| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "compiler_internals.h" |
| #include "local_value_numbering.h" |
| #include "dataflow_iterator-inl.h" |
| |
| namespace art { |
| |
| /* |
| * Main table containing data flow attributes for each bytecode. The |
| * first kNumPackedOpcodes entries are for Dalvik bytecode |
| * instructions, where extended opcode at the MIR level are appended |
| * afterwards. |
| * |
| * TODO - many optimization flags are incomplete - they will only limit the |
| * scope of optimizations but will not cause mis-optimizations. |
| */ |
| const uint64_t MIRGraph::oat_data_flow_attributes_[kMirOpLast] = { |
| // 00 NOP |
| DF_NOP, |
| |
| // 01 MOVE vA, vB |
| DF_DA | DF_UB | DF_IS_MOVE, |
| |
| // 02 MOVE_FROM16 vAA, vBBBB |
| DF_DA | DF_UB | DF_IS_MOVE, |
| |
| // 03 MOVE_16 vAAAA, vBBBB |
| DF_DA | DF_UB | DF_IS_MOVE, |
| |
| // 04 MOVE_WIDE vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, |
| |
| // 05 MOVE_WIDE_FROM16 vAA, vBBBB |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, |
| |
| // 06 MOVE_WIDE_16 vAAAA, vBBBB |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, |
| |
| // 07 MOVE_OBJECT vA, vB |
| DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, |
| |
| // 08 MOVE_OBJECT_FROM16 vAA, vBBBB |
| DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, |
| |
| // 09 MOVE_OBJECT_16 vAAAA, vBBBB |
| DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, |
| |
| // 0A MOVE_RESULT vAA |
| DF_DA, |
| |
| // 0B MOVE_RESULT_WIDE vAA |
| DF_DA | DF_A_WIDE, |
| |
| // 0C MOVE_RESULT_OBJECT vAA |
| DF_DA | DF_REF_A, |
| |
| // 0D MOVE_EXCEPTION vAA |
| DF_DA | DF_REF_A | DF_NON_NULL_DST, |
| |
| // 0E RETURN_VOID |
| DF_NOP, |
| |
| // 0F RETURN vAA |
| DF_UA, |
| |
| // 10 RETURN_WIDE vAA |
| DF_UA | DF_A_WIDE, |
| |
| // 11 RETURN_OBJECT vAA |
| DF_UA | DF_REF_A, |
| |
| // 12 CONST_4 vA, #+B |
| DF_DA | DF_SETS_CONST, |
| |
| // 13 CONST_16 vAA, #+BBBB |
| DF_DA | DF_SETS_CONST, |
| |
| // 14 CONST vAA, #+BBBBBBBB |
| DF_DA | DF_SETS_CONST, |
| |
| // 15 CONST_HIGH16 VAA, #+BBBB0000 |
| DF_DA | DF_SETS_CONST, |
| |
| // 16 CONST_WIDE_16 vAA, #+BBBB |
| DF_DA | DF_A_WIDE | DF_SETS_CONST, |
| |
| // 17 CONST_WIDE_32 vAA, #+BBBBBBBB |
| DF_DA | DF_A_WIDE | DF_SETS_CONST, |
| |
| // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB |
| DF_DA | DF_A_WIDE | DF_SETS_CONST, |
| |
| // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000 |
| DF_DA | DF_A_WIDE | DF_SETS_CONST, |
| |
| // 1A CONST_STRING vAA, string@BBBB |
| DF_DA | DF_REF_A | DF_NON_NULL_DST, |
| |
| // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB |
| DF_DA | DF_REF_A | DF_NON_NULL_DST, |
| |
| // 1C CONST_CLASS vAA, type@BBBB |
| DF_DA | DF_REF_A | DF_NON_NULL_DST, |
| |
| // 1D MONITOR_ENTER vAA |
| DF_UA | DF_NULL_CHK_0 | DF_REF_A, |
| |
| // 1E MONITOR_EXIT vAA |
| DF_UA | DF_NULL_CHK_0 | DF_REF_A, |
| |
| // 1F CHK_CAST vAA, type@BBBB |
| DF_UA | DF_REF_A | DF_UMS, |
| |
| // 20 INSTANCE_OF vA, vB, type@CCCC |
| DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS, |
| |
| // 21 ARRAY_LENGTH vA, vB |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B, |
| |
| // 22 NEW_INSTANCE vAA, type@BBBB |
| DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS, |
| |
| // 23 NEW_ARRAY vA, vB, type@CCCC |
| DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS, |
| |
| // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA} |
| DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS, |
| |
| // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB |
| DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS, |
| |
| // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB |
| DF_UA | DF_REF_A | DF_UMS, |
| |
| // 27 THROW vAA |
| DF_UA | DF_REF_A | DF_UMS, |
| |
| // 28 GOTO |
| DF_NOP, |
| |
| // 29 GOTO_16 |
| DF_NOP, |
| |
| // 2A GOTO_32 |
| DF_NOP, |
| |
| // 2B PACKED_SWITCH vAA, +BBBBBBBB |
| DF_UA, |
| |
| // 2C SPARSE_SWITCH vAA, +BBBBBBBB |
| DF_UA, |
| |
| // 2D CMPL_FLOAT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A, |
| |
| // 2E CMPG_FLOAT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A, |
| |
| // 2F CMPL_DOUBLE vAA, vBB, vCC |
| DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A, |
| |
| // 30 CMPG_DOUBLE vAA, vBB, vCC |
| DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A, |
| |
| // 31 CMP_LONG vAA, vBB, vCC |
| DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 32 IF_EQ vA, vB, +CCCC |
| DF_UA | DF_UB, |
| |
