| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "mem_map.h" |
| |
| #include <memory> |
| |
| #include <valgrind.h> |
| |
| #include "gtest/gtest.h" |
| |
| namespace art { |
| |
| class MemMapTest : public testing::Test { |
| public: |
| static byte* BaseBegin(MemMap* mem_map) { |
| return reinterpret_cast<byte*>(mem_map->base_begin_); |
| } |
| static size_t BaseSize(MemMap* mem_map) { |
| return mem_map->base_size_; |
| } |
| |
| static void RemapAtEndTest(bool low_4gb) { |
| std::string error_msg; |
| // Cast the page size to size_t. |
| const size_t page_size = static_cast<size_t>(kPageSize); |
| // Map a two-page memory region. |
| MemMap* m0 = MemMap::MapAnonymous("MemMapTest_RemapAtEndTest_map0", |
| nullptr, |
| 2 * page_size, |
| PROT_READ | PROT_WRITE, |
| low_4gb, |
| &error_msg); |
| // Check its state and write to it. |
| byte* base0 = m0->Begin(); |
| ASSERT_TRUE(base0 != nullptr) << error_msg; |
| size_t size0 = m0->Size(); |
| EXPECT_EQ(m0->Size(), 2 * page_size); |
| EXPECT_EQ(BaseBegin(m0), base0); |
| EXPECT_EQ(BaseSize(m0), size0); |
| memset(base0, 42, 2 * page_size); |
| // Remap the latter half into a second MemMap. |
| MemMap* m1 = m0->RemapAtEnd(base0 + page_size, |
| "MemMapTest_RemapAtEndTest_map1", |
| PROT_READ | PROT_WRITE, |
| &error_msg); |
| // Check the states of the two maps. |
| EXPECT_EQ(m0->Begin(), base0) << error_msg; |
| EXPECT_EQ(m0->Size(), page_size); |
| EXPECT_EQ(BaseBegin(m0), base0); |
| EXPECT_EQ(BaseSize(m0), page_size); |
| byte* base1 = m1->Begin(); |
| size_t size1 = m1->Size(); |
| EXPECT_EQ(base1, base0 + page_size); |
| EXPECT_EQ(size1, page_size); |
| EXPECT_EQ(BaseBegin(m1), base1); |
| EXPECT_EQ(BaseSize(m1), size1); |
| // Write to the second region. |
| memset(base1, 43, page_size); |
| // Check the contents of the two regions. |
| for (size_t i = 0; i < page_size; ++i) { |
| EXPECT_EQ(base0[i], 42); |
| } |
| for (size_t i = 0; i < page_size; ++i) { |
| EXPECT_EQ(base1[i], 43); |
| } |
| // Unmap the first region. |
| delete m0; |
| // Make sure the second region is still accessible after the first |
| // region is unmapped. |
| for (size_t i = 0; i < page_size; ++i) { |
| EXPECT_EQ(base1[i], 43); |
| } |
| delete m1; |
| } |
| |
| #if defined(__LP64__) && !defined(__x86_64__) |
| static uintptr_t GetLinearScanPos() { |
| return MemMap::next_mem_pos_; |
| } |
| #endif |
| }; |
| |
| #if defined(__LP64__) && !defined(__x86_64__) |
| |
| #ifdef __BIONIC__ |
| extern uintptr_t CreateStartPos(uint64_t input); |
| #endif |
| |
| TEST_F(MemMapTest, Start) { |
| uintptr_t start = GetLinearScanPos(); |
| EXPECT_LE(64 * KB, start); |
| EXPECT_LT(start, static_cast<uintptr_t>(ART_BASE_ADDRESS)); |
| |
| #ifdef __BIONIC__ |
| // Test a couple of values. Make sure they are different. |
| uintptr_t last = 0; |
| for (size_t i = 0; i < 100; ++i) { |
| uintptr_t random_start = CreateStartPos(i * kPageSize); |
| EXPECT_NE(last, random_start); |
| last = random_start; |
| } |
| |
| // Even on max, should be below ART_BASE_ADDRESS. |
| EXPECT_LT(CreateStartPos(~0), static_cast<uintptr_t>(ART_BASE_ADDRESS)); |
| #endif |
| // End of test. |
| } |
| #endif |
| |
| TEST_F(MemMapTest, MapAnonymousEmpty) { |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty", |
| nullptr, |
| 0, |
| PROT_READ, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| map.reset(MemMap::MapAnonymous("MapAnonymousEmpty", |
| nullptr, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| } |
| |
| #ifdef __LP64__ |
| TEST_F(MemMapTest, MapAnonymousEmpty32bit) { |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousEmpty", |
| nullptr, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| true, |
| &error_msg)); |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| ASSERT_LT(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), 1ULL << 32); |
| } |
| #endif |
| |
| TEST_F(MemMapTest, MapAnonymousExactAddr) { |
| std::string error_msg; |
| // Map at an address that should work, which should succeed. |
| std::unique_ptr<MemMap> map0(MemMap::MapAnonymous("MapAnonymous0", |
| reinterpret_cast<byte*>(ART_BASE_ADDRESS), |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map0.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| ASSERT_TRUE(map0->BaseBegin() == reinterpret_cast<void*>(ART_BASE_ADDRESS)); |
| // Map at an unspecified address, which should succeed. |
