); | 
 |     switch (cond_type) { | 
 |       default: | 
 |         DCHECK_NE(cond_type, DataType::Type::kInt64); | 
 |         cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg); | 
 |         break; | 
 |       case DataType::Type::kFloat32: | 
 |       case DataType::Type::kFloat64: | 
 |         cond_inverted = MaterializeFpCompareR2(if_cond, | 
 |                                                condition->IsGtBias(), | 
 |                                                cond_type, | 
 |                                                cond_locations, | 
 |                                                cond_cc); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   DCHECK(dst.Equals(locations->InAt(0))); | 
 |   if (src.IsRegister()) { | 
 |     src_reg = src.AsRegister<Register>(); | 
 |   } else if (src.IsRegisterPair()) { | 
 |     src_reg = src.AsRegisterPairLow<Register>(); | 
 |     src_reg_high = src.AsRegisterPairHigh<Register>(); | 
 |   } else if (src.IsConstant()) { | 
 |     DCHECK(src.GetConstant()->IsZeroBitPattern()); | 
 |   } | 
 |  | 
 |   switch (cond_type) { | 
 |     default: | 
 |       switch (dst_type) { | 
 |         default: | 
 |           if (cond_inverted) { | 
 |             __ Movz(dst.AsRegister<Register>(), src_reg, cond_reg); | 
 |           } else { | 
 |             __ Movn(dst.AsRegister<Register>(), src_reg, cond_reg); | 
 |           } | 
 |           break; | 
 |         case DataType::Type::kInt64: | 
 |           if (cond_inverted) { | 
 |             __ Movz(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg); | 
 |             __ Movz(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg); | 
 |           } else { | 
 |             __ Movn(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg); | 
 |             __ Movn(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg); | 
 |           } | 
 |           break; | 
 |         case DataType::Type::kFloat32: | 
 |           if (cond_inverted) { | 
 |             __ MovzS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg); | 
 |           } else { | 
 |             __ MovnS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg); | 
 |           } | 
 |           break; | 
 |         case DataType::Type::kFloat64: | 
 |           if (cond_inverted) { | 
 |             __ MovzD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg); | 
 |           } else { | 
 |             __ MovnD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg); | 
 |           } | 
 |           break; | 
 |       } | 
 |       break; | 
 |     case DataType::Type::kInt64: | 
 |       LOG(FATAL) << "Unreachable"; | 
 |       UNREACHABLE(); | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       switch (dst_type) { | 
 |         default: | 
 |           if (cond_inverted) { | 
 |             __ Movf(dst.AsRegister<Register>(), src_reg, cond_cc); | 
 |           } else { | 
 |             __ Movt(dst.AsRegister<Register>(), src_reg, cond_cc); | 
 |           } | 
 |           break; | 
 |         case DataType::Type::kInt64: | 
 |           if (cond_inverted) { | 
 |             __ Movf(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc); | 
 |             __ Movf(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc); | 
 |           } else { | 
 |             __ Movt(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc); | 
 |             __ Movt(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc); | 
 |           } | 
 |           break; | 
 |         case DataType::Type::kFloat32: | 
 |           if (cond_inverted) { | 
 |             __ MovfS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc); | 
 |           } else { | 
 |             __ MovtS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc); | 
 |           } | 
 |           break; | 
 |         case DataType::Type::kFloat64: | 
 |           if (cond_inverted) { | 
 |             __ MovfD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc); | 
 |           } else { | 
 |             __ MovtD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc); | 
 |           } | 
 |           break; | 
 |       } | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenConditionalMoveR6(HSelect* select) { | 
 |   LocationSummary* locations = select->GetLocations(); | 
 |   Location dst = locations->Out(); | 
 |   Location false_src = locations->InAt(0); | 
 |   Location true_src = locations->InAt(1); | 
 |   HInstruction* cond = select->InputAt(/* condition_input_index */ 2); | 
 |   Register cond_reg = TMP; | 
 |   FRegister fcond_reg = FTMP; | 
 |   DataType::Type cond_type = DataType::Type::kInt32; | 
 |   bool cond_inverted = false; | 
 |   DataType::Type dst_type = select->GetType(); | 
 |  | 
 |   if (IsBooleanValueOrMaterializedCondition(cond)) { | 
 |     cond_reg = locations->InAt(/* condition_input_index */ 2).AsRegister<Register>(); | 
 |   } else { | 
 |     HCondition* condition = cond->AsCondition(); | 
 |     LocationSummary* cond_locations = cond->GetLocations(); | 
 |     IfCondition if_cond = condition->GetCondition(); | 
 |     cond_type = condition->InputAt(0)->GetType(); | 
 |     switch (cond_type) { | 
 |       default: | 
 |         DCHECK_NE(cond_type, DataType::Type::kInt64); | 
 |         cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg); | 
 |         break; | 
 |       case DataType::Type::kFloat32: | 
 |       case DataType::Type::kFloat64: | 
 |         cond_inverted = MaterializeFpCompareR6(if_cond, | 
 |                                                condition->IsGtBias(), | 
 |                                                cond_type, | 
 |                                                cond_locations, | 
 |                                                fcond_reg); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (true_src.IsConstant()) { | 
 |     DCHECK(true_src.GetConstant()->IsZeroBitPattern()); | 
 |   } | 
 |   if (false_src.IsConstant()) { | 
 |     DCHECK(false_src.GetConstant()->IsZeroBitPattern()); | 
 |   } | 
 |  | 
 |   switch (dst_type) { | 
 |     default: | 
 |       if (DataType::IsFloatingPointType(cond_type)) { | 
 |         __ Mfc1(cond_reg, fcond_reg); | 
 |       } | 
 |       if (true_src.IsConstant()) { | 
 |         if (cond_inverted) { | 
 |           __ Selnez(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg); | 
 |         } else { | 
 |           __ Seleqz(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg); | 
 |         } | 
 |       } else if (false_src.IsConstant()) { | 
 |         if (cond_inverted) { | 
 |           __ Seleqz(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg); | 
 |         } else { | 
 |           __ Selnez(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg); | 
 |         } | 
 |       } else { | 
 |         DCHECK_NE(cond_reg, AT); | 
 |         if (cond_inverted) { | 
 |           __ Seleqz(AT, true_src.AsRegister<Register>(), cond_reg); | 
 |           __ Selnez(TMP, false_src.AsRegister<Register>(), cond_reg); | 
 |         } else { | 
 |           __ Selnez(AT, true_src.AsRegister<Register>(), cond_reg); | 
 |           __ Seleqz(TMP, false_src.AsRegister<Register>(), cond_reg); | 
 |         } | 
 |         __ Or(dst.AsRegister<Register>(), AT, TMP); | 
 |       } | 
 |       break; | 
 |     case DataType::Type::kInt64: { | 
 |       if (DataType::IsFloatingPointType(cond_type)) { | 
 |         __ Mfc1(cond_reg, fcond_reg); | 
 |       } | 
 |       Register dst_lo = dst.AsRegisterPairLow<Register>(); | 
 |       Register dst_hi = dst.AsRegisterPairHigh<Register>(); | 
 |       if (true_src.IsConstant()) { | 
 |         Register src_lo = false_src.AsRegisterPairLow<Register>(); | 
 |         Register src_hi = false_src.AsRegisterPairHigh<Register>(); | 
 |         if (cond_inverted) { | 
 |           __ Selnez(dst_lo, src_lo, cond_reg); | 
 |           __ Selnez(dst_hi, src_hi, cond_reg); | 
 |         } else { | 
 |           __ Seleqz(dst_lo, src_lo, cond_reg); | 
 |           __ Seleqz(dst_hi, src_hi, cond_reg); | 
 |         } | 
 |       } else { | 
 |         DCHECK(false_src.IsConstant()); | 
 |         Register src_lo = true_src.AsRegisterPairLow<Register>(); | 
 |         Register src_hi = true_src.AsRegisterPairHigh<Register>(); | 
 |         if (cond_inverted) { | 
 |           __ Seleqz(dst_lo, src_lo, cond_reg); | 
 |           __ Seleqz(dst_hi, src_hi, cond_reg); | 
 |         } else { | 
 |           __ Selnez(dst_lo, src_lo, cond_reg); | 
 |           __ Selnez(dst_hi, src_hi, cond_reg); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: { | 
 |       if (!DataType::IsFloatingPointType(cond_type)) { | 
 |         // sel*.fmt tests bit 0 of the condition register, account for that. | 
 |         __ Sltu(TMP, ZERO, cond_reg); | 
 |         __ Mtc1(TMP, fcond_reg); | 
 |       } | 
 |       FRegister dst_reg = dst.AsFpuRegister<FRegister>(); | 
 |       if (true_src.IsConstant()) { | 
 |         FRegister src_reg = false_src.AsFpuRegister<FRegister>(); | 
 |         if (cond_inverted) { | 
 |           __ SelnezS(dst_reg, src_reg, fcond_reg); | 
 |         } else { | 
 |           __ SeleqzS(dst_reg, src_reg, fcond_reg); | 
 |         } | 
 |       } else if (false_src.IsConstant()) { | 
 |         FRegister src_reg = true_src.AsFpuRegister<FRegister>(); | 
 |         if (cond_inverted) { | 
 |           __ SeleqzS(dst_reg, src_reg, fcond_reg); | 
 |         } else { | 
 |           __ SelnezS(dst_reg, src_reg, fcond_reg); | 
 |         } | 
 |       } else { | 
 |         if (cond_inverted) { | 
 |           __ SelS(fcond_reg, | 
 |                   true_src.AsFpuRegister<FRegister>(), | 
 |                   false_src.AsFpuRegister<FRegister>()); | 
 |         } else { | 
 |           __ SelS(fcond_reg, | 
 |                   false_src.AsFpuRegister<FRegister>(), | 
 |                   true_src.AsFpuRegister<FRegister>()); | 
 |         } | 
 |         __ MovS(dst_reg, fcond_reg); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat64: { | 
 |       if (!DataType::IsFloatingPointType(cond_type)) { | 
 |         // sel*.fmt tests bit 0 of the condition register, account for that. | 
 |         __ Sltu(TMP, ZERO, cond_reg); | 
 |         __ Mtc1(TMP, fcond_reg); | 
 |       } | 
 |       FRegister dst_reg = dst.AsFpuRegister<FRegister>(); | 
 |       if (true_src.IsConstant()) { | 
 |         FRegister src_reg = false_src.AsFpuRegister<FRegister>(); | 
 |         if (cond_inverted) { | 
 |           __ SelnezD(dst_reg, src_reg, fcond_reg); | 
 |         } else { | 
 |           __ SeleqzD(dst_reg, src_reg, fcond_reg); | 
 |         } | 
 |       } else if (false_src.IsConstant()) { | 
 |         FRegister src_reg = true_src.AsFpuRegister<FRegister>(); | 
 |         if (cond_inverted) { | 
 |           __ SeleqzD(dst_reg, src_reg, fcond_reg); | 
 |         } else { | 
 |           __ SelnezD(dst_reg, src_reg, fcond_reg); | 
 |         } | 
 |       } else { | 
 |         if (cond_inverted) { | 
 |           __ SelD(fcond_reg, | 
 |                   true_src.AsFpuRegister<FRegister>(), | 
 |                   false_src.AsFpuRegister<FRegister>()); | 
 |         } else { | 
 |           __ SelD(fcond_reg, | 
 |                   false_src.AsFpuRegister<FRegister>(), | 
 |                   true_src.AsFpuRegister<FRegister>()); | 
 |         } | 
 |         __ MovD(dst_reg, fcond_reg); | 
 |       } | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) | 
 |       LocationSummary(flag, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { | 
 |   __ LoadFromOffset(kLoadWord, | 
 |                     flag->GetLocations()->Out().AsRegister<Register>(), | 
 |                     SP, | 
 |                     codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitSelect(HSelect* select) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select); | 
 |   CanMoveConditionally(select, codegen_->GetInstructionSetFeatures().IsR6(), locations); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitSelect(HSelect* select) { | 
 |   bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   if (CanMoveConditionally(select, is_r6, /* locations_to_set */ nullptr)) { | 
 |     if (is_r6) { | 
 |       GenConditionalMoveR6(select); | 
 |     } else { | 
 |       GenConditionalMoveR2(select); | 
 |     } | 
 |   } else { | 
 |     LocationSummary* locations = select->GetLocations(); | 
 |     MipsLabel false_target; | 
 |     GenerateTestAndBranch(select, | 
 |                           /* condition_input_index */ 2, | 
 |                           /* true_target */ nullptr, | 
 |                           &false_target); | 
 |     codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); | 
 |     __ Bind(&false_target); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitNativeDebugInfo(HNativeDebugInfo* info) { | 
 |   new (GetGraph()->GetAllocator()) LocationSummary(info); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitNativeDebugInfo(HNativeDebugInfo*) { | 
 |   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateNop() { | 
 |   __ Nop(); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { | 
 |   DataType::Type field_type = field_info.GetFieldType(); | 
 |   bool is_wide = (field_type == DataType::Type::kInt64) || (field_type == DataType::Type::kFloat64); | 
 |   bool generate_volatile = field_info.IsVolatile() && is_wide; | 
 |   bool object_field_get_with_read_barrier = | 
 |       kEmitCompilerReadBarrier && (field_type == DataType::Type::kReference); | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, | 
 |       generate_volatile | 
 |           ? LocationSummary::kCallOnMainOnly | 
 |           : (object_field_get_with_read_barrier | 
 |               ? LocationSummary::kCallOnSlowPath | 
 |               : LocationSummary::kNoCall)); | 
 |  | 
 |   if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |   } | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (generate_volatile) { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     // need A0 to hold base + offset | 
 |     locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |     if (field_type == DataType::Type::kInt64) { | 
 |       locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt64)); | 
 |     } else { | 
 |       // Use Location::Any() to prevent situations when running out of available fp registers. | 
 |       locations->SetOut(Location::Any()); | 
 |       // Need some temp core regs since FP results are returned in core registers | 
 |       Location reg = calling_convention.GetReturnLocation(DataType::Type::kInt64); | 
 |       locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>())); | 
 |       locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>())); | 
 |     } | 
 |   } else { | 
 |     if (DataType::IsFloatingPointType(instruction->GetType())) { | 
 |       locations->SetOut(Location::RequiresFpuRegister()); | 
 |     } else { | 
 |       // The output overlaps in the case of an object field get with | 
 |       // read barriers enabled: we do not want the move to overwrite the | 
 |       // object's location, as we need it to emit the read barrier. | 
 |       locations->SetOut(Location::RequiresRegister(), | 
 |                         object_field_get_with_read_barrier | 
 |                             ? Location::kOutputOverlap | 
 |                             : Location::kNoOutputOverlap); | 
 |     } | 
 |     if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { | 
 |       // We need a temporary register for the read barrier marking slow | 
 |       // path in CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier. | 
 |       if (!kBakerReadBarrierThunksEnableForFields) { | 
 |         locations->AddTemp(Location::RequiresRegister()); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction, | 
 |                                                   const FieldInfo& field_info, | 
 |                                                   uint32_t dex_pc) { | 
 |   DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); | 
 |   DataType::Type type = instruction->GetType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj_loc = locations->InAt(0); | 
 |   Register obj = obj_loc.AsRegister<Register>(); | 
 |   Location dst_loc = locations->Out(); | 
 |   LoadOperandType load_type = kLoadUnsignedByte; | 
 |   bool is_volatile = field_info.IsVolatile(); | 
 |   uint32_t offset = field_info.GetFieldOffset().Uint32Value(); | 
 |   auto null_checker = GetImplicitNullChecker(instruction, codegen_); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |       load_type = kLoadUnsignedByte; | 
 |       break; | 
 |     case DataType::Type::kInt8: | 
 |       load_type = kLoadSignedByte; | 
 |       break; | 
 |     case DataType::Type::kUint16: | 
 |       load_type = kLoadUnsignedHalfword; | 
 |       break; | 
 |     case DataType::Type::kInt16: | 
 |       load_type = kLoadSignedHalfword; | 
 |       break; | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kReference: | 
 |       load_type = kLoadWord; | 
 |       break; | 
 |     case DataType::Type::kInt64: | 
 |     case DataType::Type::kFloat64: | 
 |       load_type = kLoadDoubleword; | 
 |       break; | 
 |     case DataType::Type::kUint32: | 
 |     case DataType::Type::kUint64: | 
 |     case DataType::Type::kVoid: | 
 |       LOG(FATAL) << "Unreachable type " << type; | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   if (is_volatile && load_type == kLoadDoubleword) { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset); | 
 |     // Do implicit Null check | 
 |     __ LoadFromOffset(kLoadWord, | 
 |                       ZERO, | 
 |                       locations->GetTemp(0).AsRegister<Register>(), | 
 |                       0, | 
 |                       null_checker); | 
 |     codegen_->InvokeRuntime(kQuickA64Load, instruction, dex_pc); | 
 |     CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>(); | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       // FP results are returned in core registers. Need to move them. | 
 |       if (dst_loc.IsFpuRegister()) { | 
 |         __ Mtc1(locations->GetTemp(1).AsRegister<Register>(), dst_loc.AsFpuRegister<FRegister>()); | 
 |         __ MoveToFpuHigh(locations->GetTemp(2).AsRegister<Register>(), | 
 |                          dst_loc.AsFpuRegister<FRegister>()); | 
 |       } else { | 
 |         DCHECK(dst_loc.IsDoubleStackSlot()); | 
 |         __ StoreToOffset(kStoreWord, | 
 |                          locations->GetTemp(1).AsRegister<Register>(), | 
 |                          SP, | 
 |                          dst_loc.GetStackIndex()); | 
 |         __ StoreToOffset(kStoreWord, | 
 |                          locations->GetTemp(2).AsRegister<Register>(), | 
 |                          SP, | 
 |                          dst_loc.GetStackIndex() + 4); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (type == DataType::Type::kReference) { | 
 |       // /* HeapReference<Object> */ dst = *(obj + offset) | 
 |       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { | 
 |         Location temp_loc = | 
 |             kBakerReadBarrierThunksEnableForFields ? Location::NoLocation() : locations->GetTemp(0); | 
 |         // Note that a potential implicit null check is handled in this | 
 |         // CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier call. | 
 |         codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
 |                                                         dst_loc, | 
 |                                                         obj, | 
 |                                                         offset, | 
 |                                                         temp_loc, | 
 |                                                         /* needs_null_check */ true); | 
 |         if (is_volatile) { | 
 |           GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
 |         } | 
 |       } else { | 
