blob: 5507c36060ad7dc4ac3056d87dda2daec80a1858 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compiler.h"
#include <vector>
#include <dlfcn.h>
#include <sys/mman.h>
#include <unistd.h>
#include "class_linker.h"
#include "class_loader.h"
#include "dex_cache.h"
#include "dex_verifier.h"
#include "jni_internal.h"
#include "oat_compilation_unit.h"
#include "oat_file.h"
#include "object_utils.h"
#include "runtime.h"
#include "space.h"
#include "stl_util.h"
#include "timing_logger.h"
#if defined(__APPLE__)
#include <mach-o/dyld.h>
#endif
namespace art {
namespace arm {
ByteArray* CreateAbstractMethodErrorStub();
ByteArray* ArmCreateResolutionTrampoline(Runtime::TrampolineType type);
ByteArray* CreateJniDlsymLookupStub();
}
namespace x86 {
ByteArray* CreateAbstractMethodErrorStub();
ByteArray* X86CreateResolutionTrampoline(Runtime::TrampolineType type);
ByteArray* CreateJniDlsymLookupStub();
}
static double Percentage(size_t x, size_t y) {
return 100.0 * (static_cast<double>(x)) / (static_cast<double>(x + y));
}
static void DumpStat(size_t x, size_t y, const char* str) {
if (x == 0 && y == 0) {
return;
}
LOG(INFO) << Percentage(x, y) << "% of " << str << " for " << (x + y) << " cases";
}
class AOTCompilationStats {
public:
AOTCompilationStats() : stats_lock_("AOT compilation statistics lock"),
types_in_dex_cache_(0), types_not_in_dex_cache_(0),
strings_in_dex_cache_(0), strings_not_in_dex_cache_(0),
resolved_types_(0), unresolved_types_(0),
resolved_instance_fields_(0), unresolved_instance_fields_(0),
resolved_local_static_fields_(0), resolved_static_fields_(0), unresolved_static_fields_(0) {
for (size_t i = 0; i <= kMaxInvokeType; i++) {
resolved_methods_[i] = 0;
unresolved_methods_[i] = 0;
virtual_made_direct_[i] = 0;
direct_calls_to_boot_[i] = 0;
direct_methods_to_boot_[i] = 0;
}
}
void Dump() {
DumpStat(types_in_dex_cache_, types_not_in_dex_cache_, "types known to be in dex cache");
DumpStat(strings_in_dex_cache_, strings_not_in_dex_cache_, "strings known to be in dex cache");
DumpStat(resolved_types_, unresolved_types_, "types resolved");
DumpStat(resolved_instance_fields_, unresolved_instance_fields_, "instance fields resolved");
DumpStat(resolved_local_static_fields_ + resolved_static_fields_, unresolved_static_fields_,
"static fields resolved");
DumpStat(resolved_local_static_fields_, resolved_static_fields_ + unresolved_static_fields_,
"static fields local to a class");
for (size_t i = 0; i <= kMaxInvokeType; i++) {
std::ostringstream oss;
oss << static_cast<InvokeType>(i) << " methods were AOT resolved";
DumpStat(resolved_methods_[i], unresolved_methods_[i], oss.str().c_str());
if (virtual_made_direct_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " methods made direct";
DumpStat(virtual_made_direct_[i],
resolved_methods_[i] + unresolved_methods_[i] - virtual_made_direct_[i],
oss2.str().c_str());
}
if (direct_calls_to_boot_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " method calls are direct into boot";
DumpStat(direct_calls_to_boot_[i],
resolved_methods_[i] + unresolved_methods_[i] - direct_calls_to_boot_[i],
oss2.str().c_str());
}
if (direct_methods_to_boot_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " method calls have methods in boot";
DumpStat(direct_methods_to_boot_[i],
resolved_methods_[i] + unresolved_methods_[i] - direct_methods_to_boot_[i],
oss2.str().c_str());
}
}
}
// Allow lossy statistics in non-debug builds
#ifndef NDEBUG
#define STATS_LOCK() MutexLock mu(stats_lock_)
#else
#define STATS_LOCK()
#endif
void TypeInDexCache() {
STATS_LOCK();
types_in_dex_cache_++;
}
void TypeNotInDexCache() {
STATS_LOCK();
types_not_in_dex_cache_++;
}
void StringInDexCache() {
STATS_LOCK();
strings_in_dex_cache_++;
}
void StringNotInDexCache() {
STATS_LOCK();
strings_not_in_dex_cache_++;
}
void TypeDoesntNeedAccessCheck() {
STATS_LOCK();
resolved_types_++;
}
void TypeNeedsAccessCheck() {
STATS_LOCK();
unresolved_types_++;
}
void ResolvedInstanceField() {
STATS_LOCK();
resolved_instance_fields_++;
}
void UnresolvedInstanceField() {
STATS_LOCK();
unresolved_instance_fields_++;
}
void ResolvedLocalStaticField() {
STATS_LOCK();
resolved_local_static_fields_++;
}
void ResolvedStaticField() {
STATS_LOCK();
resolved_static_fields_++;
}
void UnresolvedStaticField() {
STATS_LOCK();
unresolved_static_fields_++;
}
void ResolvedMethod(InvokeType type) {
DCHECK_LE(type, kMaxInvokeType);
STATS_LOCK();
resolved_methods_[type]++;
}
void UnresolvedMethod(InvokeType type) {
DCHECK_LE(type, kMaxInvokeType);
STATS_LOCK();
unresolved_methods_[type]++;
}
void VirtualMadeDirect(InvokeType type) {
DCHECK_LE(type, kMaxInvokeType);
STATS_LOCK();
virtual_made_direct_[type]++;
}
void DirectCallsToBoot(InvokeType type) {
DCHECK_LE(type, kMaxInvokeType);
STATS_LOCK();
direct_calls_to_boot_[type]++;
}
void DirectMethodsToBoot(InvokeType type) {
DCHECK_LE(type, kMaxInvokeType);
STATS_LOCK();
direct_methods_to_boot_[type]++;
}
private:
Mutex stats_lock_;
size_t types_in_dex_cache_;
size_t types_not_in_dex_cache_;
size_t strings_in_dex_cache_;
size_t strings_not_in_dex_cache_;
size_t resolved_types_;
size_t unresolved_types_;
size_t resolved_instance_fields_;
size_t unresolved_instance_fields_;
size_t resolved_local_static_fields_;
size_t resolved_static_fields_;
size_t unresolved_static_fields_;
size_t resolved_methods_[kMaxInvokeType + 1];
size_t unresolved_methods_[kMaxInvokeType + 1];
size_t virtual_made_direct_[kMaxInvokeType + 1];
size_t direct_calls_to_boot_[kMaxInvokeType + 1];
size_t direct_methods_to_boot_[kMaxInvokeType + 1];
DISALLOW_COPY_AND_ASSIGN(AOTCompilationStats);
};
static std::string MakeCompilerSoName(InstructionSet instruction_set) {
// TODO: is the ARM/Thumb2 instruction set distinction really buying us anything,
// or just causing hassle like this?
