blob: db7936c96b289045c5218f675417cb86a9418cac [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "runtime.h"
// sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
#include <sys/mount.h>
#ifdef __linux__
#include <linux/fs.h>
#endif
#include <signal.h>
#include <sys/syscall.h>
#include <valgrind.h>
#include <cstdio>
#include <cstdlib>
#include <limits>
#include <memory>
#include <vector>
#include <fcntl.h>
#include "arch/arm/quick_method_frame_info_arm.h"
#include "arch/arm/registers_arm.h"
#include "arch/arm64/quick_method_frame_info_arm64.h"
#include "arch/arm64/registers_arm64.h"
#include "arch/mips/quick_method_frame_info_mips.h"
#include "arch/mips/registers_mips.h"
#include "arch/x86/quick_method_frame_info_x86.h"
#include "arch/x86/registers_x86.h"
#include "arch/x86_64/quick_method_frame_info_x86_64.h"
#include "arch/x86_64/registers_x86_64.h"
#include "asm_support.h"
#include "atomic.h"
#include "base/dumpable.h"
#include "base/unix_file/fd_file.h"
#include "class_linker.h"
#include "debugger.h"
#include "elf_file.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "fault_handler.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/heap.h"
#include "gc/space/image_space.h"
#include "gc/space/space.h"
#include "image.h"
#include "instrumentation.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method-inl.h"
#include "mirror/array.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/stack_trace_element.h"
#include "mirror/throwable.h"
#include "monitor.h"
#include "native_bridge_art_interface.h"
#include "parsed_options.h"
#include "oat_file.h"
#include "os.h"
#include "quick/quick_method_frame_info.h"
#include "reflection.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "sigchain.h"
#include "signal_catcher.h"
#include "signal_set.h"
#include "handle_scope-inl.h"
#include "thread.h"
#include "thread_list.h"
#include "trace.h"
#include "transaction.h"
#include "profiler.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"
#include "JniConstants.h" // Last to avoid LOG redefinition in ics-mr1-plus-art.
#ifdef HAVE_ANDROID_OS
#include "cutils/properties.h"
#endif
namespace art {
// If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
static constexpr bool kEnableJavaStackTraceHandler = false;
Runtime* Runtime::instance_ = nullptr;
Runtime::Runtime()
: instruction_set_(kNone),
compiler_callbacks_(nullptr),
is_zygote_(false),
must_relocate_(false),
is_concurrent_gc_enabled_(true),
is_explicit_gc_disabled_(false),
dex2oat_enabled_(true),
image_dex2oat_enabled_(true),
default_stack_size_(0),
heap_(nullptr),
max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
monitor_list_(nullptr),
monitor_pool_(nullptr),
thread_list_(nullptr),
intern_table_(nullptr),
class_linker_(nullptr),
signal_catcher_(nullptr),
java_vm_(nullptr),
fault_message_lock_("Fault message lock"),
fault_message_(""),
method_verifier_lock_("Method verifiers lock"),
threads_being_born_(0),
shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
shutting_down_(false),
shutting_down_started_(false),
started_(false),
finished_starting_(false),
vfprintf_(nullptr),
exit_(nullptr),
abort_(nullptr),
stats_enabled_(false),
running_on_valgrind_(RUNNING_ON_VALGRIND > 0),
profiler_started_(false),
method_trace_(false),
method_trace_file_size_(0),
instrumentation_(),
use_compile_time_class_path_(false),
main_thread_group_(nullptr),
system_thread_group_(nullptr),
system_class_loader_(nullptr),
dump_gc_performance_on_shutdown_(false),
preinitialization_transaction_(nullptr),
verify_(false),
target_sdk_version_(0),
implicit_null_checks_(false),
implicit_so_checks_(false),
implicit_suspend_checks_(false),
is_native_bridge_loaded_(false) {
CheckAsmSupportOffsetsAndSizes();
}
Runtime::~Runtime() {
if (is_native_bridge_loaded_) {
UnloadNativeBridge();
}
if (dump_gc_performance_on_shutdown_) {
// This can't be called from the Heap destructor below because it
// could call RosAlloc::InspectAll() which needs the thread_list
// to be still alive.
heap_->DumpGcPerformanceInfo(LOG(INFO));
}
Thread* self = Thread::Current();
{
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
shutting_down_started_ = true;
while (threads_being_born_ > 0) {
shutdown_cond_->Wait(self);
}
shutting_down_ = true;
}
// Shut down background profiler before the runtime exits.
if (profiler_started_) {
BackgroundMethodSamplingProfiler::Shutdown();
}
Trace::Shutdown();
// Make sure to let the GC complete if it is running.
heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
heap_->DeleteThreadPool();
// Make sure our internal threads are dead before we start tearing down things they're using.
Dbg::StopJdwp();
delete signal_catcher_;
// Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
delete thread_list_;
// Shutdown the fault manager if it was initialized.
fault_manager.Shutdown();
delete monitor_list_;
delete monitor_pool_;
delete class_linker_;
delete heap_;
delete intern_table_;
delete java_vm_;
Thread::Shutdown();
QuasiAtomic::Shutdown();
verifier::MethodVerifier::Shutdown();
MemMap::Shutdown();
// TODO: acquire a static mutex on Runtime to avoid racing.
