| // Copyright 2011 Google Inc. All Rights Reserved. |
| |
| #include "heap.h" |
| |
| #include <limits> |
| #include <vector> |
| |
| #include "card_table.h" |
| #include "debugger.h" |
| #include "image.h" |
| #include "mark_sweep.h" |
| #include "object.h" |
| #include "space.h" |
| #include "stl_util.h" |
| #include "thread_list.h" |
| #include "timing_logger.h" |
| #include "UniquePtr.h" |
| |
| namespace art { |
| |
| bool Heap::is_verbose_heap_ = false; |
| |
| bool Heap::is_verbose_gc_ = false; |
| |
| std::vector<Space*> Heap::spaces_; |
| |
| Space* Heap::alloc_space_ = NULL; |
| |
| size_t Heap::maximum_size_ = 0; |
| |
| size_t Heap::growth_size_ = 0; |
| |
| size_t Heap::num_bytes_allocated_ = 0; |
| |
| size_t Heap::num_objects_allocated_ = 0; |
| |
| bool Heap::is_gc_running_ = false; |
| |
| HeapBitmap* Heap::mark_bitmap_ = NULL; |
| |
| HeapBitmap* Heap::live_bitmap_ = NULL; |
| |
| CardTable* Heap::card_table_ = NULL; |
| |
| bool Heap::card_marking_disabled_ = false; |
| |
| Class* Heap::java_lang_ref_FinalizerReference_ = NULL; |
| Class* Heap::java_lang_ref_ReferenceQueue_ = NULL; |
| |
| MemberOffset Heap::reference_referent_offset_ = MemberOffset(0); |
| MemberOffset Heap::reference_queue_offset_ = MemberOffset(0); |
| MemberOffset Heap::reference_queueNext_offset_ = MemberOffset(0); |
| MemberOffset Heap::reference_pendingNext_offset_ = MemberOffset(0); |
| MemberOffset Heap::finalizer_reference_zombie_offset_ = MemberOffset(0); |
| |
| float Heap::target_utilization_ = 0.5; |
| |
| Mutex* Heap::lock_ = NULL; |
| |
| bool Heap::verify_objects_ = false; |
| |
| void Heap::Init(bool is_verbose_heap, bool is_verbose_gc, |
| size_t initial_size, size_t maximum_size, size_t growth_size, |
| const std::vector<std::string>& image_file_names) { |
| is_verbose_heap_ = is_verbose_heap; |
| is_verbose_gc_ = is_verbose_gc; |
| |
| const Runtime* runtime = Runtime::Current(); |
| if (Heap::IsVerboseHeap() || runtime->IsVerboseStartup()) { |
| LOG(INFO) << "Heap::Init entering"; |
| } |
| |
| // bounds of all spaces for allocating live and mark bitmaps |
| // there will be at least one space (the alloc space), |
| // so set base to max, and limit and min to start |
| byte* base = reinterpret_cast<byte*>(std::numeric_limits<uintptr_t>::max()); |
| byte* max = reinterpret_cast<byte*>(std::numeric_limits<uintptr_t>::min()); |
| byte* limit = reinterpret_cast<byte*>(std::numeric_limits<uintptr_t>::min()); |
| |
| byte* requested_base = NULL; |
| std::vector<Space*> image_spaces; |
| for (size_t i = 0; i < image_file_names.size(); i++) { |
| Space* space = Space::CreateFromImage(image_file_names[i]); |
| if (space == NULL) { |
| LOG(FATAL) << "Failed to create space from " << image_file_names[i]; |
| } |
| image_spaces.push_back(space); |
| spaces_.push_back(space); |
| byte* oat_limit_addr = space->GetImageHeader().GetOatLimitAddr(); |
| if (oat_limit_addr > requested_base) { |
| requested_base = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_limit_addr), |
| kPageSize)); |
| } |
| base = std::min(base, space->GetBase()); |
| max = std::max(max, space->GetMax()); |
| limit = std::max(limit, space->GetLimit()); |
| } |
| |
| alloc_space_ = Space::Create("alloc space", initial_size, maximum_size, growth_size, requested_base); |
| if (alloc_space_ == NULL) { |
| LOG(FATAL) << "Failed to create alloc space"; |
| } |
| base = std::min(base, alloc_space_->GetBase()); |
| max = std::max(max, alloc_space_->GetMax()); |
| limit = std::max(limit, alloc_space_->GetLimit()); |
| DCHECK_LT(base, max); |
| DCHECK_LT(base, limit); |
| size_t num_bytes = max - base; |
| size_t limit_bytes = limit - base; |
| |
| // Allocate the initial live bitmap. |
