blob: 318d83bf40d9e96fbc04d0eb3b8a2ac88eab6773 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "loop_optimization.h"
#include "driver/compiler_driver.h"
#include "linear_order.h"
namespace art {
// Remove the instruction from the graph. A bit more elaborate than the usual
// instruction removal, since there may be a cycle in the use structure.
static void RemoveFromCycle(HInstruction* instruction) {
instruction->RemoveAsUserOfAllInputs();
instruction->RemoveEnvironmentUsers();
instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
}
// Detect a goto block and sets succ to the single successor.
static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
if (block->GetPredecessors().size() == 1 &&
block->GetSuccessors().size() == 1 &&
block->IsSingleGoto()) {
*succ = block->GetSingleSuccessor();
return true;
}
return false;
}
// Detect an early exit loop.
static bool IsEarlyExit(HLoopInformation* loop_info) {
HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
if (!loop_info->Contains(*successor)) {
return true;
}
}
}
return false;
}
//
// Class methods.
//
HLoopOptimization::HLoopOptimization(HGraph* graph,
CompilerDriver* compiler_driver,
HInductionVarAnalysis* induction_analysis)
: HOptimization(graph, kLoopOptimizationPassName),
compiler_driver_(compiler_driver),
induction_range_(induction_analysis),
loop_allocator_(nullptr),
top_loop_(nullptr),
last_loop_(nullptr),
iset_(nullptr),
induction_simplication_count_(0),
simplified_(false) {
}
void HLoopOptimization::Run() {
// Well-behaved loops only.
// TODO: make this less of a sledgehammer.
if (!graph_->HasLoops() || graph_->HasTryCatch() || graph_->HasIrreducibleLoops()) {
return;
}
// Phase-local allocator that draws from the global pool. Since the allocator
// itself resides on the stack, it is destructed on exiting Run(), which
// implies its underlying memory is released immediately.
ArenaAllocator allocator(graph_->GetArena()->GetArenaPool());
loop_allocator_ = &allocator;
// Perform loop optimizations.
LocalRun();
if (top_loop_ == nullptr) {
graph_->SetHasLoops(false);
}
// Detach.
loop_allocator_ = nullptr;
last_loop_ = top_loop_ = nullptr;
}
void HLoopOptimization::LocalRun() {
// Build the linear order using the phase-local allocator. This step enables building
// a loop hierarchy that properly reflects the outer-inner and previous-next relation.
ArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
LinearizeGraph(graph_, loop_allocator_, &linear_order);
// Build the loop hierarchy.
for (HBasicBlock* block : linear_order) {
if (block->IsLoopHeader()) {
AddLoop(block->GetLoopInformation());
}
}
// Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
// a temporary set that stores instructions using the phase-local allocator.
if (top_loop_ != nullptr) {
ArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
iset_ = &iset;
TraverseLoopsInnerToOuter(top_loop_);
iset_ = nullptr; // detach
}
}
void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
DCHECK(loop_info != nullptr);
LoopNode* node = new (loop_allocator_) LoopNode(loop_info); // phase-local allocator
if (last_loop_ == nullptr) {
// First loop.
DCHECK(top_loop_ == nullptr);
last_loop_ = top_loop_ = node;
} else if (loop_info->IsIn(*last_loop_->loop_info)) {
// Inner loop.
node->outer = last_loop_;
DCHECK(last_loop_->inner == nullptr);
last_loop_ = last_loop_->inner = node;
} else {
// Subsequent loop.
while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
last_loop_ = last_loop_->outer;
}
node->outer = last_loop_->outer;
node->previous = last_loop_;
DCHECK(last_loop_->next == nullptr);
last_loop_ = last_loop_->next = node;
}
}
void HLoopOptimization::RemoveLoop(LoopNode* node) {
DCHECK(node != nullptr);
DCHECK(node->inner == nullptr);
if (node->previous != nullptr) {
// Within sequence.
node->previous->next = node->next;
if (node->next != nullptr) {
node->next->previous = node->previous;
}
} else {
// First of sequence.
if (node->outer != nullptr) {
node->outer->inner = node->next;
} else {
top_loop_ = node->next;
}
if (node->next != nullptr) {
node->next->outer = node->outer;
node->next->previous = nullptr;
}
}
}
void HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
for ( ; node != nullptr; node = node->next) {
// Visit inner loops first.
int current_induction_simplification_count = induction_simplication_count_;
if (node->inner != nullptr) {
TraverseLoopsInnerToOuter(node->inner);
}
// Recompute induction information of this loop if the induction
// of any inner loop has been simplified.
if (current_induction_simplification_count != induction_simplication_count_) {
induction_range_.ReVisit(node->loop_info);
}
// Repeat simplifications in the body of this loop until no more changes occur.
