blob: 8b9a686ece0f65c095590a11f9519819d77cd8c1 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex/compiler_ir.h"
#include "dex/compiler_internals.h"
#include "dex/quick/arm/arm_lir.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "mirror/array.h"
#include "mirror/object_array-inl.h"
#include "mirror/object-inl.h"
#include "verifier/method_verifier.h"
#include <functional>
namespace art {
// Shortcuts to repeatedly used long types.
typedef mirror::ObjectArray<mirror::Object> ObjArray;
typedef mirror::ObjectArray<mirror::Class> ClassArray;
/*
* This source files contains "gen" codegen routines that should
* be applicable to most targets. Only mid-level support utilities
* and "op" calls may be used here.
*/
/*
* Generate a kPseudoBarrier marker to indicate the boundary of special
* blocks.
*/
void Mir2Lir::GenBarrier() {
LIR* barrier = NewLIR0(kPseudoBarrier);
/* Mark all resources as being clobbered */
DCHECK(!barrier->flags.use_def_invalid);
barrier->u.m.def_mask = ENCODE_ALL;
}
void Mir2Lir::GenDivZeroException() {
LIR* branch = OpUnconditionalBranch(nullptr);
AddDivZeroCheckSlowPath(branch);
}
void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
LIR* branch = OpCondBranch(c_code, nullptr);
AddDivZeroCheckSlowPath(branch);
}
void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
AddDivZeroCheckSlowPath(branch);
}
void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
: LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowDivZero), true);
}
};
AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
}
void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
: LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
index_(index), length_(length) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
index_, length_, true);
}
private:
const RegStorage index_;
const RegStorage length_;
};
LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
}
void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
: LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
index_(index), length_(length) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->OpRegCopy(m2l_->TargetReg(kArg1), length_);
m2l_->LoadConstant(m2l_->TargetReg(kArg0), index_);
m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pThrowArrayBounds),
m2l_->TargetReg(kArg0), m2l_->TargetReg(kArg1), true);
}
private:
const int32_t index_;
const RegStorage length_;
};
LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
}
LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
: LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pThrowNullPointer), true);
}
};
LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
return branch;
}
/* Perform null-check on a register. */
LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
if (Runtime::Current()->ExplicitNullChecks()) {
return GenExplicitNullCheck(m_reg, opt_flags);
}
return nullptr;
}
/* Perform an explicit null-check on a register. */
LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return NULL;
}
return GenNullCheck(m_reg);
}
void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
if (!Runtime::Current()->ExplicitNullChecks()) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
MarkSafepointPC(last_lir_insn_);
}
}
void Mir2Lir::MarkPossibleStackOverflowException() {
if (!Runtime::Current()->ExplicitStackOverflowChecks()) {
MarkSafepointPC(last_lir_insn_);
}
}
void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
if (!Runtime::Current()->ExplicitNullChecks()) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
// Force an implicit null check by performing a memory operation (load) from the given
// register with offset 0. This will cause a signal if the register contains 0 (null).
RegStorage tmp = AllocTemp();
// TODO: for Mips, would be best to use rZERO as the bogus register target.
LIR* load = Load32Disp(reg, 0, tmp);
FreeTemp(tmp);
MarkSafepointPC(load);
}
}
void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
RegLocation rl_src2, LIR* taken,
LIR* fall_through) {
ConditionCode cond;
switch (opcode) {
case Instruction::IF_EQ:
cond = kCondEq;
break;
case Instruction::IF_NE:
cond = kCondNe;
break;
case Instruction::IF_LT:
cond = kCondLt;
break;
case Instruction::IF_GE:
cond = kCondGe;
break;
case Instruction::IF_GT:
cond = kCondGt;
break;
case Instruction::IF_LE:
cond = kCondLe;
break;
default:
cond = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected opcode " << opcode;
}
// Normalize such that if either operand is constant, src2 will be constant
if (rl_src1.is_const) {
RegLocation rl_temp = rl_src1;
rl_src1 = rl_src2;
rl_src2 = rl_temp;
cond = FlipComparisonOrder(cond);
}
rl_src1 = LoadValue(rl_src1, kCoreReg);
// Is this really an immediate comparison?
if (rl_src2.is_const) {
// If it's already live in a register or not easily materialized, just keep going
RegLocation rl_temp = UpdateLoc(rl_src2);
if ((rl_temp.location == kLocDalvikFrame) &&
InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) {
// OK - convert this to a compare immediate and branch
OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
return;
}
}
rl_src2 = LoadValue(rl_src2, kCoreReg);
OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
}
void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
LIR* fall_through) {
ConditionCode cond;
rl_src = LoadValue(rl_src, kCoreReg);
switch (opcode) {
case Instruction::IF_EQZ:
cond = kCondEq;
break;
case Instruction::IF_NEZ:
cond = kCondNe;
break;
case Instruction::IF_LTZ:
cond = kCondLt;
break;
case Instruction::IF_GEZ:
cond = kCondGe;
break;
case Instruction::IF_GTZ:
cond = kCondGt;
break;
case Instruction::IF_LEZ:
cond = kCondLe;
break;
default:
cond = static_cast<ConditionCode>(0);
LOG(FATAL) << "Unexpected opcode " << opcode;
}
OpCmpImmBranch(cond, rl_src.reg, 0, taken);
}
void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (rl_src.location == kLocPhysReg) {
OpRegCopy(rl_result.reg, rl_src.reg);
} else {
LoadValueDirect(rl_src, rl_result.reg.GetLow());
}
OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
StoreValueWide(rl_dest, rl_result);
}
void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src) {
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpKind op = kOpInvalid;
switch (opcode) {
case Instruction::INT_TO_BYTE:
op = kOp2Byte;
break;
case Instruction::INT_TO_SHORT:
op = kOp2Short;
break;
case Instruction::INT_TO_CHAR:
op = kOp2Char;
break;
default:
LOG(ERROR) << "Bad int conversion type";
}
OpRegReg(op, rl_result.reg, rl_src.reg);
StoreValue(rl_dest, rl_result);
}
/*
* Let helper function take care of everything. Will call
* Array::AllocFromCode(type_idx, method, count);
* Note: AllocFromCode will handle checks for errNegativeArraySize.
*/
void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src) {
FlushAllRegs(); /* Everything to home location */
ThreadOffset<4> func_offset(-1);
const DexFile* dex_file = cu_->dex_file;
CompilerDriver* driver = cu_->compiler_driver;
if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file,
type_idx)) {
bool is_type_initialized; // Ignored as an array does not have an initializer.
bool use_direct_type_ptr;
uintptr_t direct_type_ptr;
if (kEmbedClassInCode &&
driver->CanEmbedTypeInCode(*dex_file, type_idx,
&is_type_initialized, &use_direct_type_ptr, &direct_type_ptr)) {
// The fast path.
if (!use_direct_type_ptr) {
LoadClassType(type_idx, kArg0);
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocArrayResolved);
CallRuntimeHelperRegMethodRegLocation(func_offset, TargetReg(kArg0), rl_src, true);
} else {
// Use the direct pointer.
