| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_SRC_DEX_VERIFY_H_ |
| #define ART_SRC_DEX_VERIFY_H_ |
| |
| #include <deque> |
| #include <limits> |
| #include <map> |
| #include <vector> |
| |
| #include "casts.h" |
| #include "compiler.h" |
| #include "dex_file.h" |
| #include "dex_instruction.h" |
| #include "macros.h" |
| #include "object.h" |
| #include "stl_util.h" |
| #include "UniquePtr.h" |
| |
| namespace art { |
| |
| #if defined(ART_USE_LLVM_COMPILER) |
| namespace compiler_llvm { |
| class InferredRegCategoryMap; |
| } |
| #endif |
| |
| namespace verifier { |
| |
| class DexVerifier; |
| class PcToReferenceMap; |
| class RegTypeCache; |
| |
| /* |
| * Set this to enable dead code scanning. This is not required, but it's very useful when testing |
| * changes to the verifier (to make sure we're not skipping over stuff). The only reason not to do |
| * it is that it slightly increases the time required to perform verification. |
| */ |
| #ifndef NDEBUG |
| # define DEAD_CODE_SCAN true |
| #else |
| # define DEAD_CODE_SCAN false |
| #endif |
| |
| /* |
| * RegType holds information about the "type" of data held in a register. |
| */ |
| class RegType { |
| public: |
| enum Type { |
| kRegTypeUnknown = 0, /* initial state */ |
| kRegTypeConflict, /* merge clash makes this reg's type unknowable */ |
| kRegTypeBoolean, /* Z */ |
| kRegType1nrSTART = kRegTypeBoolean, |
| kRegTypeIntegralSTART = kRegTypeBoolean, |
| kRegTypeByte, /* B */ |
| kRegTypeShort, /* S */ |
| kRegTypeChar, /* C */ |
| kRegTypeInteger, /* I */ |
| kRegTypeIntegralEND = kRegTypeInteger, |
| kRegTypeFloat, /* F */ |
| kRegType1nrEND = kRegTypeFloat, |
| kRegTypeLongLo, /* J - lower-numbered register; endian-independent */ |
| kRegTypeLongHi, |
| kRegTypeDoubleLo, /* D */ |
| kRegTypeDoubleHi, |
| kRegTypeConstLo, /* const derived wide, lower half - could be long or double */ |
| kRegTypeConstHi, /* const derived wide, upper half - could be long or double */ |
| kRegTypeLastFixedLocation = kRegTypeConstHi, |
| kRegTypeConst, /* 32-bit constant derived value - could be float or int */ |
| kRegTypeUnresolvedReference, // Reference type that couldn't be resolved |
| kRegTypeUninitializedReference, // Freshly allocated reference type |
| kRegTypeUninitializedThisReference, // Freshly allocated reference passed as "this" |
| kRegTypeUnresolvedAndUninitializedReference, // Freshly allocated unresolved reference type |
| kRegTypeReference, // Reference type |
| }; |
| |
| Type GetType() const { |
| return type_; |
| } |
| |
| bool IsUnknown() const { return type_ == kRegTypeUnknown; } |
| bool IsConflict() const { return type_ == kRegTypeConflict; } |
| bool IsBoolean() const { return type_ == kRegTypeBoolean; } |
| bool IsByte() const { return type_ == kRegTypeByte; } |
| bool IsChar() const { return type_ == kRegTypeChar; } |
| bool IsShort() const { return type_ == kRegTypeShort; } |
| bool IsInteger() const { return type_ == kRegTypeInteger; } |
| bool IsLong() const { return type_ == kRegTypeLongLo; } |
| bool IsFloat() const { return type_ == kRegTypeFloat; } |
| bool IsDouble() const { return type_ == kRegTypeDoubleLo; } |
| bool IsUnresolvedReference() const { return type_ == kRegTypeUnresolvedReference; } |
| bool IsUninitializedReference() const { return type_ == kRegTypeUninitializedReference; } |
| bool IsUninitializedThisReference() const { return type_ == kRegTypeUninitializedThisReference; } |
| bool IsUnresolvedAndUninitializedReference() const { |
| return type_ == kRegTypeUnresolvedAndUninitializedReference; |
| } |
| bool IsReference() const { return type_ == kRegTypeReference; } |
| bool IsUninitializedTypes() const { |
| return IsUninitializedReference() || IsUninitializedThisReference() || |
| IsUnresolvedAndUninitializedReference(); |
| } |
| bool IsUnresolvedTypes() const { |
| return IsUnresolvedReference() || IsUnresolvedAndUninitializedReference(); |
| } |
| bool IsLowHalf() const { return type_ == kRegTypeLongLo || |
| type_ == kRegTypeDoubleLo || |
| type_ == kRegTypeConstLo; } |
| bool IsHighHalf() const { return type_ == kRegTypeLongHi || |
| type_ == kRegTypeDoubleHi || |
| type_ == kRegTypeConstHi; } |
| |
| bool IsLongOrDoubleTypes() const { return IsLowHalf(); } |
| |
| // Check this is the low half, and that type_h is its matching high-half |
| bool CheckWidePair(const RegType& type_h) const { |
| return IsLowHalf() && (type_h.type_ == type_ + 1); |
| } |
| |
| // The high half that corresponds to this low half |
| const RegType& HighHalf(RegTypeCache* cache) const; |
| |
| bool IsConstant() const { return type_ == kRegTypeConst; } |
| bool IsLongConstant() const { return type_ == kRegTypeConstLo; } |
| bool IsLongConstantHigh() const { return type_ == kRegTypeConstHi; } |
| |
| // If this is a 32-bit constant, what is the value? This value may just |
| // approximate to the actual constant value by virtue of merging. |
| int32_t ConstantValue() const { |
| DCHECK(IsConstant()); |
| return allocation_pc_or_constant_; |
| } |
| |
| bool IsZero() const { return IsConstant() && ConstantValue() == 0; } |
| bool IsOne() const { return IsConstant() && ConstantValue() == 1; } |
| bool IsConstantBoolean() const { return IsZero() || IsOne(); } |
| bool IsConstantByte() const { |
| return IsConstant() && |
| ConstantValue() >= std::numeric_limits<jbyte>::min() && |
| ConstantValue() <= std::numeric_limits<jbyte>::max(); |
| } |
| bool IsConstantShort() const { |
| return IsConstant() && |
| ConstantValue() >= std::numeric_limits<jshort>::min() && |
| ConstantValue() <= std::numeric_limits<jshort>::max(); |
| } |
| bool IsConstantChar() const { |
| return IsConstant() && ConstantValue() >= 0 && |
| ConstantValue() <= std::numeric_limits<jchar>::max(); |
| } |
| |
| bool IsReferenceTypes() const { |
| return IsReference() || IsUnresolvedReference() || IsUninitializedReference() || |
| IsUninitializedThisReference() || IsUnresolvedAndUninitializedReference() || IsZero(); |
| } |
| bool IsNonZeroReferenceTypes() const { |
| return IsReference() || IsUnresolvedReference() || IsUninitializedReference() || |
| IsUninitializedThisReference(); |
| } |
| bool IsCategory1Types() const { |
| return (type_ >= kRegType1nrSTART && type_ <= kRegType1nrEND) || IsConstant(); |
| } |
| bool IsCategory2Types() const { |
| return IsLowHalf(); // Don't expect explicit testing of high halves |
| } |
| |
| bool IsBooleanTypes() const { return IsBoolean() || IsConstantBoolean(); } |
| bool IsByteTypes() const { return IsByte() || IsBoolean() || IsConstantByte(); } |
| bool IsShortTypes() const { return IsShort() || IsByte() || IsBoolean() || IsConstantShort(); } |
