blob: 6f5913e6b33d59a24ffc000905880ae087641b69 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_THREAD_H_
#define ART_RUNTIME_THREAD_H_
#include <bitset>
#include <deque>
#include <iosfwd>
#include <list>
#include <memory>
#include <setjmp.h>
#include <string>
#include "arch/context.h"
#include "arch/instruction_set.h"
#include "atomic.h"
#include "base/enums.h"
#include "base/macros.h"
#include "base/mutex.h"
#include "entrypoints/jni/jni_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "globals.h"
#include "handle_scope.h"
#include "instrumentation.h"
#include "jvalue.h"
#include "object_callbacks.h"
#include "offsets.h"
#include "runtime_stats.h"
#include "stack.h"
#include "thread_state.h"
class BacktraceMap;
namespace art {
namespace gc {
namespace accounting {
template<class T> class AtomicStack;
} // namespace accounting
namespace collector {
class SemiSpace;
} // namespace collector
} // namespace gc
namespace mirror {
class Array;
class Class;
class ClassLoader;
class Object;
template<class T> class ObjectArray;
template<class T> class PrimitiveArray;
typedef PrimitiveArray<int32_t> IntArray;
class StackTraceElement;
class String;
class Throwable;
} // namespace mirror
namespace verifier {
class MethodVerifier;
} // namespace verifier
class ArtMethod;
class BaseMutex;
class ClassLinker;
class Closure;
class Context;
struct DebugInvokeReq;
class DeoptimizationContextRecord;
class DexFile;
class FrameIdToShadowFrame;
class JavaVMExt;
struct JNIEnvExt;
class Monitor;
class Runtime;
class ScopedObjectAccessAlreadyRunnable;
class ShadowFrame;
class SingleStepControl;
class StackedShadowFrameRecord;
class Thread;
class ThreadList;
// Thread priorities. These must match the Thread.MIN_PRIORITY,
// Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY constants.
enum ThreadPriority {
kMinThreadPriority = 1,
kNormThreadPriority = 5,
kMaxThreadPriority = 10,
};
enum ThreadFlag {
kSuspendRequest = 1, // If set implies that suspend_count_ > 0 and the Thread should enter the
// safepoint handler.
kCheckpointRequest = 2, // Request that the thread do some checkpoint work and then continue.
kActiveSuspendBarrier = 4 // Register that at least 1 suspend barrier needs to be passed.
};
enum class StackedShadowFrameType {
kShadowFrameUnderConstruction,
kDeoptimizationShadowFrame,
};
// This should match RosAlloc::kNumThreadLocalSizeBrackets.
static constexpr size_t kNumRosAllocThreadLocalSizeBracketsInThread = 16;
// Thread's stack layout for implicit stack overflow checks:
//
// +---------------------+ <- highest address of stack memory
// | |
// . . <- SP
// | |
// | |
// +---------------------+ <- stack_end
// | |
// | Gap |
// | |
// +---------------------+ <- stack_begin
// | |
// | Protected region |
// | |
// +---------------------+ <- lowest address of stack memory
//
// The stack always grows down in memory. At the lowest address is a region of memory
// that is set mprotect(PROT_NONE). Any attempt to read/write to this region will
// result in a segmentation fault signal. At any point, the thread's SP will be somewhere
// between the stack_end and the highest address in stack memory. An implicit stack
// overflow check is a read of memory at a certain offset below the current SP (4K typically).
// If the thread's SP is below the stack_end address this will be a read into the protected
// region. If the SP is above the stack_end address, the thread is guaranteed to have
// at least 4K of space. Because stack overflow checks are only performed in generated code,
// if the thread makes a call out to a native function (through JNI), that native function
// might only have 4K of memory (if the SP is adjacent to stack_end).
class Thread {
public:
static const size_t kStackOverflowImplicitCheckSize;
// Creates a new native thread corresponding to the given managed peer.
// Used to implement Thread.start.
static void CreateNativeThread(JNIEnv* env, jobject peer, size_t stack_size, bool daemon);
// Attaches the calling native thread to the runtime, returning the new native peer.
// Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls.
static Thread* Attach(const char* thread_name, bool as_daemon, jobject thread_group,
bool create_peer);
// Reset internal state of child thread after fork.
void InitAfterFork();
// Get the currently executing thread, frequently referred to as 'self'. This call has reasonably
// high cost and so we favor passing self around when possible.
// TODO: mark as PURE so the compiler may coalesce and remove?
static Thread* Current();
// On a runnable thread, check for pending thread suspension request and handle if pending.
void AllowThreadSuspension() REQUIRES_SHARED(Locks::mutator_lock_);
// Process pending thread suspension request and handle if pending.
void CheckSuspend() REQUIRES_SHARED(Locks::mutator_lock_);
static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts,
mirror::Object* thread_peer)
REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, jobject thread)
REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Translates 172 to pAllocArrayFromCode and so on.
template<PointerSize size_of_pointers>
static void DumpThreadOffset(std::ostream& os, uint32_t offset);
// Dumps a one-line summary of thread state (used for operator<<).
void ShortDump(std::ostream& os) const;
// Dumps the detailed thread state and the thread stack (used for SIGQUIT).
void Dump(std::ostream& os,
bool dump_native_stack = true,
BacktraceMap* backtrace_map = nullptr) const
REQUIRES(!Locks::thread_suspend_count_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
void DumpJavaStack(std::ostream& os) const
REQUIRES(!Locks::thread_suspend_count_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Dumps the SIGQUIT per-thread header. 'thread' can be null for a non-attached thread, in which
// case we use 'tid' to identify the thread, and we'll include as much information as we can.
static void DumpState(std::ostream& os, const Thread* thread, pid_t tid)
REQUIRES(!Locks::thread_suspend_count_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
ThreadState GetState() const {
DCHECK_GE(tls32_.state_and_flags.as_struct.state, kTerminated);
DCHECK_LE(tls32_.state_and_flags.as_struct.state, kSuspended);
return static_cast<ThreadState>(tls32_.state_and_flags.as_struct.state);
}
ThreadState SetState(ThreadState new_state);
int GetSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) {
return tls32_.suspend_count;
}
int GetDebugSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) {
return tls32_.debug_suspend_count;
}
bool IsSuspended() const {
union StateAndFlags state_and_flags;
state_and_flags.as_int = tls32_.state_and_flags.as_int;
return state_and_flags.as_struct.state != kRunnable &&
(state_and_flags.as_struct.flags & kSuspendRequest) != 0;
}
// If delta > 0 and (this != self or suspend_barrier is not null), this function may temporarily
// release thread_suspend_count_lock_ internally.
