blob: 92648b9b1b32c6a278e716da2830317098a151e3 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "art_method.h"
#include "arch/context.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/stringpiece.h"
#include "class_linker-inl.h"
#include "debugger.h"
#include "dex_file-inl.h"
#include "dex_instruction.h"
#include "entrypoints/entrypoint_utils.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "gc/accounting/card_table-inl.h"
#include "interpreter/interpreter.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jit/profiling_info.h"
#include "jni_internal.h"
#include "mapping_table.h"
#include "mirror/abstract_method.h"
#include "mirror/class-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/object-inl.h"
#include "mirror/string.h"
#include "oat_file-inl.h"
#include "scoped_thread_state_change.h"
#include "well_known_classes.h"
namespace art {
extern "C" void art_quick_invoke_stub(ArtMethod*, uint32_t*, uint32_t, Thread*, JValue*,
const char*);
extern "C" void art_quick_invoke_static_stub(ArtMethod*, uint32_t*, uint32_t, Thread*, JValue*,
const char*);
ArtMethod* ArtMethod::FromReflectedMethod(const ScopedObjectAccessAlreadyRunnable& soa,
jobject jlr_method) {
auto* abstract_method = soa.Decode<mirror::AbstractMethod*>(jlr_method);
DCHECK(abstract_method != nullptr);
return abstract_method->GetArtMethod();
}
mirror::String* ArtMethod::GetNameAsString(Thread* self) {
CHECK(!IsProxyMethod());
StackHandleScope<1> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(GetDexCache()));
auto* dex_file = dex_cache->GetDexFile();
uint32_t dex_method_idx = GetDexMethodIndex();
const DexFile::MethodId& method_id = dex_file->GetMethodId(dex_method_idx);
return Runtime::Current()->GetClassLinker()->ResolveString(*dex_file, method_id.name_idx_,
dex_cache);
}
InvokeType ArtMethod::GetInvokeType() {
// TODO: kSuper?
if (GetDeclaringClass()->IsInterface()) {
return kInterface;
} else if (IsStatic()) {
return kStatic;
} else if (IsDirect()) {
return kDirect;
} else {
return kVirtual;
}
}
size_t ArtMethod::NumArgRegisters(const StringPiece& shorty) {
CHECK_LE(1U, shorty.length());
uint32_t num_registers = 0;
for (size_t i = 1; i < shorty.length(); ++i) {
char ch = shorty[i];
if (ch == 'D' || ch == 'J') {
num_registers += 2;
} else {
num_registers += 1;
}
}
return num_registers;
}
static bool HasSameNameAndSignature(ArtMethod* method1, ArtMethod* method2)
SHARED_REQUIRES(Locks::mutator_lock_) {
ScopedAssertNoThreadSuspension ants(Thread::Current(), "HasSameNameAndSignature");
const DexFile* dex_file = method1->GetDexFile();
const DexFile::MethodId& mid = dex_file->GetMethodId(method1->GetDexMethodIndex());
if (method1->GetDexCache() == method2->GetDexCache()) {
const DexFile::MethodId& mid2 = dex_file->GetMethodId(method2->GetDexMethodIndex());
return mid.name_idx_ == mid2.name_idx_ && mid.proto_idx_ == mid2.proto_idx_;
}
const DexFile* dex_file2 = method2->GetDexFile();
const DexFile::MethodId& mid2 = dex_file2->GetMethodId(method2->GetDexMethodIndex());
if (!DexFileStringEquals(dex_file, mid.name_idx_, dex_file2, mid2.name_idx_)) {
return false; // Name mismatch.
