blob: 78505171cb884badfe5994aad5aba6871d908fc5 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "loop_analysis.h"
#include "base/bit_vector-inl.h"
#include "induction_var_range.h"
namespace art {
void LoopAnalysis::CalculateLoopBasicProperties(HLoopInformation* loop_info,
LoopAnalysisInfo* analysis_results,
int64_t trip_count) {
analysis_results->trip_count_ = trip_count;
for (HBlocksInLoopIterator block_it(*loop_info);
!block_it.Done();
block_it.Advance()) {
HBasicBlock* block = block_it.Current();
// Check whether one of the successor is loop exit.
for (HBasicBlock* successor : block->GetSuccessors()) {
if (!loop_info->Contains(*successor)) {
analysis_results->exits_num_++;
// We track number of invariant loop exits which correspond to HIf instruction and
// can be eliminated by loop peeling; other control flow instruction are ignored and will
// not cause loop peeling to happen as they either cannot be inside a loop, or by
// definition cannot be loop exits (unconditional instructions), or are not beneficial for
// the optimization.
HIf* hif = block->GetLastInstruction()->AsIf();
if (hif != nullptr && !loop_info->Contains(*hif->InputAt(0)->GetBlock())) {
analysis_results->invariant_exits_num_++;
}
}
}
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
if (it.Current()->GetType() == DataType::Type::kInt64) {
analysis_results->has_long_type_instructions_ = true;
}
if (MakesScalarPeelingUnrollingNonBeneficial(instruction)) {
analysis_results->has_instructions_preventing_scalar_peeling_ = true;
analysis_results->has_instructions_preventing_scalar_unrolling_ = true;
}
analysis_results->instr_num_++;
}
analysis_results->bb_num_++;
}
}
int64_t LoopAnalysis::GetLoopTripCount(HLoopInformation* loop_info,
const InductionVarRange* induction_range) {
int64_t trip_count;
if (!induction_range->HasKnownTripCount(loop_info, &trip_count)) {
trip_count = LoopAnalysisInfo::kUnknownTripCount;
}
return trip_count;
}
// Default implementation of loop helper; used for all targets unless a custom implementation
// is provided. Enables scalar loop peeling and unrolling with the most conservative heuristics.
class ArchDefaultLoopHelper : public ArchNoOptsLoopHelper {
public:
// Scalar loop unrolling parameters and heuristics.
//
// Maximum possible unrolling factor.
static constexpr uint32_t kScalarMaxUnrollFactor = 2;
// Loop's maximum instruction count. Loops with higher count will not be peeled/unrolled.
static constexpr uint32_t kScalarHeuristicMaxBodySizeInstr = 17;
// Loop's maximum basic block count. Loops with higher count will not be peeled/unrolled.
static constexpr uint32_t kScalarHeuristicMaxBodySizeBlocks = 6;
// Maximum number of instructions to be created as a result of full unrolling.
static constexpr uint32_t kScalarHeuristicFullyUnrolledMaxInstrThreshold = 35;
bool IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo* analysis_info) const override {
return analysis_info->HasLongTypeInstructions() ||
IsLoopTooBig(analysis_info,
kScalarHeuristicMaxBodySizeInstr,
kScalarHeuristicMaxBodySizeBlocks);
}
uint32_t GetScalarUnrollingFactor(const LoopAnalysisInfo* analysis_info) const override {
int64_t trip_count = analysis_info->GetTripCount();
// Unroll only loops with known trip count.
if (trip_count == LoopAnalysisInfo::kUnknownTripCount) {
return LoopAnalysisInfo::kNoUnrollingFactor;
}
uint32_t desired_unrolling_factor = kScalarMaxUnrollFactor;
if (trip_count < desired_unrolling_factor || trip_count % desired_unrolling_factor != 0) {
return LoopAnalysisInfo::kNoUnrollingFactor;
}
return desired_unrolling_factor;
}
bool IsLoopPeelingEnabled() const override { return true; }
bool IsFullUnrollingBeneficial(LoopAnalysisInfo* analysis_info) const override {
int64_t trip_count = analysis_info->GetTripCount();
// We assume that trip count is known.