ALWAYS_INLINE
bool ModifySuspendCount(Thread* self,
int delta,
AtomicInteger* suspend_barrier,
bool for_debugger)
REQUIRES(Locks::thread_suspend_count_lock_);
bool RequestCheckpoint(Closure* function)
REQUIRES(Locks::thread_suspend_count_lock_);
void SetFlipFunction(Closure* function);
Closure* GetFlipFunction();
gc::accounting::AtomicStack<mirror::Object>* GetThreadLocalMarkStack() {
CHECK(kUseReadBarrier);
return tlsPtr_.thread_local_mark_stack;
}
void SetThreadLocalMarkStack(gc::accounting::AtomicStack<mirror::Object>* stack) {
CHECK(kUseReadBarrier);
tlsPtr_.thread_local_mark_stack = stack;
}
// Called when thread detected that the thread_suspend_count_ was non-zero. Gives up share of
// mutator_lock_ and waits until it is resumed and thread_suspend_count_ is zero.
void FullSuspendCheck()
REQUIRES(!Locks::thread_suspend_count_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Transition from non-runnable to runnable state acquiring share on mutator_lock_.
ALWAYS_INLINE ThreadState TransitionFromSuspendedToRunnable()
REQUIRES(!Locks::thread_suspend_count_lock_)
SHARED_LOCK_FUNCTION(Locks::mutator_lock_);
// Transition from runnable into a state where mutator privileges are denied. Releases share of
// mutator lock.
ALWAYS_INLINE void TransitionFromRunnableToSuspended(ThreadState new_state)
REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_)
UNLOCK_FUNCTION(Locks::mutator_lock_);
// Once called thread suspension will cause an assertion failure.
const char* StartAssertNoThreadSuspension(const char* cause) ACQUIRE(Roles::uninterruptible_) {
Roles::uninterruptible_.Acquire(); // No-op.
if (kIsDebugBuild) {
CHECK(cause != nullptr);
const char* previous_cause = tlsPtr_.last_no_thread_suspension_cause;
tls32_.no_thread_suspension++;
tlsPtr_.last_no_thread_suspension_cause = cause;
return previous_cause;
} else {
return nullptr;
}
}
// End region where no thread suspension is expected.
void EndAssertNoThreadSuspension(const char* old_cause) RELEASE(Roles::uninterruptible_) {
if (kIsDebugBuild) {
CHECK(old_cause != nullptr || tls32_.no_thread_suspension == 1);
CHECK_GT(tls32_.no_thread_suspension, 0U);
tls32_.no_thread_suspension--;
tlsPtr_.last_no_thread_suspension_cause = old_cause;
}
Roles::uninterruptible_.Release(); // No-op.
}
void AssertThreadSuspensionIsAllowable(bool check_locks = true) const;
// Return true if thread suspension is allowable.
bool IsThreadSuspensionAllowable() const;
bool IsDaemon() const {
return tls32_.daemon;
}
size_t NumberOfHeldMutexes() const;
bool HoldsLock(mirror::Object*) const REQUIRES_SHARED(Locks::mutator_lock_);
/*
* Changes the priority of this thread to match that of the java.lang.Thread object.
*
* We map a priority value from 1-10 to Linux "nice" values, where lower
* numbers indicate higher priority.
*/
void SetNativePriority(int newPriority);
/*
* Returns the thread priority for the current thread by querying the system.
* This is useful when attaching a thread through JNI.
*
* Returns a value from 1 to 10 (compatible with java.lang.Thread values).
*/
static int GetNativePriority();
// Guaranteed to be non-zero.
uint32_t GetThreadId() const {
return tls32_.thin_lock_thread_id;
}
pid_t GetTid() const {
return tls32_.tid;
}
// Returns the java.lang.Thread's name, or null if this Thread* doesn't have a peer.
mirror::String* GetThreadName(const ScopedObjectAccessAlreadyRunnable& ts) const
REQUIRES_SHARED(Locks::mutator_lock_);
// Sets 'name' to the java.lang.Thread's name. This requires no transition to managed code,
// allocation, or locking.
void GetThreadName(std::string& name) const;
// Sets the thread's name.
void SetThreadName(const char* name) REQUIRES_SHARED(Locks::mutator_lock_);
// Returns the thread-specific CPU-time clock in microseconds or -1 if unavailable.
uint64_t GetCpuMicroTime() const;
mirror::Object* GetPeer() const REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(tlsPtr_.jpeer == nullptr);
return tlsPtr_.opeer;
}
bool HasPeer() const {
return tlsPtr_.jpeer != nullptr || tlsPtr_.opeer != nullptr;
}
RuntimeStats* GetStats() {
return &tls64_.stats;
}
bool IsStillStarting() const;
bool IsExceptionPending() const {
return tlsPtr_.exception != nullptr;
}
mirror::Throwable* GetException() const REQUIRES_SHARED(Locks::mutator_lock_) {
return tlsPtr_.exception;
}
void AssertPendingException() const;
void AssertPendingOOMException() const REQUIRES_SHARED(Locks::mutator_lock_);
void AssertNoPendingException() const;
void AssertNoPendingExceptionForNewException(const char* msg) const;
void SetException(ObjPtr<mirror::Throwable> new_exception) REQUIRES_SHARED(Locks::mutator_lock_);
void ClearException() REQUIRES_SHARED(Locks::mutator_lock_) {
tlsPtr_.exception = nullptr;
}
// Find catch block and perform long jump to appropriate exception handle
NO_RETURN void QuickDeliverException() REQUIRES_SHARED(Locks::mutator_lock_);
Context* GetLongJumpContext();
void ReleaseLongJumpContext(Context* context) {
if (tlsPtr_.long_jump_context != nullptr) {
// Each QuickExceptionHandler gets a long jump context and uses
// it for doing the long jump, after finding catch blocks/doing deoptimization.
// Both finding catch blocks and deoptimization can trigger another
// exception such as a result of class loading. So there can be nested
// cases of exception handling and multiple contexts being used.
// ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context
// for reuse so there is no need to always allocate a new one each time when
// getting a context. Since we only keep one context for reuse, delete the
// existing one since the passed in context is yet to be used for longjump.
delete tlsPtr_.long_jump_context;
}
tlsPtr_.long_jump_context = context;
}
// Get the current method and dex pc. If there are errors in retrieving the dex pc, this will
// abort the runtime iff abort_on_error is true.
ArtMethod* GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error = true) const
REQUIRES_SHARED(Locks::mutator_lock_);
// Returns whether the given exception was thrown by the current Java method being executed
// (Note that this includes native Java methods).
bool IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const
REQUIRES_SHARED(Locks::mutator_lock_);
void SetTopOfStack(ArtMethod** top_method) {
tlsPtr_.managed_stack.SetTopQuickFrame(top_method);
}
void SetTopOfShadowStack(ShadowFrame* top) {
tlsPtr_.managed_stack.SetTopShadowFrame(top);
}
bool HasManagedStack() const {
return (tlsPtr_.managed_stack.GetTopQuickFrame() != nullptr) ||
(tlsPtr_.managed_stack.GetTopShadowFrame() != nullptr);
}
// If 'msg' is null, no detail message is set.
void ThrowNewException(const char* exception_class_descriptor, const char* msg)
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_);
// If 'msg' is null, no detail message is set. An exception must be pending, and will be
// used as the new exception's cause.
void ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg)
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_);
void ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...)
