| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include "arch/arm/instruction_set_features_arm.h" |
| #include "dex/compiler_ir.h" |
| #include "dex/compiler_internals.h" |
| #include "dex/quick/arm/arm_lir.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "mirror/array.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_reference.h" |
| #include "verifier/method_verifier.h" |
| #include <functional> |
| |
| namespace art { |
| |
| // Shortcuts to repeatedly used long types. |
| typedef mirror::ObjectArray<mirror::Object> ObjArray; |
| typedef mirror::ObjectArray<mirror::Class> ClassArray; |
| |
| /* |
| * This source files contains "gen" codegen routines that should |
| * be applicable to most targets. Only mid-level support utilities |
| * and "op" calls may be used here. |
| */ |
| |
| /* |
| * Generate a kPseudoBarrier marker to indicate the boundary of special |
| * blocks. |
| */ |
| void Mir2Lir::GenBarrier() { |
| LIR* barrier = NewLIR0(kPseudoBarrier); |
| /* Mark all resources as being clobbered */ |
| DCHECK(!barrier->flags.use_def_invalid); |
| barrier->u.m.def_mask = &kEncodeAll; |
| } |
| |
| void Mir2Lir::GenDivZeroException() { |
| LIR* branch = OpUnconditionalBranch(nullptr); |
| AddDivZeroCheckSlowPath(branch); |
| } |
| |
| void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) { |
| LIR* branch = OpCondBranch(c_code, nullptr); |
| AddDivZeroCheckSlowPath(branch); |
| } |
| |
| void Mir2Lir::GenDivZeroCheck(RegStorage reg) { |
| LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr); |
| AddDivZeroCheckSlowPath(branch); |
| } |
| |
| void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) { |
| class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath { |
| public: |
| DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch_in) |
| : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch_in) { |
| } |
| |
| void Compile() OVERRIDE { |
| m2l_->ResetRegPool(); |
| m2l_->ResetDefTracking(); |
| GenerateTargetLabel(kPseudoThrowTarget); |
| m2l_->CallRuntimeHelper(kQuickThrowDivZero, true); |
| } |
| }; |
| |
| AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch)); |
| } |
| |
| void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) { |
| class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath { |
| public: |
| ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in, RegStorage index_in, |
| RegStorage length_in) |
| : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch_in), |
| index_(index_in), length_(length_in) { |
| } |
| |
| void Compile() OVERRIDE { |
| m2l_->ResetRegPool(); |
| m2l_->ResetDefTracking(); |
| GenerateTargetLabel(kPseudoThrowTarget); |
| m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, index_, length_, true); |
| } |
| |
| private: |
| const RegStorage index_; |
| const RegStorage length_; |
| }; |
| |
| LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr); |
| AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length)); |
| } |
| |
| void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) { |
| class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath { |
| public: |
| ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch_in, int index_in, RegStorage length_in) |
| : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch_in), |
| index_(index_in), length_(length_in) { |
| } |
| |
| void Compile() OVERRIDE { |
| m2l_->ResetRegPool(); |
| m2l_->ResetDefTracking(); |
| GenerateTargetLabel(kPseudoThrowTarget); |
| |
| RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide); |
| RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide); |
| |
| m2l_->OpRegCopy(arg1_32, length_); |
| m2l_->LoadConstant(arg0_32, index_); |
| m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, arg0_32, arg1_32, true); |
| } |
| |
| private: |
| const int32_t index_; |
| const RegStorage length_; |
| }; |
| |
| LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr); |
| AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length)); |
| } |
| |
| LIR* Mir2Lir::GenNullCheck(RegStorage reg) { |
| class NullCheckSlowPath : public Mir2Lir::LIRSlowPath { |
| public: |
| NullCheckSlowPath(Mir2Lir* m2l, LIR* branch) |
| : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) { |
| } |
| |
| void Compile() OVERRIDE { |
| m2l_->ResetRegPool(); |
| m2l_->ResetDefTracking(); |
| GenerateTargetLabel(kPseudoThrowTarget); |
| m2l_->CallRuntimeHelper(kQuickThrowNullPointer, true); |
| } |
| }; |
| |
| LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr); |
| AddSlowPath(new (arena_) NullCheckSlowPath(this, branch)); |
| return branch; |
| } |
| |
| /* Perform null-check on a register. */ |
| LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) { |
| if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { |
| return GenExplicitNullCheck(m_reg, opt_flags); |
| } |
| // If null check has not been eliminated, reset redundant store tracking. |
| if ((opt_flags & MIR_IGNORE_NULL_CHECK) == 0) { |
| ResetDefTracking(); |
| } |
| return nullptr; |
| } |
| |
| /* Perform an explicit null-check on a register. */ |
| LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) { |
| if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { |
| return NULL; |
| } |
| return GenNullCheck(m_reg); |
| } |
| |
| void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) { |
| if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { |
| if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { |
| return; |
| } |
| // Insert after last instruction. |
| MarkSafepointPC(last_lir_insn_); |
| } |
| } |
| |
| void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) { |
| if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { |
| if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { |
| return; |
| } |
| MarkSafepointPCAfter(after); |
| } |
| } |
| |
| void Mir2Lir::MarkPossibleStackOverflowException() { |
| if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) { |
| MarkSafepointPC(last_lir_insn_); |
| } |
| } |
| |
| void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) { |
| if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { |
| if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { |
| return; |
| } |
| // Force an implicit null check by performing a memory operation (load) from the given |
| // register with offset 0. This will cause a signal if the register contains 0 (null). |
| RegStorage tmp = AllocTemp(); |
| // TODO: for Mips, would be best to use rZERO as the bogus register target. |
| LIR* load = Load32Disp(reg, 0, tmp); |
| FreeTemp(tmp); |
| MarkSafepointPC(load); |
| } |
| } |
| |
| void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, |
| RegLocation rl_src2, LIR* taken) { |
| ConditionCode cond; |
| RegisterClass reg_class = (rl_src1.ref || rl_src2.ref) ? kRefReg : kCoreReg; |
| switch (opcode) { |
| case Instruction::IF_EQ: |
| cond = kCondEq; |
| break; |
| case Instruction::IF_NE: |
| cond = kCondNe; |
| break; |
| case Instruction::IF_LT: |
| cond = kCondLt; |
| break; |
| case Instruction::IF_GE: |
| cond = kCondGe; |
| break; |
| case Instruction::IF_GT: |
| cond = kCondGt; |
| break; |
| case Instruction::IF_LE: |
| cond = kCondLe; |
| break; |
| default: |
| cond = static_cast<ConditionCode>(0); |
| LOG(FATAL) << "Unexpected opcode " << opcode; |
| } |
| |
| // Normalize such that if either operand is constant, src2 will be constant |
| if (rl_src1.is_const) { |
| RegLocation rl_temp = rl_src1; |
| rl_src1 = rl_src2; |
| rl_src2 = rl_temp; |
| cond = FlipComparisonOrder(cond); |
| } |
| |
| rl_src1 = LoadValue(rl_src1, reg_class); |
| // Is this really an immediate comparison? |
| if (rl_src2.is_const) { |
| // If it's already live in a register or not easily materialized, just keep going |
| RegLocation rl_temp = UpdateLoc(rl_src2); |
| int32_t constant_value = mir_graph_->ConstantValue(rl_src2); |
| if ((rl_temp.location == kLocDalvikFrame) && |
| InexpensiveConstantInt(constant_value, opcode)) { |
| // OK - convert this to a compare immediate and branch |
| OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken); |
| return; |
| } |
| |
| // It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse |
| // for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register |
| // mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses |
| // the 32b literal 0 for null. |
| if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) { |
| // Use the OpCmpImmBranch and ignore the value in the register. |
| OpCmpImmBranch(cond, rl_src1.reg, 0, taken); |
| return; |
| } |
| } |
| |
| rl_src2 = LoadValue(rl_src2, reg_class); |
| OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken); |
| } |
| |
| void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken) { |
| ConditionCode cond; |
| RegisterClass reg_class = rl_src.ref ? kRefReg : kCoreReg; |
| rl_src = LoadValue(rl_src, reg_class); |
| switch (opcode) { |
| case Instruction::IF_EQZ: |
| cond = kCondEq; |
| break; |
| case Instruction::IF_NEZ: |
| cond = kCondNe; |
| break; |
| case Instruction::IF_LTZ: |
| cond = kCondLt; |
| break; |
| case Instruction::IF_GEZ: |
| cond = kCondGe; |
| break; |
| case Instruction::IF_GTZ: |
| cond = kCondGt; |
| break; |
| case Instruction::IF_LEZ: |
| cond = kCondLe; |
| break; |
| default: |
| cond = static_cast<ConditionCode>(0); |
| LOG(FATAL) << "Unexpected opcode " << opcode; |
| } |
| OpCmpImmBranch(cond, rl_src.reg, 0, taken); |
| } |
| |
| void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) { |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (rl_src.location == kLocPhysReg) { |
| OpRegCopy(rl_result.reg, rl_src.reg); |
| } else { |
| LoadValueDirect(rl_src, rl_result.reg.GetLow()); |
| } |
| OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src) { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpKind op = kOpInvalid; |
| switch (opcode) { |
| case Instruction::INT_TO_BYTE: |
| op = kOp2Byte; |
| break; |
| case Instruction::INT_TO_SHORT: |
| op = kOp2Short; |
| break; |