}
return dex_file->GetMethodSignature(mid) == dex_file2->GetMethodSignature(mid2);
}
ArtMethod* ArtMethod::FindOverriddenMethod(size_t pointer_size) {
if (IsStatic()) {
return nullptr;
}
mirror::Class* declaring_class = GetDeclaringClass();
mirror::Class* super_class = declaring_class->GetSuperClass();
uint16_t method_index = GetMethodIndex();
ArtMethod* result = nullptr;
// Did this method override a super class method? If so load the result from the super class'
// vtable
if (super_class->HasVTable() && method_index < super_class->GetVTableLength()) {
result = super_class->GetVTableEntry(method_index, pointer_size);
} else {
// Method didn't override superclass method so search interfaces
if (IsProxyMethod()) {
result = mirror::DexCache::GetElementPtrSize(GetDexCacheResolvedMethods(pointer_size),
GetDexMethodIndex(),
pointer_size);
CHECK_EQ(result,
Runtime::Current()->GetClassLinker()->FindMethodForProxy(GetDeclaringClass(), this));
} else {
mirror::IfTable* iftable = GetDeclaringClass()->GetIfTable();
for (size_t i = 0; i < iftable->Count() && result == nullptr; i++) {
mirror::Class* interface = iftable->GetInterface(i);
for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) {
ArtMethod* interface_method = interface->GetVirtualMethod(j, pointer_size);
if (HasSameNameAndSignature(
this, interface_method->GetInterfaceMethodIfProxy(sizeof(void*)))) {
result = interface_method;
break;
}
}
}
}
}
DCHECK(result == nullptr || HasSameNameAndSignature(
GetInterfaceMethodIfProxy(sizeof(void*)), result->GetInterfaceMethodIfProxy(sizeof(void*))));
return result;
}
uint32_t ArtMethod::FindDexMethodIndexInOtherDexFile(const DexFile& other_dexfile,
uint32_t name_and_signature_idx) {
const DexFile* dexfile = GetDexFile();
const uint32_t dex_method_idx = GetDexMethodIndex();
const DexFile::MethodId& mid = dexfile->GetMethodId(dex_method_idx);
const DexFile::MethodId& name_and_sig_mid = other_dexfile.GetMethodId(name_and_signature_idx);
DCHECK_STREQ(dexfile->GetMethodName(mid), other_dexfile.GetMethodName(name_and_sig_mid));
DCHECK_EQ(dexfile->GetMethodSignature(mid), other_dexfile.GetMethodSignature(name_and_sig_mid));
if (dexfile == &other_dexfile) {
return dex_method_idx;
}
const char* mid_declaring_class_descriptor = dexfile->StringByTypeIdx(mid.class_idx_);
const DexFile::StringId* other_descriptor =
other_dexfile.FindStringId(mid_declaring_class_descriptor);
if (other_descriptor != nullptr) {
const DexFile::TypeId* other_type_id =
other_dexfile.FindTypeId(other_dexfile.GetIndexForStringId(*other_descriptor));
if (other_type_id != nullptr) {
const DexFile::MethodId* other_mid = other_dexfile.FindMethodId(
*other_type_id, other_dexfile.GetStringId(name_and_sig_mid.name_idx_),
other_dexfile.GetProtoId(name_and_sig_mid.proto_idx_));
if (other_mid != nullptr) {
return other_dexfile.GetIndexForMethodId(*other_mid);
}
}
}
return DexFile::kDexNoIndex;
}
uint32_t ArtMethod::ToDexPc(const uintptr_t pc, bool abort_on_failure) {
const void* entry_point = GetQuickOatEntryPoint(sizeof(void*));
uint32_t sought_offset = pc - reinterpret_cast<uintptr_t>(entry_point);
if (IsOptimized(sizeof(void*))) {
CodeInfo code_info = GetOptimizedCodeInfo();
StackMapEncoding encoding = code_info.ExtractEncoding();
StackMap stack_map = code_info.GetStackMapForNativePcOffset(sought_offset, encoding);
if (stack_map.IsValid()) {
return stack_map.GetDexPc(encoding);
}
} else {
MappingTable table(entry_point != nullptr ?
GetMappingTable(EntryPointToCodePointer(entry_point), sizeof(void*)) : nullptr);
if (table.TotalSize() == 0) {
// NOTE: Special methods (see Mir2Lir::GenSpecialCase()) have an empty mapping
// but they have no suspend checks and, consequently, we never call ToDexPc() for them.