__attribute__((format(printf, 3, 4)))
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_);
void ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap)
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_);
// OutOfMemoryError is special, because we need to pre-allocate an instance.
// Only the GC should call this.
void ThrowOutOfMemoryError(const char* msg) REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Roles::uninterruptible_);
static void Startup();
static void FinishStartup();
static void Shutdown();
// JNI methods
JNIEnvExt* GetJniEnv() const {
return tlsPtr_.jni_env;
}
// Convert a jobject into a Object*
ObjPtr<mirror::Object> DecodeJObject(jobject obj) const REQUIRES_SHARED(Locks::mutator_lock_);
// Checks if the weak global ref has been cleared by the GC without decoding it.
bool IsJWeakCleared(jweak obj) const REQUIRES_SHARED(Locks::mutator_lock_);
mirror::Object* GetMonitorEnterObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
return tlsPtr_.monitor_enter_object;
}
void SetMonitorEnterObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
tlsPtr_.monitor_enter_object = obj;
}
// Implements java.lang.Thread.interrupted.
bool Interrupted() REQUIRES(!*wait_mutex_);
// Implements java.lang.Thread.isInterrupted.
bool IsInterrupted() REQUIRES(!*wait_mutex_);
bool IsInterruptedLocked() REQUIRES(wait_mutex_) {
return interrupted_;
}
void Interrupt(Thread* self) REQUIRES(!*wait_mutex_);
void SetInterruptedLocked(bool i) REQUIRES(wait_mutex_) {
interrupted_ = i;
}
void Notify() REQUIRES(!*wait_mutex_);
ALWAYS_INLINE void PoisonObjectPointers() {
++poison_object_cookie_;
}
ALWAYS_INLINE static void PoisonObjectPointersIfDebug();
ALWAYS_INLINE uintptr_t GetPoisonObjectCookie() const {
return poison_object_cookie_;
}
private:
void NotifyLocked(Thread* self) REQUIRES(wait_mutex_);
public:
Mutex* GetWaitMutex() const LOCK_RETURNED(wait_mutex_) {
return wait_mutex_;
}
ConditionVariable* GetWaitConditionVariable() const REQUIRES(wait_mutex_) {
return wait_cond_;
}
Monitor* GetWaitMonitor() const REQUIRES(wait_mutex_) {
return wait_monitor_;
}
void SetWaitMonitor(Monitor* mon) REQUIRES(wait_mutex_) {
wait_monitor_ = mon;
}
// Waiter link-list support.
Thread* GetWaitNext() const {
return tlsPtr_.wait_next;
}
void SetWaitNext(Thread* next) {
tlsPtr_.wait_next = next;
}
jobject GetClassLoaderOverride() {
return tlsPtr_.class_loader_override;
}
void SetClassLoaderOverride(jobject class_loader_override);
// Create the internal representation of a stack trace, that is more time
// and space efficient to compute than the StackTraceElement[].
template<bool kTransactionActive>
jobject CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const
REQUIRES_SHARED(Locks::mutator_lock_);
// Convert an internal stack trace representation (returned by CreateInternalStackTrace) to a
// StackTraceElement[]. If output_array is null, a new array is created, otherwise as many
// frames as will fit are written into the given array. If stack_depth is non-null, it's updated
// with the number of valid frames in the returned array.
static jobjectArray InternalStackTraceToStackTraceElementArray(
const ScopedObjectAccessAlreadyRunnable& soa, jobject internal,
jobjectArray output_array = nullptr, int* stack_depth = nullptr)
REQUIRES_SHARED(Locks::mutator_lock_);
bool HasDebuggerShadowFrames() const {
return tlsPtr_.frame_id_to_shadow_frame != nullptr;
}
void VisitRoots(RootVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_);
ALWAYS_INLINE void VerifyStack() REQUIRES_SHARED(Locks::mutator_lock_);
//
// Offsets of various members of native Thread class, used by compiled code.
//
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ThinLockIdOffset() {
return ThreadOffset<pointer_size>(
OFFSETOF_MEMBER(Thread, tls32_) +
OFFSETOF_MEMBER(tls_32bit_sized_values, thin_lock_thread_id));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ThreadFlagsOffset() {
return ThreadOffset<pointer_size>(
OFFSETOF_MEMBER(Thread, tls32_) +
OFFSETOF_MEMBER(tls_32bit_sized_values, state_and_flags));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> IsGcMarkingOffset() {
return ThreadOffset<pointer_size>(
OFFSETOF_MEMBER(Thread, tls32_) +
OFFSETOF_MEMBER(tls_32bit_sized_values, is_gc_marking));
}
static constexpr size_t IsGcMarkingSize() {
return sizeof(tls32_.is_gc_marking);
}
// Deoptimize the Java stack.
void DeoptimizeWithDeoptimizationException(JValue* result) REQUIRES_SHARED(Locks::mutator_lock_);
private:
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ThreadOffsetFromTlsPtr(size_t tls_ptr_offset) {
size_t base = OFFSETOF_MEMBER(Thread, tlsPtr_);
size_t scale;
size_t shrink;
if (pointer_size == kRuntimePointerSize) {
scale = 1;
shrink = 1;
} else if (pointer_size > kRuntimePointerSize) {
scale = static_cast<size_t>(pointer_size) / static_cast<size_t>(kRuntimePointerSize);
shrink = 1;
} else {
DCHECK_GT(kRuntimePointerSize, pointer_size);
scale = 1;
shrink = static_cast<size_t>(kRuntimePointerSize) / static_cast<size_t>(pointer_size);
}
return ThreadOffset<pointer_size>(base + ((tls_ptr_offset * scale) / shrink));
}
public:
static uint32_t QuickEntryPointOffsetWithSize(size_t quick_entrypoint_offset,
PointerSize pointer_size) {
if (pointer_size == PointerSize::k32) {
return QuickEntryPointOffset<PointerSize::k32>(quick_entrypoint_offset).
Uint32Value();
} else {
return QuickEntryPointOffset<PointerSize::k64>(quick_entrypoint_offset).