| case Instruction::INT_TO_CHAR: |
| op = kOp2Char; |
| break; |
| default: |
| LOG(ERROR) << "Bad int conversion type"; |
| } |
| OpRegReg(op, rl_result.reg, rl_src.reg); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| /* |
| * Let helper function take care of everything. Will call |
| * Array::AllocFromCode(type_idx, method, count); |
| * Note: AllocFromCode will handle checks for errNegativeArraySize. |
| */ |
| void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest, |
| RegLocation rl_src) { |
| FlushAllRegs(); /* Everything to home location */ |
| const DexFile* dex_file = cu_->dex_file; |
| CompilerDriver* driver = cu_->compiler_driver; |
| if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) { |
| bool is_type_initialized; // Ignored as an array does not have an initializer. |
| bool use_direct_type_ptr; |
| uintptr_t direct_type_ptr; |
| bool is_finalizable; |
| if (kEmbedClassInCode && |
| driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr, |
| &direct_type_ptr, &is_finalizable)) { |
| // The fast path. |
| if (!use_direct_type_ptr) { |
| LoadClassType(*dex_file, type_idx, kArg0); |
| CallRuntimeHelperRegMethodRegLocation(kQuickAllocArrayResolved, TargetReg(kArg0, kNotWide), |
| rl_src, true); |
| } else { |
| // Use the direct pointer. |
| CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayResolved, direct_type_ptr, rl_src, |
| true); |
| } |
| } else { |
| // The slow path. |
| CallRuntimeHelperImmMethodRegLocation(kQuickAllocArray, type_idx, rl_src, true); |
| } |
| } else { |
| CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayWithAccessCheck, type_idx, rl_src, true); |
| } |
| StoreValue(rl_dest, GetReturn(kRefReg)); |
| } |
| |
| /* |
| * Similar to GenNewArray, but with post-allocation initialization. |
| * Verifier guarantees we're dealing with an array class. Current |
| * code throws runtime exception "bad Filled array req" for 'D' and 'J'. |
| * Current code also throws internal unimp if not 'L', '[' or 'I'. |
| */ |
| void Mir2Lir::GenFilledNewArray(CallInfo* info) { |
| int elems = info->num_arg_words; |
| int type_idx = info->index; |
| FlushAllRegs(); /* Everything to home location */ |
| QuickEntrypointEnum target; |
| if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, |
| type_idx)) { |
| target = kQuickCheckAndAllocArray; |
| } else { |
| target = kQuickCheckAndAllocArrayWithAccessCheck; |
| } |
| CallRuntimeHelperImmMethodImm(target, type_idx, elems, true); |
| FreeTemp(TargetReg(kArg2, kNotWide)); |
| FreeTemp(TargetReg(kArg1, kNotWide)); |
| /* |
| * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the |
| * return region. Because AllocFromCode placed the new array |
| * in kRet0, we'll just lock it into place. When debugger support is |
| * added, it may be necessary to additionally copy all return |
| * values to a home location in thread-local storage |
| */ |
| RegStorage ref_reg = TargetReg(kRet0, kRef); |
| LockTemp(ref_reg); |
| |
| // TODO: use the correct component size, currently all supported types |
| // share array alignment with ints (see comment at head of function) |
| size_t component_size = sizeof(int32_t); |
| |
| if (elems > 5) { |
| DCHECK(info->is_range); // Non-range insn can't encode more than 5 elems. |
| /* |
| * Bit of ugliness here. We're going generate a mem copy loop |
| * on the register range, but it is possible that some regs |
| * in the range have been promoted. This is unlikely, but |
| * before generating the copy, we'll just force a flush |
| * of any regs in the source range that have been promoted to |
| * home location. |
| */ |
| for (int i = 0; i < elems; i++) { |
| RegLocation loc = UpdateLoc(info->args[i]); |
| if (loc.location == kLocPhysReg) { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| if (loc.ref) { |
| StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile); |
| } else { |
| Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg); |
| } |
| } |
| } |
| /* |
| * TUNING note: generated code here could be much improved, but |
| * this is an uncommon operation and isn't especially performance |
| * critical. |
| */ |
| // This is addressing the stack, which may be out of the 4G area. |
| RegStorage r_src = AllocTempRef(); |
| RegStorage r_dst = AllocTempRef(); |
| RegStorage r_idx = AllocTempRef(); // Not really a reference, but match src/dst. |
| RegStorage r_val; |
| switch (cu_->instruction_set) { |
| case kThumb2: |
| case kArm64: |
| r_val = TargetReg(kLr, kNotWide); |
| break; |
| case kX86: |
| case kX86_64: |
| FreeTemp(ref_reg); |
| r_val = AllocTemp(); |
| break; |
| case kMips: |
| r_val = AllocTemp(); |
| break; |
| default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; |
| } |
| // Set up source pointer |
| RegLocation rl_first = info->args[0]; |
| OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low)); |
| // Set up the target pointer |
| OpRegRegImm(kOpAdd, r_dst, ref_reg, |
| mirror::Array::DataOffset(component_size).Int32Value()); |
| // Set up the loop counter (known to be > 0) |
| LoadConstant(r_idx, elems - 1); |
| // Generate the copy loop. Going backwards for convenience |
| LIR* loop_head_target = NewLIR0(kPseudoTargetLabel); |
| // Copy next element |
| { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg); |
| LoadBaseIndexed(r_src, r_idx, r_val, 2, k32); |
| // NOTE: No dalvik register annotation, local optimizations will be stopped |
| // by the loop boundaries. |
| } |
| StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32); |
| FreeTemp(r_val); |
| OpDecAndBranch(kCondGe, r_idx, loop_head_target); |
| if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { |
| // Restore the target pointer |
| OpRegRegImm(kOpAdd, ref_reg, r_dst, |
| -mirror::Array::DataOffset(component_size).Int32Value()); |
| } |
| FreeTemp(r_idx); |
| FreeTemp(r_dst); |
| FreeTemp(r_src); |
| } else { |
| DCHECK_LE(elems, 5); // Usually but not necessarily non-range. |
| // TUNING: interleave |
| for (int i = 0; i < elems; i++) { |
| RegLocation rl_arg; |
| if (info->args[i].ref) { |
| rl_arg = LoadValue(info->args[i], kRefReg); |
| StoreRefDisp(ref_reg, |
| mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg, |
| kNotVolatile); |
| } else { |
| rl_arg = LoadValue(info->args[i], kCoreReg); |
| Store32Disp(ref_reg, |
| mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg); |
| } |
| // If the LoadValue caused a temp to be allocated, free it |
| if (IsTemp(rl_arg.reg)) { |
| FreeTemp(rl_arg.reg); |
| } |
| } |
| } |
| if (elems != 0 && info->args[0].ref) { |
| // If there is at least one potentially non-null value, unconditionally mark the GC card. |
| for (int i = 0; i < elems; i++) { |
| if (!mir_graph_->IsConstantNullRef(info->args[i])) { |
| UnconditionallyMarkGCCard(ref_reg); |
| break; |
| } |
| } |
| } |
| if (info->result.location != kLocInvalid) { |
| StoreValue(info->result, GetReturn(kRefReg)); |
| } |
| } |
| |
| /* |
| * Array data table format: |
| * ushort ident = 0x0300 magic value |
| * ushort width width of each element in the table |
| * uint size number of elements in the table |
| * ubyte data[size*width] table of data values (may contain a single-byte |
| * padding at the end) |
| * |
| * Total size is 4+(width * size + 1)/2 16-bit code units. |
| */ |
| void Mir2Lir::GenFillArrayData(MIR* mir, DexOffset table_offset, RegLocation rl_src) { |
| if (kIsDebugBuild) { |
| const uint16_t* table = mir_graph_->GetTable(mir, table_offset); |
| const Instruction::ArrayDataPayload* payload = |
| reinterpret_cast<const Instruction::ArrayDataPayload*>(table); |
| CHECK_EQ(payload->ident, static_cast<uint16_t>(Instruction::kArrayDataSignature)); |
| } |
| uint32_t table_offset_from_start = mir->offset + static_cast<int32_t>(table_offset); |
| CallRuntimeHelperImmRegLocation(kQuickHandleFillArrayData, table_offset_from_start, rl_src, true); |
| } |
| |
| // |
| // Slow path to ensure a class is initialized for sget/sput. |
| // |
| class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath { |
| public: |
| // There are up to two branches to the static field slow path, the "unresolved" when the type |
| // entry in the dex cache is null, and the "uninit" when the class is not yet initialized. |
| // At least one will be non-null here, otherwise we wouldn't generate the slow path. |
| StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index, |
| RegStorage r_base) |
| : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved != nullptr ? unresolved : uninit, cont), |
| second_branch_(unresolved != nullptr ? uninit : nullptr), |
| storage_index_(storage_index), r_base_(r_base) { |
| } |
| |
| void Compile() { |
| LIR* target = GenerateTargetLabel(); |
| if (second_branch_ != nullptr) { |
| second_branch_->target = target; |
| } |
| m2l_->CallRuntimeHelperImm(kQuickInitializeStaticStorage, storage_index_, true); |
| // Copy helper's result into r_base, a no-op on all but MIPS. |
| m2l_->OpRegCopy(r_base_, m2l_->TargetReg(kRet0, kRef)); |
| |
| m2l_->OpUnconditionalBranch(cont_); |
| } |
| |
| private: |
| // Second branch to the slow path, or null if there's only one branch. |
| LIR* const second_branch_; |
| |
| const int storage_index_; |
| const RegStorage r_base_; |
| }; |
| |
| void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, OpSize size) { |
| const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir); |
| cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass()); |
| if (!SLOW_FIELD_PATH && field_info.FastPut()) { |
| DCHECK_GE(field_info.FieldOffset().Int32Value(), 0); |
| RegStorage r_base; |
| if (field_info.IsReferrersClass()) { |
| // Fast path, static storage base is this method's class |
| RegLocation rl_method = LoadCurrMethod(); |
| r_base = AllocTempRef(); |
| LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base, |
| kNotVolatile); |
| if (IsTemp(rl_method.reg)) { |
| FreeTemp(rl_method.reg); |
| } |
| } else { |
| // Medium path, static storage base in a different class which requires checks that the other |