| // 33 IF_NE vA, vB, +CCCC |
| DF_UA | DF_UB, |
| |
| // 34 IF_LT vA, vB, +CCCC |
| DF_UA | DF_UB, |
| |
| // 35 IF_GE vA, vB, +CCCC |
| DF_UA | DF_UB, |
| |
| // 36 IF_GT vA, vB, +CCCC |
| DF_UA | DF_UB, |
| |
| // 37 IF_LE vA, vB, +CCCC |
| DF_UA | DF_UB, |
| |
| // 38 IF_EQZ vAA, +BBBB |
| DF_UA, |
| |
| // 39 IF_NEZ vAA, +BBBB |
| DF_UA, |
| |
| // 3A IF_LTZ vAA, +BBBB |
| DF_UA, |
| |
| // 3B IF_GEZ vAA, +BBBB |
| DF_UA, |
| |
| // 3C IF_GTZ vAA, +BBBB |
| DF_UA, |
| |
| // 3D IF_LEZ vAA, +BBBB |
| DF_UA, |
| |
| // 3E UNUSED_3E |
| DF_NOP, |
| |
| // 3F UNUSED_3F |
| DF_NOP, |
| |
| // 40 UNUSED_40 |
| DF_NOP, |
| |
| // 41 UNUSED_41 |
| DF_NOP, |
| |
| // 42 UNUSED_42 |
| DF_NOP, |
| |
| // 43 UNUSED_43 |
| DF_NOP, |
| |
| // 44 AGET vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 45 AGET_WIDE vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 46 AGET_OBJECT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 47 AGET_BOOLEAN vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 48 AGET_BYTE vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 49 AGET_CHAR vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 4A AGET_SHORT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 4B APUT vAA, vBB, vCC |
| DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 4C APUT_WIDE vAA, vBB, vCC |
| DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 4D APUT_OBJECT vAA, vBB, vCC |
| DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 4E APUT_BOOLEAN vAA, vBB, vCC |
| DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 4F APUT_BYTE vAA, vBB, vCC |
| DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 50 APUT_CHAR vAA, vBB, vCC |
| DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 51 APUT_SHORT vAA, vBB, vCC |
| DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN, |
| |
| // 52 IGET vA, vB, field@CCCC |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 53 IGET_WIDE vA, vB, field@CCCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 54 IGET_OBJECT vA, vB, field@CCCC |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 55 IGET_BOOLEAN vA, vB, field@CCCC |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 56 IGET_BYTE vA, vB, field@CCCC |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 57 IGET_CHAR vA, vB, field@CCCC |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 58 IGET_SHORT vA, vB, field@CCCC |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 59 IPUT vA, vB, field@CCCC |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 5A IPUT_WIDE vA, vB, field@CCCC |
| DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 5B IPUT_OBJECT vA, vB, field@CCCC |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 5C IPUT_BOOLEAN vA, vB, field@CCCC |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 5D IPUT_BYTE vA, vB, field@CCCC |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 5E IPUT_CHAR vA, vB, field@CCCC |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 5F IPUT_SHORT vA, vB, field@CCCC |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // 60 SGET vAA, field@BBBB |
| DF_DA | DF_SFIELD | DF_UMS, |
| |
| // 61 SGET_WIDE vAA, field@BBBB |
| DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS, |
| |
| // 62 SGET_OBJECT vAA, field@BBBB |
| DF_DA | DF_REF_A | DF_SFIELD | DF_UMS, |
| |
| // 63 SGET_BOOLEAN vAA, field@BBBB |
| DF_DA | DF_SFIELD | DF_UMS, |
| |
| // 64 SGET_BYTE vAA, field@BBBB |
| DF_DA | DF_SFIELD | DF_UMS, |
| |
| // 65 SGET_CHAR vAA, field@BBBB |
| DF_DA | DF_SFIELD | DF_UMS, |
| |
| // 66 SGET_SHORT vAA, field@BBBB |
| DF_DA | DF_SFIELD | DF_UMS, |
| |
| // 67 SPUT vAA, field@BBBB |
| DF_UA | DF_SFIELD | DF_UMS, |
| |
| // 68 SPUT_WIDE vAA, field@BBBB |
| DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS, |
| |
| // 69 SPUT_OBJECT vAA, field@BBBB |
| DF_UA | DF_REF_A | DF_SFIELD | DF_UMS, |
| |
| // 6A SPUT_BOOLEAN vAA, field@BBBB |
| DF_UA | DF_SFIELD | DF_UMS, |
| |
| // 6B SPUT_BYTE vAA, field@BBBB |
| DF_UA | DF_SFIELD | DF_UMS, |
| |
| // 6C SPUT_CHAR vAA, field@BBBB |
| DF_UA | DF_SFIELD | DF_UMS, |
| |
| // 6D SPUT_SHORT vAA, field@BBBB |
| DF_UA | DF_SFIELD | DF_UMS, |
| |
| // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA} |
| DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // 6F INVOKE_SUPER {vD, vE, vF, vG, vA} |
| DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA} |
| DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // 71 INVOKE_STATIC {vD, vE, vF, vG, vA} |
| DF_FORMAT_35C | DF_UMS, |