Uint32Value();
}
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> QuickEntryPointOffset(size_t quick_entrypoint_offset) {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, quick_entrypoints) + quick_entrypoint_offset);
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> JniEntryPointOffset(size_t jni_entrypoint_offset) {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, jni_entrypoints) + jni_entrypoint_offset);
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> SelfOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, self));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> MterpCurrentIBaseOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_current_ibase));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> MterpDefaultIBaseOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_default_ibase));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> MterpAltIBaseOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_alt_ibase));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ExceptionOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, exception));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> PeerOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, opeer));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> CardTableOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, card_table));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ThreadSuspendTriggerOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, suspend_trigger));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ThreadLocalPosOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
thread_local_pos));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ThreadLocalEndOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
thread_local_end));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ThreadLocalObjectsOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
thread_local_objects));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> RosAllocRunsOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
rosalloc_runs));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ThreadLocalAllocStackTopOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
thread_local_alloc_stack_top));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> ThreadLocalAllocStackEndOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
thread_local_alloc_stack_end));
}
// Size of stack less any space reserved for stack overflow
size_t GetStackSize() const {
return tlsPtr_.stack_size - (tlsPtr_.stack_end - tlsPtr_.stack_begin);
}
uint8_t* GetStackEndForInterpreter(bool implicit_overflow_check) const {
if (implicit_overflow_check) {
// The interpreter needs the extra overflow bytes that stack_end does
// not include.
return tlsPtr_.stack_end + GetStackOverflowReservedBytes(kRuntimeISA);
} else {
return tlsPtr_.stack_end;
}
}
uint8_t* GetStackEnd() const {
return tlsPtr_.stack_end;
}
// Set the stack end to that to be used during a stack overflow
void SetStackEndForStackOverflow() REQUIRES_SHARED(Locks::mutator_lock_);
// Set the stack end to that to be used during regular execution
void ResetDefaultStackEnd() {
// Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
// to throw a StackOverflowError.
tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA);
}
// Install the protected region for implicit stack checks.
void InstallImplicitProtection();
bool IsHandlingStackOverflow() const {
return tlsPtr_.stack_end == tlsPtr_.stack_begin;
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> StackEndOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, stack_end));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> JniEnvOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, jni_env));
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> TopOfManagedStackOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) +
ManagedStack::TopQuickFrameOffset());
}
const ManagedStack* GetManagedStack() const {
return &tlsPtr_.managed_stack;
}
// Linked list recording fragments of managed stack.
void PushManagedStackFragment(ManagedStack* fragment) {
tlsPtr_.managed_stack.PushManagedStackFragment(fragment);
}
void PopManagedStackFragment(const ManagedStack& fragment) {
tlsPtr_.managed_stack.PopManagedStackFragment(fragment);
}
ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) {
return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
}
ShadowFrame* PopShadowFrame() {
return tlsPtr_.managed_stack.PopShadowFrame();
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> TopShadowFrameOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(
OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) +
ManagedStack::TopShadowFrameOffset());
}
// Number of references allocated in JNI ShadowFrames on this thread.
size_t NumJniShadowFrameReferences() const REQUIRES_SHARED(Locks::mutator_lock_) {
return tlsPtr_.managed_stack.NumJniShadowFrameReferences();
}
// Number of references in handle scope on this thread.
size_t NumHandleReferences();
// Number of references allocated in handle scopes & JNI shadow frames on this thread.
size_t NumStackReferences() REQUIRES_SHARED(Locks::mutator_lock_) {
return NumHandleReferences() + NumJniShadowFrameReferences();
}
// Is the given obj in this thread's stack indirect reference table?
bool HandleScopeContains(jobject obj) const;
void HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id)
REQUIRES_SHARED(Locks::mutator_lock_);
BaseHandleScope* GetTopHandleScope() {
return tlsPtr_.top_handle_scope;
}
void PushHandleScope(BaseHandleScope* handle_scope) {
DCHECK_EQ(handle_scope->GetLink(), tlsPtr_.top_handle_scope);
tlsPtr_.top_handle_scope = handle_scope;
}
BaseHandleScope* PopHandleScope() {
BaseHandleScope* handle_scope = tlsPtr_.top_handle_scope;
DCHECK(handle_scope != nullptr);
tlsPtr_.top_handle_scope = tlsPtr_.top_handle_scope->GetLink();
return handle_scope;
}
template<PointerSize pointer_size>
static ThreadOffset<pointer_size> TopHandleScopeOffset() {
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
top_handle_scope));
}
DebugInvokeReq* GetInvokeReq() const {
return tlsPtr_.debug_invoke_req;
}
SingleStepControl* GetSingleStepControl() const {
return tlsPtr_.single_step_control;
}
// Indicates whether this thread is ready to invoke a method for debugging. This
// is only true if the thread has been suspended by a debug event.
bool IsReadyForDebugInvoke() const {
return tls32_.ready_for_debug_invoke;
}
void SetReadyForDebugInvoke(bool ready) {
tls32_.ready_for_debug_invoke = ready;
}
bool IsDebugMethodEntry() const {
return tls32_.debug_method_entry_;
}
void SetDebugMethodEntry() {
tls32_.debug_method_entry_ = true;
}
void ClearDebugMethodEntry() {
tls32_.debug_method_entry_ = false;
}
bool GetIsGcMarking() const {
CHECK(kUseReadBarrier);
return tls32_.is_gc_marking;
}
void SetIsGcMarking(bool is_marking) {
CHECK(kUseReadBarrier);
tls32_.is_gc_marking = is_marking;
}
bool GetWeakRefAccessEnabled() const {
CHECK(kUseReadBarrier);
return tls32_.weak_ref_access_enabled;
}
void SetWeakRefAccessEnabled(bool enabled) {
CHECK(kUseReadBarrier);
tls32_.weak_ref_access_enabled = enabled;
}
uint32_t GetDisableThreadFlipCount() const {
CHECK(kUseReadBarrier);
return tls32_.disable_thread_flip_count;
}
void IncrementDisableThreadFlipCount() {
CHECK(kUseReadBarrier);
++tls32_.disable_thread_flip_count;
}
void DecrementDisableThreadFlipCount() {
CHECK(kUseReadBarrier);
DCHECK_GT(tls32_.disable_thread_flip_count, 0U);
--tls32_.disable_thread_flip_count;
}
// Activates single step control for debugging. The thread takes the
// ownership of the given SingleStepControl*. It is deleted by a call
// to DeactivateSingleStepControl or upon thread destruction.
void ActivateSingleStepControl(SingleStepControl* ssc);
// Deactivates single step control for debugging.
void DeactivateSingleStepControl();
// Sets debug invoke request for debugging. When the thread is resumed,
// it executes the method described by this request then sends the reply
// before suspending itself. The thread takes the ownership of the given
// DebugInvokeReq*. It is deleted by a call to ClearDebugInvokeReq.
void SetDebugInvokeReq(DebugInvokeReq* req);
// Clears debug invoke request for debugging. When the thread completes
// method invocation, it deletes its debug invoke request and suspends
// itself.
void ClearDebugInvokeReq();
// Returns the fake exception used to activate deoptimization.
static mirror::Throwable* GetDeoptimizationException() {
// Note that the mirror::Throwable must be aligned to kObjectAlignment or else it cannot be
// represented by ObjPtr.
return reinterpret_cast<mirror::Throwable*>(0x100);
}
// Currently deoptimization invokes verifier which can trigger class loading
// and execute Java code, so there might be nested deoptimizations happening.