| bool IsCharTypes() const { return IsChar() || IsBooleanTypes() || IsConstantChar(); } |
| bool IsIntegralTypes() const { |
| return (type_ >= kRegTypeIntegralSTART && type_ <= kRegTypeIntegralEND) || IsConstant(); |
| } |
| bool IsArrayIndexTypes() const { return IsIntegralTypes(); } |
| |
| // Float type may be derived from any constant type |
| bool IsFloatTypes() const { return IsFloat() || IsConstant(); } |
| |
| bool IsLongTypes() const { |
| return IsLong() || IsLongConstant(); |
| } |
| bool IsLongHighTypes() const { |
| return type_ == kRegTypeLongHi || type_ == kRegTypeConstHi; |
| } |
| bool IsDoubleTypes() const { |
| return IsDouble() || IsLongConstant(); |
| } |
| bool IsDoubleHighTypes() const { |
| return type_ == kRegTypeDoubleHi || type_ == kRegTypeConstHi; |
| } |
| |
| uint32_t GetAllocationPc() const { |
| DCHECK(IsUninitializedTypes()); |
| return allocation_pc_or_constant_; |
| } |
| |
| Class* GetClass() const { |
| DCHECK(!IsUnresolvedReference()); |
| DCHECK(klass_or_descriptor_ != NULL); |
| DCHECK(klass_or_descriptor_->IsClass()); |
| return down_cast<Class*>(klass_or_descriptor_); |
| } |
| |
| bool IsJavaLangObject() const { |
| return IsReference() && GetClass()->IsObjectClass(); |
| } |
| |
| bool IsArrayTypes() const { |
| if (IsUnresolvedTypes()) { |
| return GetDescriptor()->CharAt(0) == '['; |
| } else if (IsReference()) { |
| return GetClass()->IsArrayClass(); |
| } else { |
| return false; |
| } |
| } |
| |
| bool IsObjectArrayTypes() const { |
| if (IsUnresolvedTypes()) { |
| // Primitive arrays will always resolve |
| DCHECK(GetDescriptor()->CharAt(1) == 'L' || GetDescriptor()->CharAt(1) == '['); |
| return GetDescriptor()->CharAt(0) == '['; |
| } else if (IsReference()) { |
| Class* type = GetClass(); |
| return type->IsArrayClass() && !type->GetComponentType()->IsPrimitive(); |
| } else { |
| return false; |
| } |
| } |
| |
| Primitive::Type GetPrimitiveType() const { |
| if (IsNonZeroReferenceTypes()) { |
| return Primitive::kPrimNot; |
| } else if (IsBooleanTypes()) { |
| return Primitive::kPrimBoolean; |
| } else if (IsByteTypes()) { |
| return Primitive::kPrimByte; |
| } else if (IsShortTypes()) { |
| return Primitive::kPrimShort; |
| } else if (IsCharTypes()) { |
| return Primitive::kPrimChar; |
| } else if (IsFloat()) { |
| return Primitive::kPrimFloat; |
| } else if (IsIntegralTypes()) { |
| return Primitive::kPrimInt; |
| } else if (IsDouble()) { |
| return Primitive::kPrimDouble; |
| } else { |
| DCHECK(IsLongTypes()); |
| return Primitive::kPrimLong; |
| } |
| } |
| |
| bool IsJavaLangObjectArray() const { |
| if (IsReference()) { |
| Class* type = GetClass(); |
| return type->IsArrayClass() && type->GetComponentType()->IsObjectClass(); |
| } |
| return false; |
| } |
| |
| bool IsInstantiableTypes() const { |
| return IsUnresolvedTypes() || (IsNonZeroReferenceTypes() && GetClass()->IsInstantiable()); |
| } |
| |
| String* GetDescriptor() const { |
| DCHECK(IsUnresolvedTypes()); |
| DCHECK(klass_or_descriptor_ != NULL); |
| DCHECK(klass_or_descriptor_->GetClass()->IsStringClass()); |
| return down_cast<String*>(klass_or_descriptor_); |
| } |
| |
| uint16_t GetId() const { |
| return cache_id_; |
| } |
| |
| std::string Dump() const; |
| |
| bool IsAssignableFrom(const RegType& src) const; |
| |
| const RegType& Merge(const RegType& incoming_type, RegTypeCache* reg_types) const; |
| |
| bool Equals(const RegType& other) const { return GetId() == other.GetId(); } |
| |
| /* |
| * A basic Join operation on classes. For a pair of types S and T the Join, written S v T = J, is |
| * S <: J, T <: J and for-all U such that S <: U, T <: U then J <: U. That is J is the parent of |
| * S and T such that there isn't a parent of both S and T that isn't also the parent of J (ie J |
| * is the deepest (lowest upper bound) parent of S and T). |
| * |
| * This operation applies for regular classes and arrays, however, for interface types there needn't |
| * be a partial ordering on the types. We could solve the problem of a lack of a partial order by |
| * introducing sets of types, however, the only operation permissible on an interface is |
| * invoke-interface. In the tradition of Java verifiers [1] we defer the verification of interface |
| * types until an invoke-interface call on the interface typed reference at runtime and allow |
| * the perversion of Object being assignable to an interface type (note, however, that we don't |
| * allow assignment of Object or Interface to any concrete class and are therefore type safe). |
| * |
| * [1] Java bytecode verification: algorithms and formalizations, Xavier Leroy |
| */ |
| static Class* ClassJoin(Class* s, Class* t); |
| |
| private: |
| friend class RegTypeCache; |
| |
| RegType(Type type, Object* klass_or_descriptor, uint32_t allocation_pc_or_constant, uint16_t cache_id) : |
| type_(type), klass_or_descriptor_(klass_or_descriptor), allocation_pc_or_constant_(allocation_pc_or_constant), |
| cache_id_(cache_id) { |
| DCHECK(IsConstant() || IsUninitializedTypes() || allocation_pc_or_constant == 0); |
| if (!IsConstant() && !IsLongConstant() && !IsLongConstantHigh() && !IsUnknown() && |
| !IsConflict()) { |
| DCHECK(klass_or_descriptor != NULL); |
| DCHECK(IsUnresolvedTypes() || klass_or_descriptor_->IsClass()); |
| DCHECK(!IsUnresolvedTypes() || klass_or_descriptor_->GetClass()->IsStringClass()); |
| } |
| } |
| |
| const Type type_; // The current type of the register |
| |
| // If known the type of the register, else a String for the descriptor |
| Object* klass_or_descriptor_; |
| |
| // Overloaded field that: |
| // - if IsConstant() holds a 32bit constant value |
| // - is IsReference() holds the allocation_pc or kInitArgAddr for an initialized reference or |
| // kUninitThisArgAddr for an uninitialized this ptr |
| const uint32_t allocation_pc_or_constant_; |
| |
| // A RegType cache densely encodes types, this is the location in the cache for this type |
| const uint16_t cache_id_; |
| |
| DISALLOW_COPY_AND_ASSIGN(RegType); |
| }; |
| std::ostream& operator<<(std::ostream& os, const RegType& rhs); |
| |
| class RegTypeCache { |
| public: |
| explicit RegTypeCache() : entries_(RegType::kRegTypeLastFixedLocation + 1) { |
| Unknown(); // ensure Unknown is initialized |
| } |
| ~RegTypeCache() { |
| STLDeleteElements(&entries_); |
| } |
| |
| const RegType& GetFromId(uint16_t id) { |
| DCHECK_LT(id, entries_.size()); |
| RegType* result = entries_[id]; |
| DCHECK(result != NULL); |
| return *result; |
| } |
| |
| const RegType& From(RegType::Type type, const ClassLoader* loader, const char* descriptor); |
