blob: 14cbf85c3f355416eebd77fdcad54e7800f3c41c [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_NODES_SHARED_H_
#define ART_COMPILER_OPTIMIZING_NODES_SHARED_H_
// This `#include` should never be used by compilation, as this file (`nodes_shared.h`) is included
// in `nodes.h`. However it helps editing tools (e.g. YouCompleteMe) by giving them better context
// (defining `HInstruction` and co).
#include "nodes.h"
namespace art {
class HMultiplyAccumulate FINAL : public HExpression<3> {
public:
HMultiplyAccumulate(DataType::Type type,
InstructionKind op,
HInstruction* accumulator,
HInstruction* mul_left,
HInstruction* mul_right,
uint32_t dex_pc = kNoDexPc)
: HExpression(type, SideEffects::None(), dex_pc), op_kind_(op) {
SetRawInputAt(kInputAccumulatorIndex, accumulator);
SetRawInputAt(kInputMulLeftIndex, mul_left);
SetRawInputAt(kInputMulRightIndex, mul_right);
}
static constexpr int kInputAccumulatorIndex = 0;
static constexpr int kInputMulLeftIndex = 1;
static constexpr int kInputMulRightIndex = 2;
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
return op_kind_ == other->AsMultiplyAccumulate()->op_kind_;
}
InstructionKind GetOpKind() const { return op_kind_; }
DECLARE_INSTRUCTION(MultiplyAccumulate);
private:
// Indicates if this is a MADD or MSUB.
const InstructionKind op_kind_;
DISALLOW_COPY_AND_ASSIGN(HMultiplyAccumulate);
};
class HBitwiseNegatedRight FINAL : public HBinaryOperation {
public:
HBitwiseNegatedRight(DataType::Type result_type,
InstructionKind op,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc),
op_kind_(op) {
DCHECK(op == HInstruction::kAnd || op == HInstruction::kOr || op == HInstruction::kXor) << op;
}
template <typename T, typename U>
auto Compute(T x, U y) const -> decltype(x & ~y) {
static_assert(std::is_same<decltype(x & ~y), decltype(x | ~y)>::value &&
std::is_same<decltype(x & ~y), decltype(x ^ ~y)>::value,
"Inconsistent negated bitwise types");
switch (op_kind_) {
case HInstruction::kAnd:
return x & ~y;
case HInstruction::kOr:
return x | ~y;
case HInstruction::kXor:
return x ^ ~y;
default:
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
InstructionKind GetOpKind() const { return op_kind_; }
DECLARE_INSTRUCTION(BitwiseNegatedRight);
private:
// Specifies the bitwise operation, which will be then negated.
const InstructionKind op_kind_;
DISALLOW_COPY_AND_ASSIGN(HBitwiseNegatedRight);
};
// This instruction computes an intermediate address pointing in the 'middle' of an object. The
// result pointer cannot be handled by GC, so extra care is taken to make sure that this value is
// never used across anything that can trigger GC.
// The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`.
// So we represent it by the type `DataType::Type::kInt`.
class HIntermediateAddress FINAL : public HExpression<2> {
public:
HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc)
: HExpression(DataType::Type::kInt32, SideEffects::DependsOnGC(), dex_pc) {
DCHECK_EQ(DataType::Size(DataType::Type::kInt32),
DataType::Size(DataType::Type::kReference))
<< "kPrimInt and kPrimNot have different sizes.";
SetRawInputAt(0, base_address);
SetRawInputAt(1, offset);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
return true;
}
bool IsActualObject() const OVERRIDE { return false; }
HInstruction* GetBaseAddress() const { return InputAt(0); }
HInstruction* GetOffset() const { return InputAt(1); }
DECLARE_INSTRUCTION(IntermediateAddress);
private:
DISALLOW_COPY_AND_ASSIGN(HIntermediateAddress);
};
// This instruction computes part of the array access offset (data and index offset).