// We need to save the ongoing deoptimization shadow frames and return
// values on stacks.
// 'from_code' denotes whether the deoptimization was explicitly made from
// compiled code.
void PushDeoptimizationContext(const JValue& return_value,
bool is_reference,
bool from_code,
mirror::Throwable* exception)
REQUIRES_SHARED(Locks::mutator_lock_);
void PopDeoptimizationContext(JValue* result, mirror::Throwable** exception, bool* from_code)
REQUIRES_SHARED(Locks::mutator_lock_);
void AssertHasDeoptimizationContext()
REQUIRES_SHARED(Locks::mutator_lock_);
void PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type);
ShadowFrame* PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present = true);
// For debugger, find the shadow frame that corresponds to a frame id.
// Or return null if there is none.
ShadowFrame* FindDebuggerShadowFrame(size_t frame_id)
REQUIRES_SHARED(Locks::mutator_lock_);
// For debugger, find the bool array that keeps track of the updated vreg set
// for a frame id.
bool* GetUpdatedVRegFlags(size_t frame_id) REQUIRES_SHARED(Locks::mutator_lock_);
// For debugger, find the shadow frame that corresponds to a frame id. If
// one doesn't exist yet, create one and track it in frame_id_to_shadow_frame.
ShadowFrame* FindOrCreateDebuggerShadowFrame(size_t frame_id,
uint32_t num_vregs,
ArtMethod* method,
uint32_t dex_pc)
REQUIRES_SHARED(Locks::mutator_lock_);
// Delete the entry that maps from frame_id to shadow_frame.
void RemoveDebuggerShadowFrameMapping(size_t frame_id)
REQUIRES_SHARED(Locks::mutator_lock_);
std::deque<instrumentation::InstrumentationStackFrame>* GetInstrumentationStack() {
return tlsPtr_.instrumentation_stack;
}
std::vector<ArtMethod*>* GetStackTraceSample() const {
return tlsPtr_.stack_trace_sample;
}
void SetStackTraceSample(std::vector<ArtMethod*>* sample) {
tlsPtr_.stack_trace_sample = sample;
}
uint64_t GetTraceClockBase() const {
return tls64_.trace_clock_base;
}
void SetTraceClockBase(uint64_t clock_base) {
tls64_.trace_clock_base = clock_base;
}
BaseMutex* GetHeldMutex(LockLevel level) const {
return tlsPtr_.held_mutexes[level];
}
void SetHeldMutex(LockLevel level, BaseMutex* mutex) {
tlsPtr_.held_mutexes[level] = mutex;
}
void RunCheckpointFunction();
bool PassActiveSuspendBarriers(Thread* self)
REQUIRES(!Locks::thread_suspend_count_lock_);
void ClearSuspendBarrier(AtomicInteger* target)
REQUIRES(Locks::thread_suspend_count_lock_);
bool ReadFlag(ThreadFlag flag) const {
return (tls32_.state_and_flags.as_struct.flags & flag) != 0;
}
bool TestAllFlags() const {
return (tls32_.state_and_flags.as_struct.flags != 0);
}
void AtomicSetFlag(ThreadFlag flag) {
tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flag);
}
void AtomicClearFlag(ThreadFlag flag) {
tls32_.state_and_flags.as_atomic_int.FetchAndAndSequentiallyConsistent(-1 ^ flag);
}
void ResetQuickAllocEntryPointsForThread();
// Returns the remaining space in the TLAB.
size_t TlabSize() const;
// Doesn't check that there is room.
mirror::Object* AllocTlab(size_t bytes);
void SetTlab(uint8_t* start, uint8_t* end);
bool HasTlab() const;
uint8_t* GetTlabStart() {
return tlsPtr_.thread_local_start;
}
uint8_t* GetTlabPos() {
return tlsPtr_.thread_local_pos;
}
// Remove the suspend trigger for this thread by making the suspend_trigger_ TLS value
// equal to a valid pointer.
// TODO: does this need to atomic? I don't think so.
void RemoveSuspendTrigger() {
tlsPtr_.suspend_trigger = reinterpret_cast<uintptr_t*>(&tlsPtr_.suspend_trigger);
}
// Trigger a suspend check by making the suspend_trigger_ TLS value an invalid pointer.
// The next time a suspend check is done, it will load from the value at this address
// and trigger a SIGSEGV.
void TriggerSuspend() {
tlsPtr_.suspend_trigger = nullptr;
}
// Push an object onto the allocation stack.
bool PushOnThreadLocalAllocationStack(mirror::Object* obj)
REQUIRES_SHARED(Locks::mutator_lock_);
// Set the thread local allocation pointers to the given pointers.
void SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
StackReference<mirror::Object>* end);
// Resets the thread local allocation pointers.
void RevokeThreadLocalAllocationStack();
size_t GetThreadLocalBytesAllocated() const {
return tlsPtr_.thread_local_end - tlsPtr_.thread_local_start;
}
size_t GetThreadLocalObjectsAllocated() const {
return tlsPtr_.thread_local_objects;
}
void* GetRosAllocRun(size_t index) const {
return tlsPtr_.rosalloc_runs[index];
}
void SetRosAllocRun(size_t index, void* run) {
tlsPtr_.rosalloc_runs[index] = run;
}
bool ProtectStack(bool fatal_on_error = true);
bool UnprotectStack();
void SetMterpDefaultIBase(void* ibase) {
tlsPtr_.mterp_default_ibase = ibase;
}
void SetMterpCurrentIBase(void* ibase) {
tlsPtr_.mterp_current_ibase = ibase;
}
void SetMterpAltIBase(void* ibase) {
tlsPtr_.mterp_alt_ibase = ibase;
}
const void* GetMterpDefaultIBase() const {
return tlsPtr_.mterp_default_ibase;
}
const void* GetMterpCurrentIBase() const {
return tlsPtr_.mterp_current_ibase;
}
const void* GetMterpAltIBase() const {
return tlsPtr_.mterp_alt_ibase;
}
// Notify that a signal is being handled. This is to protect us from doing recursive
// NPE handling after a SIGSEGV.
void NoteSignalBeingHandled() {
if (tls32_.handling_signal_) {
LOG(FATAL) << "Detected signal while processing a signal";
}
tls32_.handling_signal_ = true;
}
void NoteSignalHandlerDone() {
tls32_.handling_signal_ = false;
}
jmp_buf* GetNestedSignalState() {
return tlsPtr_.nested_signal_state;
}
bool IsTransitioningToRunnable() const {
return tls32_.is_transitioning_to_runnable;
}
void SetIsTransitioningToRunnable(bool value) {
tls32_.is_transitioning_to_runnable = value;
}
void PushVerifier(verifier::MethodVerifier* verifier);
void PopVerifier(verifier::MethodVerifier* verifier);
void InitStringEntryPoints();
void ModifyDebugDisallowReadBarrier(int8_t delta) {
debug_disallow_read_barrier_ += delta;
}
uint8_t GetDebugDisallowReadBarrierCount() const {
return debug_disallow_read_barrier_;
}
// Returns true if the current thread is the jit sensitive thread.