if (instruction_set == kThumb2) {
instruction_set = kArm;
}
// Capitalize the instruction set, because that's what we do in the build system.
std::ostringstream instruction_set_name_os;
instruction_set_name_os << instruction_set;
std::string instruction_set_name(instruction_set_name_os.str());
for (size_t i = 0; i < instruction_set_name.size(); ++i) {
instruction_set_name[i] = toupper(instruction_set_name[i]);
}
// Bad things happen if we pull in the libartd-compiler to a libart dex2oat or vice versa,
// because we end up with both libart and libartd in the same address space!
const char* suffix = (kIsDebugBuild ? "d" : "");
// Work out the filename for the compiler library.
#if !defined(ART_USE_LLVM_COMPILER)
std::string library_name(StringPrintf("art%s-compiler-%s", suffix, instruction_set_name.c_str()));
#else
std::string library_name(StringPrintf("art%s-compiler-llvm", suffix));
#endif
std::string filename(StringPrintf(OS_SHARED_LIB_FORMAT_STR, library_name.c_str()));
#if defined(__APPLE__)
// On Linux, dex2oat will have been built with an RPATH of $ORIGIN/../lib, so dlopen(3) will find
// the .so by itself. On Mac OS, there isn't really an equivalent, so we have to manually do the
// same work.
uint32_t executable_path_length = 0;
_NSGetExecutablePath(NULL, &executable_path_length);
std::string path(executable_path_length, static_cast<char>(0));
CHECK_EQ(_NSGetExecutablePath(&path[0], &executable_path_length), 0);
// Strip the "/dex2oat".
size_t last_slash = path.find_last_of('/');
CHECK_NE(last_slash, std::string::npos) << path;
path.resize(last_slash);
// Strip the "/bin".
last_slash = path.find_last_of('/');
path.resize(last_slash);
filename = path + "/lib/" + filename;
#endif
return filename;
}
template<typename Fn>
static Fn FindFunction(const std::string& compiler_so_name, void* library, const char* name) {
Fn fn = reinterpret_cast<Fn>(dlsym(library, name));
if (fn == NULL) {
LOG(FATAL) << "Couldn't find \"" << name << "\" in compiler library " << compiler_so_name << ": " << dlerror();
}
VLOG(compiler) << "Found \"" << name << "\" at " << reinterpret_cast<void*>(fn);
return fn;
}
Compiler::Compiler(InstructionSet instruction_set, bool image, size_t thread_count,
bool support_debugging, const std::set<std::string>* image_classes,
bool dump_stats, bool dump_timings)
: instruction_set_(instruction_set),
compiled_classes_lock_("compiled classes lock"),
compiled_methods_lock_("compiled method lock"),
compiled_invoke_stubs_lock_("compiled invoke stubs lock"),
image_(image),
thread_count_(thread_count),
support_debugging_(support_debugging),
stats_(new AOTCompilationStats),
dump_stats_(dump_stats),
dump_timings_(dump_timings),
image_classes_(image_classes),
compiler_library_(NULL),
compiler_(NULL),
compiler_context_(NULL),
jni_compiler_(NULL),
create_invoke_stub_(NULL)
#if defined(ART_USE_LLVM_COMPILER)
, compiler_enable_auto_elf_loading_(NULL),
compiler_get_method_code_addr_(NULL),
compiler_get_method_invoke_stub_addr_(NULL)
#endif
{
std::string compiler_so_name(MakeCompilerSoName(instruction_set_));
compiler_library_ = dlopen(compiler_so_name.c_str(), RTLD_LAZY);
if (compiler_library_ == NULL) {
LOG(FATAL) << "Couldn't find compiler library " << compiler_so_name << ": " << dlerror();
}
VLOG(compiler) << "dlopen(\"" << compiler_so_name << "\", RTLD_LAZY) returned " << compiler_library_;
#if defined(ART_USE_LLVM_COMPILER)
// Initialize compiler_context_
typedef void (*InitCompilerContextFn)(Compiler&);
InitCompilerContextFn init_compiler_context =
FindFunction<void (*)(Compiler&)>(compiler_so_name,
compiler_library_,
"ArtInitCompilerContext");
init_compiler_context(*this);
#endif
compiler_ = FindFunction<CompilerFn>(compiler_so_name, compiler_library_, "ArtCompileMethod");
jni_compiler_ = FindFunction<JniCompilerFn>(compiler_so_name, compiler_library_, "ArtJniCompileMethod");
create_invoke_stub_ = FindFunction<CreateInvokeStubFn>(compiler_so_name, compiler_library_, "ArtCreateInvokeStub");
#if defined(ART_USE_LLVM_COMPILER)
compiler_enable_auto_elf_loading_ = FindFunction<CompilerEnableAutoElfLoadingFn>(
compiler_so_name, compiler_library_, "compilerLLVMEnableAutoElfLoading");
compiler_get_method_code_addr_ = FindFunction<CompilerGetMethodCodeAddrFn>(
compiler_so_name, compiler_library_, "compilerLLVMGetMethodCodeAddr");
compiler_get_method_invoke_stub_addr_ = FindFunction<CompilerGetMethodInvokeStubAddrFn>(
compiler_so_name, compiler_library_, "compilerLLVMGetMethodInvokeStubAddr");
#endif
CHECK(!Runtime::Current()->IsStarted());
if (!image_) {
CHECK(image_classes_ == NULL);
}
}
Compiler::~Compiler() {
{
MutexLock mu(compiled_classes_lock_);
STLDeleteValues(&compiled_classes_);
}
{
MutexLock mu(compiled_methods_lock_);
STLDeleteValues(&compiled_methods_);
}
{
MutexLock mu(compiled_invoke_stubs_lock_);
STLDeleteValues(&compiled_invoke_stubs_);
}
{
MutexLock mu(compiled_methods_lock_);
STLDeleteElements(&code_to_patch_);
}
{
MutexLock mu(compiled_methods_lock_);
STLDeleteElements(&methods_to_patch_);
}
#if defined(ART_USE_LLVM_COMPILER)
CompilerCallbackFn f = FindFunction<CompilerCallbackFn>(MakeCompilerSoName(instruction_set_),
compiler_library_,
"compilerLLVMDispose");
(*f)(*this);
#endif