DCHECK_NE(trip_count, LoopAnalysisInfo::kUnknownTripCount);
size_t instr_num = analysis_info->GetNumberOfInstructions();
return (trip_count * instr_num < kScalarHeuristicFullyUnrolledMaxInstrThreshold);
}
protected:
bool IsLoopTooBig(LoopAnalysisInfo* loop_analysis_info,
size_t instr_threshold,
size_t bb_threshold) const {
size_t instr_num = loop_analysis_info->GetNumberOfInstructions();
size_t bb_num = loop_analysis_info->GetNumberOfBasicBlocks();
return (instr_num >= instr_threshold || bb_num >= bb_threshold);
}
};
// Custom implementation of loop helper for arm64 target. Enables heuristics for scalar loop
// peeling and unrolling and supports SIMD loop unrolling.
class Arm64LoopHelper : public ArchDefaultLoopHelper {
public:
// SIMD loop unrolling parameters and heuristics.
//
// Maximum possible unrolling factor.
static constexpr uint32_t kArm64SimdMaxUnrollFactor = 8;
// Loop's maximum instruction count. Loops with higher count will not be unrolled.
static constexpr uint32_t kArm64SimdHeuristicMaxBodySizeInstr = 50;
// Loop's maximum instruction count. Loops with higher count will not be peeled/unrolled.
static constexpr uint32_t kArm64ScalarHeuristicMaxBodySizeInstr = 40;
// Loop's maximum basic block count. Loops with higher count will not be peeled/unrolled.
static constexpr uint32_t kArm64ScalarHeuristicMaxBodySizeBlocks = 8;
bool IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo* loop_analysis_info) const override {
return IsLoopTooBig(loop_analysis_info,
kArm64ScalarHeuristicMaxBodySizeInstr,
kArm64ScalarHeuristicMaxBodySizeBlocks);
}
uint32_t GetSIMDUnrollingFactor(HBasicBlock* block,
int64_t trip_count,
uint32_t max_peel,
uint32_t vector_length) const override {
// Don't unroll with insufficient iterations.
// TODO: Unroll loops with unknown trip count.
DCHECK_NE(vector_length, 0u);
if (trip_count < (2 * vector_length + max_peel)) {
return LoopAnalysisInfo::kNoUnrollingFactor;
}
// Don't unroll for large loop body size.
uint32_t instruction_count = block->GetInstructions().CountSize();
if (instruction_count >= kArm64SimdHeuristicMaxBodySizeInstr) {
return LoopAnalysisInfo::kNoUnrollingFactor;
}
// Find a beneficial unroll factor with the following restrictions:
// - At least one iteration of the transformed loop should be executed.
// - The loop body shouldn't be "too big" (heuristic).
uint32_t uf1 = kArm64SimdHeuristicMaxBodySizeInstr / instruction_count;
uint32_t uf2 = (trip_count - max_peel) / vector_length;
uint32_t unroll_factor =
TruncToPowerOfTwo(std::min({uf1, uf2, kArm64SimdMaxUnrollFactor}));
DCHECK_GE(unroll_factor, 1u);
return unroll_factor;
}
};
// Custom implementation of loop helper for X86_64 target. Enables heuristics for scalar loop
// peeling and unrolling and supports SIMD loop unrolling.
class X86_64LoopHelper : public ArchDefaultLoopHelper {
// mapping of machine instruction count for most used IR instructions
// Few IRs generate different number of instructions based on input and result type.