bool IsJitSensitiveThread() const {
return this == jit_sensitive_thread_;
}
// Returns true if StrictMode events are traced for the current thread.
static bool IsSensitiveThread() {
if (is_sensitive_thread_hook_ != nullptr) {
return (*is_sensitive_thread_hook_)();
}
return false;
}
private:
explicit Thread(bool daemon);
~Thread() REQUIRES(!Locks::mutator_lock_, !Locks::thread_suspend_count_lock_);
void Destroy();
void CreatePeer(const char* name, bool as_daemon, jobject thread_group);
template<bool kTransactionActive>
void InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
jobject thread_name, jint thread_priority)
REQUIRES_SHARED(Locks::mutator_lock_);
// Avoid use, callers should use SetState. Used only by SignalCatcher::HandleSigQuit, ~Thread and
// Dbg::ManageDeoptimization.
ThreadState SetStateUnsafe(ThreadState new_state) {
ThreadState old_state = GetState();
if (old_state == kRunnable && new_state != kRunnable) {
// Need to run pending checkpoint and suspend barriers. Run checkpoints in runnable state in
// case they need to use a ScopedObjectAccess. If we are holding the mutator lock and a SOA
// attempts to TransitionFromSuspendedToRunnable, it results in a deadlock.
TransitionToSuspendedAndRunCheckpoints(new_state);
// Since we transitioned to a suspended state, check the pass barrier requests.
PassActiveSuspendBarriers();
} else {
tls32_.state_and_flags.as_struct.state = new_state;
}
return old_state;
}
void VerifyStackImpl() REQUIRES_SHARED(Locks::mutator_lock_);
void DumpState(std::ostream& os) const REQUIRES_SHARED(Locks::mutator_lock_);
void DumpStack(std::ostream& os,
bool dump_native_stack = true,
BacktraceMap* backtrace_map = nullptr) const
REQUIRES(!Locks::thread_suspend_count_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
// Out-of-line conveniences for debugging in gdb.
static Thread* CurrentFromGdb(); // Like Thread::Current.
// Like Thread::Dump(std::cerr).
void DumpFromGdb() const REQUIRES_SHARED(Locks::mutator_lock_);
static void* CreateCallback(void* arg);
void HandleUncaughtExceptions(ScopedObjectAccess& soa)
REQUIRES_SHARED(Locks::mutator_lock_);
void RemoveFromThreadGroup(ScopedObjectAccess& soa) REQUIRES_SHARED(Locks::mutator_lock_);
// Initialize a thread.
//
// The third parameter is not mandatory. If given, the thread will use this JNIEnvExt. In case
// Init succeeds, this means the thread takes ownership of it. If Init fails, it is the caller's
// responsibility to destroy the given JNIEnvExt. If the parameter is null, Init will try to
// create a JNIEnvExt on its own (and potentially fail at that stage, indicated by a return value
// of false).
bool Init(ThreadList*, JavaVMExt*, JNIEnvExt* jni_env_ext = nullptr)
REQUIRES(Locks::runtime_shutdown_lock_);
void InitCardTable();
void InitCpu();
void CleanupCpu();
void InitTlsEntryPoints();
void InitTid();
void InitPthreadKeySelf();
bool InitStackHwm();
void SetUpAlternateSignalStack();
void TearDownAlternateSignalStack();
ALWAYS_INLINE void TransitionToSuspendedAndRunCheckpoints(ThreadState new_state)
REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_);
ALWAYS_INLINE void PassActiveSuspendBarriers()
REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_);
// Registers the current thread as the jit sensitive thread. Should be called just once.
static void SetJitSensitiveThread() {
if (jit_sensitive_thread_ == nullptr) {
jit_sensitive_thread_ = Thread::Current();
} else {
LOG(WARNING) << "Attempt to set the sensitive thread twice. Tid:"
<< Thread::Current()->GetTid();
}
}
static void SetSensitiveThreadHook(bool (*is_sensitive_thread_hook)()) {
is_sensitive_thread_hook_ = is_sensitive_thread_hook;
}
bool ModifySuspendCountInternal(Thread* self,
int delta,
AtomicInteger* suspend_barrier,
bool for_debugger)
REQUIRES(Locks::thread_suspend_count_lock_);
// 32 bits of atomically changed state and flags. Keeping as 32 bits allows and atomic CAS to
// change from being Suspended to Runnable without a suspend request occurring.
union PACKED(4) StateAndFlags {
StateAndFlags() {}
struct PACKED(4) {
// Bitfield of flag values. Must be changed atomically so that flag values aren't lost. See
// ThreadFlags for bit field meanings.
volatile uint16_t flags;
// Holds the ThreadState. May be changed non-atomically between Suspended (ie not Runnable)
// transitions. Changing to Runnable requires that the suspend_request be part of the atomic
// operation. If a thread is suspended and a suspend_request is present, a thread may not
// change to Runnable as a GC or other operation is in progress.
volatile uint16_t state;
} as_struct;
AtomicInteger as_atomic_int;
volatile int32_t as_int;
private:
// gcc does not handle struct with volatile member assignments correctly.
// See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47409
DISALLOW_COPY_AND_ASSIGN(StateAndFlags);
};
static_assert(sizeof(StateAndFlags) == sizeof(int32_t), "Weird state_and_flags size");
static void ThreadExitCallback(void* arg);
// Maximum number of suspend barriers.
static constexpr uint32_t kMaxSuspendBarriers = 3;
// Has Thread::Startup been called?
static bool is_started_;
// TLS key used to retrieve the Thread*.
static pthread_key_t pthread_key_self_;
// Used to notify threads that they should attempt to resume, they will suspend again if
// their suspend count is > 0.
static ConditionVariable* resume_cond_ GUARDED_BY(Locks::thread_suspend_count_lock_);
// Hook passed by framework which returns true
// when StrictMode events are traced for the current thread.
static bool (*is_sensitive_thread_hook_)();
// Stores the jit sensitive thread (which for now is the UI thread).
static Thread* jit_sensitive_thread_;
/***********************************************************************************************/
// Thread local storage. Fields are grouped by size to enable 32 <-> 64 searching to account for
// pointer size differences. To encourage shorter encoding, more frequently used values appear
// first if possible.