| const RegType& FromClass(Class* klass); |
| const RegType& FromCat1Const(int32_t value); |
| const RegType& FromDescriptor(const ClassLoader* loader, const char* descriptor); |
| const RegType& FromType(RegType::Type); |
| |
| const RegType& Boolean() { return FromType(RegType::kRegTypeBoolean); } |
| const RegType& Byte() { return FromType(RegType::kRegTypeByte); } |
| const RegType& Char() { return FromType(RegType::kRegTypeChar); } |
| const RegType& Short() { return FromType(RegType::kRegTypeShort); } |
| const RegType& Integer() { return FromType(RegType::kRegTypeInteger); } |
| const RegType& Float() { return FromType(RegType::kRegTypeFloat); } |
| const RegType& Long() { return FromType(RegType::kRegTypeLongLo); } |
| const RegType& Double() { return FromType(RegType::kRegTypeDoubleLo); } |
| |
| const RegType& JavaLangClass() { return From(RegType::kRegTypeReference, NULL, "Ljava/lang/Class;"); } |
| const RegType& JavaLangObject() { return From(RegType::kRegTypeReference, NULL, "Ljava/lang/Object;"); } |
| const RegType& JavaLangString() { return From(RegType::kRegTypeReference, NULL, "Ljava/lang/String;"); } |
| const RegType& JavaLangThrowable() { return From(RegType::kRegTypeReference, NULL, "Ljava/lang/Throwable;"); } |
| |
| const RegType& Unknown() { return FromType(RegType::kRegTypeUnknown); } |
| const RegType& Conflict() { return FromType(RegType::kRegTypeConflict); } |
| const RegType& ConstLo() { return FromType(RegType::kRegTypeConstLo); } |
| const RegType& Zero() { return FromCat1Const(0); } |
| |
| const RegType& Uninitialized(const RegType& type, uint32_t allocation_pc); |
| const RegType& UninitializedThisArgument(Class* klass); |
| const RegType& FromUninitialized(const RegType& uninit_type); |
| |
| // Representatives of various constant types. When merging constants we can't infer a type, |
| // (an int may later be used as a float) so we select these representative values meaning future |
| // merges won't know the exact constant value but have some notion of its size. |
| const RegType& ByteConstant() { return FromCat1Const(std::numeric_limits<jbyte>::min()); } |
| const RegType& ShortConstant() { return FromCat1Const(std::numeric_limits<jshort>::min()); } |
| const RegType& IntConstant() { return FromCat1Const(std::numeric_limits<jint>::max()); } |
| |
| const RegType& GetComponentType(const RegType& array, const ClassLoader* loader); |
| private: |
| // The allocated entries |
| std::vector<RegType*> entries_; |
| |
| DISALLOW_COPY_AND_ASSIGN(RegTypeCache); |
| }; |
| |
| class InsnFlags { |
| public: |
| InsnFlags() : length_(0), flags_(0) {} |
| |
| void SetLengthInCodeUnits(size_t length) { |
| CHECK_LT(length, 65536u); |
| length_ = length; |
| } |
| size_t GetLengthInCodeUnits() { |
| return length_; |
| } |
| bool IsOpcode() const { |
| return length_ != 0; |
| } |
| |
| void SetInTry() { |
| flags_ |= 1 << kInsnFlagInTry; |
| } |
| void ClearInTry() { |
| flags_ &= ~(1 << kInsnFlagInTry); |
| } |
| bool IsInTry() const { |
| return (flags_ & (1 << kInsnFlagInTry)) != 0; |
| } |
| |
| void SetBranchTarget() { |
| flags_ |= 1 << kInsnFlagBranchTarget; |
| } |
| void ClearBranchTarget() { |
| flags_ &= ~(1 << kInsnFlagBranchTarget); |
| } |
| bool IsBranchTarget() const { |
| return (flags_ & (1 << kInsnFlagBranchTarget)) != 0; |
| } |
| |
| void SetGcPoint() { |
| flags_ |= 1 << kInsnFlagGcPoint; |
| } |
| void ClearGcPoint() { |
| flags_ &= ~(1 << kInsnFlagGcPoint); |
| } |
| bool IsGcPoint() const { |
| return (flags_ & (1 << kInsnFlagGcPoint)) != 0; |
| } |
| |
| void SetVisited() { |
| flags_ |= 1 << kInsnFlagVisited; |
| } |
| void ClearVisited() { |
| flags_ &= ~(1 << kInsnFlagVisited); |
| } |
| bool IsVisited() const { |
| return (flags_ & (1 << kInsnFlagVisited)) != 0; |
| } |
| |
| void SetChanged() { |
| flags_ |= 1 << kInsnFlagChanged; |
| } |
| void ClearChanged() { |
| flags_ &= ~(1 << kInsnFlagChanged); |
| } |
| bool IsChanged() const { |
| return (flags_ & (1 << kInsnFlagChanged)) != 0; |
| } |
| |
| bool IsVisitedOrChanged() const { |
| return IsVisited() || IsChanged(); |
| } |
| |
| std::string Dump() { |
| char encoding[6]; |
| if (!IsOpcode()) { |
| strncpy(encoding, "XXXXX", sizeof(encoding)); |
| } else { |
| strncpy(encoding, "-----", sizeof(encoding)); |
| if (IsInTry()) encoding[kInsnFlagInTry] = 'T'; |
| if (IsBranchTarget()) encoding[kInsnFlagBranchTarget] = 'B'; |
| if (IsGcPoint()) encoding[kInsnFlagGcPoint] = 'G'; |
| if (IsVisited()) encoding[kInsnFlagVisited] = 'V'; |
| if (IsChanged()) encoding[kInsnFlagChanged] = 'C'; |
| } |
| return std::string(encoding); |
| } |
| private: |
| enum InsnFlag { |
| kInsnFlagInTry, |
| kInsnFlagBranchTarget, |
| kInsnFlagGcPoint, |
| kInsnFlagVisited, |
| kInsnFlagChanged, |
| }; |
| |
| // Size of instruction in code units |
| uint16_t length_; |
| uint8_t flags_; |
| }; |
| |
| /* |
| * "Direct" and "virtual" methods are stored independently. The type of call used to invoke the |
| * method determines which list we search, and whether we travel up into superclasses. |
| * |
| * (<clinit>, <init>, and methods declared "private" or "static" are stored in the "direct" list. |
| * All others are stored in the "virtual" list.) |
| */ |
| enum MethodType { |
| METHOD_UNKNOWN = 0, |
| METHOD_DIRECT, // <init>, private |
| METHOD_STATIC, // static |
| METHOD_VIRTUAL, // virtual, super |
| METHOD_INTERFACE // interface |
| }; |
| |
| const int kRegTypeUninitMask = 0xff; |
| const int kRegTypeUninitShift = 8; |
| |
| /* |
| * Register type categories, for type checking. |
| * |
| * The spec says category 1 includes boolean, byte, char, short, int, float, reference, and |
| * returnAddress. Category 2 includes long and double. |
| * |
| * We treat object references separately, so we have "category1nr". We don't support jsr/ret, so |
| * there is no "returnAddress" type. |
| */ |
| enum TypeCategory { |
| kTypeCategoryUnknown = 0, |
| kTypeCategory1nr = 1, // boolean, byte, char, short, int, float |
| kTypeCategory2 = 2, // long, double |
| kTypeCategoryRef = 3, // object reference |
| }; |
| |
| /* |
| * An enumeration of problems that can turn up during verification. |
| * VERIFY_ERROR_GENERIC denotes a failure that causes the entire class to be rejected. Other errors |
| * denote verification errors that cause bytecode to be rewritten to fail at runtime. |
| */ |
| enum VerifyError { |
| VERIFY_ERROR_NONE = 0, /* no error; must be zero */ |
| VERIFY_ERROR_GENERIC, /* VerifyError */ |
| |
| VERIFY_ERROR_NO_CLASS, /* NoClassDefFoundError */ |
| VERIFY_ERROR_NO_FIELD, /* NoSuchFieldError */ |
