blob: bd19d005444db1435216e7c328cc711f5e1ee131 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_BASE_SCOPED_ARENA_CONTAINERS_H_
#define ART_RUNTIME_BASE_SCOPED_ARENA_CONTAINERS_H_
#include <deque>
#include <queue>
#include <set>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include "arena_containers.h" // For ArenaAllocatorAdapterKind.
#include "base/dchecked_vector.h"
#include "scoped_arena_allocator.h"
#include "safe_map.h"
namespace art {
// Adapter for use of ScopedArenaAllocator in STL containers.
// Use ScopedArenaAllocator::Adapter() to create an adapter to pass to container constructors.
// For example,
// void foo(ScopedArenaAllocator* allocator) {
// ScopedArenaVector<int> foo_vector(allocator->Adapter(kArenaAllocMisc));
// ScopedArenaSafeMap<int, int> foo_map(std::less<int>(), allocator->Adapter());
// // Use foo_vector and foo_map...
// }
template <typename T>
class ScopedArenaAllocatorAdapter;
template <typename T>
using ScopedArenaDeque = std::deque<T, ScopedArenaAllocatorAdapter<T>>;
template <typename T>
using ScopedArenaQueue = std::queue<T, ScopedArenaDeque<T>>;
template <typename T>
using ScopedArenaVector = dchecked_vector<T, ScopedArenaAllocatorAdapter<T>>;
template <typename T, typename Comparator = std::less<T>>
using ScopedArenaSet = std::set<T, Comparator, ScopedArenaAllocatorAdapter<T>>;
template <typename K, typename V, typename Comparator = std::less<K>>
using ScopedArenaSafeMap =
SafeMap<K, V, Comparator, ScopedArenaAllocatorAdapter<std::pair<const K, V>>>;
template <typename K, typename V, class Hash = std::hash<K>, class KeyEqual = std::equal_to<K>>
using ScopedArenaUnorderedMap =
std::unordered_map<K, V, Hash, KeyEqual, ScopedArenaAllocatorAdapter<std::pair<const K, V>>>;
// Implementation details below.
template <>
class ScopedArenaAllocatorAdapter<void>
: private DebugStackReference, private DebugStackIndirectTopRef,
private ArenaAllocatorAdapterKind {
public:
typedef void value_type;
typedef void* pointer;
typedef const void* const_pointer;
template <typename U>
struct rebind {
typedef ScopedArenaAllocatorAdapter<U> other;
};
explicit ScopedArenaAllocatorAdapter(ScopedArenaAllocator* arena_allocator,
ArenaAllocKind kind = kArenaAllocSTL)
: DebugStackReference(arena_allocator),
DebugStackIndirectTopRef(arena_allocator),
ArenaAllocatorAdapterKind(kind),
arena_stack_(arena_allocator->arena_stack_) {
}
template <typename U>
ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter<U>& other)
: DebugStackReference(other),
DebugStackIndirectTopRef(other),
ArenaAllocatorAdapterKind(other),
arena_stack_(other.arena_stack_) {
}
ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter&) = default;
ScopedArenaAllocatorAdapter& operator=(const ScopedArenaAllocatorAdapter&) = default;
~ScopedArenaAllocatorAdapter() = default;
private:
ArenaStack* arena_stack_;
template <typename U>
friend class ScopedArenaAllocatorAdapter;
};
template <typename T>
class ScopedArenaAllocatorAdapter
: private DebugStackReference, private DebugStackIndirectTopRef,
private ArenaAllocatorAdapterKind {
public:
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef const T* const_pointer;
typedef const T& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
template <typename U>
struct rebind {
typedef ScopedArenaAllocatorAdapter<U> other;
};
explicit ScopedArenaAllocatorAdapter(ScopedArenaAllocator* arena_allocator,
ArenaAllocKind kind = kArenaAllocSTL)
: DebugStackReference(arena_allocator),
DebugStackIndirectTopRef(arena_allocator),
ArenaAllocatorAdapterKind(kind),
arena_stack_(arena_allocator->arena_stack_) {
}
template <typename U>
ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter<U>& other)
: DebugStackReference(other),
DebugStackIndirectTopRef(other),
ArenaAllocatorAdapterKind(other),
arena_stack_(other.arena_stack_) {
}
ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter&) = default;
ScopedArenaAllocatorAdapter& operator=(const ScopedArenaAllocatorAdapter&) = default;
~ScopedArenaAllocatorAdapter() = default;
size_type max_size() const {
return static_cast<size_type>(-1) / sizeof(T);
}
pointer address(reference x) const { return &x; }
const_pointer address(const_reference x) const { return &x; }
pointer allocate(size_type n,
ScopedArenaAllocatorAdapter<void>::pointer hint ATTRIBUTE_UNUSED = nullptr) {
DCHECK_LE(n, max_size());
DebugStackIndirectTopRef::CheckTop();
return reinterpret_cast<T*>(arena_stack_->Alloc(n * sizeof(T),
ArenaAllocatorAdapterKind::Kind()));
}
void deallocate(pointer p, size_type n) {
DebugStackIndirectTopRef::CheckTop();
arena_stack_->MakeInaccessible(p, sizeof(T) * n);
}
template <typename U, typename... Args>
void construct(U* p, Args&&... args) {
// Don't CheckTop(), allow reusing existing capacity of a vector/deque below the top.