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocArrayResolved);
CallRuntimeHelperImmMethodRegLocation(func_offset, direct_type_ptr, rl_src, true);
}
} else {
// The slow path.
DCHECK_EQ(func_offset.Int32Value(), -1);
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocArray);
CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
}
DCHECK_NE(func_offset.Int32Value(), -1);
} else {
func_offset= QUICK_ENTRYPOINT_OFFSET(4, pAllocArrayWithAccessCheck);
CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
}
RegLocation rl_result = GetReturn(false);
StoreValue(rl_dest, rl_result);
}
/*
* Similar to GenNewArray, but with post-allocation initialization.
* Verifier guarantees we're dealing with an array class. Current
* code throws runtime exception "bad Filled array req" for 'D' and 'J'.
* Current code also throws internal unimp if not 'L', '[' or 'I'.
*/
void Mir2Lir::GenFilledNewArray(CallInfo* info) {
int elems = info->num_arg_words;
int type_idx = info->index;
FlushAllRegs(); /* Everything to home location */
ThreadOffset<4> func_offset(-1);
if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
type_idx)) {
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pCheckAndAllocArray);
} else {
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pCheckAndAllocArrayWithAccessCheck);
}
CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
FreeTemp(TargetReg(kArg2));
FreeTemp(TargetReg(kArg1));
/*
* NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
* return region. Because AllocFromCode placed the new array
* in kRet0, we'll just lock it into place. When debugger support is
* added, it may be necessary to additionally copy all return
* values to a home location in thread-local storage
*/
LockTemp(TargetReg(kRet0));
// TODO: use the correct component size, currently all supported types
// share array alignment with ints (see comment at head of function)
size_t component_size = sizeof(int32_t);
// Having a range of 0 is legal
if (info->is_range && (elems > 0)) {
/*
* Bit of ugliness here. We're going generate a mem copy loop
* on the register range, but it is possible that some regs
* in the range have been promoted. This is unlikely, but
* before generating the copy, we'll just force a flush
* of any regs in the source range that have been promoted to
* home location.
*/
for (int i = 0; i < elems; i++) {
RegLocation loc = UpdateLoc(info->args[i]);
if (loc.location == kLocPhysReg) {
Store32Disp(TargetReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
}
}
/*
* TUNING note: generated code here could be much improved, but
* this is an uncommon operation and isn't especially performance
* critical.
*/
RegStorage r_src = AllocTemp();
RegStorage r_dst = AllocTemp();
RegStorage r_idx = AllocTemp();
RegStorage r_val;
switch (cu_->instruction_set) {
case kThumb2:
r_val = TargetReg(kLr);
break;
case kX86:
case kX86_64:
FreeTemp(TargetReg(kRet0));
r_val = AllocTemp();
break;
case kMips:
r_val = AllocTemp();
break;
default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
}
// Set up source pointer
RegLocation rl_first = info->args[0];
OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low));
// Set up the target pointer
OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0),
mirror::Array::DataOffset(component_size).Int32Value());
// Set up the loop counter (known to be > 0)
LoadConstant(r_idx, elems - 1);
// Generate the copy loop. Going backwards for convenience
LIR* target = NewLIR0(kPseudoTargetLabel);
// Copy next element
LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
FreeTemp(r_val);
OpDecAndBranch(kCondGe, r_idx, target);
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
// Restore the target pointer
OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst,
-mirror::Array::DataOffset(component_size).Int32Value());
}
} else if (!info->is_range) {
// TUNING: interleave
for (int i = 0; i < elems; i++) {
RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
Store32Disp(TargetReg(kRet0),
mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
// If the LoadValue caused a temp to be allocated, free it
if (IsTemp(rl_arg.reg)) {
FreeTemp(rl_arg.reg);
}
}
}
if (info->result.location != kLocInvalid) {
StoreValue(info->result, GetReturn(false /* not fp */));
}
}
//
// Slow path to ensure a class is initialized for sget/sput.
//
class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
public:
StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
RegStorage r_base) :
LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
storage_index_(storage_index), r_base_(r_base) {
}
void Compile() {
LIR* unresolved_target = GenerateTargetLabel();
uninit_->target = unresolved_target;
m2l_->CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeStaticStorage),
storage_index_, true);
// Copy helper's result into r_base, a no-op on all but MIPS.
m2l_->OpRegCopy(r_base_, m2l_->TargetReg(kRet0));
m2l_->OpUnconditionalBranch(cont_);
}
private:
LIR* const uninit_;
const int storage_index_;
const RegStorage r_base_;
};
void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
bool is_object) {
const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
if (field_info.FastPut() && !SLOW_FIELD_PATH) {
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
RegStorage r_base;
if (field_info.IsReferrersClass()) {
// Fast path, static storage base is this method's class
RegLocation rl_method = LoadCurrMethod();
r_base = AllocTemp();
LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base);
if (IsTemp(rl_method.reg)) {
FreeTemp(rl_method.reg);
}
} else {
// Medium path, static storage base in a different class which requires checks that the other
// class is initialized.
// TODO: remove initialized check now that we are initializing classes in the compiler driver.
DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
// May do runtime call so everything to home locations.
FlushAllRegs();
// Using fixed register to sync with possible call to runtime support.
RegStorage r_method = TargetReg(kArg1);
LockTemp(r_method);
LoadCurrMethodDirect(r_method);
r_base = TargetReg(kArg0);
LockTemp(r_base);
LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base);
int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
LoadRefDisp(r_base, offset_of_field, r_base);
// r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
if (!field_info.IsInitialized() &&
(mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
// Check if r_base is NULL or a not yet initialized class.
// The slow path is invoked if the r_base is NULL or the class pointed
// to by it is not initialized.
LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
RegStorage r_tmp = TargetReg(kArg2);
LockTemp(r_tmp);
LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
mirror::Class::StatusOffset().Int32Value(),
mirror::Class::kStatusInitialized, NULL);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
field_info.StorageIndex(), r_base));
FreeTemp(r_tmp);
}
FreeTemp(r_method);
}
// rBase now holds static storage base
if (is_long_or_double) {
RegisterClass register_kind = kAnyReg;
if (field_info.IsVolatile() && cu_->instruction_set == kX86) {
// Force long/double volatile stores into SSE registers to avoid tearing.
register_kind = kFPReg;
}
rl_src = LoadValueWide(rl_src, register_kind);
} else {
rl_src = LoadValue(rl_src, kAnyReg);
}
if (field_info.IsVolatile()) {
// There might have been a store before this volatile one so insert StoreStore barrier.