| UniquePtr<HeapBitmap> live_bitmap(HeapBitmap::Create("dalvik-bitmap-1", base, num_bytes)); |
| if (live_bitmap.get() == NULL) { |
| LOG(FATAL) << "Failed to create live bitmap"; |
| } |
| |
| // Allocate the initial mark bitmap. |
| UniquePtr<HeapBitmap> mark_bitmap(HeapBitmap::Create("dalvik-bitmap-2", base, num_bytes)); |
| if (mark_bitmap.get() == NULL) { |
| LOG(FATAL) << "Failed to create mark bitmap"; |
| } |
| |
| // Allocate the card table. |
| UniquePtr<CardTable> card_table(CardTable::Create(base, num_bytes, limit_bytes)); |
| if (card_table.get() == NULL) { |
| LOG(FATAL) << "Failed to create card table"; |
| } |
| |
| spaces_.push_back(alloc_space_); |
| maximum_size_ = maximum_size; |
| growth_size_ = growth_size; |
| live_bitmap_ = live_bitmap.release(); |
| mark_bitmap_ = mark_bitmap.release(); |
| card_table_ = card_table.release(); |
| |
| num_bytes_allocated_ = 0; |
| num_objects_allocated_ = 0; |
| |
| // Make image objects live (after live_bitmap_ is set) |
| for (size_t i = 0; i < image_spaces.size(); i++) { |
| RecordImageAllocations(image_spaces[i]); |
| } |
| |
| Heap::EnableObjectValidation(); |
| |
| // It's still to early to take a lock because there are no threads yet, |
| // but we can create the heap lock now. We don't create it earlier to |
| // make it clear that you can't use locks during heap initialization. |
| lock_ = new Mutex("Heap lock"); |
| |
| if (Heap::IsVerboseHeap() || runtime->IsVerboseStartup()) { |
| LOG(INFO) << "Heap::Init exiting"; |
| } |
| } |
| |
| void Heap::Destroy() { |
| ScopedHeapLock lock; |
| STLDeleteElements(&spaces_); |
| if (mark_bitmap_ != NULL) { |
| delete mark_bitmap_; |
| mark_bitmap_ = NULL; |
| } |
| if (live_bitmap_ != NULL) { |
| delete live_bitmap_; |
| } |
| live_bitmap_ = NULL; |
| } |
| |
| Object* Heap::AllocObject(Class* klass, size_t byte_count) { |
| { |
| ScopedHeapLock lock; |
| DCHECK(klass == NULL || klass->GetDescriptor() == NULL || |
| (klass->IsClassClass() && byte_count >= sizeof(Class)) || |
| (klass->IsVariableSize() || klass->GetObjectSize() == byte_count)); |
| DCHECK_GE(byte_count, sizeof(Object)); |
| Object* obj = AllocateLocked(byte_count); |
| if (obj != NULL) { |
| obj->SetClass(klass); |
| if (Dbg::IsAllocTrackingEnabled()) { |
| Dbg::RecordAllocation(klass, byte_count); |
| } |
| return obj; |
| } |
| } |
| |
| Thread::Current()->ThrowOutOfMemoryError(klass, byte_count); |
| return NULL; |
| } |
| |
| bool Heap::IsHeapAddress(const Object* obj) { |
| // Note: we deliberately don't take the lock here, and mustn't test anything that would |
| // require taking the lock. |
| if (obj == NULL || !IsAligned<kObjectAlignment>(obj)) { |
| return false; |
| } |
| // TODO |
| return true; |
| } |
| |
| bool Heap::IsLiveObjectLocked(const Object* obj) { |
| lock_->AssertHeld(); |
| return IsHeapAddress(obj) && live_bitmap_->Test(obj); |
| } |
| |
| #if VERIFY_OBJECT_ENABLED |
| void Heap::VerifyObject(const Object* obj) { |
| if (!verify_objects_) { |
| return; |
| } |
| ScopedHeapLock lock; |
| Heap::VerifyObjectLocked(obj); |
| } |
| #endif |
| |
| void Heap::VerifyObjectLocked(const Object* obj) { |
| lock_->AssertHeld(); |
| if (obj != NULL) { |
| if (!IsAligned<kObjectAlignment>(obj)) { |
| LOG(FATAL) << "Object isn't aligned: " << obj; |
| } else if (!live_bitmap_->Test(obj)) { |
| // TODO: we don't hold a lock here as it is assumed the live bit map |
| // isn't changing if the mutator is running. |
| LOG(FATAL) << "Object is dead: " << obj; |
| } |
| // Ignore early dawn of the universe verifications |
| if (num_objects_allocated_ > 10) { |
| const byte* raw_addr = reinterpret_cast<const byte*>(obj) + |
| Object::ClassOffset().Int32Value(); |