 |         __ LoadFromOffset(kLoadWord, dst_loc.AsRegister<Register>(), obj, offset, null_checker); | 
 |         if (is_volatile) { | 
 |           GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
 |         } | 
 |         // If read barriers are enabled, emit read barriers other than | 
 |         // Baker's using a slow path (and also unpoison the loaded | 
 |         // reference, if heap poisoning is enabled). | 
 |         codegen_->MaybeGenerateReadBarrierSlow(instruction, dst_loc, dst_loc, obj_loc, offset); | 
 |       } | 
 |     } else if (!DataType::IsFloatingPointType(type)) { | 
 |       Register dst; | 
 |       if (type == DataType::Type::kInt64) { | 
 |         DCHECK(dst_loc.IsRegisterPair()); | 
 |         dst = dst_loc.AsRegisterPairLow<Register>(); | 
 |       } else { | 
 |         DCHECK(dst_loc.IsRegister()); | 
 |         dst = dst_loc.AsRegister<Register>(); | 
 |       } | 
 |       __ LoadFromOffset(load_type, dst, obj, offset, null_checker); | 
 |     } else { | 
 |       DCHECK(dst_loc.IsFpuRegister()); | 
 |       FRegister dst = dst_loc.AsFpuRegister<FRegister>(); | 
 |       if (type == DataType::Type::kFloat32) { | 
 |         __ LoadSFromOffset(dst, obj, offset, null_checker); | 
 |       } else { | 
 |         __ LoadDFromOffset(dst, obj, offset, null_checker); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Memory barriers, in the case of references, are handled in the | 
 |   // previous switch statement. | 
 |   if (is_volatile && (type != DataType::Type::kReference)) { | 
 |     GenerateMemoryBarrier(MemBarrierKind::kLoadAny); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { | 
 |   DataType::Type field_type = field_info.GetFieldType(); | 
 |   bool is_wide = (field_type == DataType::Type::kInt64) || (field_type == DataType::Type::kFloat64); | 
 |   bool generate_volatile = field_info.IsVolatile() && is_wide; | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, generate_volatile ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall); | 
 |  | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (generate_volatile) { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     // need A0 to hold base + offset | 
 |     locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |     if (field_type == DataType::Type::kInt64) { | 
 |       locations->SetInAt(1, Location::RegisterPairLocation( | 
 |           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); | 
 |     } else { | 
 |       // Use Location::Any() to prevent situations when running out of available fp registers. | 
 |       locations->SetInAt(1, Location::Any()); | 
 |       // Pass FP parameters in core registers. | 
 |       locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); | 
 |       locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3))); | 
 |     } | 
 |   } else { | 
 |     if (DataType::IsFloatingPointType(field_type)) { | 
 |       locations->SetInAt(1, FpuRegisterOrConstantForStore(instruction->InputAt(1))); | 
 |     } else { | 
 |       locations->SetInAt(1, RegisterOrZeroConstant(instruction->InputAt(1))); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction, | 
 |                                                   const FieldInfo& field_info, | 
 |                                                   uint32_t dex_pc, | 
 |                                                   bool value_can_be_null) { | 
 |   DataType::Type type = field_info.GetFieldType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Register obj = locations->InAt(0).AsRegister<Register>(); | 
 |   Location value_location = locations->InAt(1); | 
 |   StoreOperandType store_type = kStoreByte; | 
 |   bool is_volatile = field_info.IsVolatile(); | 
 |   uint32_t offset = field_info.GetFieldOffset().Uint32Value(); | 
 |   bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1)); | 
 |   auto null_checker = GetImplicitNullChecker(instruction, codegen_); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kBool: | 
 |     case DataType::Type::kUint8: | 
 |     case DataType::Type::kInt8: | 
 |       store_type = kStoreByte; | 
 |       break; | 
 |     case DataType::Type::kUint16: | 
 |     case DataType::Type::kInt16: | 
 |       store_type = kStoreHalfword; | 
 |       break; | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kReference: | 
 |       store_type = kStoreWord; | 
 |       break; | 
 |     case DataType::Type::kInt64: | 
 |     case DataType::Type::kFloat64: | 
 |       store_type = kStoreDoubleword; | 
 |       break; | 
 |     case DataType::Type::kUint32: | 
 |     case DataType::Type::kUint64: | 
 |     case DataType::Type::kVoid: | 
 |       LOG(FATAL) << "Unreachable type " << type; | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   if (is_volatile) { | 
 |     GenerateMemoryBarrier(MemBarrierKind::kAnyStore); | 
 |   } | 
 |  | 
 |   if (is_volatile && store_type == kStoreDoubleword) { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset); | 
 |     // Do implicit Null check. | 
 |     __ LoadFromOffset(kLoadWord, | 
 |                       ZERO, | 
 |                       locations->GetTemp(0).AsRegister<Register>(), | 
 |                       0, | 
 |                       null_checker); | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       // Pass FP parameters in core registers. | 
 |       if (value_location.IsFpuRegister()) { | 
 |         __ Mfc1(locations->GetTemp(1).AsRegister<Register>(), | 
 |                 value_location.AsFpuRegister<FRegister>()); | 
 |         __ MoveFromFpuHigh(locations->GetTemp(2).AsRegister<Register>(), | 
 |                            value_location.AsFpuRegister<FRegister>()); | 
 |       } else if (value_location.IsDoubleStackSlot()) { | 
 |         __ LoadFromOffset(kLoadWord, | 
 |                           locations->GetTemp(1).AsRegister<Register>(), | 
 |                           SP, | 
 |                           value_location.GetStackIndex()); | 
 |         __ LoadFromOffset(kLoadWord, | 
 |                           locations->GetTemp(2).AsRegister<Register>(), | 
 |                           SP, | 
 |                           value_location.GetStackIndex() + 4); | 
 |       } else { | 
 |         DCHECK(value_location.IsConstant()); | 
 |         DCHECK(value_location.GetConstant()->IsDoubleConstant()); | 
 |         int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); | 
 |         __ LoadConst64(locations->GetTemp(2).AsRegister<Register>(), | 
 |                        locations->GetTemp(1).AsRegister<Register>(), | 
 |                        value); | 
 |       } | 
 |     } | 
 |     codegen_->InvokeRuntime(kQuickA64Store, instruction, dex_pc); | 
 |     CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>(); | 
 |   } else { | 
 |     if (value_location.IsConstant()) { | 
 |       int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); | 
 |       __ StoreConstToOffset(store_type, value, obj, offset, TMP, null_checker); | 
 |     } else if (!DataType::IsFloatingPointType(type)) { | 
 |       Register src; | 
 |       if (type == DataType::Type::kInt64) { | 
 |         src = value_location.AsRegisterPairLow<Register>(); | 
 |       } else { | 
 |         src = value_location.AsRegister<Register>(); | 
 |       } | 
 |       if (kPoisonHeapReferences && needs_write_barrier) { | 
 |         // Note that in the case where `value` is a null reference, | 
 |         // we do not enter this block, as a null reference does not | 
 |         // need poisoning. | 
 |         DCHECK_EQ(type, DataType::Type::kReference); | 
 |         __ PoisonHeapReference(TMP, src); | 
 |         __ StoreToOffset(store_type, TMP, obj, offset, null_checker); | 
 |       } else { | 
 |         __ StoreToOffset(store_type, src, obj, offset, null_checker); | 
 |       } | 
 |     } else { | 
 |       FRegister src = value_location.AsFpuRegister<FRegister>(); | 
 |       if (type == DataType::Type::kFloat32) { | 
 |         __ StoreSToOffset(src, obj, offset, null_checker); | 
 |       } else { | 
 |         __ StoreDToOffset(src, obj, offset, null_checker); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (needs_write_barrier) { | 
 |     Register src = value_location.AsRegister<Register>(); | 
 |     codegen_->MarkGCCard(obj, src, value_can_be_null); | 
 |   } | 
 |  | 
 |   if (is_volatile) { | 
 |     GenerateMemoryBarrier(MemBarrierKind::kAnyAny); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, | 
 |                  instruction->GetFieldInfo(), | 
 |                  instruction->GetDexPc(), | 
 |                  instruction->GetValueCanBeNull()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateReferenceLoadOneRegister( | 
 |     HInstruction* instruction, | 
 |     Location out, | 
 |     uint32_t offset, | 
 |     Location maybe_temp, | 
 |     ReadBarrierOption read_barrier_option) { | 
 |   Register out_reg = out.AsRegister<Register>(); | 
 |   if (read_barrier_option == kWithReadBarrier) { | 
 |     CHECK(kEmitCompilerReadBarrier); | 
 |     if (!kUseBakerReadBarrier || !kBakerReadBarrierThunksEnableForFields) { | 
 |       DCHECK(maybe_temp.IsRegister()) << maybe_temp; | 
 |     } | 
 |     if (kUseBakerReadBarrier) { | 
 |       // Load with fast path based Baker's read barrier. | 
 |       // /* HeapReference<Object> */ out = *(out + offset) | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
 |                                                       out, | 
 |                                                       out_reg, | 
 |                                                       offset, | 
 |                                                       maybe_temp, | 
 |                                                       /* needs_null_check */ false); | 
 |     } else { | 
 |       // Load with slow path based read barrier. | 
 |       // Save the value of `out` into `maybe_temp` before overwriting it | 
 |       // in the following move operation, as we will need it for the | 
 |       // read barrier below. | 
 |       __ Move(maybe_temp.AsRegister<Register>(), out_reg); | 
 |       // /* HeapReference<Object> */ out = *(out + offset) | 
 |       __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); | 
 |       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); | 
 |     } | 
 |   } else { | 
 |     // Plain load with no read barrier. | 
 |     // /* HeapReference<Object> */ out = *(out + offset) | 
 |     __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset); | 
 |     __ MaybeUnpoisonHeapReference(out_reg); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateReferenceLoadTwoRegisters( | 
 |     HInstruction* instruction, | 
 |     Location out, | 
 |     Location obj, | 
 |     uint32_t offset, | 
 |     Location maybe_temp, | 
 |     ReadBarrierOption read_barrier_option) { | 
 |   Register out_reg = out.AsRegister<Register>(); | 
 |   Register obj_reg = obj.AsRegister<Register>(); | 
 |   if (read_barrier_option == kWithReadBarrier) { | 
 |     CHECK(kEmitCompilerReadBarrier); | 
 |     if (kUseBakerReadBarrier) { | 
 |       if (!kBakerReadBarrierThunksEnableForFields) { | 
 |         DCHECK(maybe_temp.IsRegister()) << maybe_temp; | 
 |       } | 
 |       // Load with fast path based Baker's read barrier. | 
 |       // /* HeapReference<Object> */ out = *(obj + offset) | 
 |       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, | 
 |                                                       out, | 
 |                                                       obj_reg, | 
 |                                                       offset, | 
 |                                                       maybe_temp, | 
 |                                                       /* needs_null_check */ false); | 
 |     } else { | 
 |       // Load with slow path based read barrier. | 
 |       // /* HeapReference<Object> */ out = *(obj + offset) | 
 |       __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); | 
 |       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); | 
 |     } | 
 |   } else { | 
 |     // Plain load with no read barrier. | 
 |     // /* HeapReference<Object> */ out = *(obj + offset) | 
 |     __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset); | 
 |     __ MaybeUnpoisonHeapReference(out_reg); | 
 |   } | 
 | } | 
 |  | 
 | static inline int GetBakerMarkThunkNumber(Register reg) { | 
 |   static_assert(BAKER_MARK_INTROSPECTION_REGISTER_COUNT == 21, "Expecting equal"); | 
 |   if (reg >= V0 && reg <= T7) {  // 14 consequtive regs. | 
 |     return reg - V0; | 
 |   } else if (reg >= S2 && reg <= S7) {  // 6 consequtive regs. | 
 |     return 14 + (reg - S2); | 
 |   } else if (reg == FP) {  // One more. | 
 |     return 20; | 
 |   } | 
 |   LOG(FATAL) << "Unexpected register " << reg; | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | static inline int GetBakerMarkFieldArrayThunkDisplacement(Register reg, bool short_offset) { | 
 |   int num = GetBakerMarkThunkNumber(reg) + | 
 |       (short_offset ? BAKER_MARK_INTROSPECTION_REGISTER_COUNT : 0); | 
 |   return num * BAKER_MARK_INTROSPECTION_FIELD_ARRAY_ENTRY_SIZE; | 
 | } | 
 |  | 
 | static inline int GetBakerMarkGcRootThunkDisplacement(Register reg) { | 
 |   return GetBakerMarkThunkNumber(reg) * BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRY_SIZE + | 
 |       BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRIES_OFFSET; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateGcRootFieldLoad(HInstruction* instruction, | 
 |                                                            Location root, | 
 |                                                            Register obj, | 
 |                                                            uint32_t offset, | 
 |                                                            ReadBarrierOption read_barrier_option, | 
 |                                                            MipsLabel* label_low) { | 
 |   bool reordering; | 
 |   if (label_low != nullptr) { | 
 |     DCHECK_EQ(offset, 0x5678u); | 
 |   } | 
 |   Register root_reg = root.AsRegister<Register>(); | 
 |   if (read_barrier_option == kWithReadBarrier) { | 
 |     DCHECK(kEmitCompilerReadBarrier); | 
 |     if (kUseBakerReadBarrier) { | 
 |       // Fast path implementation of art::ReadBarrier::BarrierForRoot when | 
 |       // Baker's read barrier are used: | 
 |       if (kBakerReadBarrierThunksEnableForGcRoots) { | 
 |         // Note that we do not actually check the value of `GetIsGcMarking()` | 
 |         // to decide whether to mark the loaded GC root or not.  Instead, we | 
 |         // load into `temp` (T9) the read barrier mark introspection entrypoint. | 
 |         // If `temp` is null, it means that `GetIsGcMarking()` is false, and | 
 |         // vice versa. | 
 |         // | 
 |         // We use thunks for the slow path. That thunk checks the reference | 
 |         // and jumps to the entrypoint if needed. | 
 |         // | 
 |         //     temp = Thread::Current()->pReadBarrierMarkReg00 | 
 |         //     // AKA &art_quick_read_barrier_mark_introspection. | 
 |         //     GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load. | 
 |         //     if (temp != nullptr) { | 
 |         //        temp = &gc_root_thunk<root_reg> | 
 |         //        root = temp(root) | 
 |         //     } | 
 |  | 
 |         bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |         const int32_t entry_point_offset = | 
 |             Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0); | 
 |         const int thunk_disp = GetBakerMarkGcRootThunkDisplacement(root_reg); | 
 |         int16_t offset_low = Low16Bits(offset); | 
 |         int16_t offset_high = High16Bits(offset - offset_low);  // Accounts for sign | 
 |                                                                 // extension in lw. | 
 |         bool short_offset = IsInt<16>(static_cast<int32_t>(offset)); | 
 |         Register base = short_offset ? obj : TMP; | 
 |         // Loading the entrypoint does not require a load acquire since it is only changed when | 
 |         // threads are suspended or running a checkpoint. | 
 |         __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset); | 
 |         reordering = __ SetReorder(false); | 
 |         if (!short_offset) { | 
 |           DCHECK(!label_low); | 
 |           __ AddUpper(base, obj, offset_high); | 
 |         } | 
 |         MipsLabel skip_call; | 
 |         __ Beqz(T9, &skip_call, /* is_bare */ true); | 
 |         if (label_low != nullptr) { | 
 |           DCHECK(short_offset); | 
 |           __ Bind(label_low); | 
 |         } | 
 |         // /* GcRoot<mirror::Object> */ root = *(obj + offset) | 
 |         __ LoadFromOffset(kLoadWord, root_reg, base, offset_low);  // Single instruction | 
 |                                                                    // in delay slot. | 
 |         if (isR6) { | 
 |           __ Jialc(T9, thunk_disp); | 
 |         } else { | 
 |           __ Addiu(T9, T9, thunk_disp); | 
 |           __ Jalr(T9); | 
 |           __ Nop(); | 
 |         } | 
 |         __ Bind(&skip_call); | 
 |         __ SetReorder(reordering); | 
 |       } else { | 
 |         // Note that we do not actually check the value of `GetIsGcMarking()` | 
 |         // to decide whether to mark the loaded GC root or not.  Instead, we | 
 |         // load into `temp` (T9) the read barrier mark entry point corresponding | 
 |         // to register `root`. If `temp` is null, it means that `GetIsGcMarking()` | 
 |         // is false, and vice versa. | 
 |         // | 
 |         //     GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load. | 
 |         //     temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() | 
 |         //     if (temp != null) { | 
 |         //       root = temp(root) | 
 |         //     } | 
 |  | 
 |         if (label_low != nullptr) { | 
 |           reordering = __ SetReorder(false); | 
 |           __ Bind(label_low); | 
 |         } | 
 |         // /* GcRoot<mirror::Object> */ root = *(obj + offset) | 
 |         __ LoadFromOffset(kLoadWord, root_reg, obj, offset); | 
 |         if (label_low != nullptr) { | 
 |           __ SetReorder(reordering); | 
 |         } | 
 |         static_assert( | 
 |             sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), | 
 |             "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " | 
 |             "have different sizes."); | 
 |         static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), | 
 |                       "art::mirror::CompressedReference<mirror::Object> and int32_t " | 
 |                       "have different sizes."); | 
 |  | 
 |         // Slow path marking the GC root `root`. | 
 |         Location temp = Location::RegisterLocation(T9); | 
 |         SlowPathCodeMIPS* slow_path = | 
 |             new (codegen_->GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS( | 
 |                 instruction, | 
 |                 root, | 
 |                 /*entrypoint*/ temp); | 
 |         codegen_->AddSlowPath(slow_path); | 
 |  | 
 |         const int32_t entry_point_offset = | 
 |             Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(root.reg() - 1); | 
 |         // Loading the entrypoint does not require a load acquire since it is only changed when | 
 |         // threads are suspended or running a checkpoint. | 
 |         __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset); | 
 |         __ Bnez(temp.AsRegister<Register>(), slow_path->GetEntryLabel()); | 
 |         __ Bind(slow_path->GetExitLabel()); | 
 |       } | 
 |     } else { | 
 |       if (label_low != nullptr) { | 
 |         reordering = __ SetReorder(false); | 
 |         __ Bind(label_low); | 
 |       } | 
 |       // GC root loaded through a slow path for read barriers other | 
 |       // than Baker's. | 
 |       // /* GcRoot<mirror::Object>* */ root = obj + offset | 