| VERIFY_ERROR_NO_METHOD, /* NoSuchMethodError */ |
| VERIFY_ERROR_ACCESS_CLASS, /* IllegalAccessError */ |
| VERIFY_ERROR_ACCESS_FIELD, /* IllegalAccessError */ |
| VERIFY_ERROR_ACCESS_METHOD, /* IllegalAccessError */ |
| VERIFY_ERROR_CLASS_CHANGE, /* IncompatibleClassChangeError */ |
| VERIFY_ERROR_INSTANTIATION, /* InstantiationError */ |
| }; |
| std::ostream& operator<<(std::ostream& os, const VerifyError& rhs); |
| |
| /* |
| * Identifies the type of reference in the instruction that generated the verify error |
| * (e.g. VERIFY_ERROR_ACCESS_CLASS could come from a method, field, or class reference). |
| * |
| * This must fit in two bits. |
| */ |
| enum VerifyErrorRefType { |
| VERIFY_ERROR_REF_CLASS = 0, |
| VERIFY_ERROR_REF_FIELD = 1, |
| VERIFY_ERROR_REF_METHOD = 2, |
| }; |
| const int kVerifyErrorRefTypeShift = 6; |
| |
| /* |
| * Format enumeration for RegisterMap data area. |
| */ |
| enum RegisterMapFormat { |
| kRegMapFormatUnknown = 0, |
| kRegMapFormatNone = 1, /* indicates no map data follows */ |
| kRegMapFormatCompact8 = 2, /* compact layout, 8-bit addresses */ |
| kRegMapFormatCompact16 = 3, /* compact layout, 16-bit addresses */ |
| }; |
| const int kRegMapFormatShift = 5; |
| const uint8_t kRegMapFormatMask = 0x7; |
| |
| // During verification, we associate one of these with every "interesting" instruction. We track |
| // the status of all registers, and (if the method has any monitor-enter instructions) maintain a |
| // stack of entered monitors (identified by code unit offset). |
| // If live-precise register maps are enabled, the "liveRegs" vector will be populated. Unlike the |
| // other lists of registers here, we do not track the liveness of the method result register |
| // (which is not visible to the GC). |
| class RegisterLine { |
| public: |
| RegisterLine(size_t num_regs, DexVerifier* verifier) : |
| line_(new uint16_t[num_regs]), verifier_(verifier), num_regs_(num_regs) { |
| memset(line_.get(), 0, num_regs_ * sizeof(uint16_t)); |
| result_[0] = RegType::kRegTypeUnknown; |
| result_[1] = RegType::kRegTypeUnknown; |
| } |
| |
| // Implement category-1 "move" instructions. Copy a 32-bit value from "vsrc" to "vdst". |
| void CopyRegister1(uint32_t vdst, uint32_t vsrc, TypeCategory cat); |
| |
| // Implement category-2 "move" instructions. Copy a 64-bit value from "vsrc" to "vdst". This |
| // copies both halves of the register. |
| void CopyRegister2(uint32_t vdst, uint32_t vsrc); |
| |
| // Implement "move-result". Copy the category-1 value from the result register to another |
| // register, and reset the result register. |
| void CopyResultRegister1(uint32_t vdst, bool is_reference); |
| |
| // Implement "move-result-wide". Copy the category-2 value from the result register to another |
| // register, and reset the result register. |
| void CopyResultRegister2(uint32_t vdst); |
| |
| // Set the invisible result register to unknown |
| void SetResultTypeToUnknown(); |
| |
| // Set the type of register N, verifying that the register is valid. If "newType" is the "Lo" |
| // part of a 64-bit value, register N+1 will be set to "newType+1". |
| // The register index was validated during the static pass, so we don't need to check it here. |
| bool SetRegisterType(uint32_t vdst, const RegType& new_type); |
| |
| /* Set the type of the "result" register. */ |
| void SetResultRegisterType(const RegType& new_type); |
| |
| // Get the type of register vsrc. |
| const RegType& GetRegisterType(uint32_t vsrc) const; |
| |
| bool VerifyRegisterType(uint32_t vsrc, const RegType& check_type); |
| |
| void CopyFromLine(const RegisterLine* src) { |
| DCHECK_EQ(num_regs_, src->num_regs_); |
| memcpy(line_.get(), src->line_.get(), num_regs_ * sizeof(uint16_t)); |
| monitors_ = src->monitors_; |
| reg_to_lock_depths_ = src->reg_to_lock_depths_; |
| } |
| |
| std::string Dump() const { |
| std::string result; |
| for (size_t i = 0; i < num_regs_; i++) { |
| result += StringPrintf("%zd:[", i); |
| result += GetRegisterType(i).Dump(); |
| result += "],"; |
| } |
| typedef std::deque<uint32_t>::const_iterator It; // TODO: C++0x auto |
| for (It it = monitors_.begin(), end = monitors_.end(); it != end ; ++it) { |
| result += StringPrintf("{%d},", *it); |
| } |
| return result; |
| } |
| |
| void FillWithGarbage() { |
| memset(line_.get(), 0xf1, num_regs_ * sizeof(uint16_t)); |
| while (!monitors_.empty()) { |
| monitors_.pop_back(); |
| } |
| reg_to_lock_depths_.clear(); |
| } |
| |
| /* |
| * We're creating a new instance of class C at address A. Any registers holding instances |
| * previously created at address A must be initialized by now. If not, we mark them as "conflict" |
| * to prevent them from being used (otherwise, MarkRefsAsInitialized would mark the old ones and |
| * the new ones at the same time). |
| */ |
| void MarkUninitRefsAsInvalid(const RegType& uninit_type); |
| |
| /* |
| * Update all registers holding "uninit_type" to instead hold the corresponding initialized |
| * reference type. This is called when an appropriate constructor is invoked -- all copies of |
| * the reference must be marked as initialized. |
| */ |
| void MarkRefsAsInitialized(const RegType& uninit_type); |
| |
| /* |
| * Check constraints on constructor return. Specifically, make sure that the "this" argument got |
| * initialized. |
| * The "this" argument to <init> uses code offset kUninitThisArgAddr, which puts it at the start |
| * of the list in slot 0. If we see a register with an uninitialized slot 0 reference, we know it |
| * somehow didn't get initialized. |
| */ |
| bool CheckConstructorReturn() const; |
| |
| // Compare two register lines. Returns 0 if they match. |
| // Using this for a sort is unwise, since the value can change based on machine endianness. |
| int CompareLine(const RegisterLine* line2) const { |
| DCHECK(monitors_ == line2->monitors_); |
| // TODO: DCHECK(reg_to_lock_depths_ == line2->reg_to_lock_depths_); |
| return memcmp(line_.get(), line2->line_.get(), num_regs_ * sizeof(uint16_t)); |
| } |
| |
| size_t NumRegs() const { |
| return num_regs_; |
| } |
| |
| /* |
| * Get the "this" pointer from a non-static method invocation. This returns the RegType so the |
| * caller can decide whether it needs the reference to be initialized or not. (Can also return |
| * kRegTypeZero if the reference can only be zero at this point.) |
| * |
| * The argument count is in vA, and the first argument is in vC, for both "simple" and "range" |
| * versions. We just need to make sure vA is >= 1 and then return vC. |
| */ |
| const RegType& GetInvocationThis(const Instruction::DecodedInstruction& dec_insn); |