CHECK(instance_ == nullptr || instance_ == this);
instance_ = nullptr;
}
struct AbortState {
void Dump(std::ostream& os) const {
if (gAborting > 1) {
os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
return;
}
gAborting++;
os << "Runtime aborting...\n";
if (Runtime::Current() == NULL) {
os << "(Runtime does not yet exist!)\n";
return;
}
Thread* self = Thread::Current();
if (self == nullptr) {
os << "(Aborting thread was not attached to runtime!)\n";
DumpKernelStack(os, GetTid(), " kernel: ", false);
DumpNativeStack(os, GetTid(), " native: ", nullptr);
} else {
os << "Aborting thread:\n";
if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
DumpThread(os, self);
} else {
if (Locks::mutator_lock_->SharedTryLock(self)) {
DumpThread(os, self);
Locks::mutator_lock_->SharedUnlock(self);
}
}
}
DumpAllThreads(os, self);
}
// No thread-safety analysis as we do explicitly test for holding the mutator lock.
void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
self->Dump(os);
if (self->IsExceptionPending()) {
ThrowLocation throw_location;
mirror::Throwable* exception = self->GetException(&throw_location);
os << "Pending exception " << PrettyTypeOf(exception)
<< " thrown by '" << throw_location.Dump() << "'\n"
<< exception->Dump();
}
}
void DumpAllThreads(std::ostream& os, Thread* self) const {
Runtime* runtime = Runtime::Current();
if (runtime != nullptr) {
ThreadList* thread_list = runtime->GetThreadList();
if (thread_list != nullptr) {
bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
if (!tll_already_held || !ml_already_held) {
os << "Dumping all threads without appropriate locks held:"
<< (!tll_already_held ? " thread list lock" : "")
<< (!ml_already_held ? " mutator lock" : "")
<< "\n";
}
os << "All threads:\n";
thread_list->Dump(os);
}
}
}
};
void Runtime::Abort() {
gAborting++; // set before taking any locks
// Ensure that we don't have multiple threads trying to abort at once,
// which would result in significantly worse diagnostics.
MutexLock mu(Thread::Current(), *Locks::abort_lock_);
// Get any pending output out of the way.
fflush(NULL);
// Many people have difficulty distinguish aborts from crashes,
// so be explicit.
AbortState state;
LOG(INTERNAL_FATAL) << Dumpable<AbortState>(state);
// Call the abort hook if we have one.
if (Runtime::Current() != NULL && Runtime::Current()->abort_ != NULL) {
LOG(INTERNAL_FATAL) << "Calling abort hook...";
Runtime::Current()->abort_();
// notreached
LOG(INTERNAL_FATAL) << "Unexpectedly returned from abort hook!";
}
#if defined(__GLIBC__)
// TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
// which POSIX defines in terms of raise(3), which POSIX defines in terms
// of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
// libpthread, which means the stacks we dump would be useless. Calling
// tgkill(2) directly avoids that.
syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
// TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
// If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
exit(1);
#else
abort();
#endif
// notreached
}
void Runtime::PreZygoteFork() {
heap_->PreZygoteFork();
}
void Runtime::CallExitHook(jint status) {
if (exit_ != NULL) {
ScopedThreadStateChange tsc(Thread::Current(), kNative);
exit_(status);
LOG(WARNING) << "Exit hook returned instead of exiting!";
}
}
void Runtime::SweepSystemWeaks(IsMarkedCallback* visitor, void* arg) {
GetInternTable()->SweepInternTableWeaks(visitor, arg);
GetMonitorList()->SweepMonitorList(visitor, arg);
GetJavaVM()->SweepJniWeakGlobals(visitor, arg);
}
bool Runtime::Create(const RuntimeOptions& options, bool ignore_unrecognized) {
// TODO: acquire a static mutex on Runtime to avoid racing.
if (Runtime::instance_ != NULL) {
return false;
}
InitLogging(NULL); // Calls Locks::Init() as a side effect.
instance_ = new Runtime;
if (!instance_->Init(options, ignore_unrecognized)) {
delete instance_;
instance_ = NULL;
return false;
}
return true;
}
jobject CreateSystemClassLoader() {
if (Runtime::Current()->UseCompileTimeClassPath()) {
return NULL;
}
ScopedObjectAccess soa(Thread::Current());
ClassLinker* cl = Runtime::Current()->GetClassLinker();
StackHandleScope<2> hs(soa.Self());
Handle<mirror::Class> class_loader_class(
hs.NewHandle(soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_ClassLoader)));
CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
mirror::ArtMethod* getSystemClassLoader =
class_loader_class->FindDirectMethod("getSystemClassLoader", "()Ljava/lang/ClassLoader;");
CHECK(getSystemClassLoader != NULL);
JValue result = InvokeWithJValues(soa, nullptr, soa.EncodeMethod(getSystemClassLoader), nullptr);
JNIEnv* env = soa.Self()->GetJniEnv();
ScopedLocalRef<jobject> system_class_loader(env,
soa.AddLocalReference<jobject>(result.GetL()));
CHECK(system_class_loader.get() != nullptr);
soa.Self()->SetClassLoaderOverride(system_class_loader.get());
Handle<mirror::Class> thread_class(
hs.NewHandle(soa.Decode<mirror::Class*>(WellKnownClasses::java_lang_Thread)));
CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
mirror::ArtField* contextClassLoader =
thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
CHECK(contextClassLoader != NULL);
// We can't run in a transaction yet.
contextClassLoader->SetObject<false>(soa.Self()->GetPeer(),
soa.Decode<mirror::ClassLoader*>(system_class_loader.get()));
return env->NewGlobalRef(system_class_loader.get());
}
std::string Runtime::GetPatchoatExecutable() const {
if (!patchoat_executable_.empty()) {
return patchoat_executable_;
}
std::string patchoat_executable_(GetAndroidRoot());
patchoat_executable_ += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
return patchoat_executable_;
}
std::string Runtime::GetCompilerExecutable() const {
if (!compiler_executable_.empty()) {
return compiler_executable_;
}
std::string compiler_executable(GetAndroidRoot());
compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
return compiler_executable;
}
bool Runtime::Start() {
VLOG(startup) << "Runtime::Start entering";
// Restore main thread state to kNative as expected by native code.