 |       __ Addiu32(root_reg, obj, offset); | 
 |       if (label_low != nullptr) { | 
 |         __ SetReorder(reordering); | 
 |       } | 
 |       // /* mirror::Object* */ root = root->Read() | 
 |       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); | 
 |     } | 
 |   } else { | 
 |     if (label_low != nullptr) { | 
 |       reordering = __ SetReorder(false); | 
 |       __ Bind(label_low); | 
 |     } | 
 |     // Plain GC root load with no read barrier. | 
 |     // /* GcRoot<mirror::Object> */ root = *(obj + offset) | 
 |     __ LoadFromOffset(kLoadWord, root_reg, obj, offset); | 
 |     // Note that GC roots are not affected by heap poisoning, thus we | 
 |     // do not have to unpoison `root_reg` here. | 
 |     if (label_low != nullptr) { | 
 |       __ SetReorder(reordering); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, | 
 |                                                               Location ref, | 
 |                                                               Register obj, | 
 |                                                               uint32_t offset, | 
 |                                                               Location temp, | 
 |                                                               bool needs_null_check) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |   DCHECK(kUseBakerReadBarrier); | 
 |  | 
 |   if (kBakerReadBarrierThunksEnableForFields) { | 
 |     // Note that we do not actually check the value of `GetIsGcMarking()` | 
 |     // to decide whether to mark the loaded reference or not.  Instead, we | 
 |     // load into `temp` (T9) the read barrier mark introspection entrypoint. | 
 |     // If `temp` is null, it means that `GetIsGcMarking()` is false, and | 
 |     // vice versa. | 
 |     // | 
 |     // We use thunks for the slow path. That thunk checks the reference | 
 |     // and jumps to the entrypoint if needed. If the holder is not gray, | 
 |     // it issues a load-load memory barrier and returns to the original | 
 |     // reference load. | 
 |     // | 
 |     //     temp = Thread::Current()->pReadBarrierMarkReg00 | 
 |     //     // AKA &art_quick_read_barrier_mark_introspection. | 
 |     //     if (temp != nullptr) { | 
 |     //        temp = &field_array_thunk<holder_reg> | 
 |     //        temp() | 
 |     //     } | 
 |     //   not_gray_return_address: | 
 |     //     // If the offset is too large to fit into the lw instruction, we | 
 |     //     // use an adjusted base register (TMP) here. This register | 
 |     //     // receives bits 16 ... 31 of the offset before the thunk invocation | 
 |     //     // and the thunk benefits from it. | 
 |     //     HeapReference<mirror::Object> reference = *(obj+offset);  // Original reference load. | 
 |     //   gray_return_address: | 
 |  | 
 |     DCHECK(temp.IsInvalid()); | 
 |     bool isR6 = GetInstructionSetFeatures().IsR6(); | 
 |     int16_t offset_low = Low16Bits(offset); | 
 |     int16_t offset_high = High16Bits(offset - offset_low);  // Accounts for sign extension in lw. | 
 |     bool short_offset = IsInt<16>(static_cast<int32_t>(offset)); | 
 |     bool reordering = __ SetReorder(false); | 
 |     const int32_t entry_point_offset = | 
 |         Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0); | 
 |     // There may have or may have not been a null check if the field offset is smaller than | 
 |     // the page size. | 
 |     // There must've been a null check in case it's actually a load from an array. | 
 |     // We will, however, perform an explicit null check in the thunk as it's easier to | 
 |     // do it than not. | 
 |     if (instruction->IsArrayGet()) { | 
 |       DCHECK(!needs_null_check); | 
 |     } | 
 |     const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, short_offset); | 
 |     // Loading the entrypoint does not require a load acquire since it is only changed when | 
 |     // threads are suspended or running a checkpoint. | 
 |     __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset); | 
 |     Register ref_reg = ref.AsRegister<Register>(); | 
 |     Register base = short_offset ? obj : TMP; | 
 |     MipsLabel skip_call; | 
 |     if (short_offset) { | 
 |       if (isR6) { | 
 |         __ Beqzc(T9, &skip_call, /* is_bare */ true); | 
 |         __ Nop();  // In forbidden slot. | 
 |         __ Jialc(T9, thunk_disp); | 
 |       } else { | 
 |         __ Beqz(T9, &skip_call, /* is_bare */ true); | 
 |         __ Addiu(T9, T9, thunk_disp);  // In delay slot. | 
 |         __ Jalr(T9); | 
 |         __ Nop();  // In delay slot. | 
 |       } | 
 |       __ Bind(&skip_call); | 
 |     } else { | 
 |       if (isR6) { | 
 |         __ Beqz(T9, &skip_call, /* is_bare */ true); | 
 |         __ Aui(base, obj, offset_high);  // In delay slot. | 
 |         __ Jialc(T9, thunk_disp); | 
 |         __ Bind(&skip_call); | 
 |       } else { | 
 |         __ Lui(base, offset_high); | 
 |         __ Beqz(T9, &skip_call, /* is_bare */ true); | 
 |         __ Addiu(T9, T9, thunk_disp);  // In delay slot. | 
 |         __ Jalr(T9); | 
 |         __ Bind(&skip_call); | 
 |         __ Addu(base, base, obj);  // In delay slot. | 
 |       } | 
 |     } | 
 |     // /* HeapReference<Object> */ ref = *(obj + offset) | 
 |     __ LoadFromOffset(kLoadWord, ref_reg, base, offset_low);  // Single instruction. | 
 |     if (needs_null_check) { | 
 |       MaybeRecordImplicitNullCheck(instruction); | 
 |     } | 
 |     __ MaybeUnpoisonHeapReference(ref_reg); | 
 |     __ SetReorder(reordering); | 
 |     return; | 
 |   } | 
 |  | 
 |   // /* HeapReference<Object> */ ref = *(obj + offset) | 
 |   Location no_index = Location::NoLocation(); | 
 |   ScaleFactor no_scale_factor = TIMES_1; | 
 |   GenerateReferenceLoadWithBakerReadBarrier(instruction, | 
 |                                             ref, | 
 |                                             obj, | 
 |                                             offset, | 
 |                                             no_index, | 
 |                                             no_scale_factor, | 
 |                                             temp, | 
 |                                             needs_null_check); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, | 
 |                                                               Location ref, | 
 |                                                               Register obj, | 
 |                                                               uint32_t data_offset, | 
 |                                                               Location index, | 
 |                                                               Location temp, | 
 |                                                               bool needs_null_check) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |   DCHECK(kUseBakerReadBarrier); | 
 |  | 
 |   static_assert( | 
 |       sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), | 
 |       "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); | 
 |   ScaleFactor scale_factor = TIMES_4; | 
 |  | 
 |   if (kBakerReadBarrierThunksEnableForArrays) { | 
 |     // Note that we do not actually check the value of `GetIsGcMarking()` | 
 |     // to decide whether to mark the loaded reference or not.  Instead, we | 
 |     // load into `temp` (T9) the read barrier mark introspection entrypoint. | 
 |     // If `temp` is null, it means that `GetIsGcMarking()` is false, and | 
 |     // vice versa. | 
 |     // | 
 |     // We use thunks for the slow path. That thunk checks the reference | 
 |     // and jumps to the entrypoint if needed. If the holder is not gray, | 
 |     // it issues a load-load memory barrier and returns to the original | 
 |     // reference load. | 
 |     // | 
 |     //     temp = Thread::Current()->pReadBarrierMarkReg00 | 
 |     //     // AKA &art_quick_read_barrier_mark_introspection. | 
 |     //     if (temp != nullptr) { | 
 |     //        temp = &field_array_thunk<holder_reg> | 
 |     //        temp() | 
 |     //     } | 
 |     //   not_gray_return_address: | 
 |     //     // The element address is pre-calculated in the TMP register before the | 
 |     //     // thunk invocation and the thunk benefits from it. | 
 |     //     HeapReference<mirror::Object> reference = data[index];  // Original reference load. | 
 |     //   gray_return_address: | 
 |  | 
 |     DCHECK(temp.IsInvalid()); | 
 |     DCHECK(index.IsValid()); | 
 |     bool reordering = __ SetReorder(false); | 
 |     const int32_t entry_point_offset = | 
 |         Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0); | 
 |     // We will not do the explicit null check in the thunk as some form of a null check | 
 |     // must've been done earlier. | 
 |     DCHECK(!needs_null_check); | 
 |     const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, /* short_offset */ false); | 
 |     // Loading the entrypoint does not require a load acquire since it is only changed when | 
 |     // threads are suspended or running a checkpoint. | 
 |     __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset); | 
 |     Register ref_reg = ref.AsRegister<Register>(); | 
 |     Register index_reg = index.IsRegisterPair() | 
 |         ? index.AsRegisterPairLow<Register>() | 
 |         : index.AsRegister<Register>(); | 
 |     MipsLabel skip_call; | 
 |     if (GetInstructionSetFeatures().IsR6()) { | 
 |       __ Beqz(T9, &skip_call, /* is_bare */ true); | 
 |       __ Lsa(TMP, index_reg, obj, scale_factor);  // In delay slot. | 
 |       __ Jialc(T9, thunk_disp); | 
 |       __ Bind(&skip_call); | 
 |     } else { | 
 |       __ Sll(TMP, index_reg, scale_factor); | 
 |       __ Beqz(T9, &skip_call, /* is_bare */ true); | 
 |       __ Addiu(T9, T9, thunk_disp);  // In delay slot. | 
 |       __ Jalr(T9); | 
 |       __ Bind(&skip_call); | 
 |       __ Addu(TMP, TMP, obj);  // In delay slot. | 
 |     } | 
 |     // /* HeapReference<Object> */ ref = *(obj + data_offset + (index << scale_factor)) | 
 |     DCHECK(IsInt<16>(static_cast<int32_t>(data_offset))) << data_offset; | 
 |     __ LoadFromOffset(kLoadWord, ref_reg, TMP, data_offset);  // Single instruction. | 
 |     __ MaybeUnpoisonHeapReference(ref_reg); | 
 |     __ SetReorder(reordering); | 
 |     return; | 
 |   } | 
 |  | 
 |   // /* HeapReference<Object> */ ref = | 
 |   //     *(obj + data_offset + index * sizeof(HeapReference<Object>)) | 
 |   GenerateReferenceLoadWithBakerReadBarrier(instruction, | 
 |                                             ref, | 
 |                                             obj, | 
 |                                             data_offset, | 
 |                                             index, | 
 |                                             scale_factor, | 
 |                                             temp, | 
 |                                             needs_null_check); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, | 
 |                                                                   Location ref, | 
 |                                                                   Register obj, | 
 |                                                                   uint32_t offset, | 
 |                                                                   Location index, | 
 |                                                                   ScaleFactor scale_factor, | 
 |                                                                   Location temp, | 
 |                                                                   bool needs_null_check, | 
 |                                                                   bool always_update_field) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |   DCHECK(kUseBakerReadBarrier); | 
 |  | 
 |   // In slow path based read barriers, the read barrier call is | 
 |   // inserted after the original load. However, in fast path based | 
 |   // Baker's read barriers, we need to perform the load of | 
 |   // mirror::Object::monitor_ *before* the original reference load. | 
 |   // This load-load ordering is required by the read barrier. | 
 |   // The fast path/slow path (for Baker's algorithm) should look like: | 
 |   // | 
 |   //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); | 
 |   //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering | 
 |   //   HeapReference<Object> ref = *src;  // Original reference load. | 
 |   //   bool is_gray = (rb_state == ReadBarrier::GrayState()); | 
 |   //   if (is_gray) { | 
 |   //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path. | 
 |   //   } | 
 |   // | 
 |   // Note: the original implementation in ReadBarrier::Barrier is | 
 |   // slightly more complex as it performs additional checks that we do | 
 |   // not do here for performance reasons. | 
 |  | 
 |   Register ref_reg = ref.AsRegister<Register>(); | 
 |   Register temp_reg = temp.AsRegister<Register>(); | 
 |   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); | 
 |  | 
 |   // /* int32_t */ monitor = obj->monitor_ | 
 |   __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset); | 
 |   if (needs_null_check) { | 
 |     MaybeRecordImplicitNullCheck(instruction); | 
 |   } | 
 |   // /* LockWord */ lock_word = LockWord(monitor) | 
 |   static_assert(sizeof(LockWord) == sizeof(int32_t), | 
 |                 "art::LockWord and int32_t have different sizes."); | 
 |  | 
 |   __ Sync(0);  // Barrier to prevent load-load reordering. | 
 |  | 
 |   // The actual reference load. | 
 |   if (index.IsValid()) { | 
 |     // Load types involving an "index": ArrayGet, | 
 |     // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject | 
 |     // intrinsics. | 
 |     // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor)) | 
 |     if (index.IsConstant()) { | 
 |       size_t computed_offset = | 
 |           (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset; | 
 |       __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset); | 
 |     } else { | 
 |       // Handle the special case of the | 
 |       // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject | 
 |       // intrinsics, which use a register pair as index ("long | 
 |       // offset"), of which only the low part contains data. | 
 |       Register index_reg = index.IsRegisterPair() | 
 |           ? index.AsRegisterPairLow<Register>() | 
 |           : index.AsRegister<Register>(); | 
 |       __ ShiftAndAdd(TMP, index_reg, obj, scale_factor, TMP); | 
 |       __ LoadFromOffset(kLoadWord, ref_reg, TMP, offset); | 
 |     } | 
 |   } else { | 
 |     // /* HeapReference<Object> */ ref = *(obj + offset) | 
 |     __ LoadFromOffset(kLoadWord, ref_reg, obj, offset); | 
 |   } | 
 |  | 
 |   // Object* ref = ref_addr->AsMirrorPtr() | 
 |   __ MaybeUnpoisonHeapReference(ref_reg); | 
 |  | 
 |   // Slow path marking the object `ref` when it is gray. | 
 |   SlowPathCodeMIPS* slow_path; | 
 |   if (always_update_field) { | 
 |     // ReadBarrierMarkAndUpdateFieldSlowPathMIPS only supports address | 
 |     // of the form `obj + field_offset`, where `obj` is a register and | 
 |     // `field_offset` is a register pair (of which only the lower half | 
 |     // is used). Thus `offset` and `scale_factor` above are expected | 
 |     // to be null in this code path. | 
 |     DCHECK_EQ(offset, 0u); | 
 |     DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1); | 
 |     slow_path = new (GetScopedAllocator()) | 
 |         ReadBarrierMarkAndUpdateFieldSlowPathMIPS(instruction, | 
 |                                                   ref, | 
 |                                                   obj, | 
 |                                                   /* field_offset */ index, | 
 |                                                   temp_reg); | 
 |   } else { | 
 |     slow_path = new (GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS(instruction, ref); | 
 |   } | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   // if (rb_state == ReadBarrier::GrayState()) | 
 |   //   ref = ReadBarrier::Mark(ref); | 
 |   // Given the numeric representation, it's enough to check the low bit of the | 
 |   // rb_state. We do that by shifting the bit into the sign bit (31) and | 
 |   // performing a branch on less than zero. | 
 |   static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); | 
 |   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); | 
 |   static_assert(LockWord::kReadBarrierStateSize == 1, "Expecting 1-bit read barrier state size"); | 
 |   __ Sll(temp_reg, temp_reg, 31 - LockWord::kReadBarrierStateShift); | 
 |   __ Bltz(temp_reg, slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateReadBarrierSlow(HInstruction* instruction, | 
 |                                                 Location out, | 
 |                                                 Location ref, | 
 |                                                 Location obj, | 
 |                                                 uint32_t offset, | 
 |                                                 Location index) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |  | 
 |   // Insert a slow path based read barrier *after* the reference load. | 
 |   // | 
 |   // If heap poisoning is enabled, the unpoisoning of the loaded | 
 |   // reference will be carried out by the runtime within the slow | 
 |   // path. | 
 |   // | 
 |   // Note that `ref` currently does not get unpoisoned (when heap | 
 |   // poisoning is enabled), which is alright as the `ref` argument is | 
 |   // not used by the artReadBarrierSlow entry point. | 
 |   // | 
 |   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. | 
 |   SlowPathCodeMIPS* slow_path = new (GetScopedAllocator()) | 
 |       ReadBarrierForHeapReferenceSlowPathMIPS(instruction, out, ref, obj, offset, index); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   __ B(slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::MaybeGenerateReadBarrierSlow(HInstruction* instruction, | 
 |                                                      Location out, | 
 |                                                      Location ref, | 
 |                                                      Location obj, | 
 |                                                      uint32_t offset, | 
 |                                                      Location index) { | 
 |   if (kEmitCompilerReadBarrier) { | 
 |     // Baker's read barriers shall be handled by the fast path | 
 |     // (CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier). | 
 |     DCHECK(!kUseBakerReadBarrier); | 
 |     // If heap poisoning is enabled, unpoisoning will be taken care of | 
 |     // by the runtime within the slow path. | 
 |     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); | 
 |   } else if (kPoisonHeapReferences) { | 
 |     __ UnpoisonHeapReference(out.AsRegister<Register>()); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateReadBarrierForRootSlow(HInstruction* instruction, | 
 |                                                        Location out, | 
 |                                                        Location root) { | 
 |   DCHECK(kEmitCompilerReadBarrier); | 
 |  | 
 |   // Insert a slow path based read barrier *after* the GC root load. | 
 |   // | 
 |   // Note that GC roots are not affected by heap poisoning, so we do | 
 |   // not need to do anything special for this here. | 
 |   SlowPathCodeMIPS* slow_path = | 
 |       new (GetScopedAllocator()) ReadBarrierForRootSlowPathMIPS(instruction, out, root); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   __ B(slow_path->GetEntryLabel()); | 
 |   __ Bind(slow_path->GetExitLabel()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) { | 
 |   LocationSummary::CallKind call_kind = LocationSummary::kNoCall; | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   bool baker_read_barrier_slow_path = false; | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: | 