| const Class* c = *reinterpret_cast<Class* const *>(raw_addr); |
| if (c == NULL) { |
| LOG(FATAL) << "Null class" << " in object: " << obj; |
| } else if (!IsAligned<kObjectAlignment>(c)) { |
| LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj; |
| } else if (!live_bitmap_->Test(c)) { |
| LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj; |
| } |
| // Check obj.getClass().getClass() == obj.getClass().getClass().getClass() |
| // Note: we don't use the accessors here as they have internal sanity checks |
| // that we don't want to run |
| raw_addr = reinterpret_cast<const byte*>(c) + |
| Object::ClassOffset().Int32Value(); |
| const Class* c_c = *reinterpret_cast<Class* const *>(raw_addr); |
| raw_addr = reinterpret_cast<const byte*>(c_c) + |
| Object::ClassOffset().Int32Value(); |
| const Class* c_c_c = *reinterpret_cast<Class* const *>(raw_addr); |
| CHECK_EQ(c_c, c_c_c); |
| } |
| } |
| } |
| |
| void Heap::VerificationCallback(Object* obj, void* arg) { |
| DCHECK(obj != NULL); |
| Heap::VerifyObjectLocked(obj); |
| } |
| |
| void Heap::VerifyHeap() { |
| ScopedHeapLock lock; |
| live_bitmap_->Walk(Heap::VerificationCallback, NULL); |
| } |
| |
| void Heap::RecordAllocationLocked(Space* space, const Object* obj) { |
| #ifndef NDEBUG |
| if (Runtime::Current()->IsStarted()) { |
| lock_->AssertHeld(); |
| } |
| #endif |
| size_t size = space->AllocationSize(obj); |
| DCHECK_NE(size, 0u); |
| num_bytes_allocated_ += size; |
| num_objects_allocated_ += 1; |
| |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| RuntimeStats* thread_stats = Thread::Current()->GetStats(); |
| ++global_stats->allocated_objects; |
| ++thread_stats->allocated_objects; |
| global_stats->allocated_bytes += size; |
| thread_stats->allocated_bytes += size; |
| } |
| |
| live_bitmap_->Set(obj); |
| } |
| |
| void Heap::RecordFreeLocked(size_t freed_objects, size_t freed_bytes) { |
| lock_->AssertHeld(); |
| |
| if (freed_objects < num_objects_allocated_) { |
| num_objects_allocated_ -= freed_objects; |
| } else { |
| num_objects_allocated_ = 0; |
| } |
| if (freed_bytes < num_bytes_allocated_) { |
| num_bytes_allocated_ -= freed_bytes; |
| } else { |
| num_bytes_allocated_ = 0; |
| } |
| |
| if (Runtime::Current()->HasStatsEnabled()) { |
| RuntimeStats* global_stats = Runtime::Current()->GetStats(); |
| RuntimeStats* thread_stats = Thread::Current()->GetStats(); |
| ++global_stats->freed_objects; |
| ++thread_stats->freed_objects; |
| global_stats->freed_bytes += freed_bytes; |
| thread_stats->freed_bytes += freed_bytes; |
| } |
| } |
| |
| void Heap::RecordImageAllocations(Space* space) { |
| const Runtime* runtime = Runtime::Current(); |
| if (Heap::IsVerboseHeap() || runtime->IsVerboseStartup()) { |
| LOG(INFO) << "Heap::RecordImageAllocations entering"; |
| } |
| DCHECK(!Runtime::Current()->IsStarted()); |
| CHECK(space != NULL); |
| CHECK(live_bitmap_ != NULL); |
| byte* current = space->GetBase() + RoundUp(sizeof(ImageHeader), kObjectAlignment); |
| while (current < space->GetLimit()) { |
| DCHECK_ALIGNED(current, kObjectAlignment); |
| const Object* obj = reinterpret_cast<const Object*>(current); |
| live_bitmap_->Set(obj); |
| current += RoundUp(obj->SizeOf(), kObjectAlignment); |
| } |
| if (Heap::IsVerboseHeap() || runtime->IsVerboseStartup()) { |
| LOG(INFO) << "Heap::RecordImageAllocations exiting"; |
| } |
| } |
| |
| Object* Heap::AllocateLocked(size_t size) { |
| lock_->AssertHeld(); |
| DCHECK(alloc_space_ != NULL); |
| Space* space = alloc_space_; |
| Object* obj = AllocateLocked(space, size); |
| if (obj != NULL) { |
| RecordAllocationLocked(space, obj); |
| } |
| return obj; |
| } |
| |
| Object* Heap::AllocateLocked(Space* space, size_t size) { |