Thread* self = Thread::Current();
self->TransitionFromRunnableToSuspended(kNative);
started_ = true;
if (!IsImageDex2OatEnabled() || !Runtime::Current()->GetHeap()->HasImageSpace()) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
auto klass(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
class_linker_->EnsureInitialized(soa.Self(), klass, true, true);
}
// InitNativeMethods needs to be after started_ so that the classes
// it touches will have methods linked to the oat file if necessary.
InitNativeMethods();
// Initialize well known thread group values that may be accessed threads while attaching.
InitThreadGroups(self);
Thread::FinishStartup();
system_class_loader_ = CreateSystemClassLoader();
if (is_zygote_) {
if (!InitZygote()) {
return false;
}
} else {
if (is_native_bridge_loaded_) {
PreInitializeNativeBridge(".");
}
DidForkFromZygote(self->GetJniEnv(), NativeBridgeAction::kInitialize,
GetInstructionSetString(kRuntimeISA));
}
StartDaemonThreads();
{
ScopedObjectAccess soa(self);
self->GetJniEnv()->locals.AssertEmpty();
}
VLOG(startup) << "Runtime::Start exiting";
finished_starting_ = true;
if (profiler_options_.IsEnabled() && !profile_output_filename_.empty()) {
// User has asked for a profile using -Xenable-profiler.
// Create the profile file if it doesn't exist.
int fd = open(profile_output_filename_.c_str(), O_RDWR|O_CREAT|O_EXCL, 0660);
if (fd >= 0) {
close(fd);
} else if (errno != EEXIST) {
LOG(INFO) << "Failed to access the profile file. Profiler disabled.";
return true;
}
StartProfiler(profile_output_filename_.c_str());
}
return true;
}
void Runtime::EndThreadBirth() EXCLUSIVE_LOCKS_REQUIRED(Locks::runtime_shutdown_lock_) {
DCHECK_GT(threads_being_born_, 0U);
threads_being_born_--;
if (shutting_down_started_ && threads_being_born_ == 0) {
shutdown_cond_->Broadcast(Thread::Current());
}
}
// Do zygote-mode-only initialization.
bool Runtime::InitZygote() {
#ifdef __linux__
// zygote goes into its own process group
setpgid(0, 0);
// See storage config details at http://source.android.com/tech/storage/
// Create private mount namespace shared by all children
if (unshare(CLONE_NEWNS) == -1) {
PLOG(WARNING) << "Failed to unshare()";
return false;
}
// Mark rootfs as being a slave so that changes from default
// namespace only flow into our children.
if (mount("rootfs", "/", NULL, (MS_SLAVE | MS_REC), NULL) == -1) {
PLOG(WARNING) << "Failed to mount() rootfs as MS_SLAVE";
return false;
}
// Create a staging tmpfs that is shared by our children; they will
// bind mount storage into their respective private namespaces, which
// are isolated from each other.
const char* target_base = getenv("EMULATED_STORAGE_TARGET");
if (target_base != NULL) {
if (mount("tmpfs", target_base, "tmpfs", MS_NOSUID | MS_NODEV,
"uid=0,gid=1028,mode=0751") == -1) {
LOG(WARNING) << "Failed to mount tmpfs to " << target_base;
return false;
}
}
return true;
#else
UNIMPLEMENTED(FATAL);
return false;
#endif
}
void Runtime::DidForkFromZygote(JNIEnv* env, NativeBridgeAction action, const char* isa) {
is_zygote_ = false;
if (is_native_bridge_loaded_) {
switch (action) {
case NativeBridgeAction::kUnload:
UnloadNativeBridge();
is_native_bridge_loaded_ = false;
break;
case NativeBridgeAction::kInitialize:
InitializeNativeBridge(env, isa);
break;
}
}
// Create the thread pool.
heap_->CreateThreadPool();
StartSignalCatcher();
// Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
// this will pause the runtime, so we probably want this to come last.
Dbg::StartJdwp();
}
void Runtime::StartSignalCatcher() {
if (!is_zygote_) {
signal_catcher_ = new SignalCatcher(stack_trace_file_);
}
}
bool Runtime::IsShuttingDown(Thread* self) {
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
return IsShuttingDownLocked();
}
void Runtime::StartDaemonThreads() {
VLOG(startup) << "Runtime::StartDaemonThreads entering";
Thread* self = Thread::Current();
// Must be in the kNative state for calling native methods.
CHECK_EQ(self->GetState(), kNative);
JNIEnv* env = self->GetJniEnv();
env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
WellKnownClasses::java_lang_Daemons_start);
if (env->ExceptionCheck()) {
env->ExceptionDescribe();
LOG(FATAL) << "Error starting java.lang.Daemons";
}
VLOG(startup) << "Runtime::StartDaemonThreads exiting";
}
static bool OpenDexFilesFromImage(const std::vector<std::string>& dex_filenames,
const std::string& image_location,
std::vector<const DexFile*>& dex_files,
size_t* failures) {
std::string system_filename;
bool has_system = false;
std::string cache_filename_unused;
bool dalvik_cache_exists_unused;
bool has_cache_unused;
bool is_global_cache_unused;
bool found_image = gc::space::ImageSpace::FindImageFilename(image_location.c_str(),
kRuntimeISA,
&system_filename,
&has_system,
&cache_filename_unused,
&dalvik_cache_exists_unused,
&has_cache_unused,
&is_global_cache_unused);
*failures = 0;
if (!found_image || !has_system) {
return false;
}
std::string error_msg;
// We are falling back to non-executable use of the oat file because patching failed, presumably
// due to lack of space.