| std::unique_ptr<MemMap> map1(MemMap::MapAnonymous("MapAnonymous1", |
| nullptr, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map1.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| ASSERT_TRUE(map1->BaseBegin() != nullptr); |
| // Attempt to map at the same address, which should fail. |
| std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymous2", |
| reinterpret_cast<byte*>(map1->BaseBegin()), |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map2.get() == nullptr) << error_msg; |
| ASSERT_TRUE(!error_msg.empty()); |
| } |
| |
| TEST_F(MemMapTest, RemapAtEnd) { |
| RemapAtEndTest(false); |
| } |
| |
| #ifdef __LP64__ |
| TEST_F(MemMapTest, RemapAtEnd32bit) { |
| RemapAtEndTest(true); |
| } |
| #endif |
| |
| TEST_F(MemMapTest, MapAnonymousExactAddr32bitHighAddr) { |
| // This test may not work under valgrind. |
| if (RUNNING_ON_VALGRIND == 0) { |
| uintptr_t start_addr = ART_BASE_ADDRESS + 0x1000000; |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousExactAddr32bitHighAddr", |
| reinterpret_cast<byte*>(start_addr), |
| 0x21000000, |
| PROT_READ | PROT_WRITE, |
| true, |
| &error_msg)); |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| ASSERT_EQ(reinterpret_cast<uintptr_t>(BaseBegin(map.get())), start_addr); |
| } |
| } |
| |
| TEST_F(MemMapTest, MapAnonymousOverflow) { |
| std::string error_msg; |
| uintptr_t ptr = 0; |
| ptr -= kPageSize; // Now it's close to the top. |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousOverflow", |
| reinterpret_cast<byte*>(ptr), |
| 2 * kPageSize, // brings it over the top. |
| PROT_READ | PROT_WRITE, |
| false, |
| &error_msg)); |
| ASSERT_EQ(nullptr, map.get()); |
| ASSERT_FALSE(error_msg.empty()); |
| } |
| |
| #ifdef __LP64__ |
| TEST_F(MemMapTest, MapAnonymousLow4GBExpectedTooHigh) { |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousLow4GBExpectedTooHigh", |
| reinterpret_cast<byte*>(UINT64_C(0x100000000)), |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| true, |
| &error_msg)); |
| ASSERT_EQ(nullptr, map.get()); |
| ASSERT_FALSE(error_msg.empty()); |
| } |
| |
| TEST_F(MemMapTest, MapAnonymousLow4GBRangeTooHigh) { |
| std::string error_msg; |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymousLow4GBRangeTooHigh", |
| reinterpret_cast<byte*>(0xF0000000), |
| 0x20000000, |
| PROT_READ | PROT_WRITE, |
| true, |
| &error_msg)); |
| ASSERT_EQ(nullptr, map.get()); |
| ASSERT_FALSE(error_msg.empty()); |
| } |
| #endif |
| |
| TEST_F(MemMapTest, CheckNoGaps) { |
| std::string error_msg; |
| constexpr size_t kNumPages = 3; |
| // Map a 3-page mem map. |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous("MapAnonymous0", |
| nullptr, |
| kPageSize * kNumPages, |
| PROT_READ | PROT_WRITE, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| // Record the base address. |
| byte* map_base = reinterpret_cast<byte*>(map->BaseBegin()); |
| // Unmap it. |
| map.reset(); |
| |
| // Map at the same address, but in page-sized separate mem maps, |
| // assuming the space at the address is still available. |
| std::unique_ptr<MemMap> map0(MemMap::MapAnonymous("MapAnonymous0", |
| map_base, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map0.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| std::unique_ptr<MemMap> map1(MemMap::MapAnonymous("MapAnonymous1", |
| map_base + kPageSize, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map1.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| std::unique_ptr<MemMap> map2(MemMap::MapAnonymous("MapAnonymous2", |
| map_base + kPageSize * 2, |
| kPageSize, |
| PROT_READ | PROT_WRITE, |
| false, |
| &error_msg)); |
| ASSERT_TRUE(map2.get() != nullptr) << error_msg; |
| ASSERT_TRUE(error_msg.empty()); |
| |
| // One-map cases. |
| ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map0.get())); |
| ASSERT_TRUE(MemMap::CheckNoGaps(map1.get(), map1.get())); |
| ASSERT_TRUE(MemMap::CheckNoGaps(map2.get(), map2.get())); |
| |
| // Two or three-map cases. |
| ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map1.get())); |
| ASSERT_TRUE(MemMap::CheckNoGaps(map1.get(), map2.get())); |
| ASSERT_TRUE(MemMap::CheckNoGaps(map0.get(), map2.get())); |
| |
| // Unmap the middle one. |
| map1.reset(); |
| |
| // Should return false now that there's a gap in the middle. |
| ASSERT_FALSE(MemMap::CheckNoGaps(map0.get(), map2.get())); |
| } |
| |
| } // namespace art |