| lock_->AssertHeld(); |
| |
| // Since allocation can cause a GC which will need to SuspendAll, |
| // make sure all allocators are in the kRunnable state. |
| DCHECK_EQ(Thread::Current()->GetState(), Thread::kRunnable); |
| |
| // Fail impossible allocations. TODO: collect soft references. |
| if (size > growth_size_) { |
| return NULL; |
| } |
| |
| Object* ptr = space->AllocWithoutGrowth(size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| // The allocation failed. If the GC is running, block until it |
| // completes and retry. |
| if (is_gc_running_) { |
| // The GC is concurrently tracing the heap. Release the heap |
| // lock, wait for the GC to complete, and retrying allocating. |
| WaitForConcurrentGcToComplete(); |
| ptr = space->AllocWithoutGrowth(size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| } |
| |
| // Another failure. Our thread was starved or there may be too many |
| // live objects. Try a foreground GC. This will have no effect if |
| // the concurrent GC is already running. |
| if (Runtime::Current()->HasStatsEnabled()) { |
| ++Runtime::Current()->GetStats()->gc_for_alloc_count; |
| ++Thread::Current()->GetStats()->gc_for_alloc_count; |
| } |
| CollectGarbageInternal(); |
| ptr = space->AllocWithoutGrowth(size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| // Even that didn't work; this is an exceptional state. |
| // Try harder, growing the heap if necessary. |
| ptr = space->AllocWithGrowth(size); |
| if (ptr != NULL) { |
| //size_t new_footprint = dvmHeapSourceGetIdealFootprint(); |
| size_t new_footprint = space->GetMaxAllowedFootprint(); |
| // OLD-TODO: may want to grow a little bit more so that the amount of |
| // free space is equal to the old free space + the |
| // utilization slop for the new allocation. |
| if (Heap::IsVerboseGc()) { |
| LOG(INFO) << "Grow heap (frag case) to " << new_footprint / MB |
| << " for " << size << "-byte allocation"; |
| } |
| return ptr; |
| } |
| |
| // Most allocations should have succeeded by now, so the heap is |
| // really full, really fragmented, or the requested size is really |
| // big. Do another GC, collecting SoftReferences this time. The VM |
| // spec requires that all SoftReferences have been collected and |
| // cleared before throwing an OOME. |
| |
| // OLD-TODO: wait for the finalizers from the previous GC to finish |
| if (Heap::IsVerboseGc()) { |
| LOG(INFO) << "Forcing collection of SoftReferences for " |
| << size << "-byte allocation"; |
| } |
| CollectGarbageInternal(); |
| ptr = space->AllocWithGrowth(size); |
| if (ptr != NULL) { |
| return ptr; |
| } |
| |
| LOG(ERROR) << "Out of memory on a " << size << " byte allocation"; |
| |
| // TODO: tell the HeapSource to dump its state |
| // TODO: dump stack traces for all threads |
| |
| return NULL; |
| } |
| |
| int64_t Heap::GetMaxMemory() { |
| return growth_size_; |
| } |
| |
| int64_t Heap::GetTotalMemory() { |
| return alloc_space_->Size(); |
| } |
| |
| int64_t Heap::GetFreeMemory() { |
| return alloc_space_->Size() - num_bytes_allocated_; |
| } |
| |
| class InstanceCounter { |
| public: |
| InstanceCounter(Class* c, bool count_assignable) |
| : class_(c), count_assignable_(count_assignable), count_(0) { |
| } |
| |
| size_t GetCount() { |
| return count_; |
| } |
| |
| static void Callback(Object* o, void* arg) { |
| reinterpret_cast<InstanceCounter*>(arg)->VisitInstance(o); |
| } |
| |
| private: |
| void VisitInstance(Object* o) { |
| Class* instance_class = o->GetClass(); |
| if (count_assignable_) { |
| if (instance_class == class_) { |
| ++count_; |
| } |
| } else { |
| if (instance_class != NULL && class_->IsAssignableFrom(instance_class)) { |
| ++count_; |
| } |
| } |
| } |
| |