// We checked top java apps, benchmarks and used the most generated instruction count.
uint32_t GetMachineInstructionCount(HInstruction* inst) const {
switch (inst->GetKind()) {
case HInstruction::InstructionKind::kAbs:
return 3;
case HInstruction::InstructionKind::kAdd:
return 1;
case HInstruction::InstructionKind::kAnd:
return 1;
case HInstruction::InstructionKind::kArrayLength:
return 1;
case HInstruction::InstructionKind::kArrayGet:
return 1;
case HInstruction::InstructionKind::kArraySet:
return 1;
case HInstruction::InstructionKind::kBoundsCheck:
return 2;
case HInstruction::InstructionKind::kCheckCast:
return 9;
case HInstruction::InstructionKind::kDiv:
return 8;
case HInstruction::InstructionKind::kDivZeroCheck:
return 2;
case HInstruction::InstructionKind::kEqual:
return 3;
case HInstruction::InstructionKind::kGreaterThan:
return 3;
case HInstruction::InstructionKind::kGreaterThanOrEqual:
return 3;
case HInstruction::InstructionKind::kIf:
return 2;
case HInstruction::InstructionKind::kInstanceFieldGet:
return 2;
case HInstruction::InstructionKind::kInstanceFieldSet:
return 1;
case HInstruction::InstructionKind::kLessThan:
return 3;
case HInstruction::InstructionKind::kLessThanOrEqual:
return 3;
case HInstruction::InstructionKind::kMax:
return 2;
case HInstruction::InstructionKind::kMin:
return 2;
case HInstruction::InstructionKind::kMul:
return 1;
case HInstruction::InstructionKind::kNotEqual:
return 3;
case HInstruction::InstructionKind::kOr:
return 1;
case HInstruction::InstructionKind::kRem:
return 11;
case HInstruction::InstructionKind::kSelect:
return 2;
case HInstruction::InstructionKind::kShl:
return 1;
case HInstruction::InstructionKind::kShr:
return 1;
case HInstruction::InstructionKind::kSub:
return 1;
case HInstruction::InstructionKind::kTypeConversion:
return 1;
case HInstruction::InstructionKind::kUShr:
return 1;
case HInstruction::InstructionKind::kVecReplicateScalar:
return 2;
case HInstruction::InstructionKind::kVecExtractScalar:
return 1;
case HInstruction::InstructionKind::kVecReduce:
return 4;
case HInstruction::InstructionKind::kVecNeg:
return 2;
case HInstruction::InstructionKind::kVecAbs:
return 4;
case HInstruction::InstructionKind::kVecNot:
return 3;
case HInstruction::InstructionKind::kVecAdd:
return 1;
case HInstruction::InstructionKind::kVecSub:
return 1;
case HInstruction::InstructionKind::kVecMul:
return 1;
case HInstruction::InstructionKind::kVecDiv:
return 1;
case HInstruction::InstructionKind::kVecMax:
return 1;
case HInstruction::InstructionKind::kVecMin:
return 1;
case HInstruction::InstructionKind::kVecOr:
return 1;
case HInstruction::InstructionKind::kVecXor:
return 1;
case HInstruction::InstructionKind::kVecShl:
return 1;
case HInstruction::InstructionKind::kVecShr:
return 1;
case HInstruction::InstructionKind::kVecLoad:
return 1;
case HInstruction::InstructionKind::kVecStore:
return 1;
case HInstruction::InstructionKind::kXor:
return 1;
default:
return 1;
}
}
// Maximum possible unrolling factor.
static constexpr uint32_t kX86_64MaxUnrollFactor = 2; // pow(2,2) = 4
// According to IntelĀ® 64 and IA-32 Architectures Optimization Reference Manual,
// avoid excessive loop unrolling to ensure LSD (loop stream decoder) is operating efficiently.
// This variable takes care that unrolled loop instructions should not exceed LSD size.