::new (static_cast<void*>(p)) U(std::forward<Args>(args)...);
}
template <typename U>
void destroy(U* p) {
// Don't CheckTop(), allow reusing existing capacity of a vector/deque below the top.
p->~U();
}
private:
ArenaStack* arena_stack_;
template <typename U>
friend class ScopedArenaAllocatorAdapter;
template <typename U>
friend bool operator==(const ScopedArenaAllocatorAdapter<U>& lhs,
const ScopedArenaAllocatorAdapter<U>& rhs);
};
template <typename T>
inline bool operator==(const ScopedArenaAllocatorAdapter<T>& lhs,
const ScopedArenaAllocatorAdapter<T>& rhs) {
return lhs.arena_stack_ == rhs.arena_stack_;
}
template <typename T>
inline bool operator!=(const ScopedArenaAllocatorAdapter<T>& lhs,
const ScopedArenaAllocatorAdapter<T>& rhs) {
return !(lhs == rhs);
}
inline ScopedArenaAllocatorAdapter<void> ScopedArenaAllocator::Adapter(ArenaAllocKind kind) {
return ScopedArenaAllocatorAdapter<void>(this, kind);
}
// Special deleter that only calls the destructor. Also checks for double free errors.
template <typename T>
class ArenaDelete {
static constexpr uint8_t kMagicFill = 0xCE;
protected:
// Used for variable sized objects such as RegisterLine.
ALWAYS_INLINE void ProtectMemory(T* ptr, size_t size) const {
if (RUNNING_ON_MEMORY_TOOL > 0) {
// Writing to the memory will fail ift we already destroyed the pointer with
// DestroyOnlyDelete since we make it no access.
memset(ptr, kMagicFill, size);
MEMORY_TOOL_MAKE_NOACCESS(ptr, size);
} else if (kIsDebugBuild) {
CHECK(ArenaStack::ArenaTagForAllocation(reinterpret_cast<void*>(ptr)) == ArenaFreeTag::kUsed)
<< "Freeing invalid object " << ptr;
ArenaStack::ArenaTagForAllocation(reinterpret_cast<void*>(ptr)) = ArenaFreeTag::kFree;
// Write a magic value to try and catch use after free error.
memset(ptr, kMagicFill, size);
}
}
public:
void operator()(T* ptr) const {
if (ptr != nullptr) {
ptr->~T();
ProtectMemory(ptr, sizeof(T));
}
}
};
// In general we lack support for arrays. We would need to call the destructor on each element,
// which requires access to the array size. Support for that is future work.
//
// However, we can support trivially destructible component types, as then a destructor doesn't
// need to be called.
template <typename T>
class ArenaDelete<T[]> {
public:
void operator()(T* ptr ATTRIBUTE_UNUSED) const {
static_assert(std::is_trivially_destructible<T>::value,
"ArenaUniquePtr does not support non-trivially-destructible arrays.");
// TODO: Implement debug checks, and MEMORY_TOOL support.
}
};
// Arena unique ptr that only calls the destructor of the element.
template <typename T>
using ArenaUniquePtr = std::unique_ptr<T, ArenaDelete<T>>;
} // namespace art
#endif // ART_RUNTIME_BASE_SCOPED_ARENA_CONTAINERS_H_