| Class* class_; |
| bool count_assignable_; |
| size_t count_; |
| }; |
| |
| int64_t Heap::CountInstances(Class* c, bool count_assignable) { |
| ScopedHeapLock lock; |
| InstanceCounter counter(c, count_assignable); |
| live_bitmap_->Walk(InstanceCounter::Callback, &counter); |
| return counter.GetCount(); |
| } |
| |
| void Heap::CollectGarbage() { |
| ScopedHeapLock lock; |
| CollectGarbageInternal(); |
| } |
| |
| void Heap::CollectGarbageInternal() { |
| lock_->AssertHeld(); |
| |
| ThreadList* thread_list = Runtime::Current()->GetThreadList(); |
| thread_list->SuspendAll(); |
| |
| size_t initial_size = num_bytes_allocated_; |
| TimingLogger timings("CollectGarbageInternal"); |
| uint64_t t0 = NanoTime(); |
| Object* cleared_references = NULL; |
| { |
| MarkSweep mark_sweep; |
| timings.AddSplit("ctor"); |
| |
| mark_sweep.Init(); |
| timings.AddSplit("Init"); |
| |
| mark_sweep.MarkRoots(); |
| timings.AddSplit("MarkRoots"); |
| |
| mark_sweep.ScanDirtyImageRoots(); |
| timings.AddSplit("DirtyImageRoots"); |
| |
| // Roots are marked on the bitmap and the mark_stack is empty |
| DCHECK(mark_sweep.IsMarkStackEmpty()); |
| |
| // TODO: if concurrent |
| // unlock heap |
| // thread_list->ResumeAll(); |
| |
| // Recursively mark all bits set in the non-image mark bitmap |
| mark_sweep.RecursiveMark(); |
| timings.AddSplit("RecursiveMark"); |
| |
| // TODO: if concurrent |
| // lock heap |
| // thread_list->SuspendAll(); |
| // re-mark root set |
| // scan dirty objects |
| |
| mark_sweep.ProcessReferences(false); |
| timings.AddSplit("ProcessReferences"); |
| |
| // TODO: if concurrent |
| // swap bitmaps |
| |
| mark_sweep.Sweep(); |
| timings.AddSplit("Sweep"); |
| |
| cleared_references = mark_sweep.GetClearedReferences(); |
| } |
| |
| GrowForUtilization(); |
| timings.AddSplit("GrowForUtilization"); |
| uint64_t t1 = NanoTime(); |
| thread_list->ResumeAll(); |
| |
| EnqueueClearedReferences(&cleared_references); |
| |
| // TODO: somehow make the specific GC implementation (here MarkSweep) responsible for logging. |
| size_t bytes_freed = initial_size - num_bytes_allocated_; |
| bool is_small = (bytes_freed > 0 && bytes_freed < 1024); |
| size_t kib_freed = (bytes_freed > 0 ? std::max(bytes_freed/1024, 1U) : 0); |
| |
| size_t total = GetTotalMemory(); |
| size_t percentFree = 100 - static_cast<size_t>(100.0f * float(num_bytes_allocated_) / total); |
| |
| uint32_t duration = (t1 - t0)/1000/1000; |
| bool gc_was_particularly_slow = (duration > 100); // TODO: crank this down for concurrent. |
| if (Heap::IsVerboseGc() || gc_was_particularly_slow) { |
| LOG(INFO) << "GC freed " << (is_small ? "<" : "") << kib_freed << "KiB, " |
| << percentFree << "% free " |
| << (num_bytes_allocated_/1024) << "KiB/" << (total/1024) << "KiB, " |
| << "paused " << duration << "ms"; |
| } |
| Dbg::GcDidFinish(); |
| if (Heap::IsVerboseHeap()) { |
| timings.Dump(); |
| } |
| } |
| |
| void Heap::WaitForConcurrentGcToComplete() { |
| lock_->AssertHeld(); |
| } |
| |
| void Heap::WalkHeap(void(*callback)(const void*, size_t, const void*, size_t, void*), void* arg) { |
| typedef std::vector<Space*>::iterator It; // C++0x auto. |
| for (It it = spaces_.begin(); it != spaces_.end(); ++it) { |
| (*it)->Walk(callback, arg); |
| } |
| } |
| |
| /* Terminology: |
| * 1. Footprint: Capacity we allocate from system. |
| * 2. Active space: a.k.a. alloc_space_. |
| * 3. Soft footprint: external allocation + spaces footprint + active space footprint |
| * 4. Overhead: soft footprint excluding active. |
| * |
| * Layout: (The spaces below might not be contiguous, but are lumped together to depict size.) |
| * |----------------------spaces footprint--------- --------------|----active space footprint----| |