DCHECK(IsNative() || IsCalleeSaveMethod() || IsProxyMethod()) << PrettyMethod(this);
return DexFile::kDexNoIndex; // Special no mapping case
}
// Assume the caller wants a pc-to-dex mapping so check here first.
typedef MappingTable::PcToDexIterator It;
for (It cur = table.PcToDexBegin(), end = table.PcToDexEnd(); cur != end; ++cur) {
if (cur.NativePcOffset() == sought_offset) {
return cur.DexPc();
}
}
// Now check dex-to-pc mappings.
typedef MappingTable::DexToPcIterator It2;
for (It2 cur = table.DexToPcBegin(), end = table.DexToPcEnd(); cur != end; ++cur) {
if (cur.NativePcOffset() == sought_offset) {
return cur.DexPc();
}
}
}
if (abort_on_failure) {
LOG(FATAL) << "Failed to find Dex offset for PC offset " << reinterpret_cast<void*>(sought_offset)
<< "(PC " << reinterpret_cast<void*>(pc) << ", entry_point=" << entry_point
<< " current entry_point=" << GetQuickOatEntryPoint(sizeof(void*))
<< ") in " << PrettyMethod(this);
}
return DexFile::kDexNoIndex;
}
uintptr_t ArtMethod::ToNativeQuickPc(const uint32_t dex_pc,
bool is_for_catch_handler,
bool abort_on_failure) {
const void* entry_point = GetQuickOatEntryPoint(sizeof(void*));
if (IsOptimized(sizeof(void*))) {
// Optimized code does not have a mapping table. Search for the dex-to-pc
// mapping in stack maps.
CodeInfo code_info = GetOptimizedCodeInfo();
StackMapEncoding encoding = code_info.ExtractEncoding();
// All stack maps are stored in the same CodeItem section, safepoint stack
// maps first, then catch stack maps. We use `is_for_catch_handler` to select
// the order of iteration.
StackMap stack_map =
LIKELY(is_for_catch_handler) ? code_info.GetCatchStackMapForDexPc(dex_pc, encoding)
: code_info.GetStackMapForDexPc(dex_pc, encoding);
if (stack_map.IsValid()) {
return reinterpret_cast<uintptr_t>(entry_point) + stack_map.GetNativePcOffset(encoding);
}
} else {
MappingTable table(entry_point != nullptr ?
GetMappingTable(EntryPointToCodePointer(entry_point), sizeof(void*)) : nullptr);
if (table.TotalSize() == 0) {
DCHECK_EQ(dex_pc, 0U);
return 0; // Special no mapping/pc == 0 case
}
// Assume the caller wants a dex-to-pc mapping so check here first.
typedef MappingTable::DexToPcIterator It;
for (It cur = table.DexToPcBegin(), end = table.DexToPcEnd(); cur != end; ++cur) {
if (cur.DexPc() == dex_pc) {
return reinterpret_cast<uintptr_t>(entry_point) + cur.NativePcOffset();
}
}
// Now check pc-to-dex mappings.
typedef MappingTable::PcToDexIterator It2;
for (It2 cur = table.PcToDexBegin(), end = table.PcToDexEnd(); cur != end; ++cur) {
if (cur.DexPc() == dex_pc) {
return reinterpret_cast<uintptr_t>(entry_point) + cur.NativePcOffset();
}
}
}
if (abort_on_failure) {
LOG(FATAL) << "Failed to find native offset for dex pc 0x" << std::hex << dex_pc
<< " in " << PrettyMethod(this);
}
return UINTPTR_MAX;
}
uint32_t ArtMethod::FindCatchBlock(Handle<mirror::Class> exception_type,
uint32_t dex_pc, bool* has_no_move_exception) {
const DexFile::CodeItem* code_item = GetCodeItem();
// Set aside the exception while we resolve its type.
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException()));
self->ClearException();
// Default to handler not found.
uint32_t found_dex_pc = DexFile::kDexNoIndex;
// Iterate over the catch handlers associated with dex_pc.
size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
for (CatchHandlerIterator it(*code_item, dex_pc); it.HasNext(); it.Next()) {
uint16_t iter_type_idx = it.GetHandlerTypeIndex();
// Catch all case
if (iter_type_idx == DexFile::kDexNoIndex16) {
found_dex_pc = it.GetHandlerAddress();
break;
}
// Does this catch exception type apply?
mirror::Class* iter_exception_type = GetClassFromTypeIndex(iter_type_idx,
true /* resolve */,
pointer_size);
if (UNLIKELY(iter_exception_type == nullptr)) {
// Now have a NoClassDefFoundError as exception. Ignore in case the exception class was
// removed by a pro-guard like tool.