| |
| // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA} |
| DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // 73 UNUSED_73 |
| DF_NOP, |
| |
| // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN} |
| DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN} |
| DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN} |
| DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN} |
| DF_FORMAT_3RC | DF_UMS, |
| |
| // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN} |
| DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // 79 UNUSED_79 |
| DF_NOP, |
| |
| // 7A UNUSED_7A |
| DF_NOP, |
| |
| // 7B NEG_INT vA, vB |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // 7C NOT_INT vA, vB |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // 7D NEG_LONG vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // 7E NOT_LONG vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // 7F NEG_FLOAT vA, vB |
| DF_DA | DF_UB | DF_FP_A | DF_FP_B, |
| |
| // 80 NEG_DOUBLE vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, |
| |
| // 81 INT_TO_LONG vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // 82 INT_TO_FLOAT vA, vB |
| DF_DA | DF_UB | DF_FP_A | DF_CORE_B, |
| |
| // 83 INT_TO_DOUBLE vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B, |
| |
| // 84 LONG_TO_INT vA, vB |
| DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // 85 LONG_TO_FLOAT vA, vB |
| DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B, |
| |
| // 86 LONG_TO_DOUBLE vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B, |
| |
| // 87 FLOAT_TO_INT vA, vB |
| DF_DA | DF_UB | DF_FP_B | DF_CORE_A, |
| |
| // 88 FLOAT_TO_LONG vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A, |
| |
| // 89 FLOAT_TO_DOUBLE vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B, |
| |
| // 8A DOUBLE_TO_INT vA, vB |
| DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A, |
| |
| // 8B DOUBLE_TO_LONG vA, vB |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A, |
| |
| // 8C DOUBLE_TO_FLOAT vA, vB |
| DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, |
| |
| // 8D INT_TO_BYTE vA, vB |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // 8E INT_TO_CHAR vA, vB |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // 8F INT_TO_SHORT vA, vB |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // 90 ADD_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 91 SUB_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 92 MUL_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 93 DIV_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 94 REM_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 95 AND_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 96 OR_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 97 XOR_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 98 SHL_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 99 SHR_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 9A USHR_INT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 9B ADD_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 9C SUB_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 9D MUL_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 9E DIV_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // 9F REM_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // A0 AND_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // A1 OR_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // A2 XOR_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // A3 SHL_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // A4 SHR_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // A5 USHR_LONG vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, |
| |
| // A6 ADD_FLOAT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // A7 SUB_FLOAT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // A8 MUL_FLOAT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // A9 DIV_FLOAT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // AA REM_FLOAT vAA, vBB, vCC |
| DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // AB ADD_DOUBLE vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // AC SUB_DOUBLE vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // AD MUL_DOUBLE vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // AE DIV_DOUBLE vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // AF REM_DOUBLE vAA, vBB, vCC |
| DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, |
| |