 |     case TypeCheckKind::kAbstractClassCheck: | 
 |     case TypeCheckKind::kClassHierarchyCheck: | 
 |     case TypeCheckKind::kArrayObjectCheck: { | 
 |       bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction); | 
 |       call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; | 
 |       baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; | 
 |       break; | 
 |     } | 
 |     case TypeCheckKind::kArrayCheck: | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |     case TypeCheckKind::kInterfaceCheck: | 
 |       call_kind = LocationSummary::kCallOnSlowPath; | 
 |       break; | 
 |     case TypeCheckKind::kBitstringCheck: | 
 |       break; | 
 |   } | 
 |  | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); | 
 |   if (baker_read_barrier_slow_path) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |   } | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (type_check_kind == TypeCheckKind::kBitstringCheck) { | 
 |     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); | 
 |     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); | 
 |     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); | 
 |   } else { | 
 |     locations->SetInAt(1, Location::RequiresRegister()); | 
 |   } | 
 |   // The output does overlap inputs. | 
 |   // Note that TypeCheckSlowPathMIPS uses this register too. | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); | 
 |   locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) { | 
 |   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   Location obj_loc = locations->InAt(0); | 
 |   Register obj = obj_loc.AsRegister<Register>(); | 
 |   Location cls = locations->InAt(1); | 
 |   Location out_loc = locations->Out(); | 
 |   Register out = out_loc.AsRegister<Register>(); | 
 |   const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); | 
 |   DCHECK_LE(num_temps, 1u); | 
 |   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); | 
 |   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); | 
 |   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); | 
 |   MipsLabel done; | 
 |   SlowPathCodeMIPS* slow_path = nullptr; | 
 |  | 
 |   // Return 0 if `obj` is null. | 
 |   // Avoid this check if we know `obj` is not null. | 
 |   if (instruction->MustDoNullCheck()) { | 
 |     __ Move(out, ZERO); | 
 |     __ Beqz(obj, &done); | 
 |   } | 
 |  | 
 |   switch (type_check_kind) { | 
 |     case TypeCheckKind::kExactCheck: { | 
 |       ReadBarrierOption read_barrier_option = | 
 |           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         read_barrier_option); | 
 |       // Classes must be equal for the instanceof to succeed. | 
 |       __ Xor(out, out, cls.AsRegister<Register>()); | 
 |       __ Sltiu(out, out, 1); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kAbstractClassCheck: { | 
 |       ReadBarrierOption read_barrier_option = | 
 |           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         read_barrier_option); | 
 |       // If the class is abstract, we eagerly fetch the super class of the | 
 |       // object to avoid doing a comparison we know will fail. | 
 |       MipsLabel loop; | 
 |       __ Bind(&loop); | 
 |       // /* HeapReference<Class> */ out = out->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        out_loc, | 
 |                                        super_offset, | 
 |                                        maybe_temp_loc, | 
 |                                        read_barrier_option); | 
 |       // If `out` is null, we use it for the result, and jump to `done`. | 
 |       __ Beqz(out, &done); | 
 |       __ Bne(out, cls.AsRegister<Register>(), &loop); | 
 |       __ LoadConst32(out, 1); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kClassHierarchyCheck: { | 
 |       ReadBarrierOption read_barrier_option = | 
 |           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         read_barrier_option); | 
 |       // Walk over the class hierarchy to find a match. | 
 |       MipsLabel loop, success; | 
 |       __ Bind(&loop); | 
 |       __ Beq(out, cls.AsRegister<Register>(), &success); | 
 |       // /* HeapReference<Class> */ out = out->super_class_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        out_loc, | 
 |                                        super_offset, | 
 |                                        maybe_temp_loc, | 
 |                                        read_barrier_option); | 
 |       __ Bnez(out, &loop); | 
 |       // If `out` is null, we use it for the result, and jump to `done`. | 
 |       __ B(&done); | 
 |       __ Bind(&success); | 
 |       __ LoadConst32(out, 1); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kArrayObjectCheck: { | 
 |       ReadBarrierOption read_barrier_option = | 
 |           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         read_barrier_option); | 
 |       // Do an exact check. | 
 |       MipsLabel success; | 
 |       __ Beq(out, cls.AsRegister<Register>(), &success); | 
 |       // Otherwise, we need to check that the object's class is a non-primitive array. | 
 |       // /* HeapReference<Class> */ out = out->component_type_ | 
 |       GenerateReferenceLoadOneRegister(instruction, | 
 |                                        out_loc, | 
 |                                        component_offset, | 
 |                                        maybe_temp_loc, | 
 |                                        read_barrier_option); | 
 |       // If `out` is null, we use it for the result, and jump to `done`. | 
 |       __ Beqz(out, &done); | 
 |       __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset); | 
 |       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); | 
 |       __ Sltiu(out, out, 1); | 
 |       __ B(&done); | 
 |       __ Bind(&success); | 
 |       __ LoadConst32(out, 1); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kArrayCheck: { | 
 |       // No read barrier since the slow path will retry upon failure. | 
 |       // /* HeapReference<Class> */ out = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         kWithoutReadBarrier); | 
 |       DCHECK(locations->OnlyCallsOnSlowPath()); | 
 |       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS( | 
 |           instruction, /* is_fatal */ false); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |       __ Bne(out, cls.AsRegister<Register>(), slow_path->GetEntryLabel()); | 
 |       __ LoadConst32(out, 1); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kUnresolvedCheck: | 
 |     case TypeCheckKind::kInterfaceCheck: { | 
 |       // Note that we indeed only call on slow path, but we always go | 
 |       // into the slow path for the unresolved and interface check | 
 |       // cases. | 
 |       // | 
 |       // We cannot directly call the InstanceofNonTrivial runtime | 
 |       // entry point without resorting to a type checking slow path | 
 |       // here (i.e. by calling InvokeRuntime directly), as it would | 
 |       // require to assign fixed registers for the inputs of this | 
 |       // HInstanceOf instruction (following the runtime calling | 
 |       // convention), which might be cluttered by the potential first | 
 |       // read barrier emission at the beginning of this method. | 
 |       // | 
 |       // TODO: Introduce a new runtime entry point taking the object | 
 |       // to test (instead of its class) as argument, and let it deal | 
 |       // with the read barrier issues. This will let us refactor this | 
 |       // case of the `switch` code as it was previously (with a direct | 
 |       // call to the runtime not using a type checking slow path). | 
 |       // This should also be beneficial for the other cases above. | 
 |       DCHECK(locations->OnlyCallsOnSlowPath()); | 
 |       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS( | 
 |           instruction, /* is_fatal */ false); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |       __ B(slow_path->GetEntryLabel()); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TypeCheckKind::kBitstringCheck: { | 
 |       // /* HeapReference<Class> */ temp = obj->klass_ | 
 |       GenerateReferenceLoadTwoRegisters(instruction, | 
 |                                         out_loc, | 
 |                                         obj_loc, | 
 |                                         class_offset, | 
 |                                         maybe_temp_loc, | 
 |                                         kWithoutReadBarrier); | 
 |  | 
 |       GenerateBitstringTypeCheckCompare(instruction, out); | 
 |       __ Sltiu(out, out, 1); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   __ Bind(&done); | 
 |  | 
 |   if (slow_path != nullptr) { | 
 |     __ Bind(slow_path->GetExitLabel()); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) { | 
 |   InvokeDexCallingConventionVisitorMIPS calling_convention_visitor; | 
 |   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) { | 
 |   HandleInvoke(invoke); | 
 |   // The register T7 is required to be used for the hidden argument in | 
 |   // art_quick_imt_conflict_trampoline, so add the hidden argument. | 
 |   invoke->GetLocations()->AddTemp(Location::RegisterLocation(T7)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) { | 
 |   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. | 
 |   Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>(); | 
 |   Location receiver = invoke->GetLocations()->InAt(0); | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize); | 
 |  | 
 |   // temp = object->GetClass(); | 
 |   if (receiver.IsStackSlot()) { | 
 |     __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex()); | 
 |     __ LoadFromOffset(kLoadWord, temp, temp, class_offset); | 
 |   } else { | 
 |     __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset); | 
 |   } | 
 |   codegen_->MaybeRecordImplicitNullCheck(invoke); | 
 |   // Instead of simply (possibly) unpoisoning `temp` here, we should | 
 |   // emit a read barrier for the previous class reference load. | 
 |   // However this is not required in practice, as this is an | 
 |   // intermediate/temporary reference and because the current | 
 |   // concurrent copying collector keeps the from-space memory | 
 |   // intact/accessible until the end of the marking phase (the | 
 |   // concurrent copying collector may not in the future). | 
 |   __ MaybeUnpoisonHeapReference(temp); | 
 |   __ LoadFromOffset(kLoadWord, temp, temp, | 
 |       mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value()); | 
 |   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( | 
 |       invoke->GetImtIndex(), kMipsPointerSize)); | 
 |   // temp = temp->GetImtEntryAt(method_offset); | 
 |   __ LoadFromOffset(kLoadWord, temp, temp, method_offset); | 
 |   // T9 = temp->GetEntryPoint(); | 
 |   __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value()); | 
 |   // Set the hidden argument. | 
 |   __ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(), | 
 |                  invoke->GetDexMethodIndex()); | 
 |   // T9(); | 
 |   __ Jalr(T9); | 
 |   __ NopIfNoReordering(); | 
 |   DCHECK(!codegen_->IsLeafMethod()); | 
 |   codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
 |   IntrinsicLocationsBuilderMIPS intrinsic(codegen_); | 
 |   if (intrinsic.TryDispatch(invoke)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
 |   // Explicit clinit checks triggered by static invokes must have been pruned by | 
 |   // art::PrepareForRegisterAllocation. | 
 |   DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
 |  | 
 |   bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops(); | 
 |   bool has_extra_input = invoke->HasPcRelativeMethodLoadKind() && !is_r6 && !has_irreducible_loops; | 
 |  | 
 |   IntrinsicLocationsBuilderMIPS intrinsic(codegen_); | 
 |   if (intrinsic.TryDispatch(invoke)) { | 
 |     if (invoke->GetLocations()->CanCall() && has_extra_input) { | 
 |       invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   HandleInvoke(invoke); | 
 |  | 
 |   // Add the extra input register if either the dex cache array base register | 
 |   // or the PC-relative base register for accessing literals is needed. | 
 |   if (has_extra_input) { | 
 |     invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { | 
 |   codegen_->GenerateInvokePolymorphicCall(invoke); | 
 | } | 
 |  | 
 | static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) { | 
 |   if (invoke->GetLocations()->Intrinsified()) { | 
 |     IntrinsicCodeGeneratorMIPS intrinsic(codegen); | 
 |     intrinsic.Dispatch(invoke); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | HLoadString::LoadKind CodeGeneratorMIPS::GetSupportedLoadStringKind( | 
 |     HLoadString::LoadKind desired_string_load_kind) { | 
 |   switch (desired_string_load_kind) { | 
 |     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: | 
 |     case HLoadString::LoadKind::kBootImageRelRo: | 
 |     case HLoadString::LoadKind::kBssEntry: | 
 |       DCHECK(!Runtime::Current()->UseJitCompilation()); | 
 |       break; | 
 |     case HLoadString::LoadKind::kJitTableAddress: | 
 |       DCHECK(Runtime::Current()->UseJitCompilation()); | 
 |       break; | 
 |     case HLoadString::LoadKind::kBootImageAddress: | 
 |     case HLoadString::LoadKind::kRuntimeCall: | 
 |       break; | 
 |   } | 
 |   return desired_string_load_kind; | 
 | } | 
 |  | 
 | HLoadClass::LoadKind CodeGeneratorMIPS::GetSupportedLoadClassKind( | 
 |     HLoadClass::LoadKind desired_class_load_kind) { | 
 |   switch (desired_class_load_kind) { | 
 |     case HLoadClass::LoadKind::kInvalid: | 
 |       LOG(FATAL) << "UNREACHABLE"; | 
 |       UNREACHABLE(); | 
 |     case HLoadClass::LoadKind::kReferrersClass: | 
 |       break; | 
 |     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: | 
 |     case HLoadClass::LoadKind::kBootImageRelRo: | 
 |     case HLoadClass::LoadKind::kBssEntry: | 
 |       DCHECK(!Runtime::Current()->UseJitCompilation()); | 
 |       break; | 
 |     case HLoadClass::LoadKind::kJitTableAddress: | 
 |       DCHECK(Runtime::Current()->UseJitCompilation()); | 
 |       break; | 
 |     case HLoadClass::LoadKind::kBootImageAddress: | 
 |     case HLoadClass::LoadKind::kRuntimeCall: | 
 |       break; | 
 |   } | 
 |   return desired_class_load_kind; | 
 | } | 
 |  | 
 | Register CodeGeneratorMIPS::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, | 
 |                                                                   Register temp) { | 
 |   CHECK(!GetInstructionSetFeatures().IsR6()); | 
 |   CHECK(!GetGraph()->HasIrreducibleLoops()); | 
 |   CHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); | 
 |   Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); | 
 |   if (!invoke->GetLocations()->Intrinsified()) { | 
 |     return location.AsRegister<Register>(); | 
 |   } | 
 |   // For intrinsics we allow any location, so it may be on the stack. | 
 |   if (!location.IsRegister()) { | 
 |     __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex()); | 
 |     return temp; | 
 |   } | 
 |   // For register locations, check if the register was saved. If so, get it from the stack. | 
 |   // Note: There is a chance that the register was saved but not overwritten, so we could | 
 |   // save one load. However, since this is just an intrinsic slow path we prefer this | 
 |   // simple and more robust approach rather that trying to determine if that's the case. | 
 |   SlowPathCode* slow_path = GetCurrentSlowPath(); | 
 |   DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path. | 
 |   if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) { | 
 |     int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>()); | 
 |     __ LoadFromOffset(kLoadWord, temp, SP, stack_offset); | 
 |     return temp; | 
 |   } | 
 |   return location.AsRegister<Register>(); | 
 | } | 
 |  | 
 | HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch( | 
 |       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, | 
 |       HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) { | 
 |   return desired_dispatch_info; | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateStaticOrDirectCall( | 
 |     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { | 
 |   // All registers are assumed to be correctly set up per the calling convention. | 
 |   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp. | 
 |   HInvokeStaticOrDirect::MethodLoadKind method_load_kind = invoke->GetMethodLoadKind(); | 
 |   HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = invoke->GetCodePtrLocation(); | 
 |   bool is_r6 = GetInstructionSetFeatures().IsR6(); | 
 |   bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops(); | 
 |   Register base_reg = (invoke->HasPcRelativeMethodLoadKind() && !is_r6 && !has_irreducible_loops) | 
 |       ? GetInvokeStaticOrDirectExtraParameter(invoke, temp.AsRegister<Register>()) | 
 |       : ZERO; | 
 |  | 
 |   switch (method_load_kind) { | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { | 
 |       // temp = thread->string_init_entrypoint | 
 |       uint32_t offset = | 
 |           GetThreadOffset<kMipsPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); | 
 |       __ LoadFromOffset(kLoadWord, | 
 |                         temp.AsRegister<Register>(), | 
 |                         TR, | 
 |                         offset); | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: | 
 |       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); | 
 |       break; | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: { | 
 |       DCHECK(GetCompilerOptions().IsBootImage()); | 
 |       PcRelativePatchInfo* info_high = NewBootImageMethodPatch(invoke->GetTargetMethod()); | 
 |       PcRelativePatchInfo* info_low = | 
 |           NewBootImageMethodPatch(invoke->GetTargetMethod(), info_high); | 
 |       Register temp_reg = temp.AsRegister<Register>(); | 
 |       EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg); | 
 |       __ Addiu(temp_reg, TMP, /* placeholder */ 0x5678, &info_low->label); | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: | 
 |       __ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress()); | 
 |       break; | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: { | 
 |       uint32_t boot_image_offset = GetBootImageOffset(invoke); | 
 |       PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_offset); | 
 |       PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_offset, info_high); | 
 |       Register temp_reg = temp.AsRegister<Register>(); | 
 |       EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg); | 
 |       __ Lw(temp_reg, TMP, /* placeholder */ 0x5678, &info_low->label); | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: { | 
 |       PcRelativePatchInfo* info_high = NewMethodBssEntryPatch( | 
 |           MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex())); | 
 |       PcRelativePatchInfo* info_low = NewMethodBssEntryPatch( | 
 |           MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()), info_high); | 
 |       Register temp_reg = temp.AsRegister<Register>(); | 
 |       EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg); | 
 |       __ Lw(temp_reg, TMP, /* placeholder */ 0x5678, &info_low->label); | 
 |       break; | 
 |     } | 
 |     case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: { | 
 |       GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); | 
 |       return;  // No code pointer retrieval; the runtime performs the call directly. | 
 |     } | 
 |   } | 
 |  | 
 |   switch (code_ptr_location) { | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: | 
 |       __ Bal(&frame_entry_label_); | 
 |       break; | 
 |     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: | 
 |       // T9 = callee_method->entry_point_from_quick_compiled_code_; | 