GenMemBarrier(kStoreStore);
}
if (is_long_or_double) {
StoreBaseDispWide(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg);
} else if (rl_src.ref) {
StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg);
} else {
Store32Disp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg);
}
if (field_info.IsVolatile()) {
// A load might follow the volatile store so insert a StoreLoad barrier.
GenMemBarrier(kStoreLoad);
}
if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
MarkGCCard(rl_src.reg, r_base);
}
FreeTemp(r_base);
} else {
FlushAllRegs(); // Everything to home locations
ThreadOffset<4> setter_offset =
is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pSet64Static)
: (is_object ? QUICK_ENTRYPOINT_OFFSET(4, pSetObjStatic)
: QUICK_ENTRYPOINT_OFFSET(4, pSet32Static));
CallRuntimeHelperImmRegLocation(setter_offset, field_info.FieldIndex(), rl_src, true);
}
}
void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
bool is_long_or_double, bool is_object) {
const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
if (field_info.FastGet() && !SLOW_FIELD_PATH) {
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
RegStorage r_base;
if (field_info.IsReferrersClass()) {
// Fast path, static storage base is this method's class
RegLocation rl_method = LoadCurrMethod();
r_base = AllocTemp();
LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base);
} else {
// Medium path, static storage base in a different class which requires checks that the other
// class is initialized
DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
// May do runtime call so everything to home locations.
FlushAllRegs();
// Using fixed register to sync with possible call to runtime support.
RegStorage r_method = TargetReg(kArg1);
LockTemp(r_method);
LoadCurrMethodDirect(r_method);
r_base = TargetReg(kArg0);
LockTemp(r_base);
LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base);
int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
LoadRefDisp(r_base, offset_of_field, r_base);
// r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
if (!field_info.IsInitialized() &&
(mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
// Check if r_base is NULL or a not yet initialized class.
// The slow path is invoked if the r_base is NULL or the class pointed
// to by it is not initialized.
LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
RegStorage r_tmp = TargetReg(kArg2);
LockTemp(r_tmp);
LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
mirror::Class::StatusOffset().Int32Value(),
mirror::Class::kStatusInitialized, NULL);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
field_info.StorageIndex(), r_base));
FreeTemp(r_tmp);
}
FreeTemp(r_method);
}
// r_base now holds static storage base
RegisterClass result_reg_kind = kAnyReg;
if (field_info.IsVolatile() && cu_->instruction_set == kX86) {
// Force long/double volatile loads into SSE registers to avoid tearing.
result_reg_kind = kFPReg;
}
RegLocation rl_result = EvalLoc(rl_dest, result_reg_kind, true);
if (is_long_or_double) {
LoadBaseDispWide(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg, INVALID_SREG);
} else if (rl_result.ref) {
LoadRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg);
} else {
Load32Disp(r_base, field_info.FieldOffset().Int32Value(), rl_result.reg);
}
FreeTemp(r_base);
if (field_info.IsVolatile()) {
// Without context sensitive analysis, we must issue the most conservative barriers.
// In this case, either a load or store may follow so we issue both barriers.
GenMemBarrier(kLoadLoad);
GenMemBarrier(kLoadStore);
}
if (is_long_or_double) {
StoreValueWide(rl_dest, rl_result);
} else {
StoreValue(rl_dest, rl_result);
}
} else {
FlushAllRegs(); // Everything to home locations
ThreadOffset<4> getterOffset =
is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pGet64Static)
:(is_object ? QUICK_ENTRYPOINT_OFFSET(4, pGetObjStatic)
: QUICK_ENTRYPOINT_OFFSET(4, pGet32Static));
CallRuntimeHelperImm(getterOffset, field_info.FieldIndex(), true);
if (is_long_or_double) {
RegLocation rl_result = GetReturnWide(rl_dest.fp);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(rl_dest.fp);
StoreValue(rl_dest, rl_result);
}
}
}
// Generate code for all slow paths.
void Mir2Lir::HandleSlowPaths() {
int n = slow_paths_.Size();
for (int i = 0; i < n; ++i) {
LIRSlowPath* slowpath = slow_paths_.Get(i);
slowpath->Compile();
}
slow_paths_.Reset();
}
void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
bool is_object) {
const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
if (field_info.FastGet() && !SLOW_FIELD_PATH) {
RegLocation rl_result;
RegisterClass reg_class = oat_reg_class_by_size(size);
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
rl_obj = LoadValue(rl_obj, kCoreReg);
if (is_long_or_double) {
DCHECK(rl_dest.wide);
GenNullCheck(rl_obj.reg, opt_flags);
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
RegisterClass result_reg_kind = kAnyReg;
if (field_info.IsVolatile() && cu_->instruction_set == kX86) {
// Force long/double volatile loads into SSE registers to avoid tearing.
result_reg_kind = kFPReg;
}
rl_result = EvalLoc(rl_dest, result_reg_kind, true);
LoadBaseDispWide(rl_obj.reg, field_info.FieldOffset().Int32Value(), rl_result.reg,
rl_obj.s_reg_low);
MarkPossibleNullPointerException(opt_flags);
if (field_info.IsVolatile()) {
// Without context sensitive analysis, we must issue the most conservative barriers.
// In this case, either a load or store may follow so we issue both barriers.
GenMemBarrier(kLoadLoad);
GenMemBarrier(kLoadStore);
}
} else {
RegStorage reg_ptr = AllocTemp();
OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg, field_info.FieldOffset().Int32Value());
rl_result = EvalLoc(rl_dest, reg_class, true);
LoadBaseDispWide(reg_ptr, 0, rl_result.reg, INVALID_SREG);
MarkPossibleNullPointerException(opt_flags);
if (field_info.IsVolatile()) {
// Without context sensitive analysis, we must issue the most conservative barriers.
// In this case, either a load or store may follow so we issue both barriers.
GenMemBarrier(kLoadLoad);
GenMemBarrier(kLoadStore);
}
FreeTemp(reg_ptr);
}
StoreValueWide(rl_dest, rl_result);
} else {
rl_result = EvalLoc(rl_dest, reg_class, true);
GenNullCheck(rl_obj.reg, opt_flags);
LoadBaseDisp(rl_obj.reg, field_info.FieldOffset().Int32Value(), rl_result.reg, k32,
rl_obj.s_reg_low);
MarkPossibleNullPointerException(opt_flags);
if (field_info.IsVolatile()) {
// Without context sensitive analysis, we must issue the most conservative barriers.
// In this case, either a load or store may follow so we issue both barriers.