| // class is initialized. |
| // TODO: remove initialized check now that we are initializing classes in the compiler driver. |
| DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex); |
| // May do runtime call so everything to home locations. |
| FlushAllRegs(); |
| // Using fixed register to sync with possible call to runtime support. |
| RegStorage r_method = TargetReg(kArg1, kRef); |
| LockTemp(r_method); |
| LoadCurrMethodDirect(r_method); |
| r_base = TargetReg(kArg0, kRef); |
| LockTemp(r_base); |
| LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base, |
| kNotVolatile); |
| int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value(); |
| LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile); |
| // r_base now points at static storage (Class*) or NULL if the type is not yet resolved. |
| LIR* unresolved_branch = nullptr; |
| if (!field_info.IsClassInDexCache() && |
| (mir->optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) == 0) { |
| // Check if r_base is NULL. |
| unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL); |
| } |
| LIR* uninit_branch = nullptr; |
| if (!field_info.IsClassInitialized() && |
| (mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0) { |
| // Check if r_base is not yet initialized class. |
| RegStorage r_tmp = TargetReg(kArg2, kNotWide); |
| LockTemp(r_tmp); |
| uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base, |
| mirror::Class::StatusOffset().Int32Value(), |
| mirror::Class::kStatusInitialized, nullptr, nullptr); |
| FreeTemp(r_tmp); |
| } |
| if (unresolved_branch != nullptr || uninit_branch != nullptr) { |
| // The slow path is invoked if the r_base is NULL or the class pointed |
| // to by it is not initialized. |
| LIR* cont = NewLIR0(kPseudoTargetLabel); |
| AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont, |
| field_info.StorageIndex(), r_base)); |
| |
| if (uninit_branch != nullptr) { |
| // Ensure load of status and store of value don't re-order. |
| // TODO: Presumably the actual value store is control-dependent on the status load, |
| // and will thus not be reordered in any case, since stores are never speculated. |
| // Does later code "know" that the class is now initialized? If so, we still |
| // need the barrier to guard later static loads. |
| GenMemBarrier(kLoadAny); |
| } |
| } |
| FreeTemp(r_method); |
| } |
| // rBase now holds static storage base |
| RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile()); |
| if (IsWide(size)) { |
| rl_src = LoadValueWide(rl_src, reg_class); |
| } else { |
| rl_src = LoadValue(rl_src, reg_class); |
| } |
| if (IsRef(size)) { |
| StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, |
| field_info.IsVolatile() ? kVolatile : kNotVolatile); |
| } else { |
| StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, size, |
| field_info.IsVolatile() ? kVolatile : kNotVolatile); |
| } |
| if (IsRef(size) && !mir_graph_->IsConstantNullRef(rl_src)) { |
| MarkGCCard(rl_src.reg, r_base); |
| } |
| FreeTemp(r_base); |
| } else { |
| FlushAllRegs(); // Everything to home locations |
| QuickEntrypointEnum target; |
| switch (size) { |
| case kReference: |
| target = kQuickSetObjStatic; |
| break; |
| case k64: |
| case kDouble: |
| target = kQuickSet64Static; |
| break; |
| case k32: |
| case kSingle: |
| target = kQuickSet32Static; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| target = kQuickSet16Static; |
| break; |
| case kSignedByte: |
| case kUnsignedByte: |
| target = kQuickSet8Static; |
| break; |
| case kWord: // Intentional fallthrough. |
| default: |
| LOG(FATAL) << "Can't determine entrypoint for: " << size; |
| target = kQuickSet32Static; |
| } |
| CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_src, true); |
| } |
| } |
| |
| void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest, OpSize size, Primitive::Type type) { |
| const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir); |
| cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass()); |
| |
| if (!SLOW_FIELD_PATH && field_info.FastGet()) { |
| DCHECK_GE(field_info.FieldOffset().Int32Value(), 0); |
| RegStorage r_base; |
| if (field_info.IsReferrersClass()) { |
| // Fast path, static storage base is this method's class |
| RegLocation rl_method = LoadCurrMethod(); |
| r_base = AllocTempRef(); |
| LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base, |
| kNotVolatile); |
| } else { |
| // Medium path, static storage base in a different class which requires checks that the other |
| // class is initialized |
| DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex); |
| // May do runtime call so everything to home locations. |
| FlushAllRegs(); |
| // Using fixed register to sync with possible call to runtime support. |
| RegStorage r_method = TargetReg(kArg1, kRef); |
| LockTemp(r_method); |
| LoadCurrMethodDirect(r_method); |
| r_base = TargetReg(kArg0, kRef); |
| LockTemp(r_base); |
| LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base, |
| kNotVolatile); |
| int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value(); |
| LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile); |
| // r_base now points at static storage (Class*) or NULL if the type is not yet resolved. |
| LIR* unresolved_branch = nullptr; |
| if (!field_info.IsClassInDexCache() && |
| (mir->optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) == 0) { |
| // Check if r_base is NULL. |
| unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL); |
| } |
| LIR* uninit_branch = nullptr; |
| if (!field_info.IsClassInitialized() && |
| (mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) == 0) { |
| // Check if r_base is not yet initialized class. |
| RegStorage r_tmp = TargetReg(kArg2, kNotWide); |
| LockTemp(r_tmp); |
| uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base, |
| mirror::Class::StatusOffset().Int32Value(), |
| mirror::Class::kStatusInitialized, nullptr, nullptr); |
| FreeTemp(r_tmp); |
| } |
| if (unresolved_branch != nullptr || uninit_branch != nullptr) { |
| // The slow path is invoked if the r_base is NULL or the class pointed |
| // to by it is not initialized. |
| LIR* cont = NewLIR0(kPseudoTargetLabel); |
| AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont, |
| field_info.StorageIndex(), r_base)); |
| |
| if (uninit_branch != nullptr) { |
| // Ensure load of status and load of value don't re-order. |
| GenMemBarrier(kLoadAny); |
| } |
| } |
| FreeTemp(r_method); |
| } |
| // r_base now holds static storage base |
| RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile()); |
| RegLocation rl_result = EvalLoc(rl_dest, reg_class, true); |
| |
| int field_offset = field_info.FieldOffset().Int32Value(); |
| if (IsRef(size)) { |
| // TODO: DCHECK? |
| LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile : |
| kNotVolatile); |
| } else { |
| LoadBaseDisp(r_base, field_offset, rl_result.reg, size, field_info.IsVolatile() ? |
| kVolatile : kNotVolatile); |
| } |
| FreeTemp(r_base); |
| |
| if (IsWide(size)) { |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| StoreValue(rl_dest, rl_result); |
| } |
| } else { |
| DCHECK(SizeMatchesTypeForEntrypoint(size, type)); |
| FlushAllRegs(); // Everything to home locations |
| QuickEntrypointEnum target; |
| switch (type) { |
| case Primitive::kPrimNot: |
| target = kQuickGetObjStatic; |
| break; |
| case Primitive::kPrimLong: |
| case Primitive::kPrimDouble: |
| target = kQuickGet64Static; |
| break; |
| case Primitive::kPrimInt: |
| case Primitive::kPrimFloat: |
| target = kQuickGet32Static; |
| break; |
| case Primitive::kPrimShort: |
| target = kQuickGetShortStatic; |
| break; |
| case Primitive::kPrimChar: |
| target = kQuickGetCharStatic; |
| break; |
| case Primitive::kPrimByte: |
| target = kQuickGetByteStatic; |
| break; |
| case Primitive::kPrimBoolean: |
| target = kQuickGetBooleanStatic; |
| break; |
| case Primitive::kPrimVoid: // Intentional fallthrough. |
| default: |
| LOG(FATAL) << "Can't determine entrypoint for: " << type; |
| target = kQuickGet32Static; |
| } |
| CallRuntimeHelperImm(target, field_info.FieldIndex(), true); |
| |
| // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp. |
| if (IsWide(size)) { |
| RegLocation rl_result = GetReturnWide(kCoreReg); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| } |
| |
| // Generate code for all slow paths. |
| void Mir2Lir::HandleSlowPaths() { |
| // We should check slow_paths_.Size() every time, because a new slow path |
| // may be created during slowpath->Compile(). |
| for (LIRSlowPath* slowpath : slow_paths_) { |
| slowpath->Compile(); |
| } |
| slow_paths_.clear(); |
| } |
| |
| void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size, Primitive::Type type, |
| RegLocation rl_dest, RegLocation rl_obj) { |
| const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir); |
| cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet()); |
| if (!SLOW_FIELD_PATH && field_info.FastGet()) { |
| RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile()); |
| // A load of the class will lead to an iget with offset 0. |
| DCHECK_GE(field_info.FieldOffset().Int32Value(), 0); |
| rl_obj = LoadValue(rl_obj, kRefReg); |
| GenNullCheck(rl_obj.reg, opt_flags); |
| RegLocation rl_result = EvalLoc(rl_dest, reg_class, true); |
| int field_offset = field_info.FieldOffset().Int32Value(); |
| LIR* load_lir; |
| if (IsRef(size)) { |
| load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ? |
| kVolatile : kNotVolatile); |
| } else { |
| load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, size, |
| field_info.IsVolatile() ? kVolatile : kNotVolatile); |
| } |
| MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir); |
| if (IsWide(size)) { |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| StoreValue(rl_dest, rl_result); |
| } |
| } else { |
| DCHECK(SizeMatchesTypeForEntrypoint(size, type)); |
| QuickEntrypointEnum target; |
| switch (type) { |
| case Primitive::kPrimNot: |