// Note that since each simplification consists of eliminating code (without
// introducing new code), this process is always finite.
do {
simplified_ = false;
SimplifyInduction(node);
SimplifyBlocks(node);
} while (simplified_);
// Simplify inner loop.
if (node->inner == nullptr) {
SimplifyInnerLoop(node);
}
}
}
void HLoopOptimization::SimplifyInduction(LoopNode* node) {
HBasicBlock* header = node->loop_info->GetHeader();
HBasicBlock* preheader = node->loop_info->GetPreHeader();
// Scan the phis in the header to find opportunities to simplify an induction
// cycle that is only used outside the loop. Replace these uses, if any, with
// the last value and remove the induction cycle.
// Examples: for (int i = 0; x != null; i++) { .... no i .... }
// for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
iset_->clear();
int32_t use_count = 0;
if (IsPhiInduction(phi) &&
IsOnlyUsedAfterLoop(node->loop_info, phi, /*collect_loop_uses*/ false, &use_count) &&
// No uses, or no early-exit with proper replacement.
(use_count == 0 ||
(!IsEarlyExit(node->loop_info) && TryReplaceWithLastValue(phi, preheader)))) {
for (HInstruction* i : *iset_) {
RemoveFromCycle(i);
}
simplified_ = true;
}
}
}
void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
// Iterate over all basic blocks in the loop-body.
for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
// Remove dead instructions from the loop-body.
RemoveDeadInstructions(block->GetPhis());
RemoveDeadInstructions(block->GetInstructions());
// Remove trivial control flow blocks from the loop-body.
if (block->GetPredecessors().size() == 1 &&
block->GetSuccessors().size() == 1 &&
block->GetSingleSuccessor()->GetPredecessors().size() == 1) {
simplified_ = true;
block->MergeWith(block->GetSingleSuccessor());
} else if (block->GetSuccessors().size() == 2) {
// Trivial if block can be bypassed to either branch.
HBasicBlock* succ0 = block->GetSuccessors()[0];
HBasicBlock* succ1 = block->GetSuccessors()[1];
HBasicBlock* meet0 = nullptr;
HBasicBlock* meet1 = nullptr;
if (succ0 != succ1 &&
IsGotoBlock(succ0, &meet0) &&
IsGotoBlock(succ1, &meet1) &&
meet0 == meet1 && // meets again
meet0 != block && // no self-loop
meet0->GetPhis().IsEmpty()) { // not used for merging
simplified_ = true;
succ0->DisconnectAndDelete();
if (block->Dominates(meet0)) {
block->RemoveDominatedBlock(meet0);
succ1->AddDominatedBlock(meet0);
meet0->SetDominator(succ1);
}
}
}
}
}
bool HLoopOptimization::SimplifyInnerLoop(LoopNode* node) {
HBasicBlock* header = node->loop_info->GetHeader();
HBasicBlock* preheader = node->loop_info->GetPreHeader();
// Ensure loop header logic is finite.
int64_t tc = 0;
if (!induction_range_.IsFinite(node->loop_info, &tc)) {
return false;
}
// Ensure there is only a single loop-body (besides the header).
HBasicBlock* body = nullptr;
for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
if (it.Current() != header) {
if (body != nullptr) {
return false;
}
body = it.Current();
}
}
// Ensure there is only a single exit point.
if (header->GetSuccessors().size() != 2) {
return false;
}
HBasicBlock* exit = (header->GetSuccessors()[0] == body)
? header->GetSuccessors()[1]
: header->GetSuccessors()[0];
// Ensure exit can only be reached by exiting loop.
if (exit->GetPredecessors().size() != 1) {
return false;
}
// Detect either an empty loop (no side effects other than plain iteration) or
// a trivial loop (just iterating once). Replace subsequent index uses, if any,
// with the last value and remove the loop, possibly after unrolling its body.
HInstruction* phi = header->GetFirstPhi();
iset_->clear();
int32_t use_count = 0;
if (IsEmptyHeader(header)) {
bool is_empty = IsEmptyBody(body);
if ((is_empty || tc == 1) &&
IsOnlyUsedAfterLoop(node->loop_info, phi, /*collect_loop_uses*/ true, &use_count) &&
// No uses, or proper replacement.