| * |--active space allocated--| |
| * |--------------------soft footprint (include active)--------------------------------------| |
| * |----------------soft footprint excluding active---------------| |
| * |------------soft limit-------...| |
| * |------------------------------------ideal footprint-----------------------------------------...| |
| * |
| */ |
| |
| // Sets the maximum number of bytes that the heap is allowed to |
| // allocate from the system. Clamps to the appropriate maximum |
| // value. |
| // Old spaces will count against the ideal size. |
| // |
| void Heap::SetIdealFootprint(size_t max_allowed_footprint) |
| { |
| if (max_allowed_footprint > Heap::growth_size_) { |
| if (Heap::IsVerboseGc()) { |
| LOG(INFO) << "Clamp target GC heap from " << max_allowed_footprint |
| << " to " << Heap::growth_size_; |
| } |
| max_allowed_footprint = Heap::growth_size_; |
| } |
| |
| alloc_space_->SetMaxAllowedFootprint(max_allowed_footprint); |
| } |
| |
| // kHeapIdealFree is the ideal maximum free size, when we grow the heap for |
| // utlization. |
| static const size_t kHeapIdealFree = 2 * MB; |
| // kHeapMinFree guarantees that you always have at least 512 KB free, when |
| // you grow for utilization, regardless of target utilization ratio. |
| static const size_t kHeapMinFree = kHeapIdealFree / 4; |
| |
| // Given the current contents of the active space, increase the allowed |
| // heap footprint to match the target utilization ratio. This should |
| // only be called immediately after a full garbage collection. |
| // |
| void Heap::GrowForUtilization() { |
| lock_->AssertHeld(); |
| |
| // We know what our utilization is at this moment. |
| // This doesn't actually resize any memory. It just lets the heap grow more |
| // when necessary. |
| size_t target_size(num_bytes_allocated_ / Heap::GetTargetHeapUtilization()); |
| |
| if (target_size > num_bytes_allocated_ + kHeapIdealFree) { |
| target_size = num_bytes_allocated_ + kHeapIdealFree; |
| } else if (target_size < num_bytes_allocated_ + kHeapMinFree) { |
| target_size = num_bytes_allocated_ + kHeapMinFree; |
| } |
| |
| SetIdealFootprint(target_size); |
| } |
| |
| void Heap::ClearGrowthLimit() { |
| ScopedHeapLock lock; |
| WaitForConcurrentGcToComplete(); |
| CHECK_GE(maximum_size_, growth_size_); |
| growth_size_ = maximum_size_; |
| alloc_space_->ClearGrowthLimit(); |
| card_table_->ClearGrowthLimit(); |
| } |
| |
| pid_t Heap::GetLockOwner() { |
| return lock_->GetOwner(); |
| } |
| |
| void Heap::Lock() { |
| // Grab the lock, but put ourselves into Thread::kVmWait if it looks |
| // like we're going to have to wait on the mutex. This prevents |
| // deadlock if another thread is calling CollectGarbageInternal, |
| // since they will have the heap lock and be waiting for mutators to |
| // suspend. |
| if (!lock_->TryLock()) { |
| ScopedThreadStateChange tsc(Thread::Current(), Thread::kVmWait); |
| lock_->Lock(); |
| } |
| } |
| |
| void Heap::Unlock() { |
| lock_->Unlock(); |
| } |
| |
| void Heap::SetWellKnownClasses(Class* java_lang_ref_FinalizerReference, |
| Class* java_lang_ref_ReferenceQueue) { |
| java_lang_ref_FinalizerReference_ = java_lang_ref_FinalizerReference; |
| java_lang_ref_ReferenceQueue_ = java_lang_ref_ReferenceQueue; |
| CHECK(java_lang_ref_FinalizerReference_ != NULL); |
| CHECK(java_lang_ref_ReferenceQueue_ != NULL); |
| } |
| |
| void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset, |
| MemberOffset reference_queue_offset, |
| MemberOffset reference_queueNext_offset, |
| MemberOffset reference_pendingNext_offset, |
| MemberOffset finalizer_reference_zombie_offset) { |
| reference_referent_offset_ = reference_referent_offset; |