// Note: this is not RI behavior. RI would have failed when loading the class.
self->ClearException();
// Delete any long jump context as this routine is called during a stack walk which will
// release its in use context at the end.
delete self->GetLongJumpContext();
LOG(WARNING) << "Unresolved exception class when finding catch block: "
<< DescriptorToDot(GetTypeDescriptorFromTypeIdx(iter_type_idx));
} else if (iter_exception_type->IsAssignableFrom(exception_type.Get())) {
found_dex_pc = it.GetHandlerAddress();
break;
}
}
if (found_dex_pc != DexFile::kDexNoIndex) {
const Instruction* first_catch_instr =
Instruction::At(&code_item->insns_[found_dex_pc]);
*has_no_move_exception = (first_catch_instr->Opcode() != Instruction::MOVE_EXCEPTION);
}
// Put the exception back.
if (exception.Get() != nullptr) {
self->SetException(exception.Get());
}
return found_dex_pc;
}
void ArtMethod::AssertPcIsWithinQuickCode(uintptr_t pc) {
if (IsNative() || IsRuntimeMethod() || IsProxyMethod()) {
return;
}
if (pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc())) {
return;
}
const void* code = GetEntryPointFromQuickCompiledCode();
if (code == GetQuickInstrumentationEntryPoint()) {
return;
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
if (class_linker->IsQuickToInterpreterBridge(code) ||
class_linker->IsQuickResolutionStub(code)) {
return;
}
// If we are the JIT then we may have just compiled the method after the
// IsQuickToInterpreterBridge check.
jit::Jit* const jit = Runtime::Current()->GetJit();
if (jit != nullptr &&
jit->GetCodeCache()->ContainsCodePtr(reinterpret_cast<const void*>(code))) {
return;
}
/*
* During a stack walk, a return PC may point past-the-end of the code
* in the case that the last instruction is a call that isn't expected to
* return. Thus, we check <= code + GetCodeSize().
*
* NOTE: For Thumb both pc and code are offset by 1 indicating the Thumb state.
*/
CHECK(PcIsWithinQuickCode(reinterpret_cast<uintptr_t>(code), pc))
<< PrettyMethod(this)
<< " pc=" << std::hex << pc
<< " code=" << code
<< " size=" << GetCodeSize(
EntryPointToCodePointer(reinterpret_cast<const void*>(code)));
}
bool ArtMethod::IsEntrypointInterpreter() {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
const void* oat_quick_code = class_linker->GetOatMethodQuickCodeFor(this);
return oat_quick_code == nullptr || oat_quick_code != GetEntryPointFromQuickCompiledCode();
}
const void* ArtMethod::GetQuickOatEntryPoint(size_t pointer_size) {
if (IsAbstract() || IsRuntimeMethod() || IsProxyMethod()) {
return nullptr;
}
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
const void* code = runtime->GetInstrumentation()->GetQuickCodeFor(this, pointer_size);
// On failure, instead of null we get the quick-generic-jni-trampoline for native method
// indicating the generic JNI, or the quick-to-interpreter-bridge (but not the trampoline)
// for non-native methods.
if (class_linker->IsQuickToInterpreterBridge(code) ||
class_linker->IsQuickGenericJniStub(code)) {
return nullptr;
}
return code;
}
#ifndef NDEBUG
uintptr_t ArtMethod::NativeQuickPcOffset(const uintptr_t pc, const void* quick_entry_point) {
CHECK_NE(quick_entry_point, GetQuickToInterpreterBridge());
CHECK_EQ(quick_entry_point,
Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(this, sizeof(void*)));
return pc - reinterpret_cast<uintptr_t>(quick_entry_point);
}
#endif
void ArtMethod::Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result,
const char* shorty) {
if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) {
ThrowStackOverflowError(self);
return;
}
if (kIsDebugBuild) {
self->AssertThreadSuspensionIsAllowable();
CHECK_EQ(kRunnable, self->GetState());
CHECK_STREQ(GetInterfaceMethodIfProxy(sizeof(void*))->GetShorty(), shorty);
}
// Push a transition back into managed code onto the linked list in thread.
ManagedStack fragment;
self->PushManagedStackFragment(&fragment);
Runtime* runtime = Runtime::Current();
// Call the invoke stub, passing everything as arguments.