| |
| /* |
| * Verify types for a simple two-register instruction (e.g. "neg-int"). |
| * "dst_type" is stored into vA, and "src_type" is verified against vB. |
| */ |
| void CheckUnaryOp(const Instruction::DecodedInstruction& dec_insn, |
| const RegType& dst_type, const RegType& src_type); |
| |
| /* |
| * Verify types for a simple three-register instruction (e.g. "add-int"). |
| * "dst_type" is stored into vA, and "src_type1"/"src_type2" are verified |
| * against vB/vC. |
| */ |
| void CheckBinaryOp(const Instruction::DecodedInstruction& dec_insn, |
| const RegType& dst_type, const RegType& src_type1, const RegType& src_type2, |
| bool check_boolean_op); |
| |
| /* |
| * Verify types for a binary "2addr" operation. "src_type1"/"src_type2" |
| * are verified against vA/vB, then "dst_type" is stored into vA. |
| */ |
| void CheckBinaryOp2addr(const Instruction::DecodedInstruction& dec_insn, |
| const RegType& dst_type, |
| const RegType& src_type1, const RegType& src_type2, |
| bool check_boolean_op); |
| |
| /* |
| * Verify types for A two-register instruction with a literal constant (e.g. "add-int/lit8"). |
| * "dst_type" is stored into vA, and "src_type" is verified against vB. |
| * |
| * If "check_boolean_op" is set, we use the constant value in vC. |
| */ |
| void CheckLiteralOp(const Instruction::DecodedInstruction& dec_insn, |
| const RegType& dst_type, const RegType& src_type, bool check_boolean_op); |
| |
| // Verify/push monitor onto the monitor stack, locking the value in reg_idx at location insn_idx. |
| void PushMonitor(uint32_t reg_idx, int32_t insn_idx); |
| |
| // Verify/pop monitor from monitor stack ensuring that we believe the monitor is locked |
| void PopMonitor(uint32_t reg_idx); |
| |
| // Stack of currently held monitors and where they were locked |
| size_t MonitorStackDepth() const { |
| return monitors_.size(); |
| } |
| |
| // We expect no monitors to be held at certain points, such a method returns. Verify the stack |
| // is empty, failing and returning false if not. |
| bool VerifyMonitorStackEmpty(); |
| |
| bool MergeRegisters(const RegisterLine* incoming_line); |
| |
| size_t GetMaxNonZeroReferenceReg(size_t max_ref_reg) { |
| size_t i = static_cast<int>(max_ref_reg) < 0 ? 0 : max_ref_reg; |
| for (; i < num_regs_; i++) { |
| if (GetRegisterType(i).IsNonZeroReferenceTypes()) { |
| max_ref_reg = i; |
| } |
| } |
| return max_ref_reg; |
| } |
| |
| // Write a bit at each register location that holds a reference |
| void WriteReferenceBitMap(std::vector<uint8_t>& data, size_t max_bytes); |
| private: |
| |
| void CopyRegToLockDepth(size_t dst, size_t src) { |
| if (reg_to_lock_depths_.count(src) > 0) { |
| uint32_t depths = reg_to_lock_depths_[src]; |
| reg_to_lock_depths_[dst] = depths; |
| } |
| } |
| |
| bool IsSetLockDepth(size_t reg, size_t depth) { |
| if (reg_to_lock_depths_.count(reg) > 0) { |
| uint32_t depths = reg_to_lock_depths_[reg]; |
| return (depths & (1 << depth)) != 0; |
| } else { |
| return false; |
| } |
| } |
| |
| void SetRegToLockDepth(size_t reg, size_t depth) { |
| CHECK_LT(depth, 32u); |
| DCHECK(!IsSetLockDepth(reg, depth)); |
| uint32_t depths; |
| if (reg_to_lock_depths_.count(reg) > 0) { |
| depths = reg_to_lock_depths_[reg]; |
| depths = depths | (1 << depth); |
| } else { |
| depths = 1 << depth; |
| } |
| reg_to_lock_depths_[reg] = depths; |
| } |
| |
| void ClearRegToLockDepth(size_t reg, size_t depth) { |
| CHECK_LT(depth, 32u); |
| DCHECK(IsSetLockDepth(reg, depth)); |
| uint32_t depths = reg_to_lock_depths_[reg]; |
| depths = depths ^ (1 << depth); |
| if (depths != 0) { |
| reg_to_lock_depths_[reg] = depths; |
| } else { |
| reg_to_lock_depths_.erase(reg); |
| } |
| } |
| |
| void ClearAllRegToLockDepths(size_t reg) { |
| reg_to_lock_depths_.erase(reg); |
| } |
| |
| // Storage for the result register's type, valid after an invocation |
| uint16_t result_[2]; |
| |
| // An array of RegType Ids associated with each dex register |
| UniquePtr<uint16_t[]> line_; |
| |
| // Back link to the verifier |
| DexVerifier* verifier_; |
| |
| // Length of reg_types_ |
| const size_t num_regs_; |
| // A stack of monitor enter locations |
| std::deque<uint32_t> monitors_; |
| // A map from register to a bit vector of indices into the monitors_ stack. As we pop the monitor |
| // stack we verify that monitor-enter/exit are correctly nested. That is, if there was a |
| // monitor-enter on v5 and then on v6, we expect the monitor-exit to be on v6 then on v5 |
| std::map<uint32_t, uint32_t> reg_to_lock_depths_; |
| }; |
| std::ostream& operator<<(std::ostream& os, const RegisterLine& rhs); |
| |
| class PcToRegisterLineTable { |
| public: |
| // We don't need to store the register data for many instructions, because we either only need |
| // it at branch points (for verification) or GC points and branches (for verification + |
| // type-precise register analysis). |
| enum RegisterTrackingMode { |
| kTrackRegsBranches, |
| kTrackRegsGcPoints, |
| kTrackRegsAll, |
| }; |
| PcToRegisterLineTable() {} |
| ~PcToRegisterLineTable() { |
| STLDeleteValues(&pc_to_register_line_); |
| } |
| |
| // Initialize the RegisterTable. Every instruction address can have a different set of information |
| // about what's in which register, but for verification purposes we only need to store it at |
| // branch target addresses (because we merge into that). |
| void Init(RegisterTrackingMode mode, InsnFlags* flags, uint32_t insns_size, |
| uint16_t registers_size, DexVerifier* verifier); |
| |
| RegisterLine* GetLine(size_t idx) { |
| return pc_to_register_line_[idx]; |
| } |
| |
| private: |
| // Map from a dex pc to the register status associated with it |
| std::map<int32_t, RegisterLine*> pc_to_register_line_; |
| |
| // Number of registers we track for each instruction. This is equal to the method's declared |
| // "registersSize" plus kExtraRegs (2). |
| size_t insn_reg_count_plus_; |
| }; |
| |
| |
| |
| // The verifier |
| class DexVerifier { |
| public: |
| /* Verify a class. Returns "true" on success. */ |
| static bool VerifyClass(const Class* klass, std::string& error); |
| /* |
| * Perform verification on a single method. |
| * |
| * We do this in three passes: |
| * (1) Walk through all code units, determining instruction locations, |
| * widths, and other characteristics. |
| * (2) Walk through all code units, performing static checks on |
| * operands. |
| * (3) Iterate through the method, checking type safety and looking |
| * for code flow problems. |
| * |
| * Some checks may be bypassed depending on the verification mode. We can't |