//
// For array accesses the element address has the following structure:
// Address = CONST_OFFSET + base_addr + index << ELEM_SHIFT. Taking into account LDR/STR addressing
// modes address part (CONST_OFFSET + index << ELEM_SHIFT) can be shared across array access with
// the same data type and index. For example, for the following loop 5 accesses can share address
// computation:
//
// void foo(int[] a, int[] b, int[] c) {
// for (i...) {
// a[i] = a[i] + 5;
// b[i] = b[i] + c[i];
// }
// }
//
// Note: as the instruction doesn't involve base array address into computations it has no side
// effects (in comparison of HIntermediateAddress).
class HIntermediateAddressIndex FINAL : public HExpression<3> {
public:
HIntermediateAddressIndex(
HInstruction* index, HInstruction* offset, HInstruction* shift, uint32_t dex_pc)
: HExpression(DataType::Type::kInt32, SideEffects::None(), dex_pc) {
SetRawInputAt(0, index);
SetRawInputAt(1, offset);
SetRawInputAt(2, shift);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
return true;
}
bool IsActualObject() const OVERRIDE { return false; }
HInstruction* GetIndex() const { return InputAt(0); }
HInstruction* GetOffset() const { return InputAt(1); }
HInstruction* GetShift() const { return InputAt(2); }
DECLARE_INSTRUCTION(IntermediateAddressIndex);
private:
DISALLOW_COPY_AND_ASSIGN(HIntermediateAddressIndex);
};
class HDataProcWithShifterOp FINAL : public HExpression<2> {
public:
enum OpKind {
kLSL, // Logical shift left.
kLSR, // Logical shift right.
kASR, // Arithmetic shift right.
kUXTB, // Unsigned extend byte.
kUXTH, // Unsigned extend half-word.
kUXTW, // Unsigned extend word.
kSXTB, // Signed extend byte.
kSXTH, // Signed extend half-word.
kSXTW, // Signed extend word.
// Aliases.
kFirstShiftOp = kLSL,
kLastShiftOp = kASR,
kFirstExtensionOp = kUXTB,
kLastExtensionOp = kSXTW
};
HDataProcWithShifterOp(HInstruction* instr,
HInstruction* left,
HInstruction* right,
OpKind op,
// The shift argument is unused if the operation
// is an extension.
int shift = 0,
uint32_t dex_pc = kNoDexPc)
: HExpression(instr->GetType(), SideEffects::None(), dex_pc),
instr_kind_(instr->GetKind()), op_kind_(op),
shift_amount_(shift & (instr->GetType() == DataType::Type::kInt32
? kMaxIntShiftDistance
: kMaxLongShiftDistance)) {
DCHECK(!instr->HasSideEffects());
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
bool CanBeMoved() const OVERRIDE { return true; }
bool InstructionDataEquals(const HInstruction* other_instr) const OVERRIDE {
const HDataProcWithShifterOp* other = other_instr->AsDataProcWithShifterOp();
return instr_kind_ == other->instr_kind_ &&
op_kind_ == other->op_kind_ &&
shift_amount_ == other->shift_amount_;
}
static bool IsShiftOp(OpKind op_kind) {
return kFirstShiftOp <= op_kind && op_kind <= kLastShiftOp;
}
static bool IsExtensionOp(OpKind op_kind) {
return kFirstExtensionOp <= op_kind && op_kind <= kLastExtensionOp;
}
// Find the operation kind and shift amount from a bitfield move instruction.
static void GetOpInfoFromInstruction(HInstruction* bitfield_op,
/*out*/OpKind* op_kind,
/*out*/int* shift_amount);
InstructionKind GetInstrKind() const { return instr_kind_; }
OpKind GetOpKind() const { return op_kind_; }
int GetShiftAmount() const { return shift_amount_; }
DECLARE_INSTRUCTION(DataProcWithShifterOp);
private:
InstructionKind instr_kind_;
OpKind op_kind_;
int shift_amount_;
friend std::ostream& operator<<(std::ostream& os, OpKind op);
DISALLOW_COPY_AND_ASSIGN(HDataProcWithShifterOp);
};
std::ostream& operator<<(std::ostream& os, const HDataProcWithShifterOp::OpKind op);
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_NODES_SHARED_H_