/***********************************************************************************************/
struct PACKED(4) tls_32bit_sized_values {
// We have no control over the size of 'bool', but want our boolean fields
// to be 4-byte quantities.
typedef uint32_t bool32_t;
explicit tls_32bit_sized_values(bool is_daemon) :
suspend_count(0), debug_suspend_count(0), thin_lock_thread_id(0), tid(0),
daemon(is_daemon), throwing_OutOfMemoryError(false), no_thread_suspension(0),
thread_exit_check_count(0), handling_signal_(false),
is_transitioning_to_runnable(false), ready_for_debug_invoke(false),
debug_method_entry_(false), is_gc_marking(false), weak_ref_access_enabled(true),
disable_thread_flip_count(0) {
}
union StateAndFlags state_and_flags;
static_assert(sizeof(union StateAndFlags) == sizeof(int32_t),
"Size of state_and_flags and int32 are different");
// A non-zero value is used to tell the current thread to enter a safe point
// at the next poll.
int suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_);
// How much of 'suspend_count_' is by request of the debugger, used to set things right
// when the debugger detaches. Must be <= suspend_count_.
int debug_suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_);
// Thin lock thread id. This is a small integer used by the thin lock implementation.
// This is not to be confused with the native thread's tid, nor is it the value returned
// by java.lang.Thread.getId --- this is a distinct value, used only for locking. One
// important difference between this id and the ids visible to managed code is that these
// ones get reused (to ensure that they fit in the number of bits available).
uint32_t thin_lock_thread_id;
// System thread id.
uint32_t tid;
// Is the thread a daemon?
const bool32_t daemon;
// A boolean telling us whether we're recursively throwing OOME.
bool32_t throwing_OutOfMemoryError;
// A positive value implies we're in a region where thread suspension isn't expected.
uint32_t no_thread_suspension;
// How many times has our pthread key's destructor been called?
uint32_t thread_exit_check_count;
// True if signal is being handled by this thread.
bool32_t handling_signal_;
// True if the thread is in TransitionFromSuspendedToRunnable(). This is used to distinguish the
// non-runnable threads (eg. kNative, kWaiting) that are about to transition to runnable from
// the rest of them.
bool32_t is_transitioning_to_runnable;
// True if the thread has been suspended by a debugger event. This is
// used to invoke method from the debugger which is only allowed when
// the thread is suspended by an event.
bool32_t ready_for_debug_invoke;
// True if the thread enters a method. This is used to detect method entry
// event for the debugger.
bool32_t debug_method_entry_;
// True if the GC is in the marking phase. This is used for the CC collector only. This is
// thread local so that we can simplify the logic to check for the fast path of read barriers of
// GC roots.
bool32_t is_gc_marking;
// True if the thread is allowed to access a weak ref (Reference::GetReferent() and system
// weaks) and to potentially mark an object alive/gray. This is used for concurrent reference
// processing of the CC collector only. This is thread local so that we can enable/disable weak
// ref access by using a checkpoint and avoid a race around the time weak ref access gets
// disabled and concurrent reference processing begins (if weak ref access is disabled during a
// pause, this is not an issue.) Other collectors use Runtime::DisallowNewSystemWeaks() and
// ReferenceProcessor::EnableSlowPath().
bool32_t weak_ref_access_enabled;
// A thread local version of Heap::disable_thread_flip_count_. This keeps track of how many
// levels of (nested) JNI critical sections the thread is in and is used to detect a nested JNI
// critical section enter.
uint32_t disable_thread_flip_count;
} tls32_;
struct PACKED(8) tls_64bit_sized_values {
tls_64bit_sized_values() : trace_clock_base(0) {
}
// The clock base used for tracing.
uint64_t trace_clock_base;
RuntimeStats stats;
} tls64_;
struct PACKED(sizeof(void*)) tls_ptr_sized_values {
tls_ptr_sized_values() : card_table(nullptr), exception(nullptr), stack_end(nullptr),
managed_stack(), suspend_trigger(nullptr), jni_env(nullptr), tmp_jni_env(nullptr),
self(nullptr), opeer(nullptr), jpeer(nullptr), stack_begin(nullptr), stack_size(0),
stack_trace_sample(nullptr), wait_next(nullptr), monitor_enter_object(nullptr),
top_handle_scope(nullptr), class_loader_override(nullptr), long_jump_context(nullptr),
instrumentation_stack(nullptr), debug_invoke_req(nullptr), single_step_control(nullptr),
stacked_shadow_frame_record(nullptr), deoptimization_context_stack(nullptr),
frame_id_to_shadow_frame(nullptr), name(nullptr), pthread_self(0),
last_no_thread_suspension_cause(nullptr), checkpoint_function(nullptr),
thread_local_start(nullptr), thread_local_pos(nullptr), thread_local_end(nullptr),
thread_local_objects(0), mterp_current_ibase(nullptr), mterp_default_ibase(nullptr),
mterp_alt_ibase(nullptr), thread_local_alloc_stack_top(nullptr),
thread_local_alloc_stack_end(nullptr), nested_signal_state(nullptr),
flip_function(nullptr), method_verifier(nullptr), thread_local_mark_stack(nullptr) {
std::fill(held_mutexes, held_mutexes + kLockLevelCount, nullptr);
}
// The biased card table, see CardTable for details.
uint8_t* card_table;
// The pending exception or null.
mirror::Throwable* exception;
// The end of this thread's stack. This is the lowest safely-addressable address on the stack.
// We leave extra space so there's room for the code that throws StackOverflowError.
uint8_t* stack_end;
// The top of the managed stack often manipulated directly by compiler generated code.
ManagedStack managed_stack;
// In certain modes, setting this to 0 will trigger a SEGV and thus a suspend check. It is
// normally set to the address of itself.
uintptr_t* suspend_trigger;
// Every thread may have an associated JNI environment
JNIEnvExt* jni_env;
// Temporary storage to transfer a pre-allocated JNIEnvExt from the creating thread to the
// created thread.
JNIEnvExt* tmp_jni_env;
// Initialized to "this". On certain architectures (such as x86) reading off of Thread::Current
// is easy but getting the address of Thread::Current is hard. This field can be read off of
// Thread::Current to give the address.
Thread* self;
// Our managed peer (an instance of java.lang.Thread). The jobject version is used during thread
// start up, until the thread is registered and the local opeer_ is used.
mirror::Object* opeer;
jobject jpeer;
// The "lowest addressable byte" of the stack.
uint8_t* stack_begin;
// Size of the stack.
size_t stack_size;
// Pointer to previous stack trace captured by sampling profiler.
std::vector<ArtMethod*>* stack_trace_sample;
// The next thread in the wait set this thread is part of or null if not waiting.
Thread* wait_next;
// If we're blocked in MonitorEnter, this is the object we're trying to lock.
mirror::Object* monitor_enter_object;
// Top of linked list of handle scopes or null for none.
BaseHandleScope* top_handle_scope;
// Needed to get the right ClassLoader in JNI_OnLoad, but also
// useful for testing.
jobject class_loader_override;
// Thread local, lazily allocated, long jump context. Used to deliver exceptions.
Context* long_jump_context;
// Additional stack used by method instrumentation to store method and return pc values.
// Stored as a pointer since std::deque is not PACKED.
std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack;
// JDWP invoke-during-breakpoint support.
DebugInvokeReq* debug_invoke_req;
// JDWP single-stepping support.