if (compiler_library_ != NULL) {
VLOG(compiler) << "dlclose(" << compiler_library_ << ")";
dlclose(compiler_library_);
}
}
ByteArray* Compiler::CreateResolutionStub(InstructionSet instruction_set,
Runtime::TrampolineType type) {
if (instruction_set == kX86) {
return x86::X86CreateResolutionTrampoline(type);
} else {
CHECK(instruction_set == kArm || instruction_set == kThumb2);
// Generates resolution stub using ARM instruction set
return arm::ArmCreateResolutionTrampoline(type);
}
}
ByteArray* Compiler::CreateJniDlsymLookupStub(InstructionSet instruction_set) {
switch (instruction_set) {
case kArm:
case kThumb2:
return arm::CreateJniDlsymLookupStub();
case kX86:
return x86::CreateJniDlsymLookupStub();
default:
LOG(FATAL) << "Unknown InstructionSet: " << instruction_set;
return NULL;
}
}
ByteArray* Compiler::CreateAbstractMethodErrorStub(InstructionSet instruction_set) {
if (instruction_set == kX86) {
return x86::CreateAbstractMethodErrorStub();
} else {
CHECK(instruction_set == kArm || instruction_set == kThumb2);
// Generates resolution stub using ARM instruction set
return arm::CreateAbstractMethodErrorStub();
}
}
void Compiler::CompileAll(const ClassLoader* class_loader,
const std::vector<const DexFile*>& dex_files) {
DCHECK(!Runtime::Current()->IsStarted());
TimingLogger timings("compiler");
PreCompile(class_loader, dex_files, timings);
Compile(class_loader, dex_files);
timings.AddSplit("Compile");
PostCompile(class_loader, dex_files);
timings.AddSplit("PostCompile");
if (dump_timings_ && timings.GetTotalNs() > MsToNs(1000)) {
timings.Dump();
}
if (dump_stats_) {
stats_->Dump();
}
}
void Compiler::CompileOne(const Method* method) {
DCHECK(!Runtime::Current()->IsStarted());
const ClassLoader* class_loader = method->GetDeclaringClass()->GetClassLoader();
// Find the dex_file
const DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache();
const DexFile& dex_file = Runtime::Current()->GetClassLinker()->FindDexFile(dex_cache);
std::vector<const DexFile*> dex_files;
dex_files.push_back(&dex_file);
TimingLogger timings("CompileOne");
PreCompile(class_loader, dex_files, timings);
uint32_t method_idx = method->GetDexMethodIndex();
const DexFile::CodeItem* code_item = dex_file.GetCodeItem(method->GetCodeItemOffset());
CompileMethod(code_item, method->GetAccessFlags(), method_idx, class_loader, dex_file);
PostCompile(class_loader, dex_files);
}
void Compiler::Resolve(const ClassLoader* class_loader,
const std::vector<const DexFile*>& dex_files, TimingLogger& timings) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != NULL);
ResolveDexFile(class_loader, *dex_file, timings);
}
}
void Compiler::PreCompile(const ClassLoader* class_loader,
const std::vector<const DexFile*>& dex_files, TimingLogger& timings) {
Resolve(class_loader, dex_files, timings);
Verify(class_loader, dex_files);
timings.AddSplit("PreCompile.Verify");
InitializeClassesWithoutClinit(class_loader, dex_files);
timings.AddSplit("PreCompile.InitializeClassesWithoutClinit");
}
void Compiler::PostCompile(const ClassLoader* class_loader,
const std::vector<const DexFile*>& dex_files) {
SetGcMaps(class_loader, dex_files);
#if defined(ART_USE_LLVM_COMPILER)
CompilerCallbackFn f = FindFunction<CompilerCallbackFn>(MakeCompilerSoName(instruction_set_),
compiler_library_,
"compilerLLVMMaterializeRemainder");
(*f)(*this);
#endif
}
bool Compiler::IsImageClass(const std::string& descriptor) const {
if (image_classes_ == NULL) {
return true;
}
return image_classes_->find(descriptor) != image_classes_->end();
}
bool Compiler::CanAssumeTypeIsPresentInDexCache(const DexCache* dex_cache,
uint32_t type_idx) {
if (!IsImage()) {
stats_->TypeNotInDexCache();
return false;
}
Class* resolved_class = dex_cache->GetResolvedType(type_idx);
if (resolved_class == NULL) {
stats_->TypeNotInDexCache();
return false;
}
bool result = IsImageClass(ClassHelper(resolved_class).GetDescriptor());
if (result) {
stats_->TypeInDexCache();
} else {
stats_->TypeNotInDexCache();
}
return result;
}
bool Compiler::CanAssumeStringIsPresentInDexCache(const DexCache* dex_cache,
uint32_t string_idx) {
// TODO: Add support for loading strings referenced by image_classes_
// See also Compiler::ResolveDexFile
// The following is a test saying that if we're building the image without a restricted set of
// image classes then we can assume the string is present in the dex cache if it is there now
bool result = IsImage() && image_classes_ == NULL && dex_cache->GetResolvedString(string_idx) != NULL;
if (result) {
stats_->StringInDexCache();
} else {
stats_->StringNotInDexCache();
}
return result;
}
bool Compiler::CanAccessTypeWithoutChecks(uint32_t referrer_idx, const DexCache* dex_cache,
const DexFile& dex_file, uint32_t type_idx) {
// Get type from dex cache assuming it was populated by the verifier
Class* resolved_class = dex_cache->GetResolvedType(type_idx);
if (resolved_class == NULL) {
stats_->TypeNeedsAccessCheck();
return false; // Unknown class needs access checks.
}
const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx);
Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_);
if (referrer_class == NULL) {
stats_->TypeNeedsAccessCheck();
return false; // Incomplete referrer knowledge needs access check.