std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(image_location.c_str());
std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
if (file.get() == nullptr) {
return false;
}
std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.release(), false, false, &error_msg));
if (elf_file.get() == nullptr) {
return false;
}
std::unique_ptr<OatFile> oat_file(OatFile::OpenWithElfFile(elf_file.release(), oat_location,
&error_msg));
if (oat_file.get() == nullptr) {
LOG(INFO) << "Unable to use '" << oat_filename << "' because " << error_msg;
return false;
}
for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
if (oat_dex_file == nullptr) {
*failures += 1;
continue;
}
const DexFile* dex_file = oat_dex_file->OpenDexFile(&error_msg);
if (dex_file == nullptr) {
*failures += 1;
} else {
dex_files.push_back(dex_file);
}
}
Runtime::Current()->GetClassLinker()->RegisterOatFile(oat_file.release());
return true;
}
static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
const std::string& image_location,
std::vector<const DexFile*>& dex_files) {
size_t failure_count = 0;
if (!image_location.empty() && OpenDexFilesFromImage(dex_filenames, image_location, dex_files,
&failure_count)) {
return failure_count;
}
failure_count = 0;
for (size_t i = 0; i < dex_filenames.size(); i++) {
const char* dex_filename = dex_filenames[i].c_str();
std::string error_msg;
if (!OS::FileExists(dex_filename)) {
LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
continue;
}
if (!DexFile::Open(dex_filename, dex_filename, &error_msg, &dex_files)) {
LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
++failure_count;
}
}
return failure_count;
}
bool Runtime::Init(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
MemMap::Init();
std::unique_ptr<ParsedOptions> options(ParsedOptions::Create(raw_options, ignore_unrecognized));
if (options.get() == nullptr) {
LOG(ERROR) << "Failed to parse options";
return false;
}
VLOG(startup) << "Runtime::Init -verbose:startup enabled";
QuasiAtomic::Startup();
Monitor::Init(options->lock_profiling_threshold_, options->hook_is_sensitive_thread_);
boot_class_path_string_ = options->boot_class_path_string_;
class_path_string_ = options->class_path_string_;
properties_ = options->properties_;
compiler_callbacks_ = options->compiler_callbacks_;
patchoat_executable_ = options->patchoat_executable_;
must_relocate_ = options->must_relocate_;
is_zygote_ = options->is_zygote_;
is_explicit_gc_disabled_ = options->is_explicit_gc_disabled_;
dex2oat_enabled_ = options->dex2oat_enabled_;
image_dex2oat_enabled_ = options->image_dex2oat_enabled_;
vfprintf_ = options->hook_vfprintf_;
exit_ = options->hook_exit_;
abort_ = options->hook_abort_;
default_stack_size_ = options->stack_size_;
stack_trace_file_ = options->stack_trace_file_;
compiler_executable_ = options->compiler_executable_;
compiler_options_ = options->compiler_options_;
image_compiler_options_ = options->image_compiler_options_;
image_location_ = options->image_;
max_spins_before_thin_lock_inflation_ = options->max_spins_before_thin_lock_inflation_;
monitor_list_ = new MonitorList;
monitor_pool_ = MonitorPool::Create();
thread_list_ = new ThreadList;
intern_table_ = new InternTable;
verify_ = options->verify_;
if (options->interpreter_only_) {
GetInstrumentation()->ForceInterpretOnly();
}
heap_ = new gc::Heap(options->heap_initial_size_,
options->heap_growth_limit_,
options->heap_min_free_,
options->heap_max_free_,
options->heap_target_utilization_,
options->foreground_heap_growth_multiplier_,
options->heap_maximum_size_,
options->heap_non_moving_space_capacity_,
options->image_,
options->image_isa_,
options->collector_type_,
options->background_collector_type_,
options->large_object_space_type_,
options->large_object_threshold_,
options->parallel_gc_threads_,
options->conc_gc_threads_,
options->low_memory_mode_,
options->long_pause_log_threshold_,
options->long_gc_log_threshold_,
options->ignore_max_footprint_,
options->use_tlab_,
options->verify_pre_gc_heap_,
options->verify_pre_sweeping_heap_,
options->verify_post_gc_heap_,
options->verify_pre_gc_rosalloc_,
options->verify_pre_sweeping_rosalloc_,
options->verify_post_gc_rosalloc_,
options->use_homogeneous_space_compaction_for_oom_,
options->min_interval_homogeneous_space_compaction_by_oom_);
dump_gc_performance_on_shutdown_ = options->dump_gc_performance_on_shutdown_;
BlockSignals();
InitPlatformSignalHandlers();
// Change the implicit checks flags based on runtime architecture.
switch (kRuntimeISA) {
case kArm:
case kThumb2:
case kX86:
case kArm64:
case kX86_64:
implicit_null_checks_ = true;
// Installing stack protection does not play well with valgrind.
implicit_so_checks_ = (RUNNING_ON_VALGRIND == 0);
break;
default:
// Keep the defaults.
break;
}
// Always initialize the signal chain so that any calls to sigaction get
// correctly routed to the next in the chain regardless of whether we
// have claimed the signal or not.
InitializeSignalChain();
if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
fault_manager.Init();
// These need to be in a specific order. The null point check handler must be
// after the suspend check and stack overflow check handlers.
//
// Note: the instances attach themselves to the fault manager and are handled by it. The manager
// will delete the instance on Shutdown().
if (implicit_suspend_checks_) {
new SuspensionHandler(&fault_manager);
}
if (implicit_so_checks_) {
new StackOverflowHandler(&fault_manager);
}
if (implicit_null_checks_) {
new NullPointerHandler(&fault_manager);
}
if (kEnableJavaStackTraceHandler) {
new JavaStackTraceHandler(&fault_manager);
}
}
java_vm_ = new JavaVMExt(this, options.get());
Thread::Startup();
// ClassLinker needs an attached thread, but we can't fully attach a thread without creating
// objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
// thread, we do not get a java peer.