// If the runtime is not yet started or it is required by the debugger, then perform the
// Invocation by the interpreter.
if (UNLIKELY(!runtime->IsStarted() || Dbg::IsForcedInterpreterNeededForCalling(self, this))) {
if (IsStatic()) {
art::interpreter::EnterInterpreterFromInvoke(self, this, nullptr, args, result);
} else {
mirror::Object* receiver =
reinterpret_cast<StackReference<mirror::Object>*>(&args[0])->AsMirrorPtr();
art::interpreter::EnterInterpreterFromInvoke(self, this, receiver, args + 1, result);
}
} else {
DCHECK_EQ(runtime->GetClassLinker()->GetImagePointerSize(), sizeof(void*));
constexpr bool kLogInvocationStartAndReturn = false;
bool have_quick_code = GetEntryPointFromQuickCompiledCode() != nullptr;
if (LIKELY(have_quick_code)) {
if (kLogInvocationStartAndReturn) {
LOG(INFO) << StringPrintf(
"Invoking '%s' quick code=%p static=%d", PrettyMethod(this).c_str(),
GetEntryPointFromQuickCompiledCode(), static_cast<int>(IsStatic() ? 1 : 0));
}
// Ensure that we won't be accidentally calling quick compiled code when -Xint.
if (kIsDebugBuild && runtime->GetInstrumentation()->IsForcedInterpretOnly()) {
DCHECK(!runtime->UseJit());
CHECK(IsEntrypointInterpreter())
<< "Don't call compiled code when -Xint " << PrettyMethod(this);
}
if (!IsStatic()) {
(*art_quick_invoke_stub)(this, args, args_size, self, result, shorty);
} else {
(*art_quick_invoke_static_stub)(this, args, args_size, self, result, shorty);
}
if (UNLIKELY(self->GetException() == Thread::GetDeoptimizationException())) {
// Unusual case where we were running generated code and an
// exception was thrown to force the activations to be removed from the
// stack. Continue execution in the interpreter.
self->ClearException();
ShadowFrame* shadow_frame =
self->PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
mirror::Throwable* pending_exception = nullptr;
self->PopDeoptimizationContext(result, &pending_exception);
self->SetTopOfStack(nullptr);
self->SetTopOfShadowStack(shadow_frame);
// Restore the exception that was pending before deoptimization then interpret the
// deoptimized frames.
if (pending_exception != nullptr) {
self->SetException(pending_exception);
}
interpreter::EnterInterpreterFromDeoptimize(self, shadow_frame, result);
}
if (kLogInvocationStartAndReturn) {
LOG(INFO) << StringPrintf("Returned '%s' quick code=%p", PrettyMethod(this).c_str(),
GetEntryPointFromQuickCompiledCode());
}
} else {
LOG(INFO) << "Not invoking '" << PrettyMethod(this) << "' code=null";
if (result != nullptr) {
result->SetJ(0);
}
}
}
// Pop transition.
self->PopManagedStackFragment(fragment);
}
// Counts the number of references in the parameter list of the corresponding method.
// Note: Thus does _not_ include "this" for non-static methods.
static uint32_t GetNumberOfReferenceArgsWithoutReceiver(ArtMethod* method)
SHARED_REQUIRES(Locks::mutator_lock_) {
uint32_t shorty_len;
const char* shorty = method->GetShorty(&shorty_len);
uint32_t refs = 0;
for (uint32_t i = 1; i < shorty_len ; ++i) {
if (shorty[i] == 'L') {
refs++;
}
}
return refs;
}
QuickMethodFrameInfo ArtMethod::GetQuickFrameInfo() {
Runtime* runtime = Runtime::Current();
if (UNLIKELY(IsAbstract())) {
return runtime->GetCalleeSaveMethodFrameInfo(Runtime::kRefsAndArgs);
}
// This goes before IsProxyMethod since runtime methods have a null declaring class.
if (UNLIKELY(IsRuntimeMethod())) {
return runtime->GetRuntimeMethodFrameInfo(this);
}
// For Proxy method we add special handling for the direct method case (there is only one
// direct method - constructor). Direct method is cloned from original
// java.lang.reflect.Proxy class together with code and as a result it is executed as usual
// quick compiled method without any stubs. So the frame info should be returned as it is a
// quick method not a stub. However, if instrumentation stubs are installed, the
// instrumentation->GetQuickCodeFor() returns the artQuickProxyInvokeHandler instead of an
// oat code pointer, thus we have to add a special case here.
if (UNLIKELY(IsProxyMethod())) {
if (IsDirect()) {
CHECK(IsConstructor());
return GetQuickFrameInfo(EntryPointToCodePointer(GetEntryPointFromQuickCompiledCode()));
} else {
return runtime->GetCalleeSaveMethodFrameInfo(Runtime::kRefsAndArgs);
}
}
const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(this, sizeof(void*));
ClassLinker* class_linker = runtime->GetClassLinker();
// On failure, instead of null we get the quick-generic-jni-trampoline for native method
// indicating the generic JNI, or the quick-to-interpreter-bridge (but not the trampoline)
// for non-native methods. And we really shouldn't see a failure for non-native methods here.