}
// Perform access check, will return true if access is ok or false if we're going to have to
// check this at runtime (for example for class loaders).
bool result = referrer_class->CanAccess(resolved_class);
if (result) {
stats_->TypeDoesntNeedAccessCheck();
} else {
stats_->TypeNeedsAccessCheck();
}
return result;
}
bool Compiler::CanAccessInstantiableTypeWithoutChecks(uint32_t referrer_idx,
const DexCache* dex_cache,
const DexFile& dex_file,
uint32_t type_idx) {
// Get type from dex cache assuming it was populated by the verifier.
Class* resolved_class = dex_cache->GetResolvedType(type_idx);
if (resolved_class == NULL) {
stats_->TypeNeedsAccessCheck();
return false; // Unknown class needs access checks.
}
const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx);
Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_);
if (referrer_class == NULL) {
stats_->TypeNeedsAccessCheck();
return false; // Incomplete referrer knowledge needs access check.
}
// Perform access and instantiable checks, will return true if access is ok or false if we're
// going to have to check this at runtime (for example for class loaders).
bool result = referrer_class->CanAccess(resolved_class) && resolved_class->IsInstantiable();
if (result) {
stats_->TypeDoesntNeedAccessCheck();
} else {
stats_->TypeNeedsAccessCheck();
}
return result;
}
static Class* ComputeReferrerClass(OatCompilationUnit* mUnit) {
const DexFile::MethodId& referrer_method_id =
mUnit->dex_file_->GetMethodId(mUnit->method_idx_);
return mUnit->class_linker_->ResolveType(
*mUnit->dex_file_, referrer_method_id.class_idx_,
mUnit->dex_cache_, mUnit->class_loader_);
}
static Field* ComputeReferrerField(OatCompilationUnit* mUnit, uint32_t field_idx) {
return mUnit->class_linker_->ResolveField(
*mUnit->dex_file_, field_idx, mUnit->dex_cache_,
mUnit->class_loader_, false);
}
static Method* ComputeReferrerMethod(OatCompilationUnit* mUnit, uint32_t method_idx) {
return mUnit->class_linker_->ResolveMethod(
*mUnit->dex_file_, method_idx, mUnit->dex_cache_,
mUnit->class_loader_, true);
}
bool Compiler::ComputeInstanceFieldInfo(uint32_t field_idx, OatCompilationUnit* mUnit,
int& field_offset, bool& is_volatile, bool is_put) {
// Conservative defaults
field_offset = -1;
is_volatile = true;
// Try to resolve field
Field* resolved_field = ComputeReferrerField(mUnit, field_idx);
if (resolved_field != NULL) {
Class* referrer_class = ComputeReferrerClass(mUnit);
// Try to resolve referring class then access check, failure to pass the
Class* fields_class = resolved_field->GetDeclaringClass();
bool is_write_to_final_from_wrong_class = is_put && resolved_field->IsFinal() &&
fields_class != referrer_class;
if (referrer_class != NULL && referrer_class->CanAccess(fields_class) &&
referrer_class->CanAccessMember(fields_class, resolved_field->GetAccessFlags()) &&
!is_write_to_final_from_wrong_class) {
field_offset = resolved_field->GetOffset().Int32Value();
is_volatile = resolved_field->IsVolatile();
stats_->ResolvedInstanceField();
return true; // Fast path.
}
}
// Clean up any exception left by field/type resolution
Thread* thread = Thread::Current();
if (thread->IsExceptionPending()) {
thread->ClearException();
}
stats_->UnresolvedInstanceField();
return false; // Incomplete knowledge needs slow path.
}
bool Compiler::ComputeStaticFieldInfo(uint32_t field_idx, OatCompilationUnit* mUnit,
int& field_offset, int& ssb_index,
bool& is_referrers_class, bool& is_volatile, bool is_put) {
// Conservative defaults
field_offset = -1;
ssb_index = -1;
is_referrers_class = false;
is_volatile = true;
// Try to resolve field
Field* resolved_field = ComputeReferrerField(mUnit, field_idx);
if (resolved_field != NULL) {
DCHECK(resolved_field->IsStatic());
Class* referrer_class = ComputeReferrerClass(mUnit);
if (referrer_class != NULL) {
Class* fields_class = resolved_field->GetDeclaringClass();
if (fields_class == referrer_class) {
is_referrers_class = true; // implies no worrying about class initialization
field_offset = resolved_field->GetOffset().Int32Value();
is_volatile = resolved_field->IsVolatile();
stats_->ResolvedLocalStaticField();
return true; // fast path
} else {
bool is_write_to_final_from_wrong_class = is_put && resolved_field->IsFinal();
if (referrer_class->CanAccess(fields_class) &&
referrer_class->CanAccessMember(fields_class, resolved_field->GetAccessFlags()) &&
!is_write_to_final_from_wrong_class) {
// We have the resolved field, we must make it into a ssbIndex for the referrer
// in its static storage base (which may fail if it doesn't have a slot for it)
// TODO: for images we can elide the static storage base null check
// if we know there's a non-null entry in the image
if (fields_class->GetDexCache() == mUnit->dex_cache_) {
// common case where the dex cache of both the referrer and the field are the same,
// no need to search the dex file
ssb_index = fields_class->GetDexTypeIndex();
field_offset = resolved_field->GetOffset().Int32Value();
is_volatile = resolved_field->IsVolatile();
stats_->ResolvedStaticField();
return true;
}
// Search dex file for localized ssb index
std::string descriptor(FieldHelper(resolved_field).GetDeclaringClassDescriptor());
const DexFile::StringId* string_id =
mUnit->dex_file_->FindStringId(descriptor);
if (string_id != NULL) {
const DexFile::TypeId* type_id =
mUnit->dex_file_->FindTypeId(mUnit->dex_file_->GetIndexForStringId(*string_id));
if (type_id != NULL) {
// medium path, needs check of static storage base being initialized
ssb_index = mUnit->dex_file_->GetIndexForTypeId(*type_id);
field_offset = resolved_field->GetOffset().Int32Value();
is_volatile = resolved_field->IsVolatile();
stats_->ResolvedStaticField();
return true;
}
}
}
}
}
}
// Clean up any exception left by field/type resolution
Thread* thread = Thread::Current();
if (thread->IsExceptionPending()) {
thread->ClearException();
}
stats_->UnresolvedStaticField();
return false; // Incomplete knowledge needs slow path.