GenMemBarrier(kLoadLoad);
GenMemBarrier(kLoadStore);
}
StoreValue(rl_dest, rl_result);
}
} else {
ThreadOffset<4> getterOffset =
is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pGet64Instance)
: (is_object ? QUICK_ENTRYPOINT_OFFSET(4, pGetObjInstance)
: QUICK_ENTRYPOINT_OFFSET(4, pGet32Instance));
CallRuntimeHelperImmRegLocation(getterOffset, field_info.FieldIndex(), rl_obj, true);
if (is_long_or_double) {
RegLocation rl_result = GetReturnWide(rl_dest.fp);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result = GetReturn(rl_dest.fp);
StoreValue(rl_dest, rl_result);
}
}
}
void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
bool is_object) {
const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
if (field_info.FastPut() && !SLOW_FIELD_PATH) {
RegisterClass reg_class = oat_reg_class_by_size(size);
DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
rl_obj = LoadValue(rl_obj, kCoreReg);
if (is_long_or_double) {
RegisterClass src_reg_kind = kAnyReg;
if (field_info.IsVolatile() && cu_->instruction_set == kX86) {
// Force long/double volatile stores into SSE registers to avoid tearing.
src_reg_kind = kFPReg;
}
rl_src = LoadValueWide(rl_src, src_reg_kind);
GenNullCheck(rl_obj.reg, opt_flags);
RegStorage reg_ptr = AllocTemp();
OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg, field_info.FieldOffset().Int32Value());
if (field_info.IsVolatile()) {
// There might have been a store before this volatile one so insert StoreStore barrier.
GenMemBarrier(kStoreStore);
}
StoreBaseDispWide(reg_ptr, 0, rl_src.reg);
MarkPossibleNullPointerException(opt_flags);
if (field_info.IsVolatile()) {
// A load might follow the volatile store so insert a StoreLoad barrier.
GenMemBarrier(kStoreLoad);
}
FreeTemp(reg_ptr);
} else {
rl_src = LoadValue(rl_src, reg_class);
GenNullCheck(rl_obj.reg, opt_flags);
if (field_info.IsVolatile()) {
// There might have been a store before this volatile one so insert StoreStore barrier.
GenMemBarrier(kStoreStore);
}
Store32Disp(rl_obj.reg, field_info.FieldOffset().Int32Value(), rl_src.reg);
MarkPossibleNullPointerException(opt_flags);
if (field_info.IsVolatile()) {
// A load might follow the volatile store so insert a StoreLoad barrier.
GenMemBarrier(kStoreLoad);
}
if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
MarkGCCard(rl_src.reg, rl_obj.reg);
}
}
} else {
ThreadOffset<4> setter_offset =
is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(4, pSet64Instance)
: (is_object ? QUICK_ENTRYPOINT_OFFSET(4, pSetObjInstance)
: QUICK_ENTRYPOINT_OFFSET(4, pSet32Instance));
CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_info.FieldIndex(),
rl_obj, rl_src, true);
}
}
void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
RegLocation rl_src) {
bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
(opt_flags & MIR_IGNORE_NULL_CHECK));
ThreadOffset<4> helper = needs_range_check
? (needs_null_check ? QUICK_ENTRYPOINT_OFFSET(4, pAputObjectWithNullAndBoundCheck)
: QUICK_ENTRYPOINT_OFFSET(4, pAputObjectWithBoundCheck))
: QUICK_ENTRYPOINT_OFFSET(4, pAputObject);
CallRuntimeHelperRegLocationRegLocationRegLocation(helper, rl_array, rl_index, rl_src, true);
}
void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
RegLocation rl_method = LoadCurrMethod();
RegStorage res_reg = AllocTemp();
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
*cu_->dex_file,
type_idx)) {
// Call out to helper which resolves type and verifies access.
// Resolved type returned in kRet0.
CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
type_idx, rl_method.reg, true);
RegLocation rl_result = GetReturn(false);
StoreValue(rl_dest, rl_result);
} else {
// We're don't need access checks, load type from dex cache
int32_t dex_cache_offset =
mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
Load32Disp(rl_method.reg, dex_cache_offset, res_reg);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
Load32Disp(res_reg, offset_of_type, rl_result.reg);
if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
type_idx) || SLOW_TYPE_PATH) {
// Slow path, at runtime test if type is null and if so initialize
FlushAllRegs();
LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
LIR* cont = NewLIR0(kPseudoTargetLabel);
// Object to generate the slow path for class resolution.
class SlowPath : public LIRSlowPath {
public:
SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
const RegLocation& rl_method, const RegLocation& rl_result) :
LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
rl_method_(rl_method), rl_result_(rl_result) {
}
void Compile() {
GenerateTargetLabel();
m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
rl_method_.reg, true);
m2l_->OpRegCopy(rl_result_.reg, m2l_->TargetReg(kRet0));
m2l_->OpUnconditionalBranch(cont_);
}
private:
const int type_idx_;
const RegLocation rl_method_;
const RegLocation rl_result_;
};
// Add to list for future.
AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
StoreValue(rl_dest, rl_result);
} else {
// Fast path, we're done - just store result
StoreValue(rl_dest, rl_result);
}
}
}
void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
/* NOTE: Most strings should be available at compile time */
int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
Int32Value();
if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
*cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
// slow path, resolve string if not in dex cache
FlushAllRegs();
LockCallTemps(); // Using explicit registers
// If the Method* is already in a register, we can save a copy.
RegLocation rl_method = mir_graph_->GetMethodLoc();
RegStorage r_method;
if (rl_method.location == kLocPhysReg) {
// A temp would conflict with register use below.
DCHECK(!IsTemp(rl_method.reg));
r_method = rl_method.reg;
} else {
r_method = TargetReg(kArg2);
LoadCurrMethodDirect(r_method);
}
LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
TargetReg(kArg0));
// Might call out to helper, which will return resolved string in kRet0
Load32Disp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0));
LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0), 0, NULL);
LIR* cont = NewLIR0(kPseudoTargetLabel);
{
// Object to generate the slow path for string resolution.
class SlowPath : public LIRSlowPath {
public:
SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
r_method_(r_method), string_idx_(string_idx) {
}
void Compile() {
GenerateTargetLabel();
m2l_->CallRuntimeHelperRegImm(QUICK_ENTRYPOINT_OFFSET(4, pResolveString),
r_method_, string_idx_, true);
m2l_->OpUnconditionalBranch(cont_);
}
private:
const RegStorage r_method_;
const int32_t string_idx_;
};
AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
}
GenBarrier();
StoreValue(rl_dest, GetReturn(false));
} else {
RegLocation rl_method = LoadCurrMethod();
RegStorage res_reg = AllocTemp();
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg);
Load32Disp(res_reg, offset_of_string, rl_result.reg);
StoreValue(rl_dest, rl_result);
}
}
/*
* Let helper function take care of everything. Will
* call Class::NewInstanceFromCode(type_idx, method);
*/
void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
FlushAllRegs(); /* Everything to home location */
// alloc will always check for resolution, do we also need to verify
// access because the verifier was unable to?