| target = kQuickGetObjInstance; |
| break; |
| case Primitive::kPrimLong: |
| case Primitive::kPrimDouble: |
| target = kQuickGet64Instance; |
| break; |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimInt: |
| target = kQuickGet32Instance; |
| break; |
| case Primitive::kPrimShort: |
| target = kQuickGetShortInstance; |
| break; |
| case Primitive::kPrimChar: |
| target = kQuickGetCharInstance; |
| break; |
| case Primitive::kPrimByte: |
| target = kQuickGetByteInstance; |
| break; |
| case Primitive::kPrimBoolean: |
| target = kQuickGetBooleanInstance; |
| break; |
| case Primitive::kPrimVoid: // Intentional fallthrough. |
| default: |
| LOG(FATAL) << "Can't determine entrypoint for: " << type; |
| target = kQuickGet32Instance; |
| } |
| // Second argument of pGetXXInstance is always a reference. |
| DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U); |
| CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_obj, true); |
| |
| // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp. |
| if (IsWide(size)) { |
| RegLocation rl_result = GetReturnWide(kCoreReg); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| } |
| |
| void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size, |
| RegLocation rl_src, RegLocation rl_obj) { |
| const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir); |
| cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut()); |
| if (!SLOW_FIELD_PATH && field_info.FastPut()) { |
| RegisterClass reg_class = RegClassForFieldLoadStore(size, field_info.IsVolatile()); |
| // Dex code never writes to the class field. |
| DCHECK_GE(static_cast<uint32_t>(field_info.FieldOffset().Int32Value()), |
| sizeof(mirror::HeapReference<mirror::Class>)); |
| rl_obj = LoadValue(rl_obj, kRefReg); |
| if (IsWide(size)) { |
| rl_src = LoadValueWide(rl_src, reg_class); |
| } else { |
| rl_src = LoadValue(rl_src, reg_class); |
| } |
| GenNullCheck(rl_obj.reg, opt_flags); |
| int field_offset = field_info.FieldOffset().Int32Value(); |
| LIR* store; |
| if (IsRef(size)) { |
| store = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ? |
| kVolatile : kNotVolatile); |
| } else { |
| store = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, size, |
| field_info.IsVolatile() ? kVolatile : kNotVolatile); |
| } |
| MarkPossibleNullPointerExceptionAfter(opt_flags, store); |
| if (IsRef(size) && !mir_graph_->IsConstantNullRef(rl_src)) { |
| MarkGCCard(rl_src.reg, rl_obj.reg); |
| } |
| } else { |
| QuickEntrypointEnum target; |
| switch (size) { |
| case kReference: |
| target = kQuickSetObjInstance; |
| break; |
| case k64: |
| case kDouble: |
| target = kQuickSet64Instance; |
| break; |
| case k32: |
| case kSingle: |
| target = kQuickSet32Instance; |
| break; |
| case kSignedHalf: |
| case kUnsignedHalf: |
| target = kQuickSet16Instance; |
| break; |
| case kSignedByte: |
| case kUnsignedByte: |
| target = kQuickSet8Instance; |
| break; |
| case kWord: // Intentional fallthrough. |
| default: |
| LOG(FATAL) << "Can't determine entrypoint for: " << size; |
| target = kQuickSet32Instance; |
| } |
| CallRuntimeHelperImmRegLocationRegLocation(target, field_info.FieldIndex(), rl_obj, rl_src, |
| true); |
| } |
| } |
| |
| void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index, |
| RegLocation rl_src) { |
| bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK); |
| bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) && |
| (opt_flags & MIR_IGNORE_NULL_CHECK)); |
| QuickEntrypointEnum target = needs_range_check |
| ? (needs_null_check ? kQuickAputObjectWithNullAndBoundCheck |
| : kQuickAputObjectWithBoundCheck) |
| : kQuickAputObject; |
| CallRuntimeHelperRegLocationRegLocationRegLocation(target, rl_array, rl_index, rl_src, true); |
| } |
| |
| void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) { |
| RegLocation rl_method = LoadCurrMethod(); |
| CheckRegLocation(rl_method); |
| RegStorage res_reg = AllocTempRef(); |
| if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, |
| *cu_->dex_file, |
| type_idx)) { |
| // Call out to helper which resolves type and verifies access. |
| // Resolved type returned in kRet0. |
| CallRuntimeHelperImmReg(kQuickInitializeTypeAndVerifyAccess, type_idx, rl_method.reg, true); |
| RegLocation rl_result = GetReturn(kRefReg); |
| StoreValue(rl_dest, rl_result); |
| } else { |
| RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); |
| // We're don't need access checks, load type from dex cache |
| int32_t dex_cache_offset = |
| mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(); |
| LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile); |
| int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value(); |
| LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile); |
| if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, |
| type_idx) || SLOW_TYPE_PATH) { |
| // Slow path, at runtime test if type is null and if so initialize |
| FlushAllRegs(); |
| LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL); |
| LIR* cont = NewLIR0(kPseudoTargetLabel); |
| |
| // Object to generate the slow path for class resolution. |
| class SlowPath : public LIRSlowPath { |
| public: |
| SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont_in, const int type_idx_in, |
| const RegLocation& rl_method_in, const RegLocation& rl_result_in) : |
| LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont_in), |
| type_idx_(type_idx_in), rl_method_(rl_method_in), rl_result_(rl_result_in) { |
| } |
| |
| void Compile() { |
| GenerateTargetLabel(); |
| |
| m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_, rl_method_.reg, true); |
| m2l_->OpRegCopy(rl_result_.reg, m2l_->TargetReg(kRet0, kRef)); |
| m2l_->OpUnconditionalBranch(cont_); |
| } |
| |
| private: |
| const int type_idx_; |
| const RegLocation rl_method_; |
| const RegLocation rl_result_; |
| }; |
| |
| // Add to list for future. |
| AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result)); |
| |
| StoreValue(rl_dest, rl_result); |
| } else { |
| // Fast path, we're done - just store result |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| } |
| |
| void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) { |
| /* NOTE: Most strings should be available at compile time */ |
| int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx). |
| Int32Value(); |
| if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache( |
| *cu_->dex_file, string_idx) || SLOW_STRING_PATH) { |
| // slow path, resolve string if not in dex cache |
| FlushAllRegs(); |
| LockCallTemps(); // Using explicit registers |
| |
| // If the Method* is already in a register, we can save a copy. |
| RegLocation rl_method = mir_graph_->GetMethodLoc(); |
| RegStorage r_method; |
| if (rl_method.location == kLocPhysReg) { |
| // A temp would conflict with register use below. |
| DCHECK(!IsTemp(rl_method.reg)); |
| r_method = rl_method.reg; |
| } else { |
| r_method = TargetReg(kArg2, kRef); |
| LoadCurrMethodDirect(r_method); |
| } |
| LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), |
| TargetReg(kArg0, kRef), kNotVolatile); |
| |
| // Might call out to helper, which will return resolved string in kRet0 |
| LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile); |
| LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL); |
| LIR* cont = NewLIR0(kPseudoTargetLabel); |
| |
| { |
| // Object to generate the slow path for string resolution. |
| class SlowPath : public LIRSlowPath { |
| public: |
| SlowPath(Mir2Lir* m2l, LIR* fromfast_in, LIR* cont_in, RegStorage r_method_in, |
| int32_t string_idx_in) : |
| LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast_in, cont_in), |
| r_method_(r_method_in), string_idx_(string_idx_in) { |
| } |
| |
| void Compile() { |
| GenerateTargetLabel(); |
| m2l_->CallRuntimeHelperRegImm(kQuickResolveString, r_method_, string_idx_, true); |
| m2l_->OpUnconditionalBranch(cont_); |
| } |
| |
| private: |
| const RegStorage r_method_; |
| const int32_t string_idx_; |
| }; |
| |
| AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx)); |
| } |
| |
| GenBarrier(); |
| StoreValue(rl_dest, GetReturn(kRefReg)); |
| } else { |
| RegLocation rl_method = LoadCurrMethod(); |
| RegStorage res_reg = AllocTempRef(); |
| RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); |
| LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg, |
| kNotVolatile); |
| LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| /* |
| * Let helper function take care of everything. Will |
| * call Class::NewInstanceFromCode(type_idx, method); |
| */ |
| void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) { |
| FlushAllRegs(); /* Everything to home location */ |
| // alloc will always check for resolution, do we also need to verify |
| // access because the verifier was unable to? |
| const DexFile* dex_file = cu_->dex_file; |
| CompilerDriver* driver = cu_->compiler_driver; |
| if (driver->CanAccessInstantiableTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) { |
| bool is_type_initialized; |
| bool use_direct_type_ptr; |
| uintptr_t direct_type_ptr; |
| bool is_finalizable; |
| if (kEmbedClassInCode && |
| driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr, |
| &direct_type_ptr, &is_finalizable) && |
| !is_finalizable) { |
| // The fast path. |
| if (!use_direct_type_ptr) { |
| LoadClassType(*dex_file, type_idx, kArg0); |
| if (!is_type_initialized) { |
| CallRuntimeHelperRegMethod(kQuickAllocObjectResolved, TargetReg(kArg0, kRef), true); |
| } else { |
| CallRuntimeHelperRegMethod(kQuickAllocObjectInitialized, TargetReg(kArg0, kRef), true); |
| } |
| } else { |
| // Use the direct pointer. |
| if (!is_type_initialized) { |
| CallRuntimeHelperImmMethod(kQuickAllocObjectResolved, direct_type_ptr, true); |
| } else { |
| CallRuntimeHelperImmMethod(kQuickAllocObjectInitialized, direct_type_ptr, true); |
| } |
| } |
| } else { |
| // The slow path. |
| CallRuntimeHelperImmMethod(kQuickAllocObject, type_idx, true); |
| } |
| } else { |