| * turn this stuff off completely if we want to do "exact" GC. |
| * |
| * Confirmed here: |
| * - code array must not be empty |
| * Confirmed by ComputeWidthsAndCountOps(): |
| * - opcode of first instruction begins at index 0 |
| * - only documented instructions may appear |
| * - each instruction follows the last |
| * - last byte of last instruction is at (code_length-1) |
| */ |
| static bool VerifyMethod(Method* method); |
| static void VerifyMethodAndDump(Method* method); |
| |
| uint8_t EncodePcToReferenceMapData() const; |
| |
| uint32_t DexFileVersion() const { |
| return dex_file_->GetVersion(); |
| } |
| |
| RegTypeCache* GetRegTypeCache() { |
| return ®_types_; |
| } |
| |
| // Verification failed |
| std::ostream& Fail(VerifyError error); |
| |
| // Log for verification information |
| std::ostream& LogVerifyInfo() { |
| return info_messages_ << "VFY: " << PrettyMethod(method_) |
| << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : "; |
| } |
| |
| // Dump the state of the verifier, namely each instruction, what flags are set on it, register |
| // information |
| void Dump(std::ostream& os); |
| |
| static const std::vector<uint8_t>* GetGcMap(Compiler::MethodReference ref); |
| static void DeleteGcMaps(); |
| |
| private: |
| |
| explicit DexVerifier(Method* method); |
| |
| bool Verify(); |
| |
| /* |
| * Compute the width of the instruction at each address in the instruction stream, and store it in |
| * insn_flags_. Addresses that are in the middle of an instruction, or that are part of switch |
| * table data, are not touched (so the caller should probably initialize "insn_flags" to zero). |
| * |
| * The "new_instance_count_" and "monitor_enter_count_" fields in vdata are also set. |
| * |
| * Performs some static checks, notably: |
| * - opcode of first instruction begins at index 0 |
| * - only documented instructions may appear |
| * - each instruction follows the last |
| * - last byte of last instruction is at (code_length-1) |
| * |
| * Logs an error and returns "false" on failure. |
| */ |
| bool ComputeWidthsAndCountOps(); |
| |
| /* |
| * Set the "in try" flags for all instructions protected by "try" statements. Also sets the |
| * "branch target" flags for exception handlers. |
| * |
| * Call this after widths have been set in "insn_flags". |
| * |
| * Returns "false" if something in the exception table looks fishy, but we're expecting the |
| * exception table to be somewhat sane. |
| */ |
| bool ScanTryCatchBlocks(); |
| |
| /* |
| * Perform static verification on all instructions in a method. |
| * |
| * Walks through instructions in a method calling VerifyInstruction on each. |
| */ |
| bool VerifyInstructions(); |
| |
| /* |
| * Perform static verification on an instruction. |
| * |
| * As a side effect, this sets the "branch target" flags in InsnFlags. |
| * |
| * "(CF)" items are handled during code-flow analysis. |
| * |
| * v3 4.10.1 |
| * - target of each jump and branch instruction must be valid |
| * - targets of switch statements must be valid |
| * - operands referencing constant pool entries must be valid |
| * - (CF) operands of getfield, putfield, getstatic, putstatic must be valid |
| * - (CF) operands of method invocation instructions must be valid |
| * - (CF) only invoke-direct can call a method starting with '<' |
| * - (CF) <clinit> must never be called explicitly |
| * - operands of instanceof, checkcast, new (and variants) must be valid |
| * - new-array[-type] limited to 255 dimensions |
| * - can't use "new" on an array class |
| * - (?) limit dimensions in multi-array creation |
| * - local variable load/store register values must be in valid range |
| * |
| * v3 4.11.1.2 |
| * - branches must be within the bounds of the code array |
| * - targets of all control-flow instructions are the start of an instruction |
| * - register accesses fall within range of allocated registers |
| * - (N/A) access to constant pool must be of appropriate type |
| * - code does not end in the middle of an instruction |
| * - execution cannot fall off the end of the code |
| * - (earlier) for each exception handler, the "try" area must begin and |
| * end at the start of an instruction (end can be at the end of the code) |
| * - (earlier) for each exception handler, the handler must start at a valid |
| * instruction |
| */ |
| bool VerifyInstruction(const Instruction* inst, uint32_t code_offset); |
| |
| /* Ensure that the register index is valid for this code item. */ |
| bool CheckRegisterIndex(uint32_t idx); |
| |
| /* Ensure that the wide register index is valid for this code item. */ |
| bool CheckWideRegisterIndex(uint32_t idx); |
| |
| // Perform static checks on a field get or set instruction. All we do here is ensure that the |
| // field index is in the valid range. |
| bool CheckFieldIndex(uint32_t idx); |
| |
| // Perform static checks on a method invocation instruction. All we do here is ensure that the |
| // method index is in the valid range. |
| bool CheckMethodIndex(uint32_t idx); |
| |
| // Perform static checks on a "new-instance" instruction. Specifically, make sure the class |
| // reference isn't for an array class. |
| bool CheckNewInstance(uint32_t idx); |
| |
| /* Ensure that the string index is in the valid range. */ |
| bool CheckStringIndex(uint32_t idx); |
| |
| // Perform static checks on an instruction that takes a class constant. Ensure that the class |
| // index is in the valid range. |
| bool CheckTypeIndex(uint32_t idx); |
| |
| // Perform static checks on a "new-array" instruction. Specifically, make sure they aren't |
| // creating an array of arrays that causes the number of dimensions to exceed 255. |
| bool CheckNewArray(uint32_t idx); |
| |
| // Verify an array data table. "cur_offset" is the offset of the fill-array-data instruction. |
| bool CheckArrayData(uint32_t cur_offset); |
| |
| // Verify that the target of a branch instruction is valid. We don't expect code to jump directly |
| // into an exception handler, but it's valid to do so as long as the target isn't a |
| // "move-exception" instruction. We verify that in a later stage. |
| // The dex format forbids certain instructions from branching to themselves. |
| // Updates "insnFlags", setting the "branch target" flag. |
| bool CheckBranchTarget(uint32_t cur_offset); |
| |
| // Verify a switch table. "cur_offset" is the offset of the switch instruction. |
| // Updates "insnFlags", setting the "branch target" flag. |
| bool CheckSwitchTargets(uint32_t cur_offset); |
| |
| // Check the register indices used in a "vararg" instruction, such as invoke-virtual or |