ThreadOffset<4> func_offset(-1);
const DexFile* dex_file = cu_->dex_file;
CompilerDriver* driver = cu_->compiler_driver;
if (driver->CanAccessInstantiableTypeWithoutChecks(
cu_->method_idx, *dex_file, type_idx)) {
bool is_type_initialized;
bool use_direct_type_ptr;
uintptr_t direct_type_ptr;
if (kEmbedClassInCode &&
driver->CanEmbedTypeInCode(*dex_file, type_idx,
&is_type_initialized, &use_direct_type_ptr, &direct_type_ptr)) {
// The fast path.
if (!use_direct_type_ptr) {
LoadClassType(type_idx, kArg0);
if (!is_type_initialized) {
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectResolved);
CallRuntimeHelperRegMethod(func_offset, TargetReg(kArg0), true);
} else {
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectInitialized);
CallRuntimeHelperRegMethod(func_offset, TargetReg(kArg0), true);
}
} else {
// Use the direct pointer.
if (!is_type_initialized) {
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectResolved);
CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
} else {
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectInitialized);
CallRuntimeHelperImmMethod(func_offset, direct_type_ptr, true);
}
}
} else {
// The slow path.
DCHECK_EQ(func_offset.Int32Value(), -1);
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObject);
CallRuntimeHelperImmMethod(func_offset, type_idx, true);
}
DCHECK_NE(func_offset.Int32Value(), -1);
} else {
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pAllocObjectWithAccessCheck);
CallRuntimeHelperImmMethod(func_offset, type_idx, true);
}
RegLocation rl_result = GetReturn(false);
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenThrow(RegLocation rl_src) {
FlushAllRegs();
CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pDeliverException), rl_src, true);
}
// For final classes there are no sub-classes to check and so we can answer the instance-of
// question with simple comparisons.
void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src) {
// X86 has its own implementation.
DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
RegLocation object = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
RegStorage result_reg = rl_result.reg;
if (result_reg == object.reg) {
result_reg = AllocTypedTemp(false, kCoreReg);
}
LoadConstant(result_reg, 0); // assume false
LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
RegStorage check_class = AllocTypedTemp(false, kCoreReg);
RegStorage object_class = AllocTypedTemp(false, kCoreReg);
LoadCurrMethodDirect(check_class);
if (use_declaring_class) {
LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class);
LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class);
} else {
LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
check_class);
LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(check_class, offset_of_type, check_class);
}
LIR* ne_branchover = NULL;
// FIXME: what should we be comparing here? compressed or decompressed references?
if (cu_->instruction_set == kThumb2) {
OpRegReg(kOpCmp, check_class, object_class); // Same?
LIR* it = OpIT(kCondEq, ""); // if-convert the test
LoadConstant(result_reg, 1); // .eq case - load true
OpEndIT(it);
} else {
ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL);
LoadConstant(result_reg, 1); // eq case - load true
}
LIR* target = NewLIR0(kPseudoTargetLabel);
null_branchover->target = target;
if (ne_branchover != NULL) {
ne_branchover->target = target;
}
FreeTemp(object_class);
FreeTemp(check_class);
if (IsTemp(result_reg)) {
OpRegCopy(rl_result.reg, result_reg);
FreeTemp(result_reg);
}
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
bool type_known_abstract, bool use_declaring_class,
bool can_assume_type_is_in_dex_cache,
uint32_t type_idx, RegLocation rl_dest,
RegLocation rl_src) {
// X86 has its own implementation.
DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
FlushAllRegs();
// May generate a call - use explicit registers
LockCallTemps();
LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method*
RegStorage class_reg = TargetReg(kArg2); // kArg2 will hold the Class*
if (needs_access_check) {
// Check we have access to type_idx and if not throw IllegalAccessError,
// returns Class* in kArg0
CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
type_idx, true);
OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path
LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref
} else if (use_declaring_class) {
LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref
LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
class_reg);
} else {
// Load dex cache entry into class_reg (kArg2)
LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref
LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
class_reg);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(class_reg, offset_of_type, class_reg);
if (!can_assume_type_is_in_dex_cache) {
// Need to test presence of type in dex cache at runtime
LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
// Not resolved
// Call out to helper, which will return resolved type in kRet0
CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path
LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* reload Ref */
// Rejoin code paths
LIR* hop_target = NewLIR0(kPseudoTargetLabel);
hop_branch->target = hop_target;
}
}
/* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
RegLocation rl_result = GetReturn(false);
if (cu_->instruction_set == kMips) {
// On MIPS rArg0 != rl_result, place false in result if branch is taken.
LoadConstant(rl_result.reg, 0);
}
LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
/* load object->klass_ */
DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
LoadRefDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
/* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
LIR* branchover = NULL;
if (type_known_final) {
// rl_result == ref == null == 0.
if (cu_->instruction_set == kThumb2) {
OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same?
LIR* it = OpIT(kCondEq, "E"); // if-convert the test
LoadConstant(rl_result.reg, 1); // .eq case - load true
LoadConstant(rl_result.reg, 0); // .ne case - load false
OpEndIT(it);
} else {
LoadConstant(rl_result.reg, 0); // ne case - load false
branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL);
LoadConstant(rl_result.reg, 1); // eq case - load true
}
} else {
if (cu_->instruction_set == kThumb2) {
RegStorage r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
LIR* it = nullptr;
if (!type_known_abstract) {
/* Uses conditional nullification */
OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same?
it = OpIT(kCondEq, "EE"); // if-convert the test
LoadConstant(TargetReg(kArg0), 1); // .eq case - load true
}
OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class
OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class)
if (it != nullptr) {
OpEndIT(it);
}
FreeTemp(r_tgt);
} else {
if (!type_known_abstract) {
/* Uses branchovers */
LoadConstant(rl_result.reg, 1); // assume true
branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
}
RegStorage r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class
OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class)
FreeTemp(r_tgt);
}
}
// TODO: only clobber when type isn't final?
ClobberCallerSave();
/* branch targets here */
LIR* target = NewLIR0(kPseudoTargetLabel);
StoreValue(rl_dest, rl_result);
branch1->target = target;
if (branchover != NULL) {
branchover->target = target;
}
}
void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
bool type_known_final, type_known_abstract, use_declaring_class;
bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
*cu_->dex_file,
type_idx,
&type_known_final,
&type_known_abstract,
&use_declaring_class);
bool can_assume_type_is_in_dex_cache = !needs_access_check &&
cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
} else {
GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
use_declaring_class, can_assume_type_is_in_dex_cache,
type_idx, rl_dest, rl_src);
}
}
void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
bool type_known_final, type_known_abstract, use_declaring_class;
bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
*cu_->dex_file,
type_idx,
&type_known_final,
&type_known_abstract,
&use_declaring_class);
// Note: currently type_known_final is unused, as optimizing will only improve the performance
// of the exception throw path.
DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
// Verifier type analysis proved this check cast would never cause an exception.
return;
}
FlushAllRegs();
// May generate a call - use explicit registers
LockCallTemps();
LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method*
RegStorage class_reg = TargetReg(kArg2); // kArg2 will hold the Class*
if (needs_access_check) {
// Check we have access to type_idx and if not throw IllegalAccessError,
// returns Class* in kRet0
// InitializeTypeAndVerifyAccess(idx, method)
CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
type_idx, TargetReg(kArg1), true);
OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path
} else if (use_declaring_class) {
LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
class_reg);
} else {
// Load dex cache entry into class_reg (kArg2)
LoadRefDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
class_reg);
int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
LoadRefDisp(class_reg, offset_of_type, class_reg);
if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
// Need to test presence of type in dex cache at runtime
LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
LIR* cont = NewLIR0(kPseudoTargetLabel);
// Slow path to initialize the type. Executed if the type is NULL.
class SlowPath : public LIRSlowPath {
public:
SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
const RegStorage class_reg) :
LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
class_reg_(class_reg) {
}
void Compile() {
GenerateTargetLabel();
// Call out to helper, which will return resolved type in kArg0
// InitializeTypeFromCode(idx, method)
m2l_->CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx_,
m2l_->TargetReg(kArg1), true);
m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0)); // Align usage with fast path
m2l_->OpUnconditionalBranch(cont_);
}
public:
const int type_idx_;
const RegStorage class_reg_;
};
AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
}
}
// At this point, class_reg (kArg2) has class
LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref
// Slow path for the case where the classes are not equal. In this case we need
// to call a helper function to do the check.
class SlowPath : public LIRSlowPath {
public:
SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
}
void Compile() {
GenerateTargetLabel();
if (load_) {
m2l_->LoadRefDisp(m2l_->TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(),
m2l_->TargetReg(kArg1));
}
m2l_->CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(4, pCheckCast), m2l_->TargetReg(kArg2),
m2l_->TargetReg(kArg1), true);
m2l_->OpUnconditionalBranch(cont_);
}
private:
const bool load_;
};
if (type_known_abstract) {
// Easier case, run slow path if target is non-null (slow path will load from target)
LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0), 0, NULL);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
} else {
// Harder, more common case. We need to generate a forward branch over the load
// if the target is null. If it's non-null we perform the load and branch to the
// slow path if the classes are not equal.
/* Null is OK - continue */
LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
/* load object->klass_ */
DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
LoadRefDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1), class_reg, NULL);
LIR* cont = NewLIR0(kPseudoTargetLabel);
// Add the slow path that will not perform load since this is already done.
AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
// Set the null check to branch to the continuation.
branch1->target = cont;
}
}
void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
RegLocation rl_result;
if (cu_->instruction_set == kThumb2) {
/*
* NOTE: This is the one place in the code in which we might have
* as many as six live temporary registers. There are 5 in the normal
* set for Arm. Until we have spill capabilities, temporarily add
* lr to the temp set. It is safe to do this locally, but note that
* lr is used explicitly elsewhere in the code generator and cannot
* normally be used as a general temp register.
*/
MarkTemp(TargetReg(kLr)); // Add lr to the temp pool
FreeTemp(TargetReg(kLr)); // and make it available
}
rl_src1 = LoadValueWide(rl_src1, kCoreReg);
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// The longs may overlap - use intermediate temp if so
if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
RegStorage t_reg = AllocTemp();
OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
OpRegCopy(rl_result.reg.GetLow(), t_reg);
FreeTemp(t_reg);
} else {
OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
}
/*
* NOTE: If rl_dest refers to a frame variable in a large frame, the
* following StoreValueWide might need to allocate a temp register.
* To further work around the lack of a spill capability, explicitly
* free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
* Remove when spill is functional.
*/
FreeRegLocTemps(rl_result, rl_src1);
FreeRegLocTemps(rl_result, rl_src2);
StoreValueWide(rl_dest, rl_result);
if (cu_->instruction_set == kThumb2) {
Clobber(TargetReg(kLr));
UnmarkTemp(TargetReg(kLr)); // Remove lr from the temp pool
}
}
void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_shift) {
ThreadOffset<4> func_offset(-1);
switch (opcode) {
case Instruction::SHL_LONG:
case Instruction::SHL_LONG_2ADDR:
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pShlLong);
break;
case Instruction::SHR_LONG:
case Instruction::SHR_LONG_2ADDR:
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pShrLong);
break;
case Instruction::USHR_LONG:
case Instruction::USHR_LONG_2ADDR:
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pUshrLong);
break;
default:
LOG(FATAL) << "Unexpected case";
}
FlushAllRegs(); /* Send everything to home location */
CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
RegLocation rl_result = GetReturnWide(false);
StoreValueWide(rl_dest, rl_result);
}
void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
OpKind op = kOpBkpt;
bool is_div_rem = false;
bool check_zero = false;
bool unary = false;
RegLocation rl_result;
bool shift_op = false;
switch (opcode) {
case Instruction::NEG_INT:
op = kOpNeg;
unary = true;
break;
case Instruction::NOT_INT:
op = kOpMvn;
unary = true;
break;
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
op = kOpAdd;
break;
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
op = kOpSub;
break;
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
op = kOpMul;
break;
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
check_zero = true;
op = kOpDiv;
is_div_rem = true;
break;
/* NOTE: returns in kArg1 */
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
check_zero = true;
op = kOpRem;
is_div_rem = true;
break;
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
op = kOpAnd;
break;
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
op = kOpOr;
break;
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
op = kOpXor;
break;
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
shift_op = true;
op = kOpLsl;
break;
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
shift_op = true;
op = kOpAsr;
break;
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
shift_op = true;
op = kOpLsr;
break;
default:
LOG(FATAL) << "Invalid word arith op: " << opcode;
}
if (!is_div_rem) {
if (unary) {
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegReg(op, rl_result.reg, rl_src1.reg);
} else {
if (shift_op) {
rl_src2 = LoadValue(rl_src2, kCoreReg);
RegStorage t_reg = AllocTemp();
OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
FreeTemp(t_reg);
} else {
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
}
}
StoreValue(rl_dest, rl_result);
} else {
bool done = false; // Set to true if we happen to find a way to use a real instruction.
if (cu_->instruction_set == kMips) {
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
if (check_zero) {
GenDivZeroCheck(rl_src2.reg);
}
rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
done = true;
} else if (cu_->instruction_set == kThumb2) {
if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
// Use ARM SDIV instruction for division. For remainder we also need to
// calculate using a MUL and subtract.
rl_src1 = LoadValue(rl_src1, kCoreReg);
rl_src2 = LoadValue(rl_src2, kCoreReg);
if (check_zero) {
GenDivZeroCheck(rl_src2.reg);
}
rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
done = true;
}
}
// If we haven't already generated the code use the callout function.
if (!done) {
ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pIdivmod);
FlushAllRegs(); /* Send everything to home location */
LoadValueDirectFixed(rl_src2, TargetReg(kArg1));
RegStorage r_tgt = CallHelperSetup(func_offset);
LoadValueDirectFixed(rl_src1, TargetReg(kArg0));
if (check_zero) {
GenDivZeroCheck(TargetReg(kArg1));
}
// NOTE: callout here is not a safepoint.