 |       __ LoadFromOffset(kLoadWord, | 
 |                         T9, | 
 |                         callee_method.AsRegister<Register>(), | 
 |                         ArtMethod::EntryPointFromQuickCompiledCodeOffset( | 
 |                             kMipsPointerSize).Int32Value()); | 
 |       // T9() | 
 |       __ Jalr(T9); | 
 |       __ NopIfNoReordering(); | 
 |       break; | 
 |   } | 
 |   RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); | 
 |  | 
 |   DCHECK(!IsLeafMethod()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { | 
 |   // Explicit clinit checks triggered by static invokes must have been pruned by | 
 |   // art::PrepareForRegisterAllocation. | 
 |   DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); | 
 |  | 
 |   if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   LocationSummary* locations = invoke->GetLocations(); | 
 |   codegen_->GenerateStaticOrDirectCall(invoke, | 
 |                                        locations->HasTemps() | 
 |                                            ? locations->GetTemp(0) | 
 |                                            : Location::NoLocation()); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateVirtualCall( | 
 |     HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) { | 
 |   // Use the calling convention instead of the location of the receiver, as | 
 |   // intrinsics may have put the receiver in a different register. In the intrinsics | 
 |   // slow path, the arguments have been moved to the right place, so here we are | 
 |   // guaranteed that the receiver is the first register of the calling convention. | 
 |   InvokeDexCallingConvention calling_convention; | 
 |   Register receiver = calling_convention.GetRegisterAt(0); | 
 |  | 
 |   Register temp = temp_location.AsRegister<Register>(); | 
 |   size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
 |       invoke->GetVTableIndex(), kMipsPointerSize).SizeValue(); | 
 |   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); | 
 |   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize); | 
 |  | 
 |   // temp = object->GetClass(); | 
 |   __ LoadFromOffset(kLoadWord, temp, receiver, class_offset); | 
 |   MaybeRecordImplicitNullCheck(invoke); | 
 |   // Instead of simply (possibly) unpoisoning `temp` here, we should | 
 |   // emit a read barrier for the previous class reference load. | 
 |   // However this is not required in practice, as this is an | 
 |   // intermediate/temporary reference and because the current | 
 |   // concurrent copying collector keeps the from-space memory | 
 |   // intact/accessible until the end of the marking phase (the | 
 |   // concurrent copying collector may not in the future). | 
 |   __ MaybeUnpoisonHeapReference(temp); | 
 |   // temp = temp->GetMethodAt(method_offset); | 
 |   __ LoadFromOffset(kLoadWord, temp, temp, method_offset); | 
 |   // T9 = temp->GetEntryPoint(); | 
 |   __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value()); | 
 |   // T9(); | 
 |   __ Jalr(T9); | 
 |   __ NopIfNoReordering(); | 
 |   RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) { | 
 |   if (TryGenerateIntrinsicCode(invoke, codegen_)) { | 
 |     return; | 
 |   } | 
 |  | 
 |   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); | 
 |   DCHECK(!codegen_->IsLeafMethod()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) { | 
 |   HLoadClass::LoadKind load_kind = cls->GetLoadKind(); | 
 |   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); | 
 |     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(cls, loc, loc); | 
 |     return; | 
 |   } | 
 |   DCHECK(!cls->NeedsAccessCheck()); | 
 |   const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   const bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops(); | 
 |   const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); | 
 |   LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) | 
 |       ? LocationSummary::kCallOnSlowPath | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind); | 
 |   if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { | 
 |     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers. | 
 |   } | 
 |   switch (load_kind) { | 
 |     // We need an extra register for PC-relative literals on R2. | 
 |     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: | 
 |     case HLoadClass::LoadKind::kBootImageAddress: | 
 |     case HLoadClass::LoadKind::kBootImageRelRo: | 
 |     case HLoadClass::LoadKind::kBssEntry: | 
 |       if (isR6) { | 
 |         break; | 
 |       } | 
 |       if (has_irreducible_loops) { | 
 |         if (load_kind != HLoadClass::LoadKind::kBootImageAddress) { | 
 |           codegen_->ClobberRA(); | 
 |         } | 
 |         break; | 
 |       } | 
 |       FALLTHROUGH_INTENDED; | 
 |     case HLoadClass::LoadKind::kReferrersClass: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       break; | 
 |     default: | 
 |       break; | 
 |   } | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 |   if (load_kind == HLoadClass::LoadKind::kBssEntry) { | 
 |     if (!kUseReadBarrier || kUseBakerReadBarrier) { | 
 |       // Rely on the type resolution or initialization and marking to save everything we need. | 
 |       RegisterSet caller_saves = RegisterSet::Empty(); | 
 |       InvokeRuntimeCallingConvention calling_convention; | 
 |       caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |       locations->SetCustomSlowPathCallerSaves(caller_saves); | 
 |     } else { | 
 |       // For non-Baker read barriers we have a temp-clobbering call. | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not | 
 | // move. | 
 | void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { | 
 |   HLoadClass::LoadKind load_kind = cls->GetLoadKind(); | 
 |   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { | 
 |     codegen_->GenerateLoadClassRuntimeCall(cls); | 
 |     return; | 
 |   } | 
 |   DCHECK(!cls->NeedsAccessCheck()); | 
 |  | 
 |   LocationSummary* locations = cls->GetLocations(); | 
 |   Location out_loc = locations->Out(); | 
 |   Register out = out_loc.AsRegister<Register>(); | 
 |   Register base_or_current_method_reg; | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops(); | 
 |   switch (load_kind) { | 
 |     // We need an extra register for PC-relative literals on R2. | 
 |     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: | 
 |     case HLoadClass::LoadKind::kBootImageAddress: | 
 |     case HLoadClass::LoadKind::kBootImageRelRo: | 
 |     case HLoadClass::LoadKind::kBssEntry: | 
 |       base_or_current_method_reg = | 
 |           (isR6 || has_irreducible_loops) ? ZERO : locations->InAt(0).AsRegister<Register>(); | 
 |       break; | 
 |     case HLoadClass::LoadKind::kReferrersClass: | 
 |     case HLoadClass::LoadKind::kRuntimeCall: | 
 |       base_or_current_method_reg = locations->InAt(0).AsRegister<Register>(); | 
 |       break; | 
 |     default: | 
 |       base_or_current_method_reg = ZERO; | 
 |       break; | 
 |   } | 
 |  | 
 |   const ReadBarrierOption read_barrier_option = cls->IsInBootImage() | 
 |       ? kWithoutReadBarrier | 
 |       : kCompilerReadBarrierOption; | 
 |   bool generate_null_check = false; | 
 |   switch (load_kind) { | 
 |     case HLoadClass::LoadKind::kReferrersClass: { | 
 |       DCHECK(!cls->CanCallRuntime()); | 
 |       DCHECK(!cls->MustGenerateClinitCheck()); | 
 |       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ | 
 |       GenerateGcRootFieldLoad(cls, | 
 |                               out_loc, | 
 |                               base_or_current_method_reg, | 
 |                               ArtMethod::DeclaringClassOffset().Int32Value(), | 
 |                               read_barrier_option); | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { | 
 |       DCHECK(codegen_->GetCompilerOptions().IsBootImage()); | 
 |       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_high = | 
 |           codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex()); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_low = | 
 |           codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex(), info_high); | 
 |       codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, | 
 |                                                      out, | 
 |                                                      base_or_current_method_reg); | 
 |       __ Addiu(out, out, /* placeholder */ 0x5678, &info_low->label); | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kBootImageAddress: { | 
 |       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); | 
 |       uint32_t address = dchecked_integral_cast<uint32_t>( | 
 |           reinterpret_cast<uintptr_t>(cls->GetClass().Get())); | 
 |       DCHECK_NE(address, 0u); | 
 |       if (isR6 || !has_irreducible_loops) { | 
 |         __ LoadLiteral(out, | 
 |                        base_or_current_method_reg, | 
 |                        codegen_->DeduplicateBootImageAddressLiteral(address)); | 
 |       } else { | 
 |         __ LoadConst32(out, address); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kBootImageRelRo: { | 
 |       DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); | 
 |       uint32_t boot_image_offset = codegen_->GetBootImageOffset(cls); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_high = | 
 |           codegen_->NewBootImageRelRoPatch(boot_image_offset); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_low = | 
 |           codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high); | 
 |       codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, | 
 |                                                      out, | 
 |                                                      base_or_current_method_reg); | 
 |       __ Lw(out, out, /* placeholder */ 0x5678, &info_low->label); | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kBssEntry: { | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* bss_info_high = | 
 |           codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex()); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_low = | 
 |           codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex(), bss_info_high); | 
 |       codegen_->EmitPcRelativeAddressPlaceholderHigh(bss_info_high, | 
 |                                                      out, | 
 |                                                      base_or_current_method_reg); | 
 |       GenerateGcRootFieldLoad(cls, | 
 |                               out_loc, | 
 |                               out, | 
 |                               /* placeholder */ 0x5678, | 
 |                               read_barrier_option, | 
 |                               &info_low->label); | 
 |       generate_null_check = true; | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kJitTableAddress: { | 
 |       CodeGeneratorMIPS::JitPatchInfo* info = codegen_->NewJitRootClassPatch(cls->GetDexFile(), | 
 |                                                                              cls->GetTypeIndex(), | 
 |                                                                              cls->GetClass()); | 
 |       bool reordering = __ SetReorder(false); | 
 |       __ Bind(&info->high_label); | 
 |       __ Lui(out, /* placeholder */ 0x1234); | 
 |       __ SetReorder(reordering); | 
 |       GenerateGcRootFieldLoad(cls, | 
 |                               out_loc, | 
 |                               out, | 
 |                               /* placeholder */ 0x5678, | 
 |                               read_barrier_option, | 
 |                               &info->low_label); | 
 |       break; | 
 |     } | 
 |     case HLoadClass::LoadKind::kRuntimeCall: | 
 |     case HLoadClass::LoadKind::kInvalid: | 
 |       LOG(FATAL) << "UNREACHABLE"; | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   if (generate_null_check || cls->MustGenerateClinitCheck()) { | 
 |     DCHECK(cls->CanCallRuntime()); | 
 |     SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS( | 
 |         cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); | 
 |     codegen_->AddSlowPath(slow_path); | 
 |     if (generate_null_check) { | 
 |       __ Beqz(out, slow_path->GetEntryLabel()); | 
 |     } | 
 |     if (cls->MustGenerateClinitCheck()) { | 
 |       GenerateClassInitializationCheck(slow_path, out); | 
 |     } else { | 
 |       __ Bind(slow_path->GetExitLabel()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitLoadMethodHandle(HLoadMethodHandle* load) { | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); | 
 |   CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, loc, loc); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitLoadMethodHandle(HLoadMethodHandle* load) { | 
 |   codegen_->GenerateLoadMethodHandleRuntimeCall(load); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitLoadMethodType(HLoadMethodType* load) { | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); | 
 |   CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, loc, loc); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitLoadMethodType(HLoadMethodType* load) { | 
 |   codegen_->GenerateLoadMethodTypeRuntimeCall(load); | 
 | } | 
 |  | 
 | static int32_t GetExceptionTlsOffset() { | 
 |   return Thread::ExceptionOffset<kMipsPointerSize>().Int32Value(); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) { | 
 |   Register out = load->GetLocations()->Out().AsRegister<Register>(); | 
 |   __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitClearException(HClearException* clear) { | 
 |   new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { | 
 |   __ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) { | 
 |   LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind); | 
 |   HLoadString::LoadKind load_kind = load->GetLoadKind(); | 
 |   const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   const bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops(); | 
 |   switch (load_kind) { | 
 |     // We need an extra register for PC-relative literals on R2. | 
 |     case HLoadString::LoadKind::kBootImageAddress: | 
 |     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: | 
 |     case HLoadString::LoadKind::kBootImageRelRo: | 
 |     case HLoadString::LoadKind::kBssEntry: | 
 |       if (isR6) { | 
 |         break; | 
 |       } | 
 |       if (has_irreducible_loops) { | 
 |         if (load_kind != HLoadString::LoadKind::kBootImageAddress) { | 
 |           codegen_->ClobberRA(); | 
 |         } | 
 |         break; | 
 |       } | 
 |       FALLTHROUGH_INTENDED; | 
 |     // We need an extra register for PC-relative dex cache accesses. | 
 |     case HLoadString::LoadKind::kRuntimeCall: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       break; | 
 |     default: | 
 |       break; | 
 |   } | 
 |   if (load_kind == HLoadString::LoadKind::kRuntimeCall) { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |     locations->SetOut(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |   } else { | 
 |     locations->SetOut(Location::RequiresRegister()); | 
 |     if (load_kind == HLoadString::LoadKind::kBssEntry) { | 
 |       if (!kUseReadBarrier || kUseBakerReadBarrier) { | 
 |         // Rely on the pResolveString and marking to save everything we need. | 
 |         RegisterSet caller_saves = RegisterSet::Empty(); | 
 |         InvokeRuntimeCallingConvention calling_convention; | 
 |         caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |         locations->SetCustomSlowPathCallerSaves(caller_saves); | 
 |       } else { | 
 |         // For non-Baker read barriers we have a temp-clobbering call. | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not | 
 | // move. | 
 | void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { | 
 |   HLoadString::LoadKind load_kind = load->GetLoadKind(); | 
 |   LocationSummary* locations = load->GetLocations(); | 
 |   Location out_loc = locations->Out(); | 
 |   Register out = out_loc.AsRegister<Register>(); | 
 |   Register base_or_current_method_reg; | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops(); | 
 |   switch (load_kind) { | 
 |     // We need an extra register for PC-relative literals on R2. | 
 |     case HLoadString::LoadKind::kBootImageAddress: | 
 |     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: | 
 |     case HLoadString::LoadKind::kBootImageRelRo: | 
 |     case HLoadString::LoadKind::kBssEntry: | 
 |       base_or_current_method_reg = | 
 |           (isR6 || has_irreducible_loops) ? ZERO : locations->InAt(0).AsRegister<Register>(); | 
 |       break; | 
 |     default: | 
 |       base_or_current_method_reg = ZERO; | 
 |       break; | 
 |   } | 
 |  | 
 |   switch (load_kind) { | 
 |     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { | 
 |       DCHECK(codegen_->GetCompilerOptions().IsBootImage()); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_high = | 
 |           codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex()); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_low = | 
 |           codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex(), info_high); | 
 |       codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, | 
 |                                                      out, | 
 |                                                      base_or_current_method_reg); | 
 |       __ Addiu(out, out, /* placeholder */ 0x5678, &info_low->label); | 
 |       return; | 
 |     } | 
 |     case HLoadString::LoadKind::kBootImageAddress: { | 
 |       uint32_t address = dchecked_integral_cast<uint32_t>( | 
 |           reinterpret_cast<uintptr_t>(load->GetString().Get())); | 
 |       DCHECK_NE(address, 0u); | 
 |       if (isR6 || !has_irreducible_loops) { | 
 |         __ LoadLiteral(out, | 
 |                        base_or_current_method_reg, | 
 |                        codegen_->DeduplicateBootImageAddressLiteral(address)); | 
 |       } else { | 
 |         __ LoadConst32(out, address); | 
 |       } | 
 |       return; | 
 |     } | 
 |     case HLoadString::LoadKind::kBootImageRelRo: { | 
 |       DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); | 
 |       uint32_t boot_image_offset = codegen_->GetBootImageOffset(load); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_high = | 
 |           codegen_->NewBootImageRelRoPatch(boot_image_offset); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_low = | 
 |           codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high); | 
 |       codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, | 
 |                                                      out, | 
 |                                                      base_or_current_method_reg); | 
 |       __ Lw(out, out, /* placeholder */ 0x5678, &info_low->label); | 
 |       return; | 
 |     } | 
 |     case HLoadString::LoadKind::kBssEntry: { | 
 |       DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_high = | 
 |           codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex()); | 
 |       CodeGeneratorMIPS::PcRelativePatchInfo* info_low = | 
 |           codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex(), info_high); | 
 |       codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, | 
 |                                                      out, | 
 |                                                      base_or_current_method_reg); | 
 |       GenerateGcRootFieldLoad(load, | 
 |                               out_loc, | 
 |                               out, | 
 |                               /* placeholder */ 0x5678, | 
 |                               kCompilerReadBarrierOption, | 
 |                               &info_low->label); | 
 |       SlowPathCodeMIPS* slow_path = | 
 |           new (codegen_->GetScopedAllocator()) LoadStringSlowPathMIPS(load); | 
 |       codegen_->AddSlowPath(slow_path); | 
