| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_utils.h" |
| #include "nodes.h" |
| |
| #include "base/logging.h" |
| |
| namespace art { |
| |
| void CalculateMagicAndShiftForDivRem(int64_t divisor, bool is_long, |
| int64_t* magic, int* shift) { |
| // It does not make sense to calculate magic and shift for zero divisor. |
| DCHECK_NE(divisor, 0); |
| |
| /* Implementation according to H.S.Warren's "Hacker's Delight" (Addison Wesley, 2002) |
| * Chapter 10 and T.Grablund, P.L.Montogomery's "Division by Invariant Integers Using |
| * Multiplication" (PLDI 1994). |
| * The magic number M and shift S can be calculated in the following way: |
| * Let nc be the most positive value of numerator(n) such that nc = kd - 1, |
| * where divisor(d) >= 2. |
| * Let nc be the most negative value of numerator(n) such that nc = kd + 1, |
| * where divisor(d) <= -2. |
| * Thus nc can be calculated like: |
| * nc = exp + exp % d - 1, where d >= 2 and exp = 2^31 for int or 2^63 for long |
| * nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^31 for int or 2^63 for long |
| * |
| * So the shift p is the smallest p satisfying |
| * 2^p > nc * (d - 2^p % d), where d >= 2 |
| * 2^p > nc * (d + 2^p % d), where d <= -2. |
| * |
| * The magic number M is calculated by |
| * M = (2^p + d - 2^p % d) / d, where d >= 2 |
| * M = (2^p - d - 2^p % d) / d, where d <= -2. |
| * |
| * Notice that p is always bigger than or equal to 32 (resp. 64), so we just return 32 - p |
| * (resp. 64 - p) as the shift number S. |
| */ |
| |
| int64_t p = is_long ? 63 : 31; |
| const uint64_t exp = is_long ? (UINT64_C(1) << 63) : (UINT32_C(1) << 31); |
| |
| // Initialize the computations. |
| uint64_t abs_d = (divisor >= 0) ? divisor : -divisor; |
| uint64_t sign_bit = is_long ? static_cast<uint64_t>(divisor) >> 63 : |
| static_cast<uint32_t>(divisor) >> 31; |
| uint64_t tmp = exp + sign_bit; |
| uint64_t abs_nc = tmp - 1 - (tmp % abs_d); |
| uint64_t quotient1 = exp / abs_nc; |
| uint64_t remainder1 = exp % abs_nc; |
| uint64_t quotient2 = exp / abs_d; |
| uint64_t remainder2 = exp % abs_d; |
| |
| /* |
| * To avoid handling both positive and negative divisor, "Hacker's Delight" |
| * introduces a method to handle these 2 cases together to avoid duplication. |
| */ |
| uint64_t delta; |
| do { |
| p++; |
| quotient1 = 2 * quotient1; |
| remainder1 = 2 * remainder1; |
| if (remainder1 >= abs_nc) { |
| quotient1++; |
| remainder1 = remainder1 - abs_nc; |
| } |
| quotient2 = 2 * quotient2; |
| remainder2 = 2 * remainder2; |
| if (remainder2 >= abs_d) { |
| quotient2++; |
| remainder2 = remainder2 - abs_d; |
| } |
| delta = abs_d - remainder2; |
| } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); |
| |
| *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); |
| |
| if (!is_long) { |
| *magic = static_cast<int>(*magic); |
| } |
| |
| *shift = is_long ? p - 64 : p - 32; |
| } |
| |
| bool IsBooleanValueOrMaterializedCondition(HInstruction* cond_input) { |
| return !cond_input->IsCondition() || !cond_input->IsEmittedAtUseSite(); |
| } |
| |
| } // namespace art |