SingleStepControl* single_step_control;
// For gc purpose, a shadow frame record stack that keeps track of:
// 1) shadow frames under construction.
// 2) deoptimization shadow frames.
StackedShadowFrameRecord* stacked_shadow_frame_record;
// Deoptimization return value record stack.
DeoptimizationContextRecord* deoptimization_context_stack;
// For debugger, a linked list that keeps the mapping from frame_id to shadow frame.
// Shadow frames may be created before deoptimization happens so that the debugger can
// set local values there first.
FrameIdToShadowFrame* frame_id_to_shadow_frame;
// A cached copy of the java.lang.Thread's name.
std::string* name;
// A cached pthread_t for the pthread underlying this Thread*.
pthread_t pthread_self;
// If no_thread_suspension_ is > 0, what is causing that assertion.
const char* last_no_thread_suspension_cause;
// Pending checkpoint function or null if non-pending. If this checkpoint is set and someone\
// requests another checkpoint, it goes to the checkpoint overflow list.
Closure* checkpoint_function GUARDED_BY(Locks::thread_suspend_count_lock_);
// Pending barriers that require passing or NULL if non-pending. Installation guarding by
// Locks::thread_suspend_count_lock_.
// They work effectively as art::Barrier, but implemented directly using AtomicInteger and futex
// to avoid additional cost of a mutex and a condition variable, as used in art::Barrier.
AtomicInteger* active_suspend_barriers[kMaxSuspendBarriers];
// Entrypoint function pointers.
// TODO: move this to more of a global offset table model to avoid per-thread duplication.
JniEntryPoints jni_entrypoints;
QuickEntryPoints quick_entrypoints;
// Thread-local allocation pointer.
uint8_t* thread_local_start;
// thread_local_pos and thread_local_end must be consecutive for ldrd and are 8 byte aligned for
// potentially better performance.
uint8_t* thread_local_pos;
uint8_t* thread_local_end;
size_t thread_local_objects;
// Mterp jump table bases.
void* mterp_current_ibase;
void* mterp_default_ibase;
void* mterp_alt_ibase;
// There are RosAlloc::kNumThreadLocalSizeBrackets thread-local size brackets per thread.
void* rosalloc_runs[kNumRosAllocThreadLocalSizeBracketsInThread];
// Thread-local allocation stack data/routines.
StackReference<mirror::Object>* thread_local_alloc_stack_top;
StackReference<mirror::Object>* thread_local_alloc_stack_end;
// Support for Mutex lock hierarchy bug detection.
BaseMutex* held_mutexes[kLockLevelCount];
// Recorded thread state for nested signals.
jmp_buf* nested_signal_state;
// The function used for thread flip.
Closure* flip_function;
// Current method verifier, used for root marking.
verifier::MethodVerifier* method_verifier;
// Thread-local mark stack for the concurrent copying collector.
gc::accounting::AtomicStack<mirror::Object>* thread_local_mark_stack;
} tlsPtr_;
// Guards the 'interrupted_' and 'wait_monitor_' members.
Mutex* wait_mutex_ DEFAULT_MUTEX_ACQUIRED_AFTER;
// Condition variable waited upon during a wait.
ConditionVariable* wait_cond_ GUARDED_BY(wait_mutex_);
// Pointer to the monitor lock we're currently waiting on or null if not waiting.
Monitor* wait_monitor_ GUARDED_BY(wait_mutex_);
// Thread "interrupted" status; stays raised until queried or thrown.
bool interrupted_ GUARDED_BY(wait_mutex_);
// Debug disable read barrier count, only is checked for debug builds and only in the runtime.
uint8_t debug_disallow_read_barrier_ = 0;
// Note that it is not in the packed struct, may not be accessed for cross compilation.
uintptr_t poison_object_cookie_ = 0;
// Pending extra checkpoints if checkpoint_function_ is already used.
std::list<Closure*> checkpoint_overflow_ GUARDED_BY(Locks::thread_suspend_count_lock_);
friend class Dbg; // For SetStateUnsafe.
friend class gc::collector::SemiSpace; // For getting stack traces.
friend class Runtime; // For CreatePeer.
friend class QuickExceptionHandler; // For dumping the stack.
friend class ScopedThreadStateChange;
friend class StubTest; // For accessing entrypoints.
friend class ThreadList; // For ~Thread and Destroy.
friend class EntrypointsOrderTest; // To test the order of tls entries.
DISALLOW_COPY_AND_ASSIGN(Thread);
};
class SCOPED_CAPABILITY ScopedAssertNoThreadSuspension {
public:
ALWAYS_INLINE ScopedAssertNoThreadSuspension(const char* cause) ACQUIRE(Roles::uninterruptible_) {
if (kIsDebugBuild) {
self_ = Thread::Current();
old_cause_ = self_->StartAssertNoThreadSuspension(cause);
} else {
Roles::uninterruptible_.Acquire(); // No-op.
}
}
ALWAYS_INLINE ~ScopedAssertNoThreadSuspension() RELEASE(Roles::uninterruptible_) {
if (kIsDebugBuild) {
self_->EndAssertNoThreadSuspension(old_cause_);
} else {
Roles::uninterruptible_.Release(); // No-op.
}
}
private:
Thread* self_;
const char* old_cause_;
};
class ScopedStackedShadowFramePusher {
public:
ScopedStackedShadowFramePusher(Thread* self, ShadowFrame* sf, StackedShadowFrameType type)
: self_(self), type_(type) {
self_->PushStackedShadowFrame(sf, type);
}
~ScopedStackedShadowFramePusher() {
self_->PopStackedShadowFrame(type_);
}
private:
Thread* const self_;
const StackedShadowFrameType type_;
DISALLOW_COPY_AND_ASSIGN(ScopedStackedShadowFramePusher);
};
// Only works for debug builds.
class ScopedDebugDisallowReadBarriers {
public:
explicit ScopedDebugDisallowReadBarriers(Thread* self) : self_(self) {
self_->ModifyDebugDisallowReadBarrier(1);
}
~ScopedDebugDisallowReadBarriers() {
self_->ModifyDebugDisallowReadBarrier(-1);
}
private:
Thread* const self_;
};
class ScopedTransitioningToRunnable : public ValueObject {
public:
explicit ScopedTransitioningToRunnable(Thread* self)
: self_(self) {
DCHECK_EQ(self, Thread::Current());
if (kUseReadBarrier) {
self_->SetIsTransitioningToRunnable(true);
}
}
~ScopedTransitioningToRunnable() {
if (kUseReadBarrier) {
self_->SetIsTransitioningToRunnable(false);
}
}
private:
Thread* const self_;
};
std::ostream& operator<<(std::ostream& os, const Thread& thread);
std::ostream& operator<<(std::ostream& os, const StackedShadowFrameType& thread);
} // namespace art
#endif // ART_RUNTIME_THREAD_H_