CallHelper(r_tgt, func_offset, false /* not a safepoint */);
if (op == kOpDiv)
rl_result = GetReturn(false);
else
rl_result = GetReturnAlt();
}
StoreValue(rl_dest, rl_result);
}
}
/*
* The following are the first-level codegen routines that analyze the format
* of each bytecode then either dispatch special purpose codegen routines
* or produce corresponding Thumb instructions directly.
*/
// Returns true if no more than two bits are set in 'x'.
static bool IsPopCountLE2(unsigned int x) {
x &= x - 1;
return (x & (x - 1)) == 0;
}
// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
// and store the result in 'rl_dest'.
bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
RegLocation rl_src, RegLocation rl_dest, int lit) {
if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
return false;
}
// No divide instruction for Arm, so check for more special cases
if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
}
int k = LowestSetBit(lit);
if (k >= 30) {
// Avoid special cases.
return false;
}
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (is_div) {
RegStorage t_reg = AllocTemp();
if (lit == 2) {
// Division by 2 is by far the most common division by constant.
OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
} else {
OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
}
} else {
RegStorage t_reg1 = AllocTemp();
RegStorage t_reg2 = AllocTemp();
if (lit == 2) {
OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
} else {
OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
}
}
StoreValue(rl_dest, rl_result);
return true;
}
// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
// and store the result in 'rl_dest'.
bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
if (lit < 0) {
return false;
}
if (lit == 0) {
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
LoadConstant(rl_result.reg, 0);
StoreValue(rl_dest, rl_result);
return true;
}
if (lit == 1) {
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
OpRegCopy(rl_result.reg, rl_src.reg);
StoreValue(rl_dest, rl_result);
return true;
}
// There is RegRegRegShift on Arm, so check for more special cases
if (cu_->instruction_set == kThumb2) {
return EasyMultiply(rl_src, rl_dest, lit);
}
// Can we simplify this multiplication?
bool power_of_two = false;
bool pop_count_le2 = false;
bool power_of_two_minus_one = false;
if (IsPowerOfTwo(lit)) {
power_of_two = true;
} else if (IsPopCountLE2(lit)) {
pop_count_le2 = true;
} else if (IsPowerOfTwo(lit + 1)) {
power_of_two_minus_one = true;
} else {
return false;
}
rl_src = LoadValue(rl_src, kCoreReg);
RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (power_of_two) {
// Shift.
OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
} else if (pop_count_le2) {
// Shift and add and shift.
int first_bit = LowestSetBit(lit);
int second_bit = LowestSetBit(lit ^ (1 << first_bit));
GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
} else {
// Reverse subtract: (src << (shift + 1)) - src.
DCHECK(power_of_two_minus_one);
// TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
RegStorage t_reg = AllocTemp();
OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
}
StoreValue(rl_dest, rl_result);
return true;
}
void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
int lit) {
RegLocation rl_result;
OpKind op = static_cast<OpKind>(0); /* Make gcc happy */
int shift_op = false;
bool is_div = false;
switch (opcode) {
case Instruction::RSUB_INT_LIT8:
case Instruction::RSUB_INT: {
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
if (cu_->instruction_set == kThumb2) {
OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
} else {
OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
OpRegImm(kOpAdd, rl_result.reg, lit);
}
StoreValue(rl_dest, rl_result);
return;
}
case Instruction::SUB_INT:
case Instruction::SUB_INT_2ADDR:
lit = -lit;
// Intended fallthrough
case Instruction::ADD_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::ADD_INT_LIT8:
case Instruction::ADD_INT_LIT16:
op = kOpAdd;
break;
case Instruction::MUL_INT:
case Instruction::MUL_INT_2ADDR:
case Instruction::MUL_INT_LIT8:
case Instruction::MUL_INT_LIT16: {
if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
return;
}
op = kOpMul;
break;
}
case Instruction::AND_INT:
case Instruction::AND_INT_2ADDR:
case Instruction::AND_INT_LIT8:
case Instruction::AND_INT_LIT16:
op = kOpAnd;
break;
case Instruction::OR_INT:
case Instruction::OR_INT_2ADDR:
case Instruction::OR_INT_LIT8:
case Instruction::OR_INT_LIT16:
op = kOpOr;
break;
case Instruction::XOR_INT:
case Instruction::XOR_INT_2ADDR:
case Instruction::XOR_INT_LIT8:
case Instruction::XOR_INT_LIT16:
op = kOpXor;
break;
case Instruction::SHL_INT_LIT8:
case Instruction::SHL_INT:
case Instruction::SHL_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpLsl;
break;
case Instruction::SHR_INT_LIT8:
case Instruction::SHR_INT:
case Instruction::SHR_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpAsr;
break;
case Instruction::USHR_INT_LIT8:
case Instruction::USHR_INT:
case Instruction::USHR_INT_2ADDR:
lit &= 31;
shift_op = true;
op = kOpLsr;
break;
case Instruction::DIV_INT:
case Instruction::DIV_INT_2ADDR:
case Instruction::DIV_INT_LIT8:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT:
case Instruction::REM_INT_2ADDR:
case Instruction::REM_INT_LIT8:
case Instruction::REM_INT_LIT16: {
if (lit == 0) {
GenDivZeroException();
return;
}
if ((opcode == Instruction::DIV_INT) ||
(opcode == Instruction::DIV_INT_2ADDR) ||
(opcode == Instruction::DIV_INT_LIT8) ||
(opcode == Instruction::DIV_INT_LIT16)) {
is_div = true;
} else {
is_div = false;
}
if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
return;
}
bool done = false;
if (cu_->instruction_set == kMips) {
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
done = true;
} else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
done = true;
} else if (cu_->instruction_set == kThumb2) {
if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
// Use ARM SDIV instruction for division. For remainder we also need to
// calculate using a MUL and subtract.