}
void Compiler::GetCodeAndMethodForDirectCall(InvokeType type, InvokeType sharp_type, Method* method,
uintptr_t& direct_code, uintptr_t& direct_method) {
direct_code = 0;
direct_method = 0;
if (sharp_type != kStatic && sharp_type != kDirect) {
return;
}
bool method_code_in_boot = method->GetDeclaringClass()->GetClassLoader() == NULL;
if (!method_code_in_boot) {
return;
}
bool has_clinit_trampoline = method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
if (has_clinit_trampoline) {
return;
}
stats_->DirectCallsToBoot(type);
stats_->DirectMethodsToBoot(type);
bool compiling_boot = Runtime::Current()->GetHeap()->GetSpaces().size() == 1;
if (compiling_boot) {
const bool kSupportBootImageFixup = true;
if (kSupportBootImageFixup) {
MethodHelper mh(method);
if (IsImageClass(mh.GetDeclaringClassDescriptor())) {
// We can only branch directly to Methods that are resolved in the DexCache.
// Otherwise we won't invoke the resolution trampoline.
direct_method = -1;
direct_code = -1;
}
}
} else {
if (Runtime::Current()->GetHeap()->GetImageSpace()->Contains(method)) {
direct_method = reinterpret_cast<uintptr_t>(method);
}
direct_code = reinterpret_cast<uintptr_t>(method->GetCode());
}
}
bool Compiler::ComputeInvokeInfo(uint32_t method_idx, OatCompilationUnit* mUnit, InvokeType& type,
int& vtable_idx, uintptr_t& direct_code,
uintptr_t& direct_method) {
vtable_idx = -1;
direct_code = 0;
direct_method = 0;
Method* resolved_method = ComputeReferrerMethod(mUnit, method_idx);
if (resolved_method != NULL) {
Class* referrer_class = ComputeReferrerClass(mUnit);
if (referrer_class != NULL) {
Class* methods_class = resolved_method->GetDeclaringClass();
if (!referrer_class->CanAccess(methods_class) ||
!referrer_class->CanAccessMember(methods_class,
resolved_method->GetAccessFlags())) {
// The referring class can't access the resolved method, this may occur as a result of a
// protected method being made public by implementing an interface that re-declares the
// method public. Resort to the dex file to determine the correct class for the access check
const DexFile& dex_file = mUnit->class_linker_->FindDexFile(referrer_class->GetDexCache());
methods_class =
mUnit->class_linker_->ResolveType(dex_file,
dex_file.GetMethodId(method_idx).class_idx_,
referrer_class);
}
if (referrer_class->CanAccess(methods_class) &&
referrer_class->CanAccessMember(methods_class,
resolved_method->GetAccessFlags())) {
vtable_idx = resolved_method->GetMethodIndex();
const bool kEnableSharpening = true;
// Sharpen a virtual call into a direct call when the target is known.
bool can_sharpen = type == kVirtual && (resolved_method->IsFinal() ||
methods_class->IsFinal());
// ensure the vtable index will be correct to dispatch in the vtable of the super class
can_sharpen = can_sharpen || (type == kSuper && referrer_class != methods_class &&
referrer_class->IsSubClass(methods_class) &&
vtable_idx < methods_class->GetVTable()->GetLength() &&
methods_class->GetVTable()->Get(vtable_idx) == resolved_method);
if (kEnableSharpening && can_sharpen) {
stats_->ResolvedMethod(type);
// Sharpen a virtual call into a direct call. The method_idx is into referrer's
// dex cache, check that this resolved method is where we expect it.
CHECK(referrer_class->GetDexCache()->GetResolvedMethod(method_idx) == resolved_method)
<< PrettyMethod(resolved_method);
stats_->VirtualMadeDirect(type);
GetCodeAndMethodForDirectCall(type, kDirect, resolved_method, direct_code, direct_method);
type = kDirect;
return true;
} else if (type == kSuper) {
// Unsharpened super calls are suspicious so go slowpath.
} else {
stats_->ResolvedMethod(type);
GetCodeAndMethodForDirectCall(type, type, resolved_method, direct_code, direct_method);
return true;
}
}
}
}
// Clean up any exception left by method/type resolution
Thread* thread = Thread::Current();
if (thread->IsExceptionPending()) {
thread->ClearException();
}
stats_->UnresolvedMethod(type);
return false; // Incomplete knowledge needs slow path.
}
void Compiler::AddCodePatch(DexCache* dex_cache,
const DexFile* dex_file,
uint32_t referrer_method_idx,
uint32_t referrer_access_flags,
uint32_t target_method_idx,
bool target_is_direct,
size_t literal_offset) {
MutexLock mu(compiled_methods_lock_);
code_to_patch_.push_back(new PatchInformation(dex_cache,
dex_file,
referrer_method_idx,
referrer_access_flags,
target_method_idx,
target_is_direct,
literal_offset));
}
void Compiler::AddMethodPatch(DexCache* dex_cache,
const DexFile* dex_file,
uint32_t referrer_method_idx,
uint32_t referrer_access_flags,
uint32_t target_method_idx,
bool target_is_direct,
size_t literal_offset) {
MutexLock mu(compiled_methods_lock_);
methods_to_patch_.push_back(new PatchInformation(dex_cache,
dex_file,
referrer_method_idx,
referrer_access_flags,
target_method_idx,
target_is_direct,
literal_offset));
}
// Return true if the class should be skipped during compilation. We
// never skip classes in the boot class loader. However, if we have a
// non-boot class loader and we can resolve the class in the boot
// class loader, we do skip the class. This happens if an app bundles
// classes found in the boot classpath. Since at runtime we will
// select the class from the boot classpath, do not attempt to resolve
// or compile it now.