Thread* self = Thread::Attach("main", false, nullptr, false);
CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
CHECK(self != nullptr);
// Set us to runnable so tools using a runtime can allocate and GC by default
self->TransitionFromSuspendedToRunnable();
// Now we're attached, we can take the heap locks and validate the heap.
GetHeap()->EnableObjectValidation();
CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
class_linker_ = new ClassLinker(intern_table_);
if (GetHeap()->HasImageSpace()) {
class_linker_->InitFromImage();
if (kIsDebugBuild) {
GetHeap()->GetImageSpace()->VerifyImageAllocations();
}
} else if (!IsCompiler() || !image_dex2oat_enabled_) {
std::vector<std::string> dex_filenames;
Split(boot_class_path_string_, ':', &dex_filenames);
std::vector<const DexFile*> boot_class_path;
OpenDexFiles(dex_filenames, options->image_, boot_class_path);
class_linker_->InitWithoutImage(boot_class_path);
// TODO: Should we move the following to InitWithoutImage?
SetInstructionSet(kRuntimeISA);
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
if (!HasCalleeSaveMethod(type)) {
SetCalleeSaveMethod(CreateCalleeSaveMethod(type), type);
}
}
} else {
CHECK(options->boot_class_path_ != nullptr);
CHECK_NE(options->boot_class_path_->size(), 0U);
class_linker_->InitWithoutImage(*options->boot_class_path_);
}
CHECK(class_linker_ != nullptr);
// Initialize the special sentinel_ value early.
sentinel_ = GcRoot<mirror::Object>(class_linker_->AllocObject(self));
CHECK(sentinel_.Read() != nullptr);
verifier::MethodVerifier::Init();
method_trace_ = options->method_trace_;
method_trace_file_ = options->method_trace_file_;
method_trace_file_size_ = options->method_trace_file_size_;
profile_output_filename_ = options->profile_output_filename_;
profiler_options_ = options->profiler_options_;
// TODO: move this to just be an Trace::Start argument
Trace::SetDefaultClockSource(options->profile_clock_source_);
if (options->method_trace_) {
ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
Trace::Start(options->method_trace_file_.c_str(), -1, options->method_trace_file_size_, 0,
false, false, 0);
}
// Pre-allocate an OutOfMemoryError for the double-OOME case.
self->ThrowNewException(ThrowLocation(), "Ljava/lang/OutOfMemoryError;",
"OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
"no stack trace available");
pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException(NULL));
self->ClearException();
// Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
// ahead of checking the application's class loader.
self->ThrowNewException(ThrowLocation(), "Ljava/lang/NoClassDefFoundError;",
"Class not found using the boot class loader; no stack trace available");
pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException(NULL));
self->ClearException();
// Look for a native bridge.
//
// The intended flow here is, in the case of a running system:
//
// Runtime::Init() (zygote):
// LoadNativeBridge -> dlopen from cmd line parameter.
// |
// V
// Runtime::Start() (zygote):
// No-op wrt native bridge.
// |
// | start app
// V
// DidForkFromZygote(action)
// action = kUnload -> dlclose native bridge.
// action = kInitialize -> initialize library
//
//
// The intended flow here is, in the case of a simple dalvikvm call:
//
// Runtime::Init():
// LoadNativeBridge -> dlopen from cmd line parameter.
// |
// V
// Runtime::Start():
// DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
// No-op wrt native bridge.
is_native_bridge_loaded_ = LoadNativeBridge(options->native_bridge_library_filename_);
VLOG(startup) << "Runtime::Init exiting";
return true;
}
void Runtime::InitNativeMethods() {
VLOG(startup) << "Runtime::InitNativeMethods entering";
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
// Must be in the kNative state for calling native methods (JNI_OnLoad code).
CHECK_EQ(self->GetState(), kNative);
// First set up JniConstants, which is used by both the runtime's built-in native
// methods and libcore.
JniConstants::init(env);
WellKnownClasses::Init(env);
// Then set up the native methods provided by the runtime itself.
RegisterRuntimeNativeMethods(env);
// Then set up libcore, which is just a regular JNI library with a regular JNI_OnLoad.
// Most JNI libraries can just use System.loadLibrary, but libcore can't because it's
// the library that implements System.loadLibrary!
{
std::string mapped_name(StringPrintf(OS_SHARED_LIB_FORMAT_STR, "javacore"));
std::string reason;
if (!java_vm_->LoadNativeLibrary(env, mapped_name, nullptr, &reason)) {
LOG(FATAL) << "LoadNativeLibrary failed for \"" << mapped_name << "\": " << reason;
}
}
// Initialize well known classes that may invoke runtime native methods.