| // B0 ADD_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // B1 SUB_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // B2 MUL_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // B3 DIV_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // B4 REM_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // B5 AND_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // B6 OR_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // B7 XOR_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // B8 SHL_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // B9 SHR_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // BA USHR_INT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // BB ADD_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // BC SUB_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // BD MUL_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // BE DIV_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // BF REM_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // C0 AND_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // C1 OR_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // C2 XOR_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // C3 SHL_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // C4 SHR_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // C5 USHR_LONG_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // C6 ADD_FLOAT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, |
| |
| // C7 SUB_FLOAT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, |
| |
| // C8 MUL_FLOAT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, |
| |
| // C9 DIV_FLOAT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, |
| |
| // CA REM_FLOAT_2ADDR vA, vB |
| DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, |
| |
| // CB ADD_DOUBLE_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, |
| |
| // CC SUB_DOUBLE_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, |
| |
| // CD MUL_DOUBLE_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, |
| |
| // CE DIV_DOUBLE_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, |
| |
| // CF REM_DOUBLE_2ADDR vA, vB |
| DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, |
| |
| // D0 ADD_INT_LIT16 vA, vB, #+CCCC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // D1 RSUB_INT vA, vB, #+CCCC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // D2 MUL_INT_LIT16 vA, vB, #+CCCC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // D3 DIV_INT_LIT16 vA, vB, #+CCCC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // D4 REM_INT_LIT16 vA, vB, #+CCCC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // D5 AND_INT_LIT16 vA, vB, #+CCCC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // D6 OR_INT_LIT16 vA, vB, #+CCCC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // D7 XOR_INT_LIT16 vA, vB, #+CCCC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // D8 ADD_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // D9 RSUB_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // DA MUL_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // DB DIV_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // DC REM_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // DD AND_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // DE OR_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // DF XOR_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // E0 SHL_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // E1 SHR_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // E2 USHR_INT_LIT8 vAA, vBB, #+CC |
| DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, |
| |
| // E3 IGET_VOLATILE |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // E4 IPUT_VOLATILE |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // E5 SGET_VOLATILE |
| DF_DA | DF_SFIELD | DF_UMS, |
| |
| // E6 SPUT_VOLATILE |
| DF_UA | DF_SFIELD | DF_UMS, |
| |
| // E7 IGET_OBJECT_VOLATILE |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // E8 IGET_WIDE_VOLATILE |
| DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // E9 IPUT_WIDE_VOLATILE |
| DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // EA SGET_WIDE_VOLATILE |
| DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS, |
| |
| // EB SPUT_WIDE_VOLATILE |
| DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS, |
| |
| // EC BREAKPOINT |
| DF_NOP, |
| |
| // ED THROW_VERIFICATION_ERROR |
| DF_NOP | DF_UMS, |
| |
| // EE EXECUTE_INLINE |
| DF_FORMAT_35C, |
| |