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
done = true;
}
}
if (!done) {
FlushAllRegs(); /* Everything to home location. */
LoadValueDirectFixed(rl_src, TargetReg(kArg0));
Clobber(TargetReg(kArg0));
ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pIdivmod);
CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false);
if (is_div)
rl_result = GetReturn(false);
else
rl_result = GetReturnAlt();
}
StoreValue(rl_dest, rl_result);
return;
}
default:
LOG(FATAL) << "Unexpected opcode " << opcode;
}
rl_src = LoadValue(rl_src, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// Avoid shifts by literal 0 - no support in Thumb. Change to copy.
if (shift_op && (lit == 0)) {
OpRegCopy(rl_result.reg, rl_src.reg);
} else {
OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
}
StoreValue(rl_dest, rl_result);
}
void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
RegLocation rl_src1, RegLocation rl_src2) {
RegLocation rl_result;
OpKind first_op = kOpBkpt;
OpKind second_op = kOpBkpt;
bool call_out = false;
bool check_zero = false;
ThreadOffset<4> func_offset(-1);
int ret_reg = TargetReg(kRet0).GetReg();
switch (opcode) {
case Instruction::NOT_LONG:
rl_src2 = LoadValueWide(rl_src2, kCoreReg);
rl_result = EvalLoc(rl_dest, kCoreReg, true);
// Check for destructive overlap
if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
RegStorage t_reg = AllocTemp();
OpRegCopy(t_reg, rl_src2.reg.GetHigh());
OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
FreeTemp(t_reg);
} else {
OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
}
StoreValueWide(rl_dest, rl_result);
return;
case Instruction::ADD_LONG:
case Instruction::ADD_LONG_2ADDR:
if (cu_->instruction_set != kThumb2) {
GenAddLong(opcode, rl_dest, rl_src1, rl_src2);
return;
}
first_op = kOpAdd;
second_op = kOpAdc;
break;
case Instruction::SUB_LONG:
case Instruction::SUB_LONG_2ADDR:
if (cu_->instruction_set != kThumb2) {
GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
return;
}
first_op = kOpSub;
second_op = kOpSbc;
break;
case Instruction::MUL_LONG:
case Instruction::MUL_LONG_2ADDR:
if (cu_->instruction_set != kMips) {
GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
return;
} else {
call_out = true;
ret_reg = TargetReg(kRet0).GetReg();
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLmul);
}
break;
case Instruction::DIV_LONG:
case Instruction::DIV_LONG_2ADDR:
call_out = true;
check_zero = true;
ret_reg = TargetReg(kRet0).GetReg();
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLdiv);
break;
case Instruction::REM_LONG:
case Instruction::REM_LONG_2ADDR:
call_out = true;
check_zero = true;
func_offset = QUICK_ENTRYPOINT_OFFSET(4, pLmod);
/* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2).GetReg() : TargetReg(kRet0).GetReg();
break;
case Instruction::AND_LONG_2ADDR:
case Instruction::AND_LONG:
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
return GenAndLong(opcode, rl_dest, rl_src1, rl_src2);
}
first_op = kOpAnd;
second_op = kOpAnd;
break;
case Instruction::OR_LONG:
case Instruction::OR_LONG_2ADDR:
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
GenOrLong(opcode, rl_dest, rl_src1, rl_src2);
return;
}
first_op = kOpOr;
second_op = kOpOr;
break;
case Instruction::XOR_LONG:
case Instruction::XOR_LONG_2ADDR:
if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
GenXorLong(opcode, rl_dest, rl_src1, rl_src2);
return;
}
first_op = kOpXor;
second_op = kOpXor;
break;
case Instruction::NEG_LONG: {
GenNegLong(rl_dest, rl_src2);
return;
}
default:
LOG(FATAL) << "Invalid long arith op";
}
if (!call_out) {
GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
} else {
FlushAllRegs(); /* Send everything to home location */
if (check_zero) {
RegStorage r_tmp1 = RegStorage::MakeRegPair(TargetReg(kArg0), TargetReg(kArg1));
RegStorage r_tmp2 = RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3));
LoadValueDirectWideFixed(rl_src2, r_tmp2);
RegStorage r_tgt = CallHelperSetup(func_offset);
GenDivZeroCheckWide(RegStorage::MakeRegPair(TargetReg(kArg2), TargetReg(kArg3)));
LoadValueDirectWideFixed(rl_src1, r_tmp1);
// NOTE: callout here is not a safepoint
CallHelper(r_tgt, func_offset, false /* not safepoint */);
} else {
CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
}
// Adjust return regs in to handle case of rem returning kArg2/kArg3
if (ret_reg == TargetReg(kRet0).GetReg())
rl_result = GetReturnWide(false);
else
rl_result = GetReturnWideAlt();
StoreValueWide(rl_dest, rl_result);
}
}
void Mir2Lir::GenConversionCall(ThreadOffset<4> func_offset,
RegLocation rl_dest, RegLocation rl_src) {
/*
* Don't optimize the register usage since it calls out to support
* functions
*/
FlushAllRegs(); /* Send everything to home location */
CallRuntimeHelperRegLocation(func_offset, rl_src, false);
if (rl_dest.wide) {
RegLocation rl_result;
rl_result = GetReturnWide(rl_dest.fp);
StoreValueWide(rl_dest, rl_result);
} else {
RegLocation rl_result;
rl_result = GetReturn(rl_dest.fp);
StoreValue(rl_dest, rl_result);
}
}
class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
public:
SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
: LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoSuspendTarget);
m2l_->CallRuntimeHelper(QUICK_ENTRYPOINT_OFFSET(4, pTestSuspend), true);
if (cont_ != nullptr) {
m2l_->OpUnconditionalBranch(cont_);
}
}
};
/* Check if we need to check for pending suspend request */
void Mir2Lir::GenSuspendTest(int opt_flags) {
if (Runtime::Current()->ExplicitSuspendChecks()) {
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
return;
}
FlushAllRegs();
LIR* branch = OpTestSuspend(NULL);
LIR* cont = NewLIR0(kPseudoTargetLabel);
AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
} else {
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
return;
}
FlushAllRegs(); // TODO: needed?
LIR* inst = CheckSuspendUsingLoad();
MarkSafepointPC(inst);
}
}
/* Check if we need to check for pending suspend request */
void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
if (Runtime::Current()->ExplicitSuspendChecks()) {
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
OpUnconditionalBranch(target);
return;
}
OpTestSuspend(target);
FlushAllRegs();
LIR* branch = OpUnconditionalBranch(nullptr);
AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
} else {
// For the implicit suspend check, just perform the trigger
// load and branch to the target.
if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
OpUnconditionalBranch(target);
return;
}
FlushAllRegs();
LIR* inst = CheckSuspendUsingLoad();
MarkSafepointPC(inst);
OpUnconditionalBranch(target);
}
}
/* Call out to helper assembly routine that will null check obj and then lock it. */
void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
FlushAllRegs();
CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pLockObject), rl_src, true);
}
/* Call out to helper assembly routine that will null check obj and then unlock it. */
void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
FlushAllRegs();
CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject), rl_src, true);
}
/* Generic code for generating a wide constant into a VR. */
void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
LoadConstantWide(rl_result.reg, value);
StoreValueWide(rl_dest, rl_result);
}
} // namespace art