WellKnownClasses::LateInit(env);
VLOG(startup) << "Runtime::InitNativeMethods exiting";
}
void Runtime::InitThreadGroups(Thread* self) {
JNIEnvExt* env = self->GetJniEnv();
ScopedJniEnvLocalRefState env_state(env);
main_thread_group_ =
env->NewGlobalRef(env->GetStaticObjectField(
WellKnownClasses::java_lang_ThreadGroup,
WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
CHECK(main_thread_group_ != NULL || IsCompiler());
system_thread_group_ =
env->NewGlobalRef(env->GetStaticObjectField(
WellKnownClasses::java_lang_ThreadGroup,
WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
CHECK(system_thread_group_ != NULL || IsCompiler());
}
jobject Runtime::GetMainThreadGroup() const {
CHECK(main_thread_group_ != NULL || IsCompiler());
return main_thread_group_;
}
jobject Runtime::GetSystemThreadGroup() const {
CHECK(system_thread_group_ != NULL || IsCompiler());
return system_thread_group_;
}
jobject Runtime::GetSystemClassLoader() const {
CHECK(system_class_loader_ != NULL || IsCompiler());
return system_class_loader_;
}
void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
#define REGISTER(FN) extern void FN(JNIEnv*); FN(env)
// Register Throwable first so that registration of other native methods can throw exceptions
REGISTER(register_java_lang_Throwable);
REGISTER(register_dalvik_system_DexFile);
REGISTER(register_dalvik_system_VMDebug);
REGISTER(register_dalvik_system_VMRuntime);
REGISTER(register_dalvik_system_VMStack);
REGISTER(register_dalvik_system_ZygoteHooks);
REGISTER(register_java_lang_Class);
REGISTER(register_java_lang_DexCache);
REGISTER(register_java_lang_Object);
REGISTER(register_java_lang_Runtime);
REGISTER(register_java_lang_String);
REGISTER(register_java_lang_System);
REGISTER(register_java_lang_Thread);
REGISTER(register_java_lang_VMClassLoader);
REGISTER(register_java_lang_ref_FinalizerReference);
REGISTER(register_java_lang_ref_Reference);
REGISTER(register_java_lang_reflect_Array);
REGISTER(register_java_lang_reflect_Constructor);
REGISTER(register_java_lang_reflect_Field);
REGISTER(register_java_lang_reflect_Method);
REGISTER(register_java_lang_reflect_Proxy);
REGISTER(register_java_util_concurrent_atomic_AtomicLong);
REGISTER(register_org_apache_harmony_dalvik_ddmc_DdmServer);
REGISTER(register_org_apache_harmony_dalvik_ddmc_DdmVmInternal);
REGISTER(register_sun_misc_Unsafe);
#undef REGISTER
}
void Runtime::DumpForSigQuit(std::ostream& os) {
GetClassLinker()->DumpForSigQuit(os);
GetInternTable()->DumpForSigQuit(os);
GetJavaVM()->DumpForSigQuit(os);
GetHeap()->DumpForSigQuit(os);
TrackedAllocators::Dump(os);
os << "\n";
thread_list_->DumpForSigQuit(os);
BaseMutex::DumpAll(os);
}
void Runtime::DumpLockHolders(std::ostream& os) {
uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
<< "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
<< "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
<< "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
}
}
void Runtime::SetStatsEnabled(bool new_state) {
Thread* self = Thread::Current();
MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
if (new_state == true) {
GetStats()->Clear(~0);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
self->GetStats()->Clear(~0);
if (stats_enabled_ != new_state) {
GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
}
} else if (stats_enabled_ != new_state) {
GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
}
stats_enabled_ = new_state;
}
void Runtime::ResetStats(int kinds) {
GetStats()->Clear(kinds & 0xffff);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
Thread::Current()->GetStats()->Clear(kinds >> 16);
}
int32_t Runtime::GetStat(int kind) {
RuntimeStats* stats;
if (kind < (1<<16)) {
stats = GetStats();
} else {
stats = Thread::Current()->GetStats();
kind >>= 16;
}
switch (kind) {
case KIND_ALLOCATED_OBJECTS:
return stats->allocated_objects;
case KIND_ALLOCATED_BYTES:
return stats->allocated_bytes;
case KIND_FREED_OBJECTS:
return stats->freed_objects;
case KIND_FREED_BYTES:
return stats->freed_bytes;
case KIND_GC_INVOCATIONS:
return stats->gc_for_alloc_count;
case KIND_CLASS_INIT_COUNT:
return stats->class_init_count;
case KIND_CLASS_INIT_TIME:
// Convert ns to us, reduce to 32 bits.
return static_cast<int>(stats->class_init_time_ns / 1000);
case KIND_EXT_ALLOCATED_OBJECTS:
case KIND_EXT_ALLOCATED_BYTES:
case KIND_EXT_FREED_OBJECTS:
case KIND_EXT_FREED_BYTES:
return 0; // backward compatibility
default:
LOG(FATAL) << "Unknown statistic " << kind;
return -1; // unreachable
}
}
void Runtime::BlockSignals() {
SignalSet signals;
signals.Add(SIGPIPE);
// SIGQUIT is used to dump the runtime's state (including stack traces).
signals.Add(SIGQUIT);
// SIGUSR1 is used to initiate a GC.
signals.Add(SIGUSR1);
signals.Block();
}
bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
bool create_peer) {
return Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != NULL;
}
void Runtime::DetachCurrentThread() {
Thread* self = Thread::Current();
if (self == NULL) {
LOG(FATAL) << "attempting to detach thread that is not attached";
}
if (self->HasManagedStack()) {
LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
}
thread_list_->Unregister(self);
}
mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
if (oome == nullptr) {
LOG(ERROR) << "Failed to return pre-allocated OOME";
}
return oome;
}
mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
if (ncdfe == nullptr) {
LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
}
return ncdfe;
}
void Runtime::VisitConstantRoots(RootCallback* callback, void* arg) {
// Visit the classes held as static in mirror classes, these can be visited concurrently and only
// need to be visited once per GC since they never change.
mirror::ArtField::VisitRoots(callback, arg);
mirror::ArtMethod::VisitRoots(callback, arg);
mirror::Class::VisitRoots(callback, arg);
mirror::Reference::VisitRoots(callback, arg);
mirror::StackTraceElement::VisitRoots(callback, arg);
mirror::String::VisitRoots(callback, arg);
mirror::Throwable::VisitRoots(callback, arg);
// Visit all the primitive array types classes.