static bool SkipClass(const ClassLoader* class_loader,
const DexFile& dex_file,
const DexFile::ClassDef& class_def) {
if (class_loader == NULL) {
return false;
}
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Class* klass = class_linker->FindClass(descriptor, NULL);
if (klass == NULL) {
Thread* self = Thread::Current();
CHECK(self->IsExceptionPending());
self->ClearException();
return false;
}
return true;
}
class Context {
public:
Context(ClassLinker* class_linker,
const ClassLoader* class_loader,
Compiler* compiler,
DexCache* dex_cache,
const DexFile* dex_file)
: class_linker_(class_linker),
class_loader_(class_loader),
compiler_(compiler),
dex_cache_(dex_cache),
dex_file_(dex_file) {}
ClassLinker* GetClassLinker() {
CHECK(class_linker_ != NULL);
return class_linker_;
}
const ClassLoader* GetClassLoader() {
return class_loader_;
}
Compiler* GetCompiler() {
CHECK(compiler_ != NULL);
return compiler_;
}
DexCache* GetDexCache() {
CHECK(dex_cache_ != NULL);
return dex_cache_;
}
const DexFile* GetDexFile() {
CHECK(dex_file_ != NULL);
return dex_file_;
}
private:
ClassLinker* class_linker_;
const ClassLoader* class_loader_;
Compiler* compiler_;
DexCache* dex_cache_;
const DexFile* dex_file_;
};
typedef void Callback(Context* context, size_t index);
class WorkerThread {
public:
WorkerThread(Context* context, size_t begin, size_t end, Callback callback, size_t stripe, bool spawn)
: spawn_(spawn), context_(context), begin_(begin), end_(end), callback_(callback), stripe_(stripe) {
if (spawn_) {
CHECK_PTHREAD_CALL(pthread_create, (&pthread_, NULL, &Go, this), "compiler worker thread");
}
}
~WorkerThread() {
if (spawn_) {
CHECK_PTHREAD_CALL(pthread_join, (pthread_, NULL), "compiler worker shutdown");
}
}
private:
static void* Go(void* arg) {
WorkerThread* worker = reinterpret_cast<WorkerThread*>(arg);
Runtime* runtime = Runtime::Current();
if (worker->spawn_) {
runtime->AttachCurrentThread("Compiler Worker", true, NULL);
}
Thread::Current()->SetState(Thread::kRunnable);
worker->Run();
if (worker->spawn_) {
Thread::Current()->SetState(Thread::kNative);
runtime->DetachCurrentThread();
}
return NULL;
}
void Go() {
Go(this);
}
void Run() {
Thread* self = Thread::Current();
for (size_t i = begin_; i < end_; i += stripe_) {
callback_(context_, i);
CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException()) << " " << i;
}
}
pthread_t pthread_;
bool spawn_;
Context* context_;
size_t begin_;
size_t end_;
Callback* callback_;
size_t stripe_;
friend void ForAll(Context*, size_t, size_t, Callback, size_t);
};
void ForAll(Context* context, size_t begin, size_t end, Callback callback, size_t thread_count) {
Thread* self = Thread::Current();
CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException());
CHECK_GT(thread_count, 0U);
std::vector<WorkerThread*> threads;
for (size_t i = 0; i < thread_count; ++i) {
threads.push_back(new WorkerThread(context, begin + i, end, callback, thread_count, (i != 0)));
}
threads[0]->Go();
// Switch to kVmWait while we're blocked waiting for the other threads to finish.
ScopedThreadStateChange tsc(self, Thread::kVmWait);
STLDeleteElements(&threads);
}
static void ResolveClassFieldsAndMethods(Context* context, size_t class_def_index) {
const DexFile& dex_file = *context->GetDexFile();
// Method and Field are the worst. We can't resolve without either
// context from the code use (to disambiguate virtual vs direct
// method and instance vs static field) or from class
// definitions. While the compiler will resolve what it can as it
// needs it, here we try to resolve fields and methods used in class
// definitions, since many of them many never be referenced by
// generated code.
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
if (SkipClass(context->GetClassLoader(), dex_file, class_def)) {
return;
}
// Note the class_data pointer advances through the headers,
// static fields, instance fields, direct methods, and virtual
// methods.
const byte* class_data = dex_file.GetClassData(class_def);
if (class_data == NULL) {
// empty class such as a marker interface
return;
}
Thread* self = Thread::Current();
ClassLinker* class_linker = context->GetClassLinker();
DexCache* dex_cache = class_linker->FindDexCache(dex_file);
ClassDataItemIterator it(dex_file, class_data);
while (it.HasNextStaticField()) {
Field* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(), dex_cache,
context->GetClassLoader(), true);
if (field == NULL) {
CHECK(self->IsExceptionPending());
self->ClearException();
}
it.Next();
}
while (it.HasNextInstanceField()) {
Field* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(), dex_cache,
context->GetClassLoader(), false);
if (field == NULL) {
CHECK(self->IsExceptionPending());
self->ClearException();
}
it.Next();
}
while (it.HasNextDirectMethod()) {
Method* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache,
context->GetClassLoader(), true);
if (method == NULL) {
CHECK(self->IsExceptionPending());
self->ClearException();
}
it.Next();
}
while (it.HasNextVirtualMethod()) {
Method* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache,
context->GetClassLoader(), false);
if (method == NULL) {
CHECK(self->IsExceptionPending());
self->ClearException();
}
it.Next();
}
DCHECK(!it.HasNext());
}
static void ResolveType(Context* context, size_t type_idx) {
// Class derived values are more complicated, they require the linker and loader.
Thread* self = Thread::Current();
Class* klass = context->GetClassLinker()->ResolveType(*context->GetDexFile(),
type_idx,
context->GetDexCache(),
context->GetClassLoader());
if (klass == NULL) {
CHECK(self->IsExceptionPending());
Thread::Current()->ClearException();
}
}
void Compiler::ResolveDexFile(const ClassLoader* class_loader, const DexFile& dex_file, TimingLogger& timings) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
DexCache* dex_cache = class_linker->FindDexCache(dex_file);
// Strings are easy in that they always are simply resolved to literals in the same file
if (image_ && image_classes_ == NULL) {
// TODO: Add support for loading strings referenced by image_classes_
// See also Compiler::CanAssumeTypeIsPresentInDexCache.
for (size_t string_idx = 0; string_idx < dex_cache->NumStrings(); string_idx++) {
class_linker->ResolveString(dex_file, string_idx, dex_cache);
}
timings.AddSplit("Resolve " + dex_file.GetLocation() + " Strings");
}
Context context(class_linker, class_loader, this, dex_cache, &dex_file);
ForAll(&context, 0, dex_cache->NumResolvedTypes(), ResolveType, thread_count_);
timings.AddSplit("Resolve " + dex_file.GetLocation() + " Types");
ForAll(&context, 0, dex_file.NumClassDefs(), ResolveClassFieldsAndMethods, thread_count_);
timings.AddSplit("Resolve " + dex_file.GetLocation() + " MethodsAndFields");
}
void Compiler::Verify(const ClassLoader* class_loader,
const std::vector<const DexFile*>& dex_files) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != NULL);
VerifyDexFile(class_loader, *dex_file);
}
}
static void VerifyClass(Context* context, size_t class_def_index) {
const DexFile::ClassDef& class_def = context->GetDexFile()->GetClassDef(class_def_index);
const char* descriptor = context->GetDexFile()->GetClassDescriptor(class_def);
Class* klass = context->GetClassLinker()->FindClass(descriptor, context->GetClassLoader());
if (klass == NULL) {
Thread* self = Thread::Current();
CHECK(self->IsExceptionPending());
self->ClearException();
/*
* At compile time, we can still structurally verify the class even if FindClass fails.