| // EF EXECUTE_INLINE_RANGE |
| DF_FORMAT_3RC, |
| |
| // F0 INVOKE_OBJECT_INIT_RANGE |
| DF_NOP | DF_NULL_CHK_0, |
| |
| // F1 RETURN_VOID_BARRIER |
| DF_NOP, |
| |
| // F2 IGET_QUICK |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN, |
| |
| // F3 IGET_WIDE_QUICK |
| DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN, |
| |
| // F4 IGET_OBJECT_QUICK |
| DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN, |
| |
| // F5 IPUT_QUICK |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN, |
| |
| // F6 IPUT_WIDE_QUICK |
| DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_IFIELD | DF_LVN, |
| |
| // F7 IPUT_OBJECT_QUICK |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN, |
| |
| // F8 INVOKE_VIRTUAL_QUICK |
| DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // F9 INVOKE_VIRTUAL_QUICK_RANGE |
| DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // FA INVOKE_SUPER_QUICK |
| DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // FB INVOKE_SUPER_QUICK_RANGE |
| DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, |
| |
| // FC IPUT_OBJECT_VOLATILE |
| DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN, |
| |
| // FD SGET_OBJECT_VOLATILE |
| DF_DA | DF_REF_A | DF_SFIELD | DF_UMS, |
| |
| // FE SPUT_OBJECT_VOLATILE |
| DF_UA | DF_REF_A | DF_SFIELD | DF_UMS, |
| |
| // FF UNUSED_FF |
| DF_NOP, |
| |
| // Beginning of extended MIR opcodes |
| // 100 MIR_PHI |
| DF_DA | DF_NULL_TRANSFER_N, |
| |
| // 101 MIR_COPY |
| DF_DA | DF_UB | DF_IS_MOVE, |
| |
| // 102 MIR_FUSED_CMPL_FLOAT |
| DF_UA | DF_UB | DF_FP_A | DF_FP_B, |
| |
| // 103 MIR_FUSED_CMPG_FLOAT |
| DF_UA | DF_UB | DF_FP_A | DF_FP_B, |
| |
| // 104 MIR_FUSED_CMPL_DOUBLE |
| DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, |
| |
| // 105 MIR_FUSED_CMPG_DOUBLE |
| DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, |
| |
| // 106 MIR_FUSED_CMP_LONG |
| DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, |
| |
| // 107 MIR_NOP |
| DF_NOP, |
| |
| // 108 MIR_NULL_CHECK |
| 0, |
| |
| // 109 MIR_RANGE_CHECK |
| 0, |
| |
| // 110 MIR_DIV_ZERO_CHECK |
| 0, |
| |
| // 111 MIR_CHECK |
| 0, |
| |
| // 112 MIR_CHECKPART2 |
| 0, |
| |
| // 113 MIR_SELECT |
| DF_DA | DF_UB, |
| }; |
| |
| /* Return the base virtual register for a SSA name */ |
| int MIRGraph::SRegToVReg(int ssa_reg) const { |
| return ssa_base_vregs_->Get(ssa_reg); |
| } |
| |
| /* Any register that is used before being defined is considered live-in */ |
| void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v, |
| ArenaBitVector* live_in_v, int dalvik_reg_id) { |
| use_v->SetBit(dalvik_reg_id); |
| if (!def_v->IsBitSet(dalvik_reg_id)) { |
| live_in_v->SetBit(dalvik_reg_id); |
| } |
| } |
| |
| /* Mark a reg as being defined */ |
| void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id) { |
| def_v->SetBit(dalvik_reg_id); |
| } |
| |
| /* |
| * Find out live-in variables for natural loops. Variables that are live-in in |
| * the main loop body are considered to be defined in the entry block. |
| */ |
| bool MIRGraph::FindLocalLiveIn(BasicBlock* bb) { |
| MIR* mir; |
| ArenaBitVector *use_v, *def_v, *live_in_v; |
| |
| if (bb->data_flow_info == NULL) return false; |
| |
| use_v = bb->data_flow_info->use_v = |
| new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapUse); |
| def_v = bb->data_flow_info->def_v = |
| new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapDef); |
| live_in_v = bb->data_flow_info->live_in_v = |
| new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapLiveIn); |
| |
| for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { |
| uint64_t df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode]; |
| DecodedInstruction *d_insn = &mir->dalvikInsn; |
| |
| if (df_attributes & DF_HAS_USES) { |
| if (df_attributes & DF_UA) { |
| HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA); |
| if (df_attributes & DF_A_WIDE) { |
| HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1); |
| } |
| } |
| if (df_attributes & DF_UB) { |
| HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB); |
| if (df_attributes & DF_B_WIDE) { |
| HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1); |
| } |
| } |
| if (df_attributes & DF_UC) { |
| HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC); |
| if (df_attributes & DF_C_WIDE) { |
| HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1); |
| } |
| } |
| } |
| if (df_attributes & DF_FORMAT_35C) { |
| for (unsigned int i = 0; i < d_insn->vA; i++) { |
| HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]); |
| } |
| } |
| if (df_attributes & DF_FORMAT_3RC) { |
| for (unsigned int i = 0; i < d_insn->vA; i++) { |
| HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i); |
| } |
| } |
| if (df_attributes & DF_HAS_DEFS) { |
| HandleDef(def_v, d_insn->vA); |
| if (df_attributes & DF_A_WIDE) { |
| HandleDef(def_v, d_insn->vA+1); |
| } |
| } |
| } |
| return true; |
| } |
| |
| int MIRGraph::AddNewSReg(int v_reg) { |
| // Compiler temps always have a subscript of 0 |
| int subscript = (v_reg < 0) ? 0 : ++ssa_last_defs_[v_reg]; |
| int ssa_reg = GetNumSSARegs(); |
| SetNumSSARegs(ssa_reg + 1); |
| ssa_base_vregs_->Insert(v_reg); |
| ssa_subscripts_->Insert(subscript); |
| DCHECK_EQ(ssa_base_vregs_->Size(), ssa_subscripts_->Size()); |
| return ssa_reg; |
| } |
| |
| /* Find out the latest SSA register for a given Dalvik register */ |
| void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index) { |
| DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers)); |
| uses[reg_index] = vreg_to_ssa_map_[dalvik_reg]; |
| } |
| |
| /* Setup a new SSA register for a given Dalvik register */ |
| void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index) { |
| DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers)); |
| int ssa_reg = AddNewSReg(dalvik_reg); |
| vreg_to_ssa_map_[dalvik_reg] = ssa_reg; |
| defs[reg_index] = ssa_reg; |
| } |
| |
| /* Look up new SSA names for format_35c instructions */ |
| void MIRGraph::DataFlowSSAFormat35C(MIR* mir) { |
| DecodedInstruction *d_insn = &mir->dalvikInsn; |
| int num_uses = d_insn->vA; |
| int i; |
| |
| mir->ssa_rep->num_uses = num_uses; |
| mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses, |
| kArenaAllocDFInfo)); |
| // NOTE: will be filled in during type & size inference pass |
| mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses, |
| kArenaAllocDFInfo)); |
| |
| for (i = 0; i < num_uses; i++) { |
| HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i); |
| } |
| } |
| |
| /* Look up new SSA names for format_3rc instructions */ |
| void MIRGraph::DataFlowSSAFormat3RC(MIR* mir) { |
| DecodedInstruction *d_insn = &mir->dalvikInsn; |
| int num_uses = d_insn->vA; |
| int i; |
| |
| mir->ssa_rep->num_uses = num_uses; |
| mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses, |
| kArenaAllocDFInfo)); |
| // NOTE: will be filled in during type & size inference pass |
| mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses, |
| kArenaAllocDFInfo)); |
| |
| for (i = 0; i < num_uses; i++) { |
| HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i); |
| } |
| } |
| |
| /* Entry function to convert a block into SSA representation */ |
| bool MIRGraph::DoSSAConversion(BasicBlock* bb) { |
| MIR* mir; |
| |
| if (bb->data_flow_info == NULL) return false; |
| |
| for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { |
| mir->ssa_rep = |
| static_cast<struct SSARepresentation *>(arena_->Alloc(sizeof(SSARepresentation), |
| kArenaAllocDFInfo)); |
| |
| uint64_t df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode]; |
| |
| // If not a pseudo-op, note non-leaf or can throw |
| if (static_cast<int>(mir->dalvikInsn.opcode) < |
| static_cast<int>(kNumPackedOpcodes)) { |
| int flags = Instruction::FlagsOf(mir->dalvikInsn.opcode); |
| |
| if ((flags & Instruction::kInvoke) != 0 && (mir->optimization_flags & MIR_INLINED) == 0) { |
| attributes_ &= ~METHOD_IS_LEAF; |
| } |
| } |
| |
| int num_uses = 0; |
| |
| if (df_attributes & DF_FORMAT_35C) { |
| DataFlowSSAFormat35C(mir); |
| continue; |
| } |
| |
| if (df_attributes & DF_FORMAT_3RC) { |
| DataFlowSSAFormat3RC(mir); |
| continue; |
| } |
| |
| if (df_attributes & DF_HAS_USES) { |
| if (df_attributes & DF_UA) { |
| num_uses++; |
| if (df_attributes & DF_A_WIDE) { |
| num_uses++; |
| } |
| } |
| if (df_attributes & DF_UB) { |
| num_uses++; |
| if (df_attributes & DF_B_WIDE) { |
| num_uses++; |
| } |
| } |
| if (df_attributes & DF_UC) { |
| num_uses++; |
| if (df_attributes & DF_C_WIDE) { |
| num_uses++; |
| } |
| } |
| } |
| |
| if (num_uses) { |
| mir->ssa_rep->num_uses = num_uses; |
| mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses, |
| kArenaAllocDFInfo)); |
| mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses, |
| kArenaAllocDFInfo)); |
| } |
| |
| int num_defs = 0; |
| |
| if (df_attributes & DF_HAS_DEFS) { |
| num_defs++; |
| if (df_attributes & DF_A_WIDE) { |
| num_defs++; |
| } |
| } |
| |