mirror::PrimitiveArray<uint8_t>::VisitRoots(callback, arg); // BooleanArray
mirror::PrimitiveArray<int8_t>::VisitRoots(callback, arg); // ByteArray
mirror::PrimitiveArray<uint16_t>::VisitRoots(callback, arg); // CharArray
mirror::PrimitiveArray<double>::VisitRoots(callback, arg); // DoubleArray
mirror::PrimitiveArray<float>::VisitRoots(callback, arg); // FloatArray
mirror::PrimitiveArray<int32_t>::VisitRoots(callback, arg); // IntArray
mirror::PrimitiveArray<int64_t>::VisitRoots(callback, arg); // LongArray
mirror::PrimitiveArray<int16_t>::VisitRoots(callback, arg); // ShortArray
}
void Runtime::VisitConcurrentRoots(RootCallback* callback, void* arg, VisitRootFlags flags) {
intern_table_->VisitRoots(callback, arg, flags);
class_linker_->VisitRoots(callback, arg, flags);
if ((flags & kVisitRootFlagNewRoots) == 0) {
// Guaranteed to have no new roots in the constant roots.
VisitConstantRoots(callback, arg);
}
}
void Runtime::VisitNonThreadRoots(RootCallback* callback, void* arg) {
java_vm_->VisitRoots(callback, arg);
if (!sentinel_.IsNull()) {
sentinel_.VisitRoot(callback, arg, 0, kRootVMInternal);
DCHECK(!sentinel_.IsNull());
}
if (!pre_allocated_OutOfMemoryError_.IsNull()) {
pre_allocated_OutOfMemoryError_.VisitRoot(callback, arg, 0, kRootVMInternal);
DCHECK(!pre_allocated_OutOfMemoryError_.IsNull());
}
resolution_method_.VisitRoot(callback, arg, 0, kRootVMInternal);
DCHECK(!resolution_method_.IsNull());
if (!pre_allocated_NoClassDefFoundError_.IsNull()) {
pre_allocated_NoClassDefFoundError_.VisitRoot(callback, arg, 0, kRootVMInternal);
DCHECK(!pre_allocated_NoClassDefFoundError_.IsNull());
}
if (HasImtConflictMethod()) {
imt_conflict_method_.VisitRoot(callback, arg, 0, kRootVMInternal);
}
if (!imt_unimplemented_method_.IsNull()) {
imt_unimplemented_method_.VisitRoot(callback, arg, 0, kRootVMInternal);
}
if (HasDefaultImt()) {
default_imt_.VisitRoot(callback, arg, 0, kRootVMInternal);
}
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
if (!callee_save_methods_[i].IsNull()) {
callee_save_methods_[i].VisitRoot(callback, arg, 0, kRootVMInternal);
}
}
verifier::MethodVerifier::VisitStaticRoots(callback, arg);
{
MutexLock mu(Thread::Current(), method_verifier_lock_);
for (verifier::MethodVerifier* verifier : method_verifiers_) {
verifier->VisitRoots(callback, arg);
}
}
if (preinitialization_transaction_ != nullptr) {
preinitialization_transaction_->VisitRoots(callback, arg);
}
instrumentation_.VisitRoots(callback, arg);
}
void Runtime::VisitNonConcurrentRoots(RootCallback* callback, void* arg) {
thread_list_->VisitRoots(callback, arg);
VisitNonThreadRoots(callback, arg);
}
void Runtime::VisitRoots(RootCallback* callback, void* arg, VisitRootFlags flags) {
VisitNonConcurrentRoots(callback, arg);
VisitConcurrentRoots(callback, arg, flags);
}
mirror::ObjectArray<mirror::ArtMethod>* Runtime::CreateDefaultImt(ClassLinker* cl) {
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::ObjectArray<mirror::ArtMethod>> imtable(
hs.NewHandle(cl->AllocArtMethodArray(self, 64)));
mirror::ArtMethod* imt_conflict_method = Runtime::Current()->GetImtConflictMethod();
for (size_t i = 0; i < static_cast<size_t>(imtable->GetLength()); i++) {
imtable->Set<false>(i, imt_conflict_method);
}
return imtable.Get();
}
mirror::ArtMethod* Runtime::CreateImtConflictMethod() {
Thread* self = Thread::Current();
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
StackHandleScope<1> hs(self);
Handle<mirror::ArtMethod> method(hs.NewHandle(class_linker->AllocArtMethod(self)));
method->SetDeclaringClass(mirror::ArtMethod::GetJavaLangReflectArtMethod());
// TODO: use a special method for imt conflict method saves.
method->SetDexMethodIndex(DexFile::kDexNoIndex);
// When compiling, the code pointer will get set later when the image is loaded.
if (runtime->IsCompiler()) {
method->SetEntryPointFromPortableCompiledCode(nullptr);
method->SetEntryPointFromQuickCompiledCode(nullptr);
} else {
method->SetEntryPointFromPortableCompiledCode(GetPortableImtConflictStub());
method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
}
return method.Get();
}
mirror::ArtMethod* Runtime::CreateResolutionMethod() {
Thread* self = Thread::Current();
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
StackHandleScope<1> hs(self);
Handle<mirror::ArtMethod> method(hs.NewHandle(class_linker->AllocArtMethod(self)));
method->SetDeclaringClass(mirror::ArtMethod::GetJavaLangReflectArtMethod());
// TODO: use a special method for resolution method saves
method->SetDexMethodIndex(DexFile::kDexNoIndex);
// When compiling, the code pointer will get set later when the image is loaded.