(use_count == 0 || TryReplaceWithLastValue(phi, preheader))) {
if (!is_empty) {
// Unroll the loop body, which sees initial value of the index.
phi->ReplaceWith(phi->InputAt(0));
preheader->MergeInstructionsWith(body);
}
body->DisconnectAndDelete();
exit->RemovePredecessor(header);
header->RemoveSuccessor(exit);
header->RemoveDominatedBlock(exit);
header->DisconnectAndDelete();
preheader->AddSuccessor(exit);
preheader->AddInstruction(new (graph_->GetArena()) HGoto()); // global allocator
preheader->AddDominatedBlock(exit);
exit->SetDominator(preheader);
RemoveLoop(node); // update hierarchy
return true;
}
}
return false;
}
bool HLoopOptimization::IsPhiInduction(HPhi* phi) {
ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
if (set != nullptr) {
DCHECK(iset_->empty());
for (HInstruction* i : *set) {
// Check that, other than instructions that are no longer in the graph (removed earlier)
// each instruction is removable and, other than the phi, uses are contained in the cycle.
if (!i->IsInBlock()) {
continue;
} else if (!i->IsRemovable()) {
return false;
} else if (i != phi) {
for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
if (set->find(use.GetUser()) == set->end()) {
return false;
}
}
}
iset_->insert(i); // copy
}
return true;
}
return false;
}
// Find: phi: Phi(init, addsub)
// s: SuspendCheck
// c: Condition(phi, bound)
// i: If(c)
// TODO: Find a less pattern matching approach?
bool HLoopOptimization::IsEmptyHeader(HBasicBlock* block) {
DCHECK(iset_->empty());
HInstruction* phi = block->GetFirstPhi();
if (phi != nullptr && phi->GetNext() == nullptr && IsPhiInduction(phi->AsPhi())) {
HInstruction* s = block->GetFirstInstruction();
if (s != nullptr && s->IsSuspendCheck()) {
HInstruction* c = s->GetNext();
if (c != nullptr && c->IsCondition() && c->GetUses().HasExactlyOneElement()) {
HInstruction* i = c->GetNext();
if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
iset_->insert(c);
iset_->insert(s);
return true;
}
}
}
}
return false;
}
bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) {
if (block->GetFirstPhi() == nullptr) {
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* instruction = it.Current();
if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) {
return false;
}
}
return true;
}
return false;
}
bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
HInstruction* instruction,
bool collect_loop_uses,
/*out*/ int32_t* use_count) {
for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
HInstruction* user = use.GetUser();
if (iset_->find(user) == iset_->end()) { // not excluded?
HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
if (other_loop_info != nullptr && other_loop_info->IsIn(*loop_info)) {
// If collect_loop_uses is set, simply keep adding those uses to the set.
// Otherwise, reject uses inside the loop that were not already in the set.
if (collect_loop_uses) {
iset_->insert(user);
continue;
}
return false;
}
++*use_count;
}
}
return true;
}
bool HLoopOptimization::TryReplaceWithLastValue(HInstruction* instruction, HBasicBlock* block) {
// Try to replace outside uses with the last value. Environment uses can consume this
// value too, since any first true use is outside the loop (although this may imply
// that de-opting may look "ahead" a bit on the phi value). If there are only environment
// uses, the value is dropped altogether, since the computations have no effect.
if (induction_range_.CanGenerateLastValue(instruction)) {
HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block);
const HUseList<HInstruction*>& uses = instruction->GetUses();
for (auto it = uses.begin(), end = uses.end(); it != end;) {
HInstruction* user = it->GetUser();
size_t index = it->GetIndex();
++it; // increment before replacing
if (iset_->find(user) == iset_->end()) { // not excluded?
user->ReplaceInput(replacement, index);
induction_range_.Replace(user, instruction, replacement); // update induction
}
}
const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
HEnvironment* user = it->GetUser();
size_t index = it->GetIndex();
++it; // increment before replacing
if (iset_->find(user->GetHolder()) == iset_->end()) { // not excluded?
user->RemoveAsUserOfInput(index);
user->SetRawEnvAt(index, replacement);
replacement->AddEnvUseAt(user, index);
}
}
induction_simplication_count_++;
return true;
}
return false;
}
void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) {
for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) {
HInstruction* instruction = i.Current();
if (instruction->IsDeadAndRemovable()) {
simplified_ = true;
instruction->GetBlock()->RemoveInstructionOrPhi(instruction);
}
}
}
} // namespace art