 |       __ Beqz(out, slow_path->GetEntryLabel()); | 
 |       __ Bind(slow_path->GetExitLabel()); | 
 |       return; | 
 |     } | 
 |     case HLoadString::LoadKind::kJitTableAddress: { | 
 |       CodeGeneratorMIPS::JitPatchInfo* info = | 
 |           codegen_->NewJitRootStringPatch(load->GetDexFile(), | 
 |                                           load->GetStringIndex(), | 
 |                                           load->GetString()); | 
 |       bool reordering = __ SetReorder(false); | 
 |       __ Bind(&info->high_label); | 
 |       __ Lui(out, /* placeholder */ 0x1234); | 
 |       __ SetReorder(reordering); | 
 |       GenerateGcRootFieldLoad(load, | 
 |                               out_loc, | 
 |                               out, | 
 |                               /* placeholder */ 0x5678, | 
 |                               kCompilerReadBarrierOption, | 
 |                               &info->low_label); | 
 |       return; | 
 |     } | 
 |     default: | 
 |       break; | 
 |   } | 
 |  | 
 |   // TODO: Re-add the compiler code to do string dex cache lookup again. | 
 |   DCHECK(load_kind == HLoadString::LoadKind::kRuntimeCall); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   DCHECK_EQ(calling_convention.GetRegisterAt(0), out); | 
 |   __ LoadConst32(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_); | 
 |   codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); | 
 |   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); | 
 |   locations->SetOut(Location::ConstantLocation(constant)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { | 
 |   // Will be generated at use site. | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnMainOnly); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) { | 
 |   if (instruction->IsEnter()) { | 
 |     codegen_->InvokeRuntime(kQuickLockObject, instruction, instruction->GetDexPc()); | 
 |     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); | 
 |   } else { | 
 |     codegen_->InvokeRuntime(kQuickUnlockObject, instruction, instruction->GetDexPc()); | 
 |   } | 
 |   CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitMul(HMul* mul) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall); | 
 |   switch (mul->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RequiresRegister()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) { | 
 |   DataType::Type type = instruction->GetType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: { | 
 |       Register dst = locations->Out().AsRegister<Register>(); | 
 |       Register lhs = locations->InAt(0).AsRegister<Register>(); | 
 |       Register rhs = locations->InAt(1).AsRegister<Register>(); | 
 |  | 
 |       if (isR6) { | 
 |         __ MulR6(dst, lhs, rhs); | 
 |       } else { | 
 |         __ MulR2(dst, lhs, rhs); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kInt64: { | 
 |       Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); | 
 |       Register dst_low = locations->Out().AsRegisterPairLow<Register>(); | 
 |       Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |       Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |       Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>(); | 
 |       Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>(); | 
 |  | 
 |       // Extra checks to protect caused by the existance of A1_A2. | 
 |       // The algorithm is wrong if dst_high is either lhs_lo or rhs_lo: | 
 |       // (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2). | 
 |       DCHECK_NE(dst_high, lhs_low); | 
 |       DCHECK_NE(dst_high, rhs_low); | 
 |  | 
 |       // A_B * C_D | 
 |       // dst_hi:  [ low(A*D) + low(B*C) + hi(B*D) ] | 
 |       // dst_lo:  [ low(B*D) ] | 
 |       // Note: R2 and R6 MUL produce the low 32 bit of the multiplication result. | 
 |  | 
 |       if (isR6) { | 
 |         __ MulR6(TMP, lhs_high, rhs_low); | 
 |         __ MulR6(dst_high, lhs_low, rhs_high); | 
 |         __ Addu(dst_high, dst_high, TMP); | 
 |         __ MuhuR6(TMP, lhs_low, rhs_low); | 
 |         __ Addu(dst_high, dst_high, TMP); | 
 |         __ MulR6(dst_low, lhs_low, rhs_low); | 
 |       } else { | 
 |         __ MulR2(TMP, lhs_high, rhs_low); | 
 |         __ MulR2(dst_high, lhs_low, rhs_high); | 
 |         __ Addu(dst_high, dst_high, TMP); | 
 |         __ MultuR2(lhs_low, rhs_low); | 
 |         __ Mfhi(TMP); | 
 |         __ Addu(dst_high, dst_high, TMP); | 
 |         __ Mflo(dst_low); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       FRegister dst = locations->Out().AsFpuRegister<FRegister>(); | 
 |       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |       if (type == DataType::Type::kFloat32) { | 
 |         __ MulS(dst, lhs, rhs); | 
 |       } else { | 
 |         __ MulD(dst, lhs, rhs); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected mul type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitNeg(HNeg* neg) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); | 
 |   switch (neg->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) { | 
 |   DataType::Type type = instruction->GetType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: { | 
 |       Register dst = locations->Out().AsRegister<Register>(); | 
 |       Register src = locations->InAt(0).AsRegister<Register>(); | 
 |       __ Subu(dst, ZERO, src); | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kInt64: { | 
 |       Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); | 
 |       Register dst_low = locations->Out().AsRegisterPairLow<Register>(); | 
 |       Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |       Register src_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |       __ Subu(dst_low, ZERO, src_low); | 
 |       __ Sltu(TMP, ZERO, dst_low); | 
 |       __ Subu(dst_high, ZERO, src_high); | 
 |       __ Subu(dst_high, dst_high, TMP); | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       FRegister dst = locations->Out().AsFpuRegister<FRegister>(); | 
 |       FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |       if (type == DataType::Type::kFloat32) { | 
 |         __ NegS(dst, src); | 
 |       } else { | 
 |         __ NegD(dst, src); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected neg type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnMainOnly); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); | 
 |   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) { | 
 |   // Note: if heap poisoning is enabled, the entry point takes care | 
 |   // of poisoning the reference. | 
 |   QuickEntrypointEnum entrypoint = | 
 |       CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass()); | 
 |   codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); | 
 |   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); | 
 |   DCHECK(!codegen_->IsLeafMethod()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnMainOnly); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   if (instruction->IsStringAlloc()) { | 
 |     locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); | 
 |   } else { | 
 |     locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 |   } | 
 |   locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) { | 
 |   // Note: if heap poisoning is enabled, the entry point takes care | 
 |   // of poisoning the reference. | 
 |   if (instruction->IsStringAlloc()) { | 
 |     // String is allocated through StringFactory. Call NewEmptyString entry point. | 
 |     Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>(); | 
 |     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize); | 
 |     __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString)); | 
 |     __ LoadFromOffset(kLoadWord, T9, temp, code_offset.Int32Value()); | 
 |     __ Jalr(T9); | 
 |     __ NopIfNoReordering(); | 
 |     codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); | 
 |   } else { | 
 |     codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); | 
 |     CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitNot(HNot* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) { | 
 |   DataType::Type type = instruction->GetType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: { | 
 |       Register dst = locations->Out().AsRegister<Register>(); | 
 |       Register src = locations->InAt(0).AsRegister<Register>(); | 
 |       __ Nor(dst, src, ZERO); | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); | 
 |       Register dst_low = locations->Out().AsRegisterPairLow<Register>(); | 
 |       Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |       Register src_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |       __ Nor(dst_high, src_high, ZERO); | 
 |       __ Nor(dst_low, src_low, ZERO); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   __ Xori(locations->Out().AsRegister<Register>(), | 
 |           locations->InAt(0).AsRegister<Register>(), | 
 |           1); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) { | 
 |   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) { | 
 |   if (CanMoveNullCheckToUser(instruction)) { | 
 |     return; | 
 |   } | 
 |   Location obj = instruction->GetLocations()->InAt(0); | 
 |  | 
 |   __ Lw(ZERO, obj.AsRegister<Register>(), 0); | 
 |   RecordPcInfo(instruction, instruction->GetDexPc()); | 
 | } | 
 |  | 
 | void CodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) { | 
 |   SlowPathCodeMIPS* slow_path = new (GetScopedAllocator()) NullCheckSlowPathMIPS(instruction); | 
 |   AddSlowPath(slow_path); | 
 |  | 
 |   Location obj = instruction->GetLocations()->InAt(0); | 
 |  | 
 |   __ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) { | 
 |   codegen_->GenerateNullCheck(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitOr(HOr* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) { | 
 |   if (instruction->GetNext()->IsSuspendCheck() && | 
 |       instruction->GetBlock()->GetLoopInformation() != nullptr) { | 
 |     HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); | 
 |     // The back edge will generate the suspend check. | 
 |     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); | 
 |   } | 
 |  | 
 |   codegen_->GetMoveResolver()->EmitNativeCode(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); | 
 |   if (location.IsStackSlot()) { | 
 |     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
 |   } else if (location.IsDoubleStackSlot()) { | 
 |     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); | 
 |   } | 
 |   locations->SetOut(location); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction | 
 |                                                          ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, the parameter is already at its location. | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction | 
 |                                                         ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, the method is already at its location. | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); | 
 |   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { | 
 |     locations->SetInAt(i, Location::Any()); | 
 |   } | 
 |   locations->SetOut(Location::Any()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitRem(HRem* rem) { | 
 |   DataType::Type type = rem->GetResultType(); | 
 |   bool call_rem; | 
 |   if ((type == DataType::Type::kInt64) && rem->InputAt(1)->IsConstant()) { | 
 |     int64_t imm = CodeGenerator::GetInt64ValueOf(rem->InputAt(1)->AsConstant()); | 
 |     call_rem = (imm != 0) && !IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm))); | 
 |   } else { | 
 |     call_rem = (type != DataType::Type::kInt32); | 
 |   } | 
 |   LocationSummary::CallKind call_kind = call_rem | 
 |       ? LocationSummary::kCallOnMainOnly | 
 |       : LocationSummary::kNoCall; | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |  | 
 |     case DataType::Type::kInt64: { | 
 |       if (call_rem) { | 
 |         InvokeRuntimeCallingConvention calling_convention; | 
 |         locations->SetInAt(0, Location::RegisterPairLocation( | 
 |             calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); | 
 |         locations->SetInAt(1, Location::RegisterPairLocation( | 
 |             calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); | 
 |         locations->SetOut(calling_convention.GetReturnLocation(type)); | 
 |       } else { | 
 |         locations->SetInAt(0, Location::RequiresRegister()); | 
 |         locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant())); | 
 |         locations->SetOut(Location::RequiresRegister()); | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: { | 
 |       InvokeRuntimeCallingConvention calling_convention; | 
 |       locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); | 
 |       locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); | 
 |       locations->SetOut(calling_convention.GetReturnLocation(type)); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected rem type " << type; | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) { | 
 |   DataType::Type type = instruction->GetType(); | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |  | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |       GenerateDivRemIntegral(instruction); | 
 |       break; | 
 |     case DataType::Type::kInt64: { | 
 |       if (locations->InAt(1).IsConstant()) { | 
 |         int64_t imm = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue(); | 
 |         if (imm == 0) { | 
 |           // Do not generate anything. DivZeroCheck would prevent any code to be executed. | 
 |         } else if (imm == 1 || imm == -1) { | 
 |           DivRemOneOrMinusOne(instruction); | 
 |         } else { | 
 |           DCHECK(IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm)))); | 
 |           DivRemByPowerOfTwo(instruction); | 
 |         } | 
 |       } else { | 
 |         codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc()); | 
 |         CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: { | 
 |       codegen_->InvokeRuntime(kQuickFmodf, instruction, instruction->GetDexPc()); | 
 |       CheckEntrypointTypes<kQuickFmodf, float, float, float>(); | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat64: { | 
 |       codegen_->InvokeRuntime(kQuickFmod, instruction, instruction->GetDexPc()); | 
 |       CheckEntrypointTypes<kQuickFmod, double, double, double>(); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected rem type " << type; | 
 |   } | 
 | } | 
 |  | 
 | static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) { | 
 |   LocationSummary* locations = new (allocator) LocationSummary(minmax); | 
 |   switch (minmax->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetInAt(1, Location::RequiresRegister()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetInAt(1, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateMinMaxInt(LocationSummary* locations, | 
 |                                                      bool is_min, | 
 |                                                      bool isR6, | 
 |                                                      DataType::Type type) { | 
 |   if (isR6) { | 
 |     // Some architectures, such as ARM and MIPS (prior to r6), have a | 
 |     // conditional move instruction which only changes the target | 
 |     // (output) register if the condition is true (MIPS prior to r6 had | 
 |     // MOVF, MOVT, MOVN, and MOVZ). The SELEQZ and SELNEZ instructions | 
 |     // always change the target (output) register.  If the condition is | 
 |     // true the output register gets the contents of the "rs" register; | 
 |     // otherwise, the output register is set to zero. One consequence | 
 |     // of this is that to implement something like "rd = c==0 ? rs : rt" | 
 |     // MIPS64r6 needs to use a pair of SELEQZ/SELNEZ instructions. | 
 |     // After executing this pair of instructions one of the output | 
 |     // registers from the pair will necessarily contain zero. Then the | 
 |     // code ORs the output registers from the SELEQZ/SELNEZ instructions | 
 |     // to get the final result. | 
 |     // | 
 |     // The initial test to see if the output register is same as the | 
 |     // first input register is needed to make sure that value in the | 
 |     // first input register isn't clobbered before we've finished | 
 |     // computing the output value. The logic in the corresponding else | 
 |     // clause performs the same task but makes sure the second input | 
 |     // register isn't clobbered in the event that it's the same register | 
 |     // as the output register; the else clause also handles the case | 
 |     // where the output register is distinct from both the first, and the | 
 |     // second input registers. | 
 |     if (type == DataType::Type::kInt64) { | 
 |       Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |       Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |       Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>(); | 
 |       Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>(); | 
 |       Register out_lo = locations->Out().AsRegisterPairLow<Register>(); | 
 |       Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); | 
 |  | 
 |       MipsLabel compare_done; | 
 |  | 
 |       if (a_lo == b_lo) { | 
 |         if (out_lo != a_lo) { | 
 |           __ Move(out_lo, a_lo); | 
 |           __ Move(out_hi, a_hi); | 
 |         } | 
 |       } else { | 
 |         __ Slt(TMP, b_hi, a_hi); | 
 |         __ Bne(b_hi, a_hi, &compare_done); | 
 |  | 
 |         __ Sltu(TMP, b_lo, a_lo); | 
 |  | 
 |         __ Bind(&compare_done); | 
 |  | 
 |         if (is_min) { | 
 |           __ Seleqz(AT, a_lo, TMP); | 
 |           __ Selnez(out_lo, b_lo, TMP);  // Safe even if out_lo == a_lo/b_lo | 
 |                                          // because at this point we're | 
 |                                          // done using a_lo/b_lo. | 
 |         } else { | 
 |           __ Selnez(AT, a_lo, TMP); | 
 |           __ Seleqz(out_lo, b_lo, TMP);  // ditto | 
 |         } | 
 |         __ Or(out_lo, out_lo, AT); | 
 |         if (is_min) { | 
 |           __ Seleqz(AT, a_hi, TMP); | 
 |           __ Selnez(out_hi, b_hi, TMP);  // ditto but for out_hi & a_hi/b_hi | 
 |         } else { | 
 |           __ Selnez(AT, a_hi, TMP); | 
 |           __ Seleqz(out_hi, b_hi, TMP);  // ditto but for out_hi & a_hi/b_hi | 
 |         } | 
 |         __ Or(out_hi, out_hi, AT); | 
 |       } | 
 |     } else { | 
 |       DCHECK_EQ(type, DataType::Type::kInt32); | 
 |       Register a = locations->InAt(0).AsRegister<Register>(); | 
 |       Register b = locations->InAt(1).AsRegister<Register>(); | 
 |       Register out = locations->Out().AsRegister<Register>(); | 
 |  | 
 |       if (a == b) { | 
 |         if (out != a) { | 
 |           __ Move(out, a); | 
 |         } | 
 |       } else { | 
 |         __ Slt(AT, b, a); | 
 |         if (is_min) { | 
 |           __ Seleqz(TMP, a, AT); | 
 |           __ Selnez(AT, b, AT); | 
 |         } else { | 
 |           __ Selnez(TMP, a, AT); | 
 |           __ Seleqz(AT, b, AT); | 
 |         } | 
 |         __ Or(out, TMP, AT); | 
 |       } | 
 |     } | 
 |   } else {  // !isR6 | 
 |     if (type == DataType::Type::kInt64) { | 
 |       Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |       Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |       Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>(); | 
 |       Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>(); | 
 |       Register out_lo = locations->Out().AsRegisterPairLow<Register>(); | 
 |       Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); | 
 |  | 
 |       MipsLabel compare_done; | 
 |  | 
 |       if (a_lo == b_lo) { | 
 |         if (out_lo != a_lo) { | 
 |           __ Move(out_lo, a_lo); | 
 |           __ Move(out_hi, a_hi); | 
 |         } | 