| if (num_defs) { |
| mir->ssa_rep->num_defs = num_defs; |
| mir->ssa_rep->defs = static_cast<int*>(arena_->Alloc(sizeof(int) * num_defs, |
| kArenaAllocDFInfo)); |
| mir->ssa_rep->fp_def = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_defs, |
| kArenaAllocDFInfo)); |
| } |
| |
| DecodedInstruction *d_insn = &mir->dalvikInsn; |
| |
| if (df_attributes & DF_HAS_USES) { |
| num_uses = 0; |
| if (df_attributes & DF_UA) { |
| mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A; |
| HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++); |
| if (df_attributes & DF_A_WIDE) { |
| mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A; |
| HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++); |
| } |
| } |
| if (df_attributes & DF_UB) { |
| mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B; |
| HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++); |
| if (df_attributes & DF_B_WIDE) { |
| mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B; |
| HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++); |
| } |
| } |
| if (df_attributes & DF_UC) { |
| mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C; |
| HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++); |
| if (df_attributes & DF_C_WIDE) { |
| mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C; |
| HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++); |
| } |
| } |
| } |
| if (df_attributes & DF_HAS_DEFS) { |
| mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A; |
| HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0); |
| if (df_attributes & DF_A_WIDE) { |
| mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A; |
| HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1); |
| } |
| } |
| } |
| |
| /* |
| * Take a snapshot of Dalvik->SSA mapping at the end of each block. The |
| * input to PHI nodes can be derived from the snapshot of all |
| * predecessor blocks. |
| */ |
| bb->data_flow_info->vreg_to_ssa_map = |
| static_cast<int*>(arena_->Alloc(sizeof(int) * cu_->num_dalvik_registers, |
| kArenaAllocDFInfo)); |
| |
| memcpy(bb->data_flow_info->vreg_to_ssa_map, vreg_to_ssa_map_, |
| sizeof(int) * cu_->num_dalvik_registers); |
| return true; |
| } |
| |
| /* Setup the basic data structures for SSA conversion */ |
| void MIRGraph::CompilerInitializeSSAConversion() { |
| size_t num_dalvik_reg = cu_->num_dalvik_registers; |
| |
| ssa_base_vregs_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128, |
| kGrowableArraySSAtoDalvikMap); |
| ssa_subscripts_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128, |
| kGrowableArraySSAtoDalvikMap); |
| /* |
| * Initial number of SSA registers is equal to the number of Dalvik |
| * registers. |
| */ |
| SetNumSSARegs(num_dalvik_reg); |
| |
| /* |
| * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements, |
| * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value |
| * into "(0 << 16) | i" |
| */ |
| for (unsigned int i = 0; i < num_dalvik_reg; i++) { |
| ssa_base_vregs_->Insert(i); |
| ssa_subscripts_->Insert(0); |
| } |
| |
| /* |
| * Initialize the DalvikToSSAMap map. There is one entry for each |
| * Dalvik register, and the SSA names for those are the same. |
| */ |
| vreg_to_ssa_map_ = |
| static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg, |
| kArenaAllocDFInfo)); |
| /* Keep track of the higest def for each dalvik reg */ |
| ssa_last_defs_ = |
| static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg, |
| kArenaAllocDFInfo)); |
| |
| for (unsigned int i = 0; i < num_dalvik_reg; i++) { |
| vreg_to_ssa_map_[i] = i; |
| ssa_last_defs_[i] = 0; |
| } |
| |
| // Create a compiler temporary for Method*. This is done after SSA initialization. |
| GetNewCompilerTemp(kCompilerTempSpecialMethodPtr, false); |
| |
| /* |
| * Allocate the BasicBlockDataFlow structure for the entry and code blocks |
| */ |
| GrowableArray<BasicBlock*>::Iterator iterator(&block_list_); |
| |
| while (true) { |
| BasicBlock* bb = iterator.Next(); |
| if (bb == NULL) break; |
| if (bb->hidden == true) continue; |
| if (bb->block_type == kDalvikByteCode || |
| bb->block_type == kEntryBlock || |
| bb->block_type == kExitBlock) { |
| bb->data_flow_info = |
| static_cast<BasicBlockDataFlow*>(arena_->Alloc(sizeof(BasicBlockDataFlow), |
| kArenaAllocDFInfo)); |
| } |
| } |
| } |
| |
| /* |
| * This function will make a best guess at whether the invoke will |
| * end up using Method*. It isn't critical to get it exactly right, |