| CallRuntimeHelperImmMethod(kQuickAllocObjectWithAccessCheck, type_idx, true); |
| } |
| StoreValue(rl_dest, GetReturn(kRefReg)); |
| } |
| |
| void Mir2Lir::GenThrow(RegLocation rl_src) { |
| FlushAllRegs(); |
| CallRuntimeHelperRegLocation(kQuickDeliverException, rl_src, true); |
| } |
| |
| // For final classes there are no sub-classes to check and so we can answer the instance-of |
| // question with simple comparisons. |
| void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest, |
| RegLocation rl_src) { |
| // X86 has its own implementation. |
| DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64); |
| |
| RegLocation object = LoadValue(rl_src, kRefReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegStorage result_reg = rl_result.reg; |
| if (IsSameReg(result_reg, object.reg)) { |
| result_reg = AllocTypedTemp(false, kCoreReg); |
| DCHECK(!IsSameReg(result_reg, object.reg)); |
| } |
| LoadConstant(result_reg, 0); // assume false |
| LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL); |
| |
| RegStorage check_class = AllocTypedTemp(false, kRefReg); |
| RegStorage object_class = AllocTypedTemp(false, kRefReg); |
| |
| LoadCurrMethodDirect(check_class); |
| if (use_declaring_class) { |
| LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class, |
| kNotVolatile); |
| LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class, |
| kNotVolatile); |
| } else { |
| LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), |
| check_class, kNotVolatile); |
| LoadRefDisp(object.reg, mirror::Object::ClassOffset().Int32Value(), object_class, |
| kNotVolatile); |
| int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value(); |
| LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile); |
| } |
| |
| // FIXME: what should we be comparing here? compressed or decompressed references? |
| if (cu_->instruction_set == kThumb2) { |
| OpRegReg(kOpCmp, check_class, object_class); // Same? |
| LIR* it = OpIT(kCondEq, ""); // if-convert the test |
| LoadConstant(result_reg, 1); // .eq case - load true |
| OpEndIT(it); |
| } else { |
| GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg); |
| } |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| null_branchover->target = target; |
| FreeTemp(object_class); |
| FreeTemp(check_class); |
| if (IsTemp(result_reg)) { |
| OpRegCopy(rl_result.reg, result_reg); |
| FreeTemp(result_reg); |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final, |
| bool type_known_abstract, bool use_declaring_class, |
| bool can_assume_type_is_in_dex_cache, |
| uint32_t type_idx, RegLocation rl_dest, |
| RegLocation rl_src) { |
| FlushAllRegs(); |
| // May generate a call - use explicit registers |
| LockCallTemps(); |
| RegStorage method_reg = TargetReg(kArg1, kRef); |
| LoadCurrMethodDirect(method_reg); // kArg1 <= current Method* |
| RegStorage class_reg = TargetReg(kArg2, kRef); // kArg2 will hold the Class* |
| RegStorage ref_reg = TargetReg(kArg0, kRef); // kArg0 will hold the ref. |
| RegStorage ret_reg = GetReturn(kRefReg).reg; |
| if (needs_access_check) { |
| // Check we have access to type_idx and if not throw IllegalAccessError, |
| // returns Class* in kArg0 |
| CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true); |
| OpRegCopy(class_reg, ret_reg); // Align usage with fast path |
| LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref |
| } else if (use_declaring_class) { |
| LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref |
| LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), |
| class_reg, kNotVolatile); |
| } else { |
| if (can_assume_type_is_in_dex_cache) { |
| // Conditionally, as in the other case we will also load it. |
| LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref |
| } |
| |
| // Load dex cache entry into class_reg (kArg2) |
| LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), |
| class_reg, kNotVolatile); |
| int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value(); |
| LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile); |
| if (!can_assume_type_is_in_dex_cache) { |
| LIR* slow_path_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL); |
| LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); |
| |
| // Should load value here. |
| LoadValueDirectFixed(rl_src, ref_reg); // kArg0 <= ref |
| |
| class InitTypeSlowPath : public Mir2Lir::LIRSlowPath { |
| public: |
| InitTypeSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont, uint32_t type_idx_in, |
| RegLocation rl_src_in) |
| : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont), type_idx_(type_idx_in), |
| rl_src_(rl_src_in) { |
| } |
| |
| void Compile() OVERRIDE { |
| GenerateTargetLabel(); |
| |
| m2l_->CallRuntimeHelperImm(kQuickInitializeType, type_idx_, true); |
| m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kRef), |
| m2l_->TargetReg(kRet0, kRef)); // Align usage with fast path |
| m2l_->OpUnconditionalBranch(cont_); |
| } |
| |
| private: |
| uint32_t type_idx_; |
| RegLocation rl_src_; |
| }; |
| |
| AddSlowPath(new (arena_) InitTypeSlowPath(this, slow_path_branch, slow_path_target, |
| type_idx, rl_src)); |
| } |
| } |
| /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */ |
| RegLocation rl_result = GetReturn(kCoreReg); |
| if (!IsSameReg(rl_result.reg, ref_reg)) { |
| // On MIPS and x86_64 rArg0 != rl_result, place false in result if branch is taken. |
| LoadConstant(rl_result.reg, 0); |
| } |
| LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, NULL); |
| |
| /* load object->klass_ */ |
| RegStorage ref_class_reg = TargetReg(kArg1, kRef); // kArg1 will hold the Class* of ref. |
| DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); |
| LoadRefDisp(ref_reg, mirror::Object::ClassOffset().Int32Value(), |
| ref_class_reg, kNotVolatile); |
| /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */ |
| LIR* branchover = NULL; |
| if (type_known_final) { |
| // rl_result == ref == class. |
| GenSelectConst32(ref_class_reg, class_reg, kCondEq, 1, 0, rl_result.reg, |
| kCoreReg); |
| } else { |
| if (cu_->instruction_set == kThumb2) { |
| RegStorage r_tgt = LoadHelper(kQuickInstanceofNonTrivial); |
| LIR* it = nullptr; |
| if (!type_known_abstract) { |
| /* Uses conditional nullification */ |
| OpRegReg(kOpCmp, ref_class_reg, class_reg); // Same? |
| it = OpIT(kCondEq, "EE"); // if-convert the test |
| LoadConstant(rl_result.reg, 1); // .eq case - load true |
| } |
| OpRegCopy(ref_reg, class_reg); // .ne case - arg0 <= class |
| OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) |
| if (it != nullptr) { |
| OpEndIT(it); |
| } |
| FreeTemp(r_tgt); |
| } else { |
| if (!type_known_abstract) { |
| /* Uses branchovers */ |
| LoadConstant(rl_result.reg, 1); // assume true |
| branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL); |
| } |
| |
| OpRegCopy(TargetReg(kArg0, kRef), class_reg); // .ne case - arg0 <= class |
| CallRuntimeHelper(kQuickInstanceofNonTrivial, false); |
| } |
| } |
| // TODO: only clobber when type isn't final? |
| ClobberCallerSave(); |
| /* branch targets here */ |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| StoreValue(rl_dest, rl_result); |
| branch1->target = target; |
| if (branchover != nullptr) { |
| branchover->target = target; |
| } |
| } |
| |
| void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { |
| bool type_known_final, type_known_abstract, use_declaring_class; |
| bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, |
| *cu_->dex_file, |
| type_idx, |
| &type_known_final, |
| &type_known_abstract, |
| &use_declaring_class); |
| bool can_assume_type_is_in_dex_cache = !needs_access_check && |
| cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx); |
| |
| if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) { |
| GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src); |
| } else { |
| GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract, |
| use_declaring_class, can_assume_type_is_in_dex_cache, |
| type_idx, rl_dest, rl_src); |
| } |
| } |
| |
| void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) { |
| bool type_known_final, type_known_abstract, use_declaring_class; |
| bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, |
| *cu_->dex_file, |
| type_idx, |
| &type_known_final, |
| &type_known_abstract, |
| &use_declaring_class); |
| // Note: currently type_known_final is unused, as optimizing will only improve the performance |
| // of the exception throw path. |
| DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit(); |
| if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) { |
| // Verifier type analysis proved this check cast would never cause an exception. |
| return; |
| } |
| FlushAllRegs(); |
| // May generate a call - use explicit registers |
| LockCallTemps(); |
| RegStorage method_reg = TargetReg(kArg1, kRef); |
| LoadCurrMethodDirect(method_reg); // kArg1 <= current Method* |
| RegStorage class_reg = TargetReg(kArg2, kRef); // kArg2 will hold the Class* |
| if (needs_access_check) { |
| // Check we have access to type_idx and if not throw IllegalAccessError, |
| // returns Class* in kRet0 |
| // InitializeTypeAndVerifyAccess(idx, method) |
| CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true); |
| OpRegCopy(class_reg, TargetReg(kRet0, kRef)); // Align usage with fast path |
| } else if (use_declaring_class) { |
| LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), |
| class_reg, kNotVolatile); |
| } else { |
| // Load dex cache entry into class_reg (kArg2) |
| LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), |
| class_reg, kNotVolatile); |
| int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value(); |
| LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile); |
| if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) { |
| // Need to test presence of type in dex cache at runtime |
| LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL); |
| LIR* cont = NewLIR0(kPseudoTargetLabel); |
| |
| // Slow path to initialize the type. Executed if the type is NULL. |