* This is to ensure the class is structurally sound for compilation. An unsound class
* will be rejected by the verifier and later skipped during compilation in the compiler.
*/
std::string error_msg;
if (!verifier::DexVerifier::VerifyClass(context->GetDexFile(), context->GetDexCache(),
context->GetClassLoader(), class_def_index, error_msg)) {
const DexFile::ClassDef& class_def = context->GetDexFile()->GetClassDef(class_def_index);
LOG(ERROR) << "Verification failed on class "
<< PrettyDescriptor(context->GetDexFile()->GetClassDescriptor(class_def))
<< " because: " << error_msg;
}
return;
}
CHECK(klass->IsResolved()) << PrettyClass(klass);
context->GetClassLinker()->VerifyClass(klass);
if (klass->IsErroneous()) {
// ClassLinker::VerifyClass throws, which isn't useful in the compiler.
CHECK(Thread::Current()->IsExceptionPending());
Thread::Current()->ClearException();
art::Compiler::ClassReference ref(context->GetDexFile(), class_def_index);
if (!verifier::DexVerifier::IsClassRejected(ref)) {
// If the erroneous class wasn't rejected by the verifier, it was a soft error. We want
// to try verification again at run-time, so move back into the resolved state.
klass->SetStatus(Class::kStatusResolved);
}
}
CHECK(klass->IsVerified() || klass->IsResolved() || klass->IsErroneous()) << PrettyClass(klass);
CHECK(!Thread::Current()->IsExceptionPending()) << PrettyTypeOf(Thread::Current()->GetException());
}
void Compiler::VerifyDexFile(const ClassLoader* class_loader, const DexFile& dex_file) {
dex_file.ChangePermissions(PROT_READ | PROT_WRITE);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Context context(class_linker, class_loader, this, class_linker->FindDexCache(dex_file), &dex_file);
ForAll(&context, 0, dex_file.NumClassDefs(), VerifyClass, thread_count_);
dex_file.ChangePermissions(PROT_READ);
}
void Compiler::InitializeClassesWithoutClinit(const ClassLoader* class_loader,
const std::vector<const DexFile*>& dex_files) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != NULL);
InitializeClassesWithoutClinit(class_loader, *dex_file);
}
}
void Compiler::InitializeClassesWithoutClinit(const ClassLoader* class_loader, const DexFile& dex_file) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
for (size_t class_def_index = 0; class_def_index < dex_file.NumClassDefs(); class_def_index++) {
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const char* descriptor = dex_file.GetClassDescriptor(class_def);
Class* klass = class_linker->FindClass(descriptor, class_loader);
if (klass != NULL) {
if (klass->IsVerified()) {
// Only try to initialize classes that were successfully verified.
class_linker->EnsureInitialized(klass, false);
}
// record the final class status if necessary
Class::Status status = klass->GetStatus();
ClassReference ref(&dex_file, class_def_index);
MutexLock mu(compiled_classes_lock_);
CompiledClass* compiled_class = GetCompiledClass(ref);
if (compiled_class == NULL) {
compiled_class = new CompiledClass(status);
compiled_classes_[ref] = compiled_class;
} else {
DCHECK_EQ(status, compiled_class->GetStatus());
}
}
// clear any class not found or verification exceptions
Thread::Current()->ClearException();
}
DexCache* dex_cache = class_linker->FindDexCache(dex_file);
for (size_t type_idx = 0; type_idx < dex_cache->NumResolvedTypes(); type_idx++) {
Class* klass = class_linker->ResolveType(dex_file, type_idx, dex_cache, class_loader);
if (klass == NULL) {
Thread::Current()->ClearException();
} else if (klass->IsInitialized()) {
dex_cache->GetInitializedStaticStorage()->Set(type_idx, klass);
}
}
}
void Compiler::Compile(const ClassLoader* class_loader,
const std::vector<const DexFile*>& dex_files) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != NULL);
CompileDexFile(class_loader, *dex_file);
}
}
void Compiler::CompileClass(Context* context, size_t class_def_index) {
const ClassLoader* class_loader = context->GetClassLoader();
const DexFile& dex_file = *context->GetDexFile();
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
#if defined(ART_USE_LLVM_COMPILER)
// TODO: Remove this. We should not lock the compiler_lock_ in CompileClass()
// However, without this mutex lock, we will get segmentation fault before
// LLVM becomes multithreaded.
Compiler* cmplr = context->GetCompiler();
CompilerMutexLockFn f =
FindFunction<CompilerMutexLockFn>(MakeCompilerSoName(cmplr->GetInstructionSet()),
cmplr->compiler_library_,
"compilerLLVMMutexLock");
UniquePtr<MutexLock> GUARD((*f)(*cmplr));
#endif
if (SkipClass(class_loader, dex_file, class_def)) {
return;
}
ClassReference ref(&dex_file, class_def_index);
// Skip compiling classes with generic verifier failures since they will still fail at runtime
if (verifier::DexVerifier::IsClassRejected(ref)) {
return;
}
const byte* class_data = dex_file.GetClassData(class_def);
if (class_data == NULL) {
// empty class, probably a marker interface
return;
}
ClassDataItemIterator it(dex_file, class_data);
// Skip fields
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
// Compile direct methods
while (it.HasNextDirectMethod()) {
context->GetCompiler()->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(),
it.GetMemberIndex(), class_loader, dex_file);
it.Next();
}
// Compile virtual methods
while (it.HasNextVirtualMethod()) {
context->GetCompiler()->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(),
it.GetMemberIndex(), class_loader, dex_file);
it.Next();
}
DCHECK(!it.HasNext());
}
void Compiler::CompileDexFile(const ClassLoader* class_loader, const DexFile& dex_file) {
Context context(NULL, class_loader, this, NULL, &dex_file);
ForAll(&context, 0, dex_file.NumClassDefs(), Compiler::CompileClass, thread_count_);
}
void Compiler::CompileMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
uint32_t method_idx, const ClassLoader* class_loader,
const DexFile& dex_file) {
CompiledMethod* compiled_method = NULL;
uint64_t start_ns = NanoTime();
if ((access_flags & kAccNative) != 0) {
compiled_method = (*jni_compiler_)(*this, access_flags, method_idx, dex_file);
CHECK(compiled_method != NULL);
} else if ((access_flags & kAccAbstract) != 0) {
} else {
compiled_method = (*compiler_)(*this, code_item, access_flags, method_idx, class_loader,
dex_file);
CHECK(compiled_method != NULL) << PrettyMethod(method_idx, dex_file);
}
uint64_t duration_ns = NanoTime() - start_ns;
if (duration_ns > MsToNs(100)) {
LOG(WARNING) << "Compilation of " << PrettyMethod(method_idx, dex_file)
<< " took " << PrettyDuration(duration_ns);
}
if (compiled_method != NULL) {
MethodReference ref(&dex_file, method_idx);
CHECK(GetCompiledMethod(ref) == NULL) << PrettyMethod(method_idx, dex_file);
MutexLock mu(compiled_methods_lock_);
compiled_methods_[ref] = compiled_method;
DCHECK(GetCompiledMethod(ref) != NULL) << PrettyMethod(method_idx, dex_file);
}
uint32_t shorty_len;
const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx), &shorty_len);
bool is_static = (access_flags & kAccStatic) != 0;
const CompiledInvokeStub* compiled_invoke_stub = FindInvokeStub(is_static, shorty);
if (compiled_invoke_stub == NULL) {
compiled_invoke_stub = (*create_invoke_stub_)(*this, is_static, shorty, shorty_len);
CHECK(compiled_invoke_stub != NULL);
InsertInvokeStub(is_static, shorty, compiled_invoke_stub);
}
CHECK(!Thread::Current()->IsExceptionPending()) << PrettyMethod(method_idx, dex_file);
}
static std::string MakeInvokeStubKey(bool is_static, const char* shorty) {
std::string key(shorty);
if (is_static) {
key += "$"; // Must not be a shorty type character.