 |       } else { | 
 |         __ Slt(TMP, a_hi, b_hi); | 
 |         __ Bne(a_hi, b_hi, &compare_done); | 
 |  | 
 |         __ Sltu(TMP, a_lo, b_lo); | 
 |  | 
 |         __ Bind(&compare_done); | 
 |  | 
 |         if (is_min) { | 
 |           if (out_lo != a_lo) { | 
 |             __ Movn(out_hi, a_hi, TMP); | 
 |             __ Movn(out_lo, a_lo, TMP); | 
 |           } | 
 |           if (out_lo != b_lo) { | 
 |             __ Movz(out_hi, b_hi, TMP); | 
 |             __ Movz(out_lo, b_lo, TMP); | 
 |           } | 
 |         } else { | 
 |           if (out_lo != a_lo) { | 
 |             __ Movz(out_hi, a_hi, TMP); | 
 |             __ Movz(out_lo, a_lo, TMP); | 
 |           } | 
 |           if (out_lo != b_lo) { | 
 |             __ Movn(out_hi, b_hi, TMP); | 
 |             __ Movn(out_lo, b_lo, TMP); | 
 |           } | 
 |         } | 
 |       } | 
 |     } else { | 
 |       DCHECK_EQ(type, DataType::Type::kInt32); | 
 |       Register a = locations->InAt(0).AsRegister<Register>(); | 
 |       Register b = locations->InAt(1).AsRegister<Register>(); | 
 |       Register out = locations->Out().AsRegister<Register>(); | 
 |  | 
 |       if (a == b) { | 
 |         if (out != a) { | 
 |           __ Move(out, a); | 
 |         } | 
 |       } else { | 
 |         __ Slt(AT, a, b); | 
 |         if (is_min) { | 
 |           if (out != a) { | 
 |             __ Movn(out, a, AT); | 
 |           } | 
 |           if (out != b) { | 
 |             __ Movz(out, b, AT); | 
 |           } | 
 |         } else { | 
 |           if (out != a) { | 
 |             __ Movz(out, a, AT); | 
 |           } | 
 |           if (out != b) { | 
 |             __ Movn(out, b, AT); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateMinMaxFP(LocationSummary* locations, | 
 |                                                     bool is_min, | 
 |                                                     bool isR6, | 
 |                                                     DataType::Type type) { | 
 |   FRegister out = locations->Out().AsFpuRegister<FRegister>(); | 
 |   FRegister a = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |   FRegister b = locations->InAt(1).AsFpuRegister<FRegister>(); | 
 |  | 
 |   if (isR6) { | 
 |     MipsLabel noNaNs; | 
 |     MipsLabel done; | 
 |     FRegister ftmp = ((out != a) && (out != b)) ? out : FTMP; | 
 |  | 
 |     // When Java computes min/max it prefers a NaN to a number; the | 
 |     // behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of | 
 |     // the inputs is a NaN and the other is a valid number, the MIPS | 
 |     // instruction will return the number; Java wants the NaN value | 
 |     // returned. This is why there is extra logic preceding the use of | 
 |     // the MIPS min.fmt/max.fmt instructions. If either a, or b holds a | 
 |     // NaN, return the NaN, otherwise return the min/max. | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       __ CmpUnD(FTMP, a, b); | 
 |       __ Bc1eqz(FTMP, &noNaNs); | 
 |  | 
 |       // One of the inputs is a NaN | 
 |       __ CmpEqD(ftmp, a, a); | 
 |       // If a == a then b is the NaN, otherwise a is the NaN. | 
 |       __ SelD(ftmp, a, b); | 
 |  | 
 |       if (ftmp != out) { | 
 |         __ MovD(out, ftmp); | 
 |       } | 
 |  | 
 |       __ B(&done); | 
 |  | 
 |       __ Bind(&noNaNs); | 
 |  | 
 |       if (is_min) { | 
 |         __ MinD(out, a, b); | 
 |       } else { | 
 |         __ MaxD(out, a, b); | 
 |       } | 
 |     } else { | 
 |       DCHECK_EQ(type, DataType::Type::kFloat32); | 
 |       __ CmpUnS(FTMP, a, b); | 
 |       __ Bc1eqz(FTMP, &noNaNs); | 
 |  | 
 |       // One of the inputs is a NaN | 
 |       __ CmpEqS(ftmp, a, a); | 
 |       // If a == a then b is the NaN, otherwise a is the NaN. | 
 |       __ SelS(ftmp, a, b); | 
 |  | 
 |       if (ftmp != out) { | 
 |         __ MovS(out, ftmp); | 
 |       } | 
 |  | 
 |       __ B(&done); | 
 |  | 
 |       __ Bind(&noNaNs); | 
 |  | 
 |       if (is_min) { | 
 |         __ MinS(out, a, b); | 
 |       } else { | 
 |         __ MaxS(out, a, b); | 
 |       } | 
 |     } | 
 |  | 
 |     __ Bind(&done); | 
 |  | 
 |   } else {  // !isR6 | 
 |     MipsLabel ordered; | 
 |     MipsLabel compare; | 
 |     MipsLabel select; | 
 |     MipsLabel done; | 
 |  | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       __ CunD(a, b); | 
 |     } else { | 
 |       DCHECK_EQ(type, DataType::Type::kFloat32); | 
 |       __ CunS(a, b); | 
 |     } | 
 |     __ Bc1f(&ordered); | 
 |  | 
 |     // a or b (or both) is a NaN. Return one, which is a NaN. | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       __ CeqD(b, b); | 
 |     } else { | 
 |       __ CeqS(b, b); | 
 |     } | 
 |     __ B(&select); | 
 |  | 
 |     __ Bind(&ordered); | 
 |  | 
 |     // Neither is a NaN. | 
 |     // a == b? (-0.0 compares equal with +0.0) | 
 |     // If equal, handle zeroes, else compare further. | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       __ CeqD(a, b); | 
 |     } else { | 
 |       __ CeqS(a, b); | 
 |     } | 
 |     __ Bc1f(&compare); | 
 |  | 
 |     // a == b either bit for bit or one is -0.0 and the other is +0.0. | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       __ MoveFromFpuHigh(TMP, a); | 
 |       __ MoveFromFpuHigh(AT, b); | 
 |     } else { | 
 |       __ Mfc1(TMP, a); | 
 |       __ Mfc1(AT, b); | 
 |     } | 
 |  | 
 |     if (is_min) { | 
 |       // -0.0 prevails over +0.0. | 
 |       __ Or(TMP, TMP, AT); | 
 |     } else { | 
 |       // +0.0 prevails over -0.0. | 
 |       __ And(TMP, TMP, AT); | 
 |     } | 
 |  | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       __ Mfc1(AT, a); | 
 |       __ Mtc1(AT, out); | 
 |       __ MoveToFpuHigh(TMP, out); | 
 |     } else { | 
 |       __ Mtc1(TMP, out); | 
 |     } | 
 |     __ B(&done); | 
 |  | 
 |     __ Bind(&compare); | 
 |  | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       if (is_min) { | 
 |         // return (a <= b) ? a : b; | 
 |         __ ColeD(a, b); | 
 |       } else { | 
 |         // return (a >= b) ? a : b; | 
 |         __ ColeD(b, a);  // b <= a | 
 |       } | 
 |     } else { | 
 |       if (is_min) { | 
 |         // return (a <= b) ? a : b; | 
 |         __ ColeS(a, b); | 
 |       } else { | 
 |         // return (a >= b) ? a : b; | 
 |         __ ColeS(b, a);  // b <= a | 
 |       } | 
 |     } | 
 |  | 
 |     __ Bind(&select); | 
 |  | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       __ MovtD(out, a); | 
 |       __ MovfD(out, b); | 
 |     } else { | 
 |       __ MovtS(out, a); | 
 |       __ MovfS(out, b); | 
 |     } | 
 |  | 
 |     __ Bind(&done); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateMinMax(HBinaryOperation* minmax, bool is_min) { | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   DataType::Type type = minmax->GetResultType(); | 
 |   switch (type) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       GenerateMinMaxInt(minmax->GetLocations(), is_min, isR6, type); | 
 |       break; | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       GenerateMinMaxFP(minmax->GetLocations(), is_min, isR6, type); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected type for HMinMax " << type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitMin(HMin* min) { | 
 |   CreateMinMaxLocations(GetGraph()->GetAllocator(), min); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitMin(HMin* min) { | 
 |   GenerateMinMax(min, /*is_min*/ true); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitMax(HMax* max) { | 
 |   CreateMinMaxLocations(GetGraph()->GetAllocator(), max); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitMax(HMax* max) { | 
 |   GenerateMinMax(max, /*is_min*/ false); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitAbs(HAbs* abs) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); | 
 |   switch (abs->GetResultType()) { | 
 |     case DataType::Type::kInt32: | 
 |     case DataType::Type::kInt64: | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected abs type " << abs->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenerateAbsFP(LocationSummary* locations, | 
 |                                                  DataType::Type type, | 
 |                                                  bool isR2OrNewer, | 
 |                                                  bool isR6) { | 
 |   FRegister in = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |   FRegister out = locations->Out().AsFpuRegister<FRegister>(); | 
 |  | 
 |   // Note, as a "quality of implementation", rather than pure "spec compliance", we require that | 
 |   // Math.abs() clears the sign bit (but changes nothing else) for all numbers, including NaN | 
 |   // (signaling NaN may become quiet though). | 
 |   // | 
 |   // The ABS.fmt instructions (abs.s and abs.d) do exactly that when NAN2008=1 (R6). For this case, | 
 |   // both regular floating point numbers and NAN values are treated alike, only the sign bit is | 
 |   // affected by this instruction. | 
 |   // But when NAN2008=0 (R2 and before), the ABS.fmt instructions can't be used. For this case, any | 
 |   // NaN operand signals invalid operation. This means that other bits (not just sign bit) might be | 
 |   // changed when doing abs(NaN). Because of that, we clear sign bit in a different way. | 
 |   if (isR6) { | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       __ AbsD(out, in); | 
 |     } else { | 
 |       DCHECK_EQ(type, DataType::Type::kFloat32); | 
 |       __ AbsS(out, in); | 
 |     } | 
 |   } else { | 
 |     if (type == DataType::Type::kFloat64) { | 
 |       if (in != out) { | 
 |         __ MovD(out, in); | 
 |       } | 
 |       __ MoveFromFpuHigh(TMP, in); | 
 |       // ins instruction is not available for R1. | 
 |       if (isR2OrNewer) { | 
 |         __ Ins(TMP, ZERO, 31, 1); | 
 |       } else { | 
 |         __ Sll(TMP, TMP, 1); | 
 |         __ Srl(TMP, TMP, 1); | 
 |       } | 
 |       __ MoveToFpuHigh(TMP, out); | 
 |     } else { | 
 |       DCHECK_EQ(type, DataType::Type::kFloat32); | 
 |       __ Mfc1(TMP, in); | 
 |       // ins instruction is not available for R1. | 
 |       if (isR2OrNewer) { | 
 |         __ Ins(TMP, ZERO, 31, 1); | 
 |       } else { | 
 |         __ Sll(TMP, TMP, 1); | 
 |         __ Srl(TMP, TMP, 1); | 
 |       } | 
 |       __ Mtc1(TMP, out); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitAbs(HAbs* abs) { | 
 |   LocationSummary* locations = abs->GetLocations(); | 
 |   bool isR2OrNewer = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |   switch (abs->GetResultType()) { | 
 |     case DataType::Type::kInt32: { | 
 |       Register in = locations->InAt(0).AsRegister<Register>(); | 
 |       Register out = locations->Out().AsRegister<Register>(); | 
 |       __ Sra(AT, in, 31); | 
 |       __ Xor(out, in, AT); | 
 |       __ Subu(out, out, AT); | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kInt64: { | 
 |       Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |       Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |       Register out_lo = locations->Out().AsRegisterPairLow<Register>(); | 
 |       Register out_hi = locations->Out().AsRegisterPairHigh<Register>(); | 
 |       // The comments in this section show the analogous operations which would | 
 |       // be performed if we had 64-bit registers "in", and "out". | 
 |       // __ Dsra32(AT, in, 31); | 
 |       __ Sra(AT, in_hi, 31); | 
 |       // __ Xor(out, in, AT); | 
 |       __ Xor(TMP, in_lo, AT); | 
 |       __ Xor(out_hi, in_hi, AT); | 
 |       // __ Dsubu(out, out, AT); | 
 |       __ Subu(out_lo, TMP, AT); | 
 |       __ Sltu(TMP, out_lo, TMP); | 
 |       __ Addu(out_hi, out_hi, TMP); | 
 |       break; | 
 |     } | 
 |     case DataType::Type::kFloat32: | 
 |     case DataType::Type::kFloat64: | 
 |       GenerateAbsFP(locations, abs->GetResultType(), isR2OrNewer, isR6); | 
 |       break; | 
 |     default: | 
 |       LOG(FATAL) << "Unexpected abs type " << abs->GetResultType(); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitConstructorFence(HConstructorFence* constructor_fence) { | 
 |   constructor_fence->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitConstructorFence( | 
 |     HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { | 
 |   GenerateMemoryBarrier(MemBarrierKind::kStoreStore); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
 |   memory_barrier->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { | 
 |   GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitReturn(HReturn* ret) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(ret); | 
 |   DataType::Type return_type = ret->InputAt(0)->GetType(); | 
 |   locations->SetInAt(0, MipsReturnLocation(return_type)); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) { | 
 |   codegen_->GenerateFrameExit(); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) { | 
 |   ret->SetLocations(nullptr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { | 
 |   codegen_->GenerateFrameExit(); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitRor(HRor* ror) { | 
 |   HandleShift(ror); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror) { | 
 |   HandleShift(ror); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitShl(HShl* shl) { | 
 |   HandleShift(shl); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) { | 
 |   HandleShift(shl); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitShr(HShr* shr) { | 
 |   HandleShift(shr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) { | 
 |   HandleShift(shr); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitSub(HSub* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) { | 
 |   HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, instruction->GetFieldInfo()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) { | 
 |   HandleFieldSet(instruction, | 
 |                  instruction->GetFieldInfo(), | 
 |                  instruction->GetDexPc(), | 
 |                  instruction->GetValueCanBeNull()); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet( | 
 |     HUnresolvedInstanceFieldGet* instruction) { | 
 |   FieldAccessCallingConventionMIPS calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary(instruction, | 
 |                                                  instruction->GetFieldType(), | 
 |                                                  calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet( | 
 |     HUnresolvedInstanceFieldGet* instruction) { | 
 |   FieldAccessCallingConventionMIPS calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet( | 
 |     HUnresolvedInstanceFieldSet* instruction) { | 
 |   FieldAccessCallingConventionMIPS calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary(instruction, | 
 |                                                  instruction->GetFieldType(), | 
 |                                                  calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet( | 
 |     HUnresolvedInstanceFieldSet* instruction) { | 
 |   FieldAccessCallingConventionMIPS calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet( | 
 |     HUnresolvedStaticFieldGet* instruction) { | 
 |   FieldAccessCallingConventionMIPS calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary(instruction, | 
 |                                                  instruction->GetFieldType(), | 
 |                                                  calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet( | 
 |     HUnresolvedStaticFieldGet* instruction) { | 
 |   FieldAccessCallingConventionMIPS calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet( | 
 |     HUnresolvedStaticFieldSet* instruction) { | 
 |   FieldAccessCallingConventionMIPS calling_convention; | 
 |   codegen_->CreateUnresolvedFieldLocationSummary(instruction, | 
 |                                                  instruction->GetFieldType(), | 
 |                                                  calling_convention); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet( | 
 |     HUnresolvedStaticFieldSet* instruction) { | 
 |   FieldAccessCallingConventionMIPS calling_convention; | 
 |   codegen_->GenerateUnresolvedFieldAccess(instruction, | 
 |                                           instruction->GetFieldType(), | 
 |                                           instruction->GetFieldIndex(), | 
 |                                           instruction->GetDexPc(), | 
 |                                           calling_convention); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnSlowPath); | 
 |   // In suspend check slow path, usually there are no caller-save registers at all. | 
 |   // If SIMD instructions are present, however, we force spilling all live SIMD | 
 |   // registers in full width (since the runtime only saves/restores lower part). | 
 |   locations->SetCustomSlowPathCallerSaves( | 
 |       GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) { | 
 |   HBasicBlock* block = instruction->GetBlock(); | 
 |   if (block->GetLoopInformation() != nullptr) { | 
 |     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); | 
 |     // The back edge will generate the suspend check. | 
 |     return; | 
 |   } | 
 |   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { | 
 |     // The goto will generate the suspend check. | 
 |     return; | 
 |   } | 
 |   GenerateSuspendCheck(instruction, nullptr); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) { | 
 |   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( | 
 |       instruction, LocationSummary::kCallOnMainOnly); | 
 |   InvokeRuntimeCallingConvention calling_convention; | 
 |   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) { | 
 |   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); | 
 |   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) { | 
 |   DataType::Type input_type = conversion->GetInputType(); | 
 |   DataType::Type result_type = conversion->GetResultType(); | 
 |   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) | 
 |       << input_type << " -> " << result_type; | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |  | 
 |   if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) || | 
 |       (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) { | 
 |     LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; | 
 |   } | 
 |  | 
 |   LocationSummary::CallKind call_kind = LocationSummary::kNoCall; | 
 |   if (!isR6 && | 
 |       ((DataType::IsFloatingPointType(result_type) && input_type == DataType::Type::kInt64) || | 
 |        (result_type == DataType::Type::kInt64 && DataType::IsFloatingPointType(input_type)))) { | 
 |     call_kind = LocationSummary::kCallOnMainOnly; | 
 |   } | 
 |  | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind); | 
 |  | 
 |   if (call_kind == LocationSummary::kNoCall) { | 
 |     if (DataType::IsFloatingPointType(input_type)) { | 
 |       locations->SetInAt(0, Location::RequiresFpuRegister()); | 
 |     } else { | 
 |       locations->SetInAt(0, Location::RequiresRegister()); | 
 |     } | 
 |  | 
 |     if (DataType::IsFloatingPointType(result_type)) { | 
 |       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); | 
 |     } else { | 
 |       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); | 
 |     } | 
 |   } else { | 
 |     InvokeRuntimeCallingConvention calling_convention; | 
 |  | 
 |     if (DataType::IsFloatingPointType(input_type)) { | 
 |       locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); | 
 |     } else { | 
 |       DCHECK_EQ(input_type, DataType::Type::kInt64); | 
 |       locations->SetInAt(0, Location::RegisterPairLocation( | 
 |                  calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); | 
 |     } | 
 |  | 
 |     locations->SetOut(calling_convention.GetReturnLocation(result_type)); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) { | 