| // filled-new-array. |
| // - vA holds word count (0-5), args[] have values. |
| // There are some tests we don't do here, e.g. we don't try to verify that invoking a method that |
| // takes a double is done with consecutive registers. This requires parsing the target method |
| // signature, which we will be doing later on during the code flow analysis. |
| bool CheckVarArgRegs(uint32_t vA, uint32_t arg[]); |
| |
| // Check the register indices used in a "vararg/range" instruction, such as invoke-virtual/range |
| // or filled-new-array/range. |
| // - vA holds word count, vC holds index of first reg. |
| bool CheckVarArgRangeRegs(uint32_t vA, uint32_t vC); |
| |
| // Extract the relative offset from a branch instruction. |
| // Returns "false" on failure (e.g. this isn't a branch instruction). |
| bool GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional, |
| bool* selfOkay); |
| |
| /* Perform detailed code-flow analysis on a single method. */ |
| bool VerifyCodeFlow(); |
| |
| // Set the register types for the first instruction in the method based on the method signature. |
| // This has the side-effect of validating the signature. |
| bool SetTypesFromSignature(); |
| |
| /* |
| * Perform code flow on a method. |
| * |
| * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit on the first |
| * instruction, process it (setting additional "changed" bits), and repeat until there are no |
| * more. |
| * |
| * v3 4.11.1.1 |
| * - (N/A) operand stack is always the same size |
| * - operand stack [registers] contain the correct types of values |
| * - local variables [registers] contain the correct types of values |
| * - methods are invoked with the appropriate arguments |
| * - fields are assigned using values of appropriate types |
| * - opcodes have the correct type values in operand registers |
| * - there is never an uninitialized class instance in a local variable in code protected by an |
| * exception handler (operand stack is okay, because the operand stack is discarded when an |
| * exception is thrown) [can't know what's a local var w/o the debug info -- should fall out of |
| * register typing] |
| * |
| * v3 4.11.1.2 |
| * - execution cannot fall off the end of the code |
| * |
| * (We also do many of the items described in the "static checks" sections, because it's easier to |
| * do them here.) |
| * |
| * We need an array of RegType values, one per register, for every instruction. If the method uses |
| * monitor-enter, we need extra data for every register, and a stack for every "interesting" |
| * instruction. In theory this could become quite large -- up to several megabytes for a monster |
| * function. |
| * |
| * NOTE: |
| * The spec forbids backward branches when there's an uninitialized reference in a register. The |
| * idea is to prevent something like this: |
| * loop: |
| * move r1, r0 |
| * new-instance r0, MyClass |
| * ... |
| * if-eq rN, loop // once |
| * initialize r0 |
| * |
| * This leaves us with two different instances, both allocated by the same instruction, but only |
| * one is initialized. The scheme outlined in v3 4.11.1.4 wouldn't catch this, so they work around |
| * it by preventing backward branches. We achieve identical results without restricting code |
| * reordering by specifying that you can't execute the new-instance instruction if a register |
| * contains an uninitialized instance created by that same instruction. |
| */ |
| bool CodeFlowVerifyMethod(); |
| |
| /* |
| * Perform verification for a single instruction. |
| * |
| * This requires fully decoding the instruction to determine the effect it has on registers. |
| * |
| * Finds zero or more following instructions and sets the "changed" flag if execution at that |
| * point needs to be (re-)evaluated. Register changes are merged into "reg_types_" at the target |
| * addresses. Does not set or clear any other flags in "insn_flags_". |
| */ |
| bool CodeFlowVerifyInstruction(uint32_t* start_guess); |
| |
| // Perform verification of a new array instruction |
| void VerifyNewArray(const Instruction::DecodedInstruction& dec_insn, bool is_filled, |
| bool is_range); |
| |
| // Perform verification of an aget instruction. The destination register's type will be set to |
| // be that of component type of the array unless the array type is unknown, in which case a |
| // bottom type inferred from the type of instruction is used. is_primitive is false for an |
| // aget-object. |
| void VerifyAGet(const Instruction::DecodedInstruction& insn, const RegType& insn_type, |
| bool is_primitive); |
| |
| // Perform verification of an aput instruction. |
| void VerifyAPut(const Instruction::DecodedInstruction& insn, const RegType& insn_type, |
| bool is_primitive); |
| |
| // Lookup instance field and fail for resolution violations |
| Field* GetInstanceField(const RegType& obj_type, int field_idx); |
| |
| // Lookup static field and fail for resolution violations |
| Field* GetStaticField(int field_idx); |
| |
| // Perform verification of an iget or sget instruction. |
| void VerifyISGet(const Instruction::DecodedInstruction& insn, const RegType& insn_type, |
| bool is_primitive, bool is_static); |
| |
| // Perform verification of an iput or sput instruction. |
| void VerifyISPut(const Instruction::DecodedInstruction& insn, const RegType& insn_type, |
| bool is_primitive, bool is_static); |
| |
| // Resolves a class based on an index and performs access checks to ensure the referrer can |
| // access the resolved class. |
| const RegType& ResolveClassAndCheckAccess(uint32_t class_idx); |
| |
| /* |
| * For the "move-exception" instruction at "work_insn_idx_", which must be at an exception handler |
| * address, determine the Join of all exceptions that can land here. Fails if no matching |
| * exception handler can be found or if the Join of exception types fails. |
| */ |
| const RegType& GetCaughtExceptionType(); |
| |
| /* |
| * Resolves a method based on an index and performs access checks to ensure |
| * the referrer can access the resolved method. |
| * Does not throw exceptions. |
| */ |
| Method* ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type); |
| |
| /* |
| * Verify the arguments to a method. We're executing in "method", making |
| * a call to the method reference in vB. |
| * |
| * If this is a "direct" invoke, we allow calls to <init>. For calls to |
| * <init>, the first argument may be an uninitialized reference. Otherwise, |
| * calls to anything starting with '<' will be rejected, as will any |
| * uninitialized reference arguments. |
| * |
| * For non-static method calls, this will verify that the method call is |