// For Intel Atom processors (silvermont & goldmont), LSD size is 28
// TODO - identify architecture and LSD size at runtime
static constexpr uint32_t kX86_64UnrolledMaxBodySizeInstr = 28;
// Loop's maximum basic block count. Loops with higher count will not be partial
// unrolled (unknown iterations).
static constexpr uint32_t kX86_64UnknownIterMaxBodySizeBlocks = 2;
uint32_t GetUnrollingFactor(HLoopInformation* loop_info, HBasicBlock* header) const;
public:
uint32_t GetSIMDUnrollingFactor(HBasicBlock* block,
int64_t trip_count,
uint32_t max_peel,
uint32_t vector_length) const override {
DCHECK_NE(vector_length, 0u);
HLoopInformation* loop_info = block->GetLoopInformation();
DCHECK(loop_info);
HBasicBlock* header = loop_info->GetHeader();
DCHECK(header);
uint32_t unroll_factor = 0;
if ((trip_count == 0) || (trip_count == LoopAnalysisInfo::kUnknownTripCount)) {
// Don't unroll for large loop body size.
unroll_factor = GetUnrollingFactor(loop_info, header);
if (unroll_factor <= 1) {
return LoopAnalysisInfo::kNoUnrollingFactor;
}
} else {
// Don't unroll with insufficient iterations.
if (trip_count < (2 * vector_length + max_peel)) {
return LoopAnalysisInfo::kNoUnrollingFactor;
}
// Don't unroll for large loop body size.
uint32_t unroll_cnt = GetUnrollingFactor(loop_info, header);
if (unroll_cnt <= 1) {
return LoopAnalysisInfo::kNoUnrollingFactor;
}
// Find a beneficial unroll factor with the following restrictions:
// - At least one iteration of the transformed loop should be executed.
// - The loop body shouldn't be "too big" (heuristic).
uint32_t uf2 = (trip_count - max_peel) / vector_length;
unroll_factor = TruncToPowerOfTwo(std::min(uf2, unroll_cnt));
DCHECK_GE(unroll_factor, 1u);
}
return unroll_factor;
}
};
uint32_t X86_64LoopHelper::GetUnrollingFactor(HLoopInformation* loop_info,
HBasicBlock* header) const {
uint32_t num_inst = 0, num_inst_header = 0, num_inst_loop_body = 0;
for (HBlocksInLoopIterator it(*loop_info); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
DCHECK(block);
num_inst = 0;
for (HInstructionIterator it1(block->GetInstructions()); !it1.Done(); it1.Advance()) {
HInstruction* inst = it1.Current();
DCHECK(inst);
// SuspendCheck inside loop is handled with Goto.
// Ignoring SuspendCheck & Goto as partially unrolled loop body will have only one Goto.
// Instruction count for Goto is being handled during unroll factor calculation below.
if (inst->IsSuspendCheck() || inst->IsGoto()) {
continue;
}
num_inst += GetMachineInstructionCount(inst);
}
if (block == header) {
num_inst_header = num_inst;
} else {
num_inst_loop_body += num_inst;
}
}
// Calculate actual unroll factor.
uint32_t unrolling_factor = kX86_64MaxUnrollFactor;
uint32_t unrolling_inst = kX86_64UnrolledMaxBodySizeInstr;
// "-3" for one Goto instruction.
uint32_t desired_size = unrolling_inst - num_inst_header - 3;
if (desired_size < (2 * num_inst_loop_body)) {
return 1;
}
while (unrolling_factor > 0) {
if ((desired_size >> unrolling_factor) >= num_inst_loop_body) {
break;
}
unrolling_factor--;
}
return (1 << unrolling_factor);
}
ArchNoOptsLoopHelper* ArchNoOptsLoopHelper::Create(InstructionSet isa,
ArenaAllocator* allocator) {
switch (isa) {
case InstructionSet::kArm64: {
return new (allocator) Arm64LoopHelper;
}
case InstructionSet::kX86_64: {
return new (allocator) X86_64LoopHelper;
}
default: {
return new (allocator) ArchDefaultLoopHelper;
}
}
}
} // namespace art