DCHECK(!class_linker->IsQuickToInterpreterBridge(entry_point));
if (class_linker->IsQuickGenericJniStub(entry_point)) {
// Generic JNI frame.
DCHECK(IsNative());
uint32_t handle_refs = GetNumberOfReferenceArgsWithoutReceiver(this) + 1;
size_t scope_size = HandleScope::SizeOf(handle_refs);
QuickMethodFrameInfo callee_info = runtime->GetCalleeSaveMethodFrameInfo(Runtime::kRefsAndArgs);
// Callee saves + handle scope + method ref + alignment
// Note: -sizeof(void*) since callee-save frame stores a whole method pointer.
size_t frame_size = RoundUp(callee_info.FrameSizeInBytes() - sizeof(void*) +
sizeof(ArtMethod*) + scope_size, kStackAlignment);
return QuickMethodFrameInfo(frame_size, callee_info.CoreSpillMask(), callee_info.FpSpillMask());
}
const void* code_pointer = EntryPointToCodePointer(entry_point);
return GetQuickFrameInfo(code_pointer);
}
void ArtMethod::RegisterNative(const void* native_method, bool is_fast) {
CHECK(IsNative()) << PrettyMethod(this);
CHECK(!IsFastNative()) << PrettyMethod(this);
CHECK(native_method != nullptr) << PrettyMethod(this);
if (is_fast) {
SetAccessFlags(GetAccessFlags() | kAccFastNative);
}
SetEntryPointFromJni(native_method);
}
void ArtMethod::UnregisterNative() {
CHECK(IsNative() && !IsFastNative()) << PrettyMethod(this);
// restore stub to lookup native pointer via dlsym
RegisterNative(GetJniDlsymLookupStub(), false);
}
bool ArtMethod::EqualParameters(Handle<mirror::ObjectArray<mirror::Class>> params) {
auto* dex_cache = GetDexCache();
auto* dex_file = dex_cache->GetDexFile();
const auto& method_id = dex_file->GetMethodId(GetDexMethodIndex());
const auto& proto_id = dex_file->GetMethodPrototype(method_id);
const DexFile::TypeList* proto_params = dex_file->GetProtoParameters(proto_id);
auto count = proto_params != nullptr ? proto_params->Size() : 0u;
auto param_len = params.Get() != nullptr ? params->GetLength() : 0u;
if (param_len != count) {
return false;
}
auto* cl = Runtime::Current()->GetClassLinker();
for (size_t i = 0; i < count; ++i) {
auto type_idx = proto_params->GetTypeItem(i).type_idx_;
auto* type = cl->ResolveType(type_idx, this);
if (type == nullptr) {
Thread::Current()->AssertPendingException();
return false;
}
if (type != params->GetWithoutChecks(i)) {
return false;
}
}
return true;
}
const uint8_t* ArtMethod::GetQuickenedInfo() {
bool found = false;
OatFile::OatMethod oat_method =
Runtime::Current()->GetClassLinker()->FindOatMethodFor(this, &found);
if (!found || (oat_method.GetQuickCode() != nullptr)) {
return nullptr;
}
return oat_method.GetVmapTable();
}
ProfilingInfo* ArtMethod::CreateProfilingInfo() {
DCHECK(!Runtime::Current()->IsAotCompiler());
ProfilingInfo* info = ProfilingInfo::Create(this);
MemberOffset offset = ArtMethod::EntryPointFromJniOffset(sizeof(void*));
uintptr_t pointer = reinterpret_cast<uintptr_t>(this) + offset.Uint32Value();
if (!reinterpret_cast<Atomic<ProfilingInfo*>*>(pointer)->
CompareExchangeStrongSequentiallyConsistent(nullptr, info)) {
return GetProfilingInfo(sizeof(void*));
} else {
return info;
}
}
} // namespace art