| * appropriate for the "this" argument. |
| * |
| * The method reference is in vBBBB. The "is_range" parameter determines |
| * whether we use 0-4 "args" values or a range of registers defined by |
| * vAA and vCCCC. |
| * |
| * Widening conversions on integers and references are allowed, but |
| * narrowing conversions are not. |
| * |
| * Returns the resolved method on success, NULL on failure (with *failure |
| * set appropriately). |
| */ |
| Method* VerifyInvocationArgs(const Instruction::DecodedInstruction& dec_insn, |
| MethodType method_type, bool is_range, bool is_super); |
| |
| /* |
| * Return the register type for the method. We can't just use the already-computed |
| * DalvikJniReturnType, because if it's a reference type we need to do the class lookup. |
| * Returned references are assumed to be initialized. Returns kRegTypeUnknown for "void". |
| */ |
| const RegType& GetMethodReturnType(); |
| |
| /* |
| * Verify that the target instruction is not "move-exception". It's important that the only way |
| * to execute a move-exception is as the first instruction of an exception handler. |
| * Returns "true" if all is well, "false" if the target instruction is move-exception. |
| */ |
| bool CheckMoveException(const uint16_t* insns, int insn_idx); |
| |
| /* |
| * Replace an instruction with "throw-verification-error". This allows us to |
| * defer error reporting until the code path is first used. |
| */ |
| void ReplaceFailingInstruction(); |
| |
| /* |
| * Control can transfer to "next_insn". Merge the registers from merge_line into the table at |
| * next_insn, and set the changed flag on the target address if any of the registers were changed. |
| * Returns "false" if an error is encountered. |
| */ |
| bool UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line); |
| |
| #if defined(ART_USE_LLVM_COMPILER) |
| /* |
| * Generate the inferred register category for LLVM-based code generator. |
| * Returns a pointer to a two-dimension Class array, or NULL on failure. |
| */ |
| const compiler_llvm::InferredRegCategoryMap* GenerateInferredRegCategoryMap(); |
| #endif |
| |
| /* |
| * Generate the GC map for a method that has just been verified (i.e. we're doing this as part of |
| * verification). For type-precise determination we have all the data we need, so we just need to |
| * encode it in some clever fashion. |
| * Returns a pointer to a newly-allocated RegisterMap, or NULL on failure. |
| */ |
| const std::vector<uint8_t>* GenerateGcMap(); |
| |
| // Verify that the GC map associated with method_ is well formed |
| void VerifyGcMap(const std::vector<uint8_t>& data); |
| |
| // Compute sizes for GC map data |
| void ComputeGcMapSizes(size_t* gc_points, size_t* ref_bitmap_bits, size_t* log2_max_gc_pc); |
| |
| InsnFlags CurrentInsnFlags() { |
| return insn_flags_[work_insn_idx_]; |
| } |
| |
| typedef std::map<const Compiler::MethodReference, const std::vector<uint8_t>*> GcMapTable; |
| // All the GC maps that the verifier has created |
| static Mutex gc_maps_lock_; |
| static GcMapTable gc_maps_; |
| static void SetGcMap(Compiler::MethodReference ref, const std::vector<uint8_t>& gc_map); |
| |
| RegTypeCache reg_types_; |
| |
| PcToRegisterLineTable reg_table_; |
| |
| // Storage for the register status we're currently working on. |
| UniquePtr<RegisterLine> work_line_; |
| |
| // The address of the instruction we're currently working on, note that this is in 2 byte |
| // quantities |
| uint32_t work_insn_idx_; |
| |
| // Storage for the register status we're saving for later. |
| UniquePtr<RegisterLine> saved_line_; |
| |
| Method* method_; // The method we're working on. |
| const DexFile* dex_file_; // The dex file containing the method. |
| const DexFile::CodeItem* code_item_; // The code item containing the code for the method. |
| UniquePtr<InsnFlags[]> insn_flags_; // Instruction widths and flags, one entry per code unit. |
| |
| // The type of any error that occurs |
| VerifyError failure_; |
| |
| // Failure message log |
| std::ostringstream fail_messages_; |
| // Info message log |
| std::ostringstream info_messages_; |
| |
| // The number of occurrences of specific opcodes. |
| size_t new_instance_count_; |
| size_t monitor_enter_count_; |
| }; |
| |
| // Lightweight wrapper for PC to reference bit maps. |
| class PcToReferenceMap { |
| public: |
| PcToReferenceMap(const uint8_t* data, size_t data_length) { |
| data_ = data; |
| CHECK(data_ != NULL); |
| // Check the size of the table agrees with the number of entries |
| size_t data_size = data_length - 4; |
| DCHECK_EQ(EntryWidth() * NumEntries(), data_size); |
| } |
| |
| // The number of entries in the table |
| size_t NumEntries() const { |
| return GetData()[2] | (GetData()[3] << 8); |
| } |
| |
| // Get the PC at the given index |
| uint16_t GetPC(size_t index) const { |
| size_t entry_offset = index * EntryWidth(); |
| if (PcWidth() == 1) { |
| return Table()[entry_offset]; |
| } else { |
| return Table()[entry_offset] | (Table()[entry_offset + 1] << 8); |
| } |
| } |
| |
| // Return address of bitmap encoding what are live references |
| const uint8_t* GetBitMap(size_t index) const { |
| size_t entry_offset = index * EntryWidth(); |
| return &Table()[entry_offset + PcWidth()]; |
| } |
| |
| // Find the bitmap associated with the given dex pc |
| const uint8_t* FindBitMap(uint16_t dex_pc, bool error_if_not_present = true) const; |
| |
| // The number of bytes used to encode registers |
| size_t RegWidth() const { |
| return GetData()[1] | ((GetData()[0] & ~kRegMapFormatMask) << kRegMapFormatShift); |
| } |
| |
| private: |
| // Table of num_entries * (dex pc, bitmap) |
| const uint8_t* Table() const { |
| return GetData() + 4; |
| } |
| |
| // The format of the table of the PCs for the table |
| RegisterMapFormat Format() const { |
| return static_cast<RegisterMapFormat>(GetData()[0] & kRegMapFormatMask); |
| } |
| |
| // Number of bytes used to encode a dex pc |
| size_t PcWidth() const { |
| RegisterMapFormat format = Format(); |
| switch (format) { |
| case kRegMapFormatCompact8: |
| return 1; |
| case kRegMapFormatCompact16: |
| return 2; |
| default: |
| LOG(FATAL) << "Invalid format " << static_cast<int>(format); |
| return -1; |
| } |
| } |
| |
| // The width of an entry in the table |
| size_t EntryWidth() const { |
| return PcWidth() + RegWidth(); |
| } |
| |
| const uint8_t* GetData() const { |
| return data_; |
| } |
| const uint8_t* data_; // The header and table data |
| }; |
| |
| } // namespace verifier |
| } // namespace art |
| |
| #endif // ART_SRC_DEX_VERIFY_H_ |