| * and attempting to do would involve more complexity than it's |
| * worth. |
| */ |
| bool MIRGraph::InvokeUsesMethodStar(MIR* mir) { |
| InvokeType type; |
| Instruction::Code opcode = mir->dalvikInsn.opcode; |
| switch (opcode) { |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: |
| type = kStatic; |
| break; |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_DIRECT_RANGE: |
| type = kDirect; |
| break; |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| type = kVirtual; |
| break; |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| return false; |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_SUPER: |
| type = kSuper; |
| break; |
| default: |
| LOG(WARNING) << "Unexpected invoke op: " << opcode; |
| return false; |
| } |
| DexCompilationUnit m_unit(cu_); |
| MethodReference target_method(cu_->dex_file, mir->dalvikInsn.vB); |
| int vtable_idx; |
| uintptr_t direct_code; |
| uintptr_t direct_method; |
| uint32_t current_offset = static_cast<uint32_t>(current_offset_); |
| bool fast_path = |
| cu_->compiler_driver->ComputeInvokeInfo(&m_unit, current_offset, |
| false, true, |
| &type, &target_method, |
| &vtable_idx, |
| &direct_code, &direct_method) && |
| !(cu_->enable_debug & (1 << kDebugSlowInvokePath)); |
| return (((type == kDirect) || (type == kStatic)) && |
| fast_path && ((direct_code == 0) || (direct_method == 0))); |
| } |
| |
| /* |
| * Count uses, weighting by loop nesting depth. This code only |
| * counts explicitly used s_regs. A later phase will add implicit |
| * counts for things such as Method*, null-checked references, etc. |
| */ |
| void MIRGraph::CountUses(struct BasicBlock* bb) { |
| if (bb->block_type != kDalvikByteCode) { |
| return; |
| } |
| // Each level of nesting adds *100 to count, up to 3 levels deep. |
| uint32_t depth = std::min(3U, static_cast<uint32_t>(bb->nesting_depth)); |
| uint32_t weight = std::max(1U, depth * 100); |
| for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) { |
| if (mir->ssa_rep == NULL) { |
| continue; |
| } |
| for (int i = 0; i < mir->ssa_rep->num_uses; i++) { |
| int s_reg = mir->ssa_rep->uses[i]; |
| raw_use_counts_.Increment(s_reg); |
| use_counts_.Put(s_reg, use_counts_.Get(s_reg) + weight); |
| } |
| if (!(cu_->disable_opt & (1 << kPromoteCompilerTemps))) { |
| uint64_t df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode]; |
| // Implicit use of Method* ? */ |
| if (df_attributes & DF_UMS) { |
| /* |
| * Some invokes will not use Method* - need to perform test similar |
| * to that found in GenInvoke() to decide whether to count refs |
| * for Method* on invoke-class opcodes. This is a relatively expensive |
| * operation, so should only be done once. |
| * TODO: refactor InvokeUsesMethodStar() to perform check at parse time, |
| * and save results for both here and GenInvoke. For now, go ahead |
| * and assume all invokes use method*. |
| */ |
| raw_use_counts_.Increment(method_sreg_); |
| use_counts_.Put(method_sreg_, use_counts_.Get(method_sreg_) + weight); |
| } |
| } |
| } |
| } |
| |
| /* Verify if all the successor is connected with all the claimed predecessors */ |
| bool MIRGraph::VerifyPredInfo(BasicBlock* bb) { |
| GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors); |
| |
| while (true) { |
| BasicBlock *pred_bb = GetBasicBlock(iter.Next()); |
| if (!pred_bb) break; |
| bool found = false; |
| if (pred_bb->taken == bb->id) { |
| found = true; |
| } else if (pred_bb->fall_through == bb->id) { |
| found = true; |
| } else if (pred_bb->successor_block_list_type != kNotUsed) { |
| GrowableArray<SuccessorBlockInfo*>::Iterator iterator(pred_bb->successor_blocks); |
| while (true) { |
| SuccessorBlockInfo *successor_block_info = iterator.Next(); |
| if (successor_block_info == NULL) break; |
| BasicBlockId succ_bb = successor_block_info->block; |
| if (succ_bb == bb->id) { |
| found = true; |
| break; |
| } |
| } |
| } |
| if (found == false) { |
| char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN]; |
| GetBlockName(bb, block_name1); |
| GetBlockName(pred_bb, block_name2); |
| DumpCFG("/sdcard/cfg/", false); |
| LOG(FATAL) << "Successor " << block_name1 << "not found from " |
| << block_name2; |
| } |
| } |
| return true; |
| } |
| |
| void MIRGraph::VerifyDataflow() { |
| /* Verify if all blocks are connected as claimed */ |
| AllNodesIterator iter(this); |
| for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) { |
| VerifyPredInfo(bb); |
| } |
| } |
| |
| } // namespace art |