}
return key;
}
const CompiledInvokeStub* Compiler::FindInvokeStub(bool is_static, const char* shorty) const {
MutexLock mu(compiled_invoke_stubs_lock_);
const std::string key(MakeInvokeStubKey(is_static, shorty));
InvokeStubTable::const_iterator it = compiled_invoke_stubs_.find(key);
if (it == compiled_invoke_stubs_.end()) {
return NULL;
} else {
DCHECK(it->second != NULL);
return it->second;
}
}
void Compiler::InsertInvokeStub(bool is_static, const char* shorty,
const CompiledInvokeStub* compiled_invoke_stub) {
MutexLock mu(compiled_invoke_stubs_lock_);
std::string key(MakeInvokeStubKey(is_static, shorty));
compiled_invoke_stubs_[key] = compiled_invoke_stub;
}
CompiledClass* Compiler::GetCompiledClass(ClassReference ref) const {
MutexLock mu(compiled_classes_lock_);
ClassTable::const_iterator it = compiled_classes_.find(ref);
if (it == compiled_classes_.end()) {
return NULL;
}
CHECK(it->second != NULL);
return it->second;
}
CompiledMethod* Compiler::GetCompiledMethod(MethodReference ref) const {
MutexLock mu(compiled_methods_lock_);
MethodTable::const_iterator it = compiled_methods_.find(ref);
if (it == compiled_methods_.end()) {
return NULL;
}
CHECK(it->second != NULL);
return it->second;
}
void Compiler::SetGcMaps(const ClassLoader* class_loader, const std::vector<const DexFile*>& dex_files) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != NULL);
SetGcMapsDexFile(class_loader, *dex_file);
}
}
void Compiler::SetGcMapsDexFile(const ClassLoader* class_loader, const DexFile& dex_file) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
DexCache* dex_cache = class_linker->FindDexCache(dex_file);
for (size_t class_def_index = 0; class_def_index < dex_file.NumClassDefs(); class_def_index++) {
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const char* descriptor = dex_file.GetClassDescriptor(class_def);
Class* klass = class_linker->FindClass(descriptor, class_loader);
if (klass == NULL || !klass->IsVerified()) {
Thread::Current()->ClearException();
continue;
}
const byte* class_data = dex_file.GetClassData(class_def);
if (class_data == NULL) {
// empty class such as a marker interface
continue;
}
ClassDataItemIterator it(dex_file, class_data);
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
while (it.HasNextDirectMethod()) {
Method* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache,
class_loader, true);
SetGcMapsMethod(dex_file, method);
it.Next();
}
while (it.HasNextVirtualMethod()) {
Method* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache,
class_loader, false);
SetGcMapsMethod(dex_file, method);
it.Next();
}
}
}
void Compiler::SetGcMapsMethod(const DexFile& dex_file, Method* method) {
if (method == NULL) {
Thread::Current()->ClearException();
return;
}
uint16_t method_idx = method->GetDexMethodIndex();
MethodReference ref(&dex_file, method_idx);
CompiledMethod* compiled_method = GetCompiledMethod(ref);
if (compiled_method == NULL) {
return;
}
const std::vector<uint8_t>* gc_map = verifier::DexVerifier::GetGcMap(ref);
if (gc_map == NULL) {
return;
}
compiled_method->SetGcMap(*gc_map);
}
#if defined(ART_USE_LLVM_COMPILER)
void Compiler::SetBitcodeFileName(std::string const& filename) {
typedef void (*SetBitcodeFileNameFn)(Compiler&, std::string const&);
SetBitcodeFileNameFn set_bitcode_file_name =
FindFunction<SetBitcodeFileNameFn>(MakeCompilerSoName(instruction_set_),
compiler_library_,
"compilerLLVMSetBitcodeFileName");
set_bitcode_file_name(*this, filename);
}
void Compiler::EnableAutoElfLoading() {
compiler_enable_auto_elf_loading_(*this);
}
const void* Compiler::GetMethodCodeAddr(const CompiledMethod* cm,
const Method* method) const {
return compiler_get_method_code_addr_(*this, cm, method);
}
const Method::InvokeStub* Compiler::GetMethodInvokeStubAddr(const CompiledInvokeStub* cm,
const Method* method) const {
return compiler_get_method_invoke_stub_addr_(*this, cm, method);
}
std::vector<ElfImage> Compiler::GetElfImages() const {
typedef std::vector<ElfImage> (*GetElfImagesFn)(const Compiler&);
GetElfImagesFn get_elf_images =
FindFunction<GetElfImagesFn>(MakeCompilerSoName(instruction_set_),
compiler_library_,
"compilerLLVMGetElfImages");
return get_elf_images(*this);
}
#endif
} // namespace art