| class SlowPath : public LIRSlowPath { |
| public: |
| SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont_in, const int type_idx_in, |
| const RegStorage class_reg_in) : |
| LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont_in), |
| type_idx_(type_idx_in), class_reg_(class_reg_in) { |
| } |
| |
| void Compile() { |
| GenerateTargetLabel(); |
| |
| // Call out to helper, which will return resolved type in kArg0 |
| // InitializeTypeFromCode(idx, method) |
| m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_, |
| m2l_->TargetReg(kArg1, kRef), true); |
| m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef)); // Align usage with fast path |
| m2l_->OpUnconditionalBranch(cont_); |
| } |
| |
| public: |
| const int type_idx_; |
| const RegStorage class_reg_; |
| }; |
| |
| AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg)); |
| } |
| } |
| // At this point, class_reg (kArg2) has class |
| LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef)); // kArg0 <= ref |
| |
| // Slow path for the case where the classes are not equal. In this case we need |
| // to call a helper function to do the check. |
| class SlowPath : public LIRSlowPath { |
| public: |
| SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load): |
| LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) { |
| } |
| |
| void Compile() { |
| GenerateTargetLabel(); |
| |
| if (load_) { |
| m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(), |
| m2l_->TargetReg(kArg1, kRef), kNotVolatile); |
| } |
| m2l_->CallRuntimeHelperRegReg(kQuickCheckCast, m2l_->TargetReg(kArg2, kRef), |
| m2l_->TargetReg(kArg1, kRef), true); |
| m2l_->OpUnconditionalBranch(cont_); |
| } |
| |
| private: |
| const bool load_; |
| }; |
| |
| if (type_known_abstract) { |
| // Easier case, run slow path if target is non-null (slow path will load from target) |
| LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr); |
| LIR* cont = NewLIR0(kPseudoTargetLabel); |
| AddSlowPath(new (arena_) SlowPath(this, branch, cont, true)); |
| } else { |
| // Harder, more common case. We need to generate a forward branch over the load |
| // if the target is null. If it's non-null we perform the load and branch to the |
| // slow path if the classes are not equal. |
| |
| /* Null is OK - continue */ |
| LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr); |
| /* load object->klass_ */ |
| DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); |
| LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(), |
| TargetReg(kArg1, kRef), kNotVolatile); |
| |
| LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr); |
| LIR* cont = NewLIR0(kPseudoTargetLabel); |
| |
| // Add the slow path that will not perform load since this is already done. |
| AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false)); |
| |
| // Set the null check to branch to the continuation. |
| branch1->target = cont; |
| } |
| } |
| |
| void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| RegLocation rl_result; |
| if (cu_->instruction_set == kThumb2) { |
| /* |
| * NOTE: This is the one place in the code in which we might have |
| * as many as six live temporary registers. There are 5 in the normal |
| * set for Arm. Until we have spill capabilities, temporarily add |
| * lr to the temp set. It is safe to do this locally, but note that |
| * lr is used explicitly elsewhere in the code generator and cannot |
| * normally be used as a general temp register. |
| */ |
| MarkTemp(TargetReg(kLr, kNotWide)); // Add lr to the temp pool |
| FreeTemp(TargetReg(kLr, kNotWide)); // and make it available |
| } |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| // The longs may overlap - use intermediate temp if so |
| if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) { |
| RegStorage t_reg = AllocTemp(); |
| OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow()); |
| OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh()); |
| OpRegCopy(rl_result.reg.GetLow(), t_reg); |
| FreeTemp(t_reg); |
| } else { |
| OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow()); |
| OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh()); |
| } |
| /* |
| * NOTE: If rl_dest refers to a frame variable in a large frame, the |
| * following StoreValueWide might need to allocate a temp register. |
| * To further work around the lack of a spill capability, explicitly |
| * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result. |
| * Remove when spill is functional. |
| */ |
| FreeRegLocTemps(rl_result, rl_src1); |
| FreeRegLocTemps(rl_result, rl_src2); |
| StoreValueWide(rl_dest, rl_result); |
| if (cu_->instruction_set == kThumb2) { |
| Clobber(TargetReg(kLr, kNotWide)); |
| UnmarkTemp(TargetReg(kLr, kNotWide)); // Remove lr from the temp pool |
| } |
| } |
| |
| void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_shift) { |
| QuickEntrypointEnum target; |
| switch (opcode) { |
| case Instruction::SHL_LONG: |
| case Instruction::SHL_LONG_2ADDR: |
| target = kQuickShlLong; |
| break; |
| case Instruction::SHR_LONG: |
| case Instruction::SHR_LONG_2ADDR: |
| target = kQuickShrLong; |
| break; |
| case Instruction::USHR_LONG: |
| case Instruction::USHR_LONG_2ADDR: |
| target = kQuickUshrLong; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected case"; |
| target = kQuickShlLong; |
| } |
| FlushAllRegs(); /* Send everything to home location */ |
| CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_shift, false); |
| RegLocation rl_result = GetReturnWide(kCoreReg); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| |
| void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2, int flags) { |
| DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64); |
| OpKind op = kOpBkpt; |
| bool is_div_rem = false; |
| bool check_zero = false; |
| bool unary = false; |
| RegLocation rl_result; |
| bool shift_op = false; |
| switch (opcode) { |
| case Instruction::NEG_INT: |
| op = kOpNeg; |
| unary = true; |
| break; |
| case Instruction::NOT_INT: |
| op = kOpMvn; |
| unary = true; |
| break; |
| case Instruction::ADD_INT: |
| case Instruction::ADD_INT_2ADDR: |
| op = kOpAdd; |
| break; |
| case Instruction::SUB_INT: |
| case Instruction::SUB_INT_2ADDR: |
| op = kOpSub; |
| break; |
| case Instruction::MUL_INT: |
| case Instruction::MUL_INT_2ADDR: |
| op = kOpMul; |
| break; |
| case Instruction::DIV_INT: |
| case Instruction::DIV_INT_2ADDR: |
| check_zero = true; |
| op = kOpDiv; |
| is_div_rem = true; |
| break; |
| /* NOTE: returns in kArg1 */ |
| case Instruction::REM_INT: |
| case Instruction::REM_INT_2ADDR: |
| check_zero = true; |
| op = kOpRem; |
| is_div_rem = true; |
| break; |
| case Instruction::AND_INT: |
| case Instruction::AND_INT_2ADDR: |
| op = kOpAnd; |
| break; |
| case Instruction::OR_INT: |
| case Instruction::OR_INT_2ADDR: |
| op = kOpOr; |
| break; |
| case Instruction::XOR_INT: |
| case Instruction::XOR_INT_2ADDR: |
| op = kOpXor; |
| break; |
| case Instruction::SHL_INT: |
| case Instruction::SHL_INT_2ADDR: |
| shift_op = true; |
| op = kOpLsl; |
| break; |
| case Instruction::SHR_INT: |
| case Instruction::SHR_INT_2ADDR: |
| shift_op = true; |
| op = kOpAsr; |
| break; |
| case Instruction::USHR_INT: |
| case Instruction::USHR_INT_2ADDR: |
| shift_op = true; |
| op = kOpLsr; |
| break; |
| default: |
| LOG(FATAL) << "Invalid word arith op: " << opcode; |
| } |
| if (!is_div_rem) { |
| if (unary) { |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegReg(op, rl_result.reg, rl_src1.reg); |
| } else { |
| if ((shift_op) && (cu_->instruction_set != kArm64)) { |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| RegStorage t_reg = AllocTemp(); |
| OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31); |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg); |
| FreeTemp(t_reg); |
| } else { |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg); |
| } |
| } |
| StoreValue(rl_dest, rl_result); |
| } else { |
| bool done = false; // Set to true if we happen to find a way to use a real instruction. |
| if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) { |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) { |
| GenDivZeroCheck(rl_src2.reg); |
| } |
| rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv); |
| done = true; |
| } else if (cu_->instruction_set == kThumb2) { |
| if (cu_->GetInstructionSetFeatures()->AsArmInstructionSetFeatures()-> |
| HasDivideInstruction()) { |
| // Use ARM SDIV instruction for division. For remainder we also need to |
| // calculate using a MUL and subtract. |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) { |
| GenDivZeroCheck(rl_src2.reg); |
| } |
| rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv); |
| done = true; |
| } |
| } |
| |
| // If we haven't already generated the code use the callout function. |
| if (!done) { |
| FlushAllRegs(); /* Send everything to home location */ |
| LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide)); |
| RegStorage r_tgt = CallHelperSetup(kQuickIdivmod); |
| LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide)); |
| if (check_zero && (flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) { |
| GenDivZeroCheck(TargetReg(kArg1, kNotWide)); |
| } |
| // NOTE: callout here is not a safepoint. |
| CallHelper(r_tgt, kQuickIdivmod, false /* not a safepoint */); |
| if (op == kOpDiv) |
| rl_result = GetReturn(kCoreReg); |
| else |
| rl_result = GetReturnAlt(); |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| /* |
| * The following are the first-level codegen routines that analyze the format |
| * of each bytecode then either dispatch special purpose codegen routines |
| * or produce corresponding Thumb instructions directly. |
| */ |
| |
| // Returns true if no more than two bits are set in 'x'. |
| static bool IsPopCountLE2(unsigned int x) { |
| x &= x - 1; |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' |
| // and store the result in 'rl_dest'. |
| bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int lit) { |