 |   LocationSummary* locations = conversion->GetLocations(); | 
 |   DataType::Type result_type = conversion->GetResultType(); | 
 |   DataType::Type input_type = conversion->GetInputType(); | 
 |   bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2(); | 
 |   bool isR6 = codegen_->GetInstructionSetFeatures().IsR6(); | 
 |  | 
 |   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) | 
 |       << input_type << " -> " << result_type; | 
 |  | 
 |   if (result_type == DataType::Type::kInt64 && DataType::IsIntegralType(input_type)) { | 
 |     Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); | 
 |     Register dst_low = locations->Out().AsRegisterPairLow<Register>(); | 
 |     Register src = locations->InAt(0).AsRegister<Register>(); | 
 |  | 
 |     if (dst_low != src) { | 
 |       __ Move(dst_low, src); | 
 |     } | 
 |     __ Sra(dst_high, src, 31); | 
 |   } else if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) { | 
 |     Register dst = locations->Out().AsRegister<Register>(); | 
 |     Register src = (input_type == DataType::Type::kInt64) | 
 |         ? locations->InAt(0).AsRegisterPairLow<Register>() | 
 |         : locations->InAt(0).AsRegister<Register>(); | 
 |  | 
 |     switch (result_type) { | 
 |       case DataType::Type::kUint8: | 
 |         __ Andi(dst, src, 0xFF); | 
 |         break; | 
 |       case DataType::Type::kInt8: | 
 |         if (has_sign_extension) { | 
 |           __ Seb(dst, src); | 
 |         } else { | 
 |           __ Sll(dst, src, 24); | 
 |           __ Sra(dst, dst, 24); | 
 |         } | 
 |         break; | 
 |       case DataType::Type::kUint16: | 
 |         __ Andi(dst, src, 0xFFFF); | 
 |         break; | 
 |       case DataType::Type::kInt16: | 
 |         if (has_sign_extension) { | 
 |           __ Seh(dst, src); | 
 |         } else { | 
 |           __ Sll(dst, src, 16); | 
 |           __ Sra(dst, dst, 16); | 
 |         } | 
 |         break; | 
 |       case DataType::Type::kInt32: | 
 |         if (dst != src) { | 
 |           __ Move(dst, src); | 
 |         } | 
 |         break; | 
 |  | 
 |       default: | 
 |         LOG(FATAL) << "Unexpected type conversion from " << input_type | 
 |                    << " to " << result_type; | 
 |     } | 
 |   } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) { | 
 |     if (input_type == DataType::Type::kInt64) { | 
 |       if (isR6) { | 
 |         // cvt.s.l/cvt.d.l requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary | 
 |         // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction. | 
 |         Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>(); | 
 |         Register src_low = locations->InAt(0).AsRegisterPairLow<Register>(); | 
 |         FRegister dst = locations->Out().AsFpuRegister<FRegister>(); | 
 |         __ Mtc1(src_low, FTMP); | 
 |         __ Mthc1(src_high, FTMP); | 
 |         if (result_type == DataType::Type::kFloat32) { | 
 |           __ Cvtsl(dst, FTMP); | 
 |         } else { | 
 |           __ Cvtdl(dst, FTMP); | 
 |         } | 
 |       } else { | 
 |         QuickEntrypointEnum entrypoint = | 
 |             (result_type == DataType::Type::kFloat32) ? kQuickL2f : kQuickL2d; | 
 |         codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc()); | 
 |         if (result_type == DataType::Type::kFloat32) { | 
 |           CheckEntrypointTypes<kQuickL2f, float, int64_t>(); | 
 |         } else { | 
 |           CheckEntrypointTypes<kQuickL2d, double, int64_t>(); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       Register src = locations->InAt(0).AsRegister<Register>(); | 
 |       FRegister dst = locations->Out().AsFpuRegister<FRegister>(); | 
 |       __ Mtc1(src, FTMP); | 
 |       if (result_type == DataType::Type::kFloat32) { | 
 |         __ Cvtsw(dst, FTMP); | 
 |       } else { | 
 |         __ Cvtdw(dst, FTMP); | 
 |       } | 
 |     } | 
 |   } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) { | 
 |     CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64); | 
 |  | 
 |     // When NAN2008=1 (R6), the truncate instruction caps the output at the minimum/maximum | 
 |     // value of the output type if the input is outside of the range after the truncation or | 
 |     // produces 0 when the input is a NaN. IOW, the three special cases produce three distinct | 
 |     // results. This matches the desired float/double-to-int/long conversion exactly. | 
 |     // | 
 |     // When NAN2008=0 (R2 and before), the truncate instruction produces the maximum positive | 
 |     // value when the input is either a NaN or is outside of the range of the output type | 
 |     // after the truncation. IOW, the three special cases (NaN, too small, too big) produce | 
 |     // the same result. | 
 |     // | 
 |     // The code takes care of the different behaviors by first comparing the input to the | 
 |     // minimum output value (-2**-63 for truncating to long, -2**-31 for truncating to int). | 
 |     // If the input is greater than or equal to the minimum, it procedes to the truncate | 
 |     // instruction, which will handle such an input the same way irrespective of NAN2008. | 
 |     // Otherwise the input is compared to itself to determine whether it is a NaN or not | 
 |     // in order to return either zero or the minimum value. | 
 |     if (result_type == DataType::Type::kInt64) { | 
 |       if (isR6) { | 
 |         // trunc.l.s/trunc.l.d requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary | 
 |         // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction. | 
 |         FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |         Register dst_high = locations->Out().AsRegisterPairHigh<Register>(); | 
 |         Register dst_low = locations->Out().AsRegisterPairLow<Register>(); | 
 |  | 
 |         if (input_type == DataType::Type::kFloat32) { | 
 |           __ TruncLS(FTMP, src); | 
 |         } else { | 
 |           __ TruncLD(FTMP, src); | 
 |         } | 
 |         __ Mfc1(dst_low, FTMP); | 
 |         __ Mfhc1(dst_high, FTMP); | 
 |       } else { | 
 |         QuickEntrypointEnum entrypoint = | 
 |             (input_type == DataType::Type::kFloat32) ? kQuickF2l : kQuickD2l; | 
 |         codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc()); | 
 |         if (input_type == DataType::Type::kFloat32) { | 
 |           CheckEntrypointTypes<kQuickF2l, int64_t, float>(); | 
 |         } else { | 
 |           CheckEntrypointTypes<kQuickD2l, int64_t, double>(); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |       Register dst = locations->Out().AsRegister<Register>(); | 
 |       MipsLabel truncate; | 
 |       MipsLabel done; | 
 |  | 
 |       if (!isR6) { | 
 |         if (input_type == DataType::Type::kFloat32) { | 
 |           uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int32_t>::min()); | 
 |           __ LoadConst32(TMP, min_val); | 
 |           __ Mtc1(TMP, FTMP); | 
 |         } else { | 
 |           uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int32_t>::min()); | 
 |           __ LoadConst32(TMP, High32Bits(min_val)); | 
 |           __ Mtc1(ZERO, FTMP); | 
 |           __ MoveToFpuHigh(TMP, FTMP); | 
 |         } | 
 |  | 
 |         if (input_type == DataType::Type::kFloat32) { | 
 |           __ ColeS(0, FTMP, src); | 
 |         } else { | 
 |           __ ColeD(0, FTMP, src); | 
 |         } | 
 |         __ Bc1t(0, &truncate); | 
 |  | 
 |         if (input_type == DataType::Type::kFloat32) { | 
 |           __ CeqS(0, src, src); | 
 |         } else { | 
 |           __ CeqD(0, src, src); | 
 |         } | 
 |         __ LoadConst32(dst, std::numeric_limits<int32_t>::min()); | 
 |         __ Movf(dst, ZERO, 0); | 
 |  | 
 |         __ B(&done); | 
 |  | 
 |         __ Bind(&truncate); | 
 |       } | 
 |  | 
 |       if (input_type == DataType::Type::kFloat32) { | 
 |         __ TruncWS(FTMP, src); | 
 |       } else { | 
 |         __ TruncWD(FTMP, src); | 
 |       } | 
 |       __ Mfc1(dst, FTMP); | 
 |  | 
 |       if (!isR6) { | 
 |         __ Bind(&done); | 
 |       } | 
 |     } | 
 |   } else if (DataType::IsFloatingPointType(result_type) && | 
 |              DataType::IsFloatingPointType(input_type)) { | 
 |     FRegister dst = locations->Out().AsFpuRegister<FRegister>(); | 
 |     FRegister src = locations->InAt(0).AsFpuRegister<FRegister>(); | 
 |     if (result_type == DataType::Type::kFloat32) { | 
 |       __ Cvtsd(dst, src); | 
 |     } else { | 
 |       __ Cvtds(dst, src); | 
 |     } | 
 |   } else { | 
 |     LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type | 
 |                 << " to " << result_type; | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) { | 
 |   HandleShift(ushr); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) { | 
 |   HandleShift(ushr); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitXor(HXor* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) { | 
 |   HandleBinaryOp(instruction); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, this should be removed during prepare for register allocator. | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { | 
 |   // Nothing to do, this should be removed during prepare for register allocator. | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitEqual(HEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitBelow(HBelow* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitAbove(HAbove* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) { | 
 |   HandleCondition(comp); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   if (!codegen_->GetInstructionSetFeatures().IsR6()) { | 
 |     uint32_t num_entries = switch_instr->GetNumEntries(); | 
 |     if (num_entries > InstructionCodeGeneratorMIPS::kPackedSwitchJumpTableThreshold) { | 
 |       // When there's no HMipsComputeBaseMethodAddress input, R2 uses the NAL | 
 |       // instruction to simulate PC-relative addressing when accessing the jump table. | 
 |       // NAL clobbers RA. Make sure RA is preserved. | 
 |       codegen_->ClobberRA(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenPackedSwitchWithCompares(Register value_reg, | 
 |                                                                int32_t lower_bound, | 
 |                                                                uint32_t num_entries, | 
 |                                                                HBasicBlock* switch_block, | 
 |                                                                HBasicBlock* default_block) { | 
 |   // Create a set of compare/jumps. | 
 |   Register temp_reg = TMP; | 
 |   __ Addiu32(temp_reg, value_reg, -lower_bound); | 
 |   // Jump to default if index is negative | 
 |   // Note: We don't check the case that index is positive while value < lower_bound, because in | 
 |   // this case, index >= num_entries must be true. So that we can save one branch instruction. | 
 |   __ Bltz(temp_reg, codegen_->GetLabelOf(default_block)); | 
 |  | 
 |   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); | 
 |   // Jump to successors[0] if value == lower_bound. | 
 |   __ Beqz(temp_reg, codegen_->GetLabelOf(successors[0])); | 
 |   int32_t last_index = 0; | 
 |   for (; num_entries - last_index > 2; last_index += 2) { | 
 |     __ Addiu(temp_reg, temp_reg, -2); | 
 |     // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. | 
 |     __ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1])); | 
 |     // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. | 
 |     __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2])); | 
 |   } | 
 |   if (num_entries - last_index == 2) { | 
 |     // The last missing case_value. | 
 |     __ Addiu(temp_reg, temp_reg, -1); | 
 |     __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1])); | 
 |   } | 
 |  | 
 |   // And the default for any other value. | 
 |   if (!codegen_->GoesToNextBlock(switch_block, default_block)) { | 
 |     __ B(codegen_->GetLabelOf(default_block)); | 
 |   } | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::GenTableBasedPackedSwitch(Register value_reg, | 
 |                                                              Register constant_area, | 
 |                                                              int32_t lower_bound, | 
 |                                                              uint32_t num_entries, | 
 |                                                              HBasicBlock* switch_block, | 
 |                                                              HBasicBlock* default_block) { | 
 |   // Create a jump table. | 
 |   std::vector<MipsLabel*> labels(num_entries); | 
 |   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); | 
 |   for (uint32_t i = 0; i < num_entries; i++) { | 
 |     labels[i] = codegen_->GetLabelOf(successors[i]); | 
 |   } | 
 |   JumpTable* table = __ CreateJumpTable(std::move(labels)); | 
 |  | 
 |   // Is the value in range? | 
 |   __ Addiu32(TMP, value_reg, -lower_bound); | 
 |   if (IsInt<16>(static_cast<int32_t>(num_entries))) { | 
 |     __ Sltiu(AT, TMP, num_entries); | 
 |     __ Beqz(AT, codegen_->GetLabelOf(default_block)); | 
 |   } else { | 
 |     __ LoadConst32(AT, num_entries); | 
 |     __ Bgeu(TMP, AT, codegen_->GetLabelOf(default_block)); | 
 |   } | 
 |  | 
 |   // We are in the range of the table. | 
 |   // Load the target address from the jump table, indexing by the value. | 
 |   __ LoadLabelAddress(AT, constant_area, table->GetLabel()); | 
 |   __ ShiftAndAdd(TMP, TMP, AT, 2, TMP); | 
 |   __ Lw(TMP, TMP, 0); | 
 |   // Compute the absolute target address by adding the table start address | 
 |   // (the table contains offsets to targets relative to its start). | 
 |   __ Addu(TMP, TMP, AT); | 
 |   // And jump. | 
 |   __ Jr(TMP); | 
 |   __ NopIfNoReordering(); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) { | 
 |   int32_t lower_bound = switch_instr->GetStartValue(); | 
 |   uint32_t num_entries = switch_instr->GetNumEntries(); | 
 |   LocationSummary* locations = switch_instr->GetLocations(); | 
 |   Register value_reg = locations->InAt(0).AsRegister<Register>(); | 
 |   HBasicBlock* switch_block = switch_instr->GetBlock(); | 
 |   HBasicBlock* default_block = switch_instr->GetDefaultBlock(); | 
 |  | 
 |   if (num_entries > kPackedSwitchJumpTableThreshold) { | 
 |     // R6 uses PC-relative addressing to access the jump table. | 
 |     // | 
 |     // R2, OTOH, uses an HMipsComputeBaseMethodAddress input (when available) | 
 |     // to access the jump table and it is implemented by changing HPackedSwitch to | 
 |     // HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress (see | 
 |     // VisitMipsPackedSwitch()). | 
 |     // | 
 |     // When there's no HMipsComputeBaseMethodAddress input (e.g. in presence of | 
 |     // irreducible loops), R2 uses the NAL instruction to simulate PC-relative | 
 |     // addressing. | 
 |     GenTableBasedPackedSwitch(value_reg, | 
 |                               ZERO, | 
 |                               lower_bound, | 
 |                               num_entries, | 
 |                               switch_block, | 
 |                               default_block); | 
 |   } else { | 
 |     GenPackedSwitchWithCompares(value_reg, | 
 |                                 lower_bound, | 
 |                                 num_entries, | 
 |                                 switch_block, | 
 |                                 default_block); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   // Constant area pointer (HMipsComputeBaseMethodAddress). | 
 |   locations->SetInAt(1, Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) { | 
 |   int32_t lower_bound = switch_instr->GetStartValue(); | 
 |   uint32_t num_entries = switch_instr->GetNumEntries(); | 
 |   LocationSummary* locations = switch_instr->GetLocations(); | 
 |   Register value_reg = locations->InAt(0).AsRegister<Register>(); | 
 |   Register constant_area = locations->InAt(1).AsRegister<Register>(); | 
 |   HBasicBlock* switch_block = switch_instr->GetBlock(); | 
 |   HBasicBlock* default_block = switch_instr->GetDefaultBlock(); | 
 |  | 
 |   // This is an R2-only path. HPackedSwitch has been changed to | 
 |   // HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress | 
 |   // required to address the jump table relative to PC. | 
 |   GenTableBasedPackedSwitch(value_reg, | 
 |                             constant_area, | 
 |                             lower_bound, | 
 |                             num_entries, | 
 |                             switch_block, | 
 |                             default_block); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitMipsComputeBaseMethodAddress( | 
 |     HMipsComputeBaseMethodAddress* insn) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(insn, LocationSummary::kNoCall); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitMipsComputeBaseMethodAddress( | 
 |     HMipsComputeBaseMethodAddress* insn) { | 
 |   LocationSummary* locations = insn->GetLocations(); | 
 |   Register reg = locations->Out().AsRegister<Register>(); | 
 |  | 
 |   CHECK(!codegen_->GetInstructionSetFeatures().IsR6()); | 
 |  | 
 |   // Generate a dummy PC-relative call to obtain PC. | 
 |   __ Nal(); | 
 |   // Grab the return address off RA. | 
 |   __ Move(reg, RA); | 
 |  | 
 |   // Remember this offset (the obtained PC value) for later use with constant area. | 
 |   __ BindPcRelBaseLabel(); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
 |   // The trampoline uses the same calling convention as dex calling conventions, | 
 |   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain | 
 |   // the method_idx. | 
 |   HandleInvoke(invoke); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { | 
 |   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitClassTableGet(HClassTableGet* instruction) { | 
 |   LocationSummary* locations = | 
 |       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); | 
 |   locations->SetInAt(0, Location::RequiresRegister()); | 
 |   locations->SetOut(Location::RequiresRegister()); | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitClassTableGet(HClassTableGet* instruction) { | 
 |   LocationSummary* locations = instruction->GetLocations(); | 
 |   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { | 
 |     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( | 
 |         instruction->GetIndex(), kMipsPointerSize).SizeValue(); | 
 |     __ LoadFromOffset(kLoadWord, | 
 |                       locations->Out().AsRegister<Register>(), | 
 |                       locations->InAt(0).AsRegister<Register>(), | 
 |                       method_offset); | 
 |   } else { | 
 |     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( | 
 |         instruction->GetIndex(), kMipsPointerSize)); | 
 |     __ LoadFromOffset(kLoadWord, | 
 |                       locations->Out().AsRegister<Register>(), | 
 |                       locations->InAt(0).AsRegister<Register>(), | 
 |                       mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value()); | 
 |     __ LoadFromOffset(kLoadWord, | 
 |                       locations->Out().AsRegister<Register>(), | 
 |                       locations->Out().AsRegister<Register>(), | 
 |                       method_offset); | 
 |   } | 
 | } | 
 |  | 
 | void LocationsBuilderMIPS::VisitIntermediateAddress(HIntermediateAddress* instruction | 
 |                                                     ATTRIBUTE_UNUSED) { | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | void InstructionCodeGeneratorMIPS::VisitIntermediateAddress(HIntermediateAddress* instruction | 
 |                                                             ATTRIBUTE_UNUSED) { | 
 |   LOG(FATAL) << "Unreachable"; | 
 | } | 
 |  | 
 | #undef __ | 
 | #undef QUICK_ENTRY_POINT | 
 |  | 
 | }  // namespace mips | 
 | }  // namespace art |