| reference_queue_offset_ = reference_queue_offset; |
| reference_queueNext_offset_ = reference_queueNext_offset; |
| reference_pendingNext_offset_ = reference_pendingNext_offset; |
| finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset; |
| CHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_queue_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U); |
| CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U); |
| CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U); |
| } |
| |
| Object* Heap::GetReferenceReferent(Object* reference) { |
| DCHECK(reference != NULL); |
| DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| return reference->GetFieldObject<Object*>(reference_referent_offset_, true); |
| } |
| |
| void Heap::ClearReferenceReferent(Object* reference) { |
| DCHECK(reference != NULL); |
| DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U); |
| reference->SetFieldObject(reference_referent_offset_, NULL, true); |
| } |
| |
| // Returns true if the reference object has not yet been enqueued. |
| bool Heap::IsEnqueuable(const Object* ref) { |
| DCHECK(ref != NULL); |
| const Object* queue = ref->GetFieldObject<Object*>(reference_queue_offset_, false); |
| const Object* queue_next = ref->GetFieldObject<Object*>(reference_queueNext_offset_, false); |
| return (queue != NULL) && (queue_next == NULL); |
| } |
| |
| void Heap::EnqueueReference(Object* ref, Object** cleared_reference_list) { |
| DCHECK(ref != NULL); |
| CHECK(ref->GetFieldObject<Object*>(reference_queue_offset_, false) != NULL); |
| CHECK(ref->GetFieldObject<Object*>(reference_queueNext_offset_, false) == NULL); |
| EnqueuePendingReference(ref, cleared_reference_list); |
| } |
| |
| void Heap::EnqueuePendingReference(Object* ref, Object** list) { |
| DCHECK(ref != NULL); |
| DCHECK(list != NULL); |
| |
| if (*list == NULL) { |
| ref->SetFieldObject(reference_pendingNext_offset_, ref, false); |
| *list = ref; |
| } else { |
| Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false); |
| ref->SetFieldObject(reference_pendingNext_offset_, head, false); |
| (*list)->SetFieldObject(reference_pendingNext_offset_, ref, false); |
| } |
| } |
| |
| Object* Heap::DequeuePendingReference(Object** list) { |
| DCHECK(list != NULL); |
| DCHECK(*list != NULL); |
| Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false); |
| Object* ref; |
| if (*list == head) { |
| ref = *list; |
| *list = NULL; |
| } else { |
| Object* next = head->GetFieldObject<Object*>(reference_pendingNext_offset_, false); |
| (*list)->SetFieldObject(reference_pendingNext_offset_, next, false); |
| ref = head; |
| } |
| ref->SetFieldObject(reference_pendingNext_offset_, NULL, false); |
| return ref; |
| } |
| |
| void Heap::AddFinalizerReference(Thread* self, Object* object) { |
| ScopedThreadStateChange tsc(self, Thread::kRunnable); |
| static Method* FinalizerReference_add = |
| java_lang_ref_FinalizerReference_->FindDirectMethod("add", "(Ljava/lang/Object;)V"); |
| DCHECK(FinalizerReference_add != NULL); |
| Object* args[] = { object }; |
| FinalizerReference_add->Invoke(self, NULL, reinterpret_cast<byte*>(&args), NULL); |
| } |
| |
| void Heap::EnqueueClearedReferences(Object** cleared) { |
| DCHECK(cleared != NULL); |
| if (*cleared != NULL) { |
| static Method* ReferenceQueue_add = |
| java_lang_ref_ReferenceQueue_->FindDirectMethod("add", "(Ljava/lang/ref/Reference;)V"); |
| DCHECK(ReferenceQueue_add != NULL); |
| |
| Thread* self = Thread::Current(); |
| ScopedThreadStateChange tsc(self, Thread::kRunnable); |
| Object* args[] = { *cleared }; |
| ReferenceQueue_add->Invoke(self, NULL, reinterpret_cast<byte*>(&args), NULL); |
| *cleared = NULL; |
| } |
| } |
| |
| } // namespace art |