| if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) { |
| return false; |
| } |
| // No divide instruction for Arm, so check for more special cases |
| if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) { |
| return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit); |
| } |
| int k = LowestSetBit(lit); |
| if (k >= 30) { |
| // Avoid special cases. |
| return false; |
| } |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (is_div) { |
| RegStorage t_reg = AllocTemp(); |
| if (lit == 2) { |
| // Division by 2 is by far the most common division by constant. |
| OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k); |
| OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg); |
| OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k); |
| } else { |
| OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31); |
| OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k); |
| OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg); |
| OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k); |
| } |
| } else { |
| RegStorage t_reg1 = AllocTemp(); |
| RegStorage t_reg2 = AllocTemp(); |
| if (lit == 2) { |
| OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k); |
| OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg); |
| OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1); |
| OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1); |
| } else { |
| OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31); |
| OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k); |
| OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg); |
| OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1); |
| OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1); |
| } |
| } |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| // Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit' |
| // and store the result in 'rl_dest'. |
| bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) { |
| if (lit < 0) { |
| return false; |
| } |
| if (lit == 0) { |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| LoadConstant(rl_result.reg, 0); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| if (lit == 1) { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegCopy(rl_result.reg, rl_src.reg); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| // There is RegRegRegShift on Arm, so check for more special cases |
| if (cu_->instruction_set == kThumb2) { |
| return EasyMultiply(rl_src, rl_dest, lit); |
| } |
| // Can we simplify this multiplication? |
| bool power_of_two = false; |
| bool pop_count_le2 = false; |
| bool power_of_two_minus_one = false; |
| if (IsPowerOfTwo(lit)) { |
| power_of_two = true; |
| } else if (IsPopCountLE2(lit)) { |
| pop_count_le2 = true; |
| } else if (IsPowerOfTwo(lit + 1)) { |
| power_of_two_minus_one = true; |
| } else { |
| return false; |
| } |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (power_of_two) { |
| // Shift. |
| OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit)); |
| } else if (pop_count_le2) { |
| // Shift and add and shift. |
| int first_bit = LowestSetBit(lit); |
| int second_bit = LowestSetBit(lit ^ (1 << first_bit)); |
| GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit); |
| } else { |
| // Reverse subtract: (src << (shift + 1)) - src. |
| DCHECK(power_of_two_minus_one); |
| // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1) |
| RegStorage t_reg = AllocTemp(); |
| OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1)); |
| OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg); |
| } |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| // Returns true if it generates instructions. |
| bool Mir2Lir::HandleEasyFloatingPointDiv(RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2) { |
| if (!rl_src2.is_const || |
| ((cu_->instruction_set != kThumb2) && (cu_->instruction_set != kArm64))) { |
| return false; |
| } |
| |
| if (!rl_src2.wide) { |
| int32_t divisor = mir_graph_->ConstantValue(rl_src2); |
| if (CanDivideByReciprocalMultiplyFloat(divisor)) { |
| // Generate multiply by reciprocal instead of div. |
| float recip = 1.0f/bit_cast<int32_t, float>(divisor); |
| GenMultiplyByConstantFloat(rl_dest, rl_src1, bit_cast<float, int32_t>(recip)); |
| return true; |
| } |
| } else { |
| int64_t divisor = mir_graph_->ConstantValueWide(rl_src2); |
| if (CanDivideByReciprocalMultiplyDouble(divisor)) { |
| // Generate multiply by reciprocal instead of div. |
| double recip = 1.0/bit_cast<double, int64_t>(divisor); |
| GenMultiplyByConstantDouble(rl_dest, rl_src1, bit_cast<double, int64_t>(recip)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src, |
| int lit) { |
| RegLocation rl_result; |
| OpKind op = static_cast<OpKind>(0); /* Make gcc happy */ |
| int shift_op = false; |
| bool is_div = false; |
| |
| switch (opcode) { |
| case Instruction::RSUB_INT_LIT8: |
| case Instruction::RSUB_INT: { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (cu_->instruction_set == kThumb2) { |
| OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit); |
| } else { |
| OpRegReg(kOpNeg, rl_result.reg, rl_src.reg); |
| OpRegImm(kOpAdd, rl_result.reg, lit); |
| } |
| StoreValue(rl_dest, rl_result); |
| return; |
| } |
| |
| case Instruction::SUB_INT: |
| case Instruction::SUB_INT_2ADDR: |
| lit = -lit; |
| FALLTHROUGH_INTENDED; |
| case Instruction::ADD_INT: |
| case Instruction::ADD_INT_2ADDR: |
| case Instruction::ADD_INT_LIT8: |
| case Instruction::ADD_INT_LIT16: |
| op = kOpAdd; |
| break; |
| case Instruction::MUL_INT: |
| case Instruction::MUL_INT_2ADDR: |
| case Instruction::MUL_INT_LIT8: |
| case Instruction::MUL_INT_LIT16: { |
| if (HandleEasyMultiply(rl_src, rl_dest, lit)) { |
| return; |
| } |
| op = kOpMul; |
| break; |
| } |
| case Instruction::AND_INT: |
| case Instruction::AND_INT_2ADDR: |
| case Instruction::AND_INT_LIT8: |
| case Instruction::AND_INT_LIT16: |
| op = kOpAnd; |
| break; |
| case Instruction::OR_INT: |
| case Instruction::OR_INT_2ADDR: |
| case Instruction::OR_INT_LIT8: |
| case Instruction::OR_INT_LIT16: |
| op = kOpOr; |
| break; |
| case Instruction::XOR_INT: |
| case Instruction::XOR_INT_2ADDR: |
| case Instruction::XOR_INT_LIT8: |
| case Instruction::XOR_INT_LIT16: |
| op = kOpXor; |
| break; |
| case Instruction::SHL_INT_LIT8: |
| case Instruction::SHL_INT: |
| case Instruction::SHL_INT_2ADDR: |
| lit &= 31; |
| shift_op = true; |
| op = kOpLsl; |
| break; |
| case Instruction::SHR_INT_LIT8: |
| case Instruction::SHR_INT: |
| case Instruction::SHR_INT_2ADDR: |
| lit &= 31; |
| shift_op = true; |
| op = kOpAsr; |
| break; |
| case Instruction::USHR_INT_LIT8: |
| case Instruction::USHR_INT: |
| case Instruction::USHR_INT_2ADDR: |
| lit &= 31; |
| shift_op = true; |
| op = kOpLsr; |
| break; |
| |
| case Instruction::DIV_INT: |
| case Instruction::DIV_INT_2ADDR: |
| case Instruction::DIV_INT_LIT8: |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::REM_INT: |
| case Instruction::REM_INT_2ADDR: |
| case Instruction::REM_INT_LIT8: |
| case Instruction::REM_INT_LIT16: { |
| if (lit == 0) { |
| GenDivZeroException(); |
| return; |
| } |
| if ((opcode == Instruction::DIV_INT) || |
| (opcode == Instruction::DIV_INT_2ADDR) || |
| (opcode == Instruction::DIV_INT_LIT8) || |
| (opcode == Instruction::DIV_INT_LIT16)) { |
| is_div = true; |
| } else { |
| is_div = false; |
| } |
| if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) { |
| return; |
| } |
| |
| bool done = false; |
| if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div); |
| done = true; |
| } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { |
| rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div); |
| done = true; |
| } else if (cu_->instruction_set == kThumb2) { |
| if (cu_->GetInstructionSetFeatures()->AsArmInstructionSetFeatures()-> |
| HasDivideInstruction()) { |
| // Use ARM SDIV instruction for division. For remainder we also need to |
| // calculate using a MUL and subtract. |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div); |
| done = true; |
| } |
| } |
| |
| if (!done) { |
| FlushAllRegs(); /* Everything to home location. */ |
| LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide)); |
| Clobber(TargetReg(kArg0, kNotWide)); |
| CallRuntimeHelperRegImm(kQuickIdivmod, TargetReg(kArg0, kNotWide), lit, false); |
| if (is_div) |
| rl_result = GetReturn(kCoreReg); |
| else |
| rl_result = GetReturnAlt(); |
| } |
| StoreValue(rl_dest, rl_result); |
| return; |
| } |
| default: |
| LOG(FATAL) << "Unexpected opcode " << opcode; |
| } |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| // Avoid shifts by literal 0 - no support in Thumb. Change to copy. |
| if (shift_op && (lit == 0)) { |
| OpRegCopy(rl_result.reg, rl_src.reg); |
| } else { |
| OpRegRegImm(op, rl_result.reg, rl_src.reg, lit); |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2, int flags) { |
| RegLocation rl_result; |
| OpKind first_op = kOpBkpt; |
| OpKind second_op = kOpBkpt; |
| bool call_out = false; |
| bool check_zero = false; |
| int ret_reg = TargetReg(kRet0, kNotWide).GetReg(); |
| QuickEntrypointEnum target; |
| |
| switch (opcode) { |
| case Instruction::NOT_LONG: |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| // Check for destructive overlap |
| if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) { |
| RegStorage t_reg = AllocTemp(); |
| OpRegCopy(t_reg, rl_src2.reg.GetHigh()); |
| OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow()); |
| OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg); |
| FreeTemp(t_reg); |
| } else { |
| OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow()); |
| OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh()); |
| } |
| StoreValueWide(rl_dest, rl_result); |
| return; |
| case Instruction::ADD_LONG: |
| case Instruction::ADD_LONG_2ADDR: |
| first_op = kOpAdd; |
| second_op = kOpAdc; |
| break; |
| case Instruction::SUB_LONG: |
| case Instruction::SUB_LONG_2ADDR: |
| first_op = kOpSub; |
| second_op = kOpSbc; |