if (runtime->IsCompiler()) {
method->SetEntryPointFromPortableCompiledCode(nullptr);
method->SetEntryPointFromQuickCompiledCode(nullptr);
} else {
method->SetEntryPointFromPortableCompiledCode(GetPortableResolutionStub());
method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
}
return method.Get();
}
mirror::ArtMethod* Runtime::CreateCalleeSaveMethod(CalleeSaveType type) {
Thread* self = Thread::Current();
Runtime* runtime = Runtime::Current();
ClassLinker* class_linker = runtime->GetClassLinker();
StackHandleScope<1> hs(self);
Handle<mirror::ArtMethod> method(hs.NewHandle(class_linker->AllocArtMethod(self)));
method->SetDeclaringClass(mirror::ArtMethod::GetJavaLangReflectArtMethod());
// TODO: use a special method for callee saves
method->SetDexMethodIndex(DexFile::kDexNoIndex);
method->SetEntryPointFromPortableCompiledCode(nullptr);
method->SetEntryPointFromQuickCompiledCode(nullptr);
DCHECK_NE(instruction_set_, kNone);
return method.Get();
}
void Runtime::DisallowNewSystemWeaks() {
monitor_list_->DisallowNewMonitors();
intern_table_->DisallowNewInterns();
java_vm_->DisallowNewWeakGlobals();
}
void Runtime::AllowNewSystemWeaks() {
monitor_list_->AllowNewMonitors();
intern_table_->AllowNewInterns();
java_vm_->AllowNewWeakGlobals();
}
void Runtime::SetInstructionSet(InstructionSet instruction_set) {
instruction_set_ = instruction_set;
if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
}
} else if (instruction_set_ == kMips) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
}
} else if (instruction_set_ == kX86) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
}
} else if (instruction_set_ == kX86_64) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
}
} else if (instruction_set_ == kArm64) {
for (int i = 0; i != kLastCalleeSaveType; ++i) {
CalleeSaveType type = static_cast<CalleeSaveType>(i);
callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
}
} else {
UNIMPLEMENTED(FATAL) << instruction_set_;
}
}
void Runtime::SetCalleeSaveMethod(mirror::ArtMethod* method, CalleeSaveType type) {
DCHECK_LT(static_cast<int>(type), static_cast<int>(kLastCalleeSaveType));
callee_save_methods_[type] = GcRoot<mirror::ArtMethod>(method);
}
const std::vector<const DexFile*>& Runtime::GetCompileTimeClassPath(jobject class_loader) {
if (class_loader == NULL) {
return GetClassLinker()->GetBootClassPath();
}
CHECK(UseCompileTimeClassPath());
CompileTimeClassPaths::const_iterator it = compile_time_class_paths_.find(class_loader);
CHECK(it != compile_time_class_paths_.end());
return it->second;
}
void Runtime::SetCompileTimeClassPath(jobject class_loader,
std::vector<const DexFile*>& class_path) {
CHECK(!IsStarted());
use_compile_time_class_path_ = true;
compile_time_class_paths_.Put(class_loader, class_path);
}
void Runtime::AddMethodVerifier(verifier::MethodVerifier* verifier) {
DCHECK(verifier != nullptr);
MutexLock mu(Thread::Current(), method_verifier_lock_);
method_verifiers_.insert(verifier);
}
void Runtime::RemoveMethodVerifier(verifier::MethodVerifier* verifier) {
DCHECK(verifier != nullptr);
MutexLock mu(Thread::Current(), method_verifier_lock_);
auto it = method_verifiers_.find(verifier);
CHECK(it != method_verifiers_.end());
method_verifiers_.erase(it);
}
void Runtime::StartProfiler(const char* profile_output_filename) {
profile_output_filename_ = profile_output_filename;
profiler_started_ =
BackgroundMethodSamplingProfiler::Start(profile_output_filename_, profiler_options_);
}
// Transaction support.
void Runtime::EnterTransactionMode(Transaction* transaction) {
DCHECK(IsCompiler());
DCHECK(transaction != nullptr);
DCHECK(!IsActiveTransaction());
preinitialization_transaction_ = transaction;
}
void Runtime::ExitTransactionMode() {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_ = nullptr;
}
void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
uint8_t value, bool is_volatile) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
int8_t value, bool is_volatile) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
uint16_t value, bool is_volatile) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
int16_t value, bool is_volatile) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
uint32_t value, bool is_volatile) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
uint64_t value, bool is_volatile) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldReference(mirror::Object* obj, MemberOffset field_offset,
mirror::Object* value, bool is_volatile) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteFieldReference(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWriteArray(array, index, value);
}
void Runtime::RecordStrongStringInsertion(mirror::String* s) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordStrongStringInsertion(s);
}
void Runtime::RecordWeakStringInsertion(mirror::String* s) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWeakStringInsertion(s);
}
void Runtime::RecordStrongStringRemoval(mirror::String* s) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordStrongStringRemoval(s);
}
void Runtime::RecordWeakStringRemoval(mirror::String* s) const {
DCHECK(IsCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transaction_->RecordWeakStringRemoval(s);
}
void Runtime::SetFaultMessage(const std::string& message) {
MutexLock mu(Thread::Current(), fault_message_lock_);
fault_message_ = message;
}
void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
const {
if (GetInstrumentation()->InterpretOnly()) {
argv->push_back("--compiler-filter=interpret-only");
}
// Make the dex2oat instruction set match that of the launching runtime. If we have multiple
// architecture support, dex2oat may be compiled as a different instruction-set than that
// currently being executed.
std::string instruction_set("--instruction-set=");
instruction_set += GetInstructionSetString(kRuntimeISA);
argv->push_back(instruction_set);
std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
std::string feature_string("--instruction-set-features=");
feature_string += features->GetFeatureString();
argv->push_back(feature_string);
}
void Runtime::UpdateProfilerState(int state) {
VLOG(profiler) << "Profiler state updated to " << state;
}
} // namespace art