| break; |
| case Instruction::MUL_LONG: |
| case Instruction::MUL_LONG_2ADDR: |
| call_out = true; |
| ret_reg = TargetReg(kRet0, kNotWide).GetReg(); |
| target = kQuickLmul; |
| break; |
| case Instruction::DIV_LONG: |
| case Instruction::DIV_LONG_2ADDR: |
| call_out = true; |
| check_zero = true; |
| ret_reg = TargetReg(kRet0, kNotWide).GetReg(); |
| target = kQuickLdiv; |
| break; |
| case Instruction::REM_LONG: |
| case Instruction::REM_LONG_2ADDR: |
| call_out = true; |
| check_zero = true; |
| target = kQuickLmod; |
| /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */ |
| ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2, kNotWide).GetReg() : |
| TargetReg(kRet0, kNotWide).GetReg(); |
| break; |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::AND_LONG: |
| first_op = kOpAnd; |
| second_op = kOpAnd; |
| break; |
| case Instruction::OR_LONG: |
| case Instruction::OR_LONG_2ADDR: |
| first_op = kOpOr; |
| second_op = kOpOr; |
| break; |
| case Instruction::XOR_LONG: |
| case Instruction::XOR_LONG_2ADDR: |
| first_op = kOpXor; |
| second_op = kOpXor; |
| break; |
| default: |
| LOG(FATAL) << "Invalid long arith op"; |
| } |
| if (!call_out) { |
| GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2); |
| } else { |
| FlushAllRegs(); /* Send everything to home location */ |
| if (check_zero) { |
| RegStorage r_tmp1 = TargetReg(kArg0, kWide); |
| RegStorage r_tmp2 = TargetReg(kArg2, kWide); |
| LoadValueDirectWideFixed(rl_src2, r_tmp2); |
| RegStorage r_tgt = CallHelperSetup(target); |
| if ((flags & MIR_IGNORE_DIV_ZERO_CHECK) == 0) { |
| GenDivZeroCheckWide(r_tmp2); |
| } |
| LoadValueDirectWideFixed(rl_src1, r_tmp1); |
| // NOTE: callout here is not a safepoint |
| CallHelper(r_tgt, target, false /* not safepoint */); |
| } else { |
| CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_src2, false); |
| } |
| // Adjust return regs in to handle case of rem returning kArg2/kArg3 |
| if (ret_reg == TargetReg(kRet0, kNotWide).GetReg()) |
| rl_result = GetReturnWide(kCoreReg); |
| else |
| rl_result = GetReturnWideAlt(); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| } |
| |
| void Mir2Lir::GenConst(RegLocation rl_dest, int value) { |
| RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true); |
| LoadConstantNoClobber(rl_result.reg, value); |
| StoreValue(rl_dest, rl_result); |
| if (value == 0) { |
| Workaround7250540(rl_dest, rl_result.reg); |
| } |
| } |
| |
| void Mir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest, |
| RegLocation rl_src) { |
| /* |
| * Don't optimize the register usage since it calls out to support |
| * functions |
| */ |
| |
| FlushAllRegs(); /* Send everything to home location */ |
| CallRuntimeHelperRegLocation(trampoline, rl_src, false); |
| if (rl_dest.wide) { |
| RegLocation rl_result; |
| rl_result = GetReturnWide(LocToRegClass(rl_dest)); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| RegLocation rl_result; |
| rl_result = GetReturn(LocToRegClass(rl_dest)); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath { |
| public: |
| SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont) |
| : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) { |
| } |
| |
| void Compile() OVERRIDE { |
| m2l_->ResetRegPool(); |
| m2l_->ResetDefTracking(); |
| GenerateTargetLabel(kPseudoSuspendTarget); |
| m2l_->CallRuntimeHelper(kQuickTestSuspend, true); |
| if (cont_ != nullptr) { |
| m2l_->OpUnconditionalBranch(cont_); |
| } |
| } |
| }; |
| |
| /* Check if we need to check for pending suspend request */ |
| void Mir2Lir::GenSuspendTest(int opt_flags) { |
| if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) { |
| if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { |
| return; |
| } |
| FlushAllRegs(); |
| LIR* branch = OpTestSuspend(NULL); |
| LIR* cont = NewLIR0(kPseudoTargetLabel); |
| AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont)); |
| } else { |
| if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { |
| return; |
| } |
| FlushAllRegs(); // TODO: needed? |
| LIR* inst = CheckSuspendUsingLoad(); |
| MarkSafepointPC(inst); |
| } |
| } |
| |
| /* Check if we need to check for pending suspend request */ |
| void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) { |
| if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) { |
| if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { |
| OpUnconditionalBranch(target); |
| return; |
| } |
| OpTestSuspend(target); |
| FlushAllRegs(); |
| LIR* branch = OpUnconditionalBranch(nullptr); |
| AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target)); |
| } else { |
| // For the implicit suspend check, just perform the trigger |
| // load and branch to the target. |
| if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { |
| OpUnconditionalBranch(target); |
| return; |
| } |
| FlushAllRegs(); |
| LIR* inst = CheckSuspendUsingLoad(); |
| MarkSafepointPC(inst); |
| OpUnconditionalBranch(target); |
| } |
| } |
| |
| /* Call out to helper assembly routine that will null check obj and then lock it. */ |
| void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) { |
| UNUSED(opt_flags); // TODO: avoid null check with specialized non-null helper. |
| FlushAllRegs(); |
| CallRuntimeHelperRegLocation(kQuickLockObject, rl_src, true); |
| } |
| |
| /* Call out to helper assembly routine that will null check obj and then unlock it. */ |
| void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) { |
| UNUSED(opt_flags); // TODO: avoid null check with specialized non-null helper. |
| FlushAllRegs(); |
| CallRuntimeHelperRegLocation(kQuickUnlockObject, rl_src, true); |
| } |
| |
| /* Generic code for generating a wide constant into a VR. */ |
| void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) { |
| RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true); |
| LoadConstantWide(rl_result.reg, value); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void Mir2Lir::GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) { |
| const uint16_t* table = mir_graph_->GetTable(mir, table_offset); |
| const uint16_t entries = table[1]; |
| // Chained cmp-and-branch. |
| const int32_t* as_int32 = reinterpret_cast<const int32_t*>(&table[2]); |
| int32_t starting_key = as_int32[0]; |
| const int32_t* targets = &as_int32[1]; |
| rl_src = LoadValue(rl_src, kCoreReg); |
| int i = 0; |
| for (; i < entries; i++) { |
| if (!InexpensiveConstantInt(starting_key + i, Instruction::Code::IF_EQ)) { |
| // Switch to using a temp and add. |
| break; |
| } |
| BasicBlock* case_block = |
| mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]); |
| OpCmpImmBranch(kCondEq, rl_src.reg, starting_key + i, &block_label_list_[case_block->id]); |
| } |
| if (i < entries) { |
| // The rest do not seem to be inexpensive. Try to allocate a temp and use add. |
| RegStorage key_temp = AllocTypedTemp(false, kCoreReg, false); |
| if (key_temp.Valid()) { |
| LoadConstantNoClobber(key_temp, starting_key + i); |
| for (; i < entries - 1; i++) { |
| BasicBlock* case_block = |
| mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]); |
| OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]); |
| OpRegImm(kOpAdd, key_temp, 1); // Increment key. |
| } |
| BasicBlock* case_block = |
| mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]); |
| OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]); |
| } else { |
| // No free temp, just finish the old loop. |
| for (; i < entries; i++) { |
| BasicBlock* case_block = |
| mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]); |
| OpCmpImmBranch(kCondEq, rl_src.reg, starting_key + i, &block_label_list_[case_block->id]); |
| } |
| } |
| } |
| } |
| |
| void Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) { |
| const uint16_t* table = mir_graph_->GetTable(mir, table_offset); |
| if (cu_->verbose) { |
| DumpSparseSwitchTable(table); |
| } |
| |
| const uint16_t entries = table[1]; |
| if (entries <= kSmallSwitchThreshold) { |
| GenSmallPackedSwitch(mir, table_offset, rl_src); |
| } else { |
| // Use the backend-specific implementation. |
| GenLargePackedSwitch(mir, table_offset, rl_src); |
| } |
| } |
| |
| void Mir2Lir::GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) { |
| const uint16_t* table = mir_graph_->GetTable(mir, table_offset); |
| const uint16_t entries = table[1]; |
| // Chained cmp-and-branch. |
| const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]); |
| const int32_t* targets = &keys[entries]; |
| rl_src = LoadValue(rl_src, kCoreReg); |
| for (int i = 0; i < entries; i++) { |
| int key = keys[i]; |
| BasicBlock* case_block = |
| mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]); |
| OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block->id]); |
| } |
| } |
| |
| void Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) { |
| const uint16_t* table = mir_graph_->GetTable(mir, table_offset); |
| if (cu_->verbose) { |
| DumpSparseSwitchTable(table); |
| } |
| |
| const uint16_t entries = table[1]; |
| if (entries <= kSmallSwitchThreshold) { |
| GenSmallSparseSwitch(mir, table_offset, rl_src); |
| } else { |
| // Use the backend-specific implementation. |
| GenLargeSparseSwitch(mir, table_offset, rl_src); |
| } |
| } |
| |
| bool Mir2Lir::SizeMatchesTypeForEntrypoint(OpSize size, Primitive::Type type) { |
| switch (size) { |
| case kReference: |
| return type == Primitive::kPrimNot; |
| case k64: |
| case kDouble: |
| return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; |
| case k32: |
| case kSingle: |
| return type == Primitive::kPrimInt || type == Primitive::kPrimFloat; |
| case kSignedHalf: |
| return type == Primitive::kPrimShort; |
| case kUnsignedHalf: |
| return type == Primitive::kPrimChar; |
| case kSignedByte: |
| return type == Primitive::kPrimByte; |
| case kUnsignedByte: |
| return type == Primitive::kPrimBoolean; |
| case kWord: // Intentional fallthrough. |
| default: |
| return false; // There are no sane types with this op size. |
| } |
